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Abstract
Motivation: Integrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treat
ment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can intro
duce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics 
data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix 
Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation 
process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data inte
gration and prediction accuracy.
Results: For evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, 
OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed 
data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and 
disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological fea
tures. This approach shows potential for advancing precision oncology by improving data integration and analysis.
Availability and implementation: Source code is available at: https://github.com/compbiolabucf/OmicsNMF.

1 Introduction
The biological sciences have seen a significant transition in re
cent years, characterized by both a significant drop in costs 
and a quick improvement in high-throughput omics technol
ogies. This change has resulted in an unprecedented rise in 
the production of high-throughput biological data, offering 
scientists a comprehensive and detailed understanding of bio
logical processes. One significant development arising from 
this technological surge is the advent of multi-omics research. 
This paradigm involves the simultaneous acquisition of vari
ous omics data types, such as genomics, epigenomics, tran
scriptomics, and proteomics, from the same set of biological 
samples (Gomez-Cabrero et al. 2014). Analysis of these 
omics data can help bring revolutionary advancement in 
many aspects especially in biomedical research. The intercon
nected nature of these omics data types through complex net
works makes their integration a challenging task (Hawe et al. 
2019). It is well-established that integrating multiple omics 
data provides superior insights compared to analyzing single 
omics data alone (Subramanian et al. 2020, W€orheide et al. 
2021, Ahmed et al. 2023b). There have been a lot of research 
in finding the proper way to integrate multi-omics datatypes. 
However, the biggest obstruction in the way forward seems 
to be handling missing data in different omics profiles.

Missing value imputation studies represents a pivotal do
main within multi-omics research addressing different types 

of missing data problems (Ahmed et al. 2023a). Several impu
tation methods are available for the scenario where only a 
portion of a sample is missing. Traditional statistical and ma
chine learning based algorithms like regression (Tibshirani 
1996, Seber and Lee 2012) and k-nearest neighbor ensemble 
based techniques (Troyanskaya et al. 2001, Lee and 
Styczynski 2018) have been proposed to solve the imputation 
problem. Recently, deep learning-based models have also 
emerged as effective solutions for missing data imputation. 
Generative Adversarial Networks (GANs) (Goodfellow et al. 
2014) are prominent in the deep learning-based imputation 
models because of its exceptional ability to generate reliable 
synthetic data. Initially applied for image completion tasks 
(Tran et al. 2017), GANs are now being used across various 
domains to solve diverse problems (Isola et al. 2017, Zhang 
et al. 2017, Ahmed et al. 2021). Generative Adversarial 
Imputation Nets (GAIN) (Yoon et al. 2018), for example, in
troduced a novel approach by using GANs for data imputa
tion, incorporating a conditional input mask to differentiate 
observed data from missing data in each sample. However, 
imputing a completely missing modality for a sample poses a 
unique imputation challenge. In omics domain, one omics 
profile may be collected for a patient, while another may be 
missing due to factors like limited time, expensive data collec
tion procedures, or patient non-attendance during data col
lection. In this scenario the completely missing modality 
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(target modality) can be imputed from another modality 
(source modality) collected from the same set of samples. To 
address this, several studies have focused on imputing 
completely missing omics profiles. Classical methods such as 
k-nearest neighbor (Dong et al. 2019) and multi-factor analy
sis (MFA) (Voillet et al. 2016) have been proposed to solve 
this problem. These methods often assume linear relation
ships between different omics profiles and samples, limiting 
their ability to capture the non-linear interactions inherent in 
genomic data. Recent advancements in omics data imputa
tion include machine learning approaches like TDimpute 
(Zhou et al. 2020) and OmiTrans (Zhang and Guo 2022). 
TDimpute utilizes a fully connected network optimized with 
mean squared error (MSE) loss while OmiTrans employs a 
GAN-based model combining MSE and adversarial loss for 
missing sample generation. Although both methods theoreti
cally model the non-linear relationships in omics data, they 
are still focused on minimizing the mean square error be
tween the available target samples and the generated samples 
from the model which creates a bias towards available data
sets specially when the sample size is not large enough to fit a 
neural network.

In this work, we propose a GAN-based framework with a loss 
function that incorporates non-negative matrix factorization 
(NMF) (Lee and Seung 1999). NMF is an efficient technique for 
reducing high-dimensional omics data to a low-dimensional 
structure, effectively capturing complex relationships between 
multiple omics profiles (Stein-O’Brien et al. 2018). This algorithm 
has been employed not only to identify complex heterogeneous 
networks in multi-modal omics data (Yang and Michailidis 
2016) but also to impute missing values (Xu et al. 2021). 
Typically, when the target modality has missing samples com
pared to the source modality, these missing samples are not used 
in training due to the lack of ground truth in the target modality 
and are instead used for inference in a trained model. However, 
by including NMF loss in our framework, we can incorporate 
these missing subsets even during training, providing a significant 
advantage for GAN training. While NMF alone, as a statistical 
method, cannot fully address the limitations of complete missing 
value imputation, combining it with the generative power of 
GANs offers a robust solution. We have designed a framework 
named OmicsNMF to achieve complete missing imputation of 
target omics profiles from source omics profiles.

The remainder of this article is organized as follows. 
Section 2.1 provides a high-level description of the frame
work, followed by the technical details in Section 2.2. We 
then discuss the baseline methods used for comparison in 
Section 2.3 and present the dataset, experimental setup, and 
results in Section 3. Finally, we address the limitations of our 
work and propose future directions in Sections 4 and 5.

2 Materials and methods
In this section, we describe the proposed method, OmicsNMF, 
and the mathematical notations used in this study for 
multi-omics imputation. We first present an overview of the 
framework and then provide a detailed methodology.

2.1 Overview of the framework
Missing sample imputation facilitates comprehensive analy
ses and enhances biological insights in multi-omics datasets. 
In this study, we focus on the imputation of completely miss
ing samples from one omics modality using observed samples 

from multi-omics profiles so that the entire multi-omics data
set can be utilized for downstream tasks. The overall pro
posed framework is illustrated in Fig. 1. OmicsNMF is based 
on a GAN, which uses the source omics profile as input in
stead of random noise to generate the target omics profile. 
GANs have gained substantial attention in recent years due 
to their proficiency in generating realistic synthetic data, 
making them an ideal foundation for this framework. 
Typically, GAN frameworks consist of two key components: 
a generator and a discriminator. The generator generates syn
thetic data samples that mimic the distribution of the target 
dataset, while the discriminator learns to distinguish between 
real and synthetic samples. Through an iterative training pro
cess, the generator strives to produce synthetic samples that 
are indistinguishable from real ones.

However, conventional GAN models often struggle to pre
serve sample-specific information when generating samples. 
To address this challenge, our framework focuses on imput
ing missing samples while maintaining these specific charac
teristics. Instead of using random noise, we use another 
omics profile from the same sample as input, which encour
ages the imputed values to retain sample-specific features. By 
leveraging the neural networks within the GAN framework, 
our method more effectively models the complex relation
ships between omics profiles.

Unlike traditional GANs, which rely solely on adversarial 
loss, we propose an additional loss based on NMF combined 
with MSE loss for training. NMF decomposes the data into 
two matrices: one representing the cluster memberships of 
each sample, and the other representing the centroids of these 
clusters. For omics data, it is crucial that the cluster represen
tation remains consistent across different subsets of available 
samples, and the centroids of missing samples should closely 
resemble those calculated from the available samples of the 
target omics. To achieve this, we calculate the cluster cent
roids for each mini-batch and compare them to the pre- 
calculated centroids derived from the available samples. This 
enables us to compute the loss for missing samples without 
requiring ground truth values, unlike traditional MSE loss. 
By incorporating missing samples in this manner, our ap
proach enhances the modeling of the translation from source 
omics to target omics and enables the GAN to learn more ro
bust feature representations. While NMF may have limita
tions in handling non-linearity, combining it with GAN helps 
overcome these challenges. Additionally, since NMF’s perfor
mance can be sensitive to initial conditions, we set a high 
maximum iteration count to ensure proper convergence. The 
MSE loss ensures that the generated dataset aligns with the 
original target omics profile. Finally, we evaluate OmicsNMF 
through phenotype prediction using the generated data, 
which includes the previously missing samples. A summary of 
the notations used in this study is provided in Table 1.

2.2 Network architecture
Our proposed framework uses the Wasserstein Generative 
Adversarial Network (wGAN) (Arjovsky et al. 2017), a mod
ified version of GAN known for its efficient training capabili
ties and ability to overcome common GAN training problems 
such as mode collapse and vanishing gradients. The wGAN 
architecture consists of two neural networks: the generator 
(G) and the discriminator, referred to as the critic (C). These 
networks engage in an adversarial training process to itera
tively refine the generated samples. The generator aims to 
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produce data that is indistinguishable from the real samples, 
while the critic tries to differentiate between real and syn
thetic data. GANs are typically implemented with a decoder 
fashioned generator (Wu et al. 2016) and a binary classifier 
discriminator model. However, as we input source omics to 
the generator instead of random noise vector and generate 
the target omics, our generator is designed using an encoder- 
decoder architecture (Cho et al. 2014). Given that our 
domain of interest is a 1D-signal domain, we implement a 
shallow fully-connected encoder-decoder network as the gen
erator and a shallow fully-connected model with a single out
put node as the critic. The generator is a fully connected 
neural network with two hidden layers consisting of 512 and 
768 nodes, respectively. The critic also has two hidden layers 
with 256 and 128 nodes, respectively, and has a single node 
in the output layer. All layers in the generator and the critic 
are followed by ReLU (rectified linear unit) activation func
tion. The critic is expected to assign higher scores to real sam
ples than to synthetic ones. The generator of the framework 
is designed to generate missing samples of target omics, Y, 
from source omics, X. Therefore, the input to the generator is 
the source omics X, as shown in Equation (1) below: 

Ŷ n× q ¼ GðXn× pÞ: (1) 

As described in Table 1, n represents the number of sam
ples in the source omics, and m represents the number of 
samples in the target omics, where k¼ n −m and k is the 
number of missing samples. Additionally, p and q are the 
number of features in the source and target omics, respec
tively. The objective function for training the critic is given by 
Equation (2), where Y represents the true target omics profile 

and Ŷ represents the generated target omics profile. The loss 
function aims to train the critic to distinguish between real 
and synthetic samples. 

LC ¼ CðŶ m× qÞ− CðYm× qÞ: (2) 

NMF decomposes a non-negative data matrix into two 
non-negative matrices, typically representing basis vectors 
and coefficients, such that their product approximates the 
original data matrix. We use this factorization to decompose 
the available target omics (Y) and generated omics (Ŷ ) into 
two matrices, U and V, as shown in Equations (3) and 
(4) below: 

Ym× q ¼ Vm× c ×Uc×q; (3) 

Ŷ n× q ¼ V̂ n× c × Û c× q; (4) 

where c represents the number of clusters, Vm×c represents 
the cluster membership of each sample, and Uc×q gives the 
values of the centroids of those clusters for Y. We perform 
the same decomposition on Ŷ to obtain the centroid matrix 
Û c×q. Note that Û c×q, which comes from the generated tar
get omics, includes the k samples that are missing from the 
target omics data but are available in the source omics data. 
In Fig. 1, the NMF block calculates both U and V, and we use 
only the centroid matrix U to calculate the NMF loss. This 
decomposition is performed for each mini-batch, using the 
generator’s output with random initialization and a large 
maximum iteration count to ensure convergence. The objec
tive function is designed to minimize the distance between the 
centroid matrix derived from the available target omics and 
that from the generated target omics. It is to ensure that the 
properties of q features in Ŷ after imputation of k samples 
are similar to Y which only contains true values. 

LG ¼ CðGðXn× pÞÞ− αðjjUc× q − Û c×qjj
2
2Þ

− βðjjYm× q − Ŷ m×qjj
2
2Þ:

(5) 

Equation (5) represents the overall objective function for 
the generator. The first term is the critic loss, which aims to 
fool the critic into identifying the generated samples as real 
ones. This forces the generator to learn to produce samples 
that imitates the distribution of real samples and are hard to 
distinguish. The second term ensures that the cluster repre
sentation of the original target omics and the generated target 

Figure 1. The overview of the OmicsNMF framework. The framework aims to train a Generator to synthesize target omics data from source omics data 
and a Critic to differentiate between real and synthetic samples through adversarial training. The Critic is trained using adversarial loss, while the 
Generator’s training is guided by minimizing both the NMF loss between synthetic and real target omics profiles and the MSE loss.

Table 1. Notations.

Name Definition

p, q number of features for source omics and target 
omics profiles, respectively

X 2 Rn×p source omics profile and n is the number of available 
samples

Y 2 Rm×q target omics profile and m is the number of available 
samples

Ŷ 2 Rn×q Generated target omics expression including k 
missing samples, where k¼ n − m

G Generator
C Critic
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omics are similar by minimizing the distance between them. 
This term also allows us to incorporate the completely miss
ing samples into the loss function, as the centroid matrix rep
resents an overall distribution of the omics profile rather than 
specific samples. From Equations (3) and (4), it is evident 
that it is not necessary to have the same number of samples to 
generate U for both the available target omics and the gener
ated target omics. Therefore, we can calculate Û including 
the missing samples and thus calculate the NMF loss. Finally, 
the third term represents the L2 norm calculated between the 
true target omics and the generated target omics profile (MSE 
loss). This part is calculated only over the available samples 
in the target omics data. The two tuning parameters α and β 
control the weight put on the last two terms.

Finally, after training OmicsNMF, we use the generator to 
impute missing samples for the target omics using the available 
target and source omics profiles. Further testing and evaluations 
are then performed on the generated omics profile.

2.3 Baselines and evaluation methods
For performance comparison, several previous methods were 
implemented as baselines using the same data splitting setup 
to ensure the results are comparable with OmicsNMF. 
OmiTrans (Zhang and Guo 2022) is the latest proposed 
method for imputing one missing omics profile from another 
available profile, using a vanilla GAN architecture combined 
with MSE loss during the generator training step. TDimpute 
(Zhou et al. 2020) is another method that uses MSE loss with 
a simple feed-forward network. A statistical machine learning 
method, TOBMI (Dong et al. 2019), is also implemented. 
TOBMI uses the k-nearest neighbor algorithm to find the 
nearest neighbors from m available samples in source omics 
data and averages those samples in the target omics data to 
impute the missing samples. Additionally, we compare our 
method with traditional linear regression. Finally, we also 
evaluate a modified version of our framework where the 
MSE loss term is removed and only the NMF loss is used for 
training the GAN model. This version is referred to as “NMF 
Only” in the tables and figures.

One of the main reasons for investigating the imputation 
of omics profiles is to address completely missing samples for 
downstream tasks and analyses. First, we evaluate the quality 
of the imputed omics profiles for the phenotype classification 
task. For this evaluation, we use a basic Random Forest clas
sifier to predict phenotypes using the generated omics pro
files, including the imputed missing samples. Second, we 
perform survival analysis on the imputed omics profiles to as
sess the quality of the imputed data. We use an Elastic Net- 
penalized Cox proportional hazards model (Simon et al. 
2011) to analyze the relationship between patients’ overall 
survival time or disease-free time and their omics profiles. 
The Elastic Net penalty combines L1-norm and L2-norm pen
alties by maximizing the following log-likelihood function: 

log LðβÞ− α r
Xq

i¼1

jβij þ
1 − r

2

Xq

i¼1

β2
i

 !

; (6) 

where β 2 R1×q is the vector of regression coefficients or risk 
coefficients, LðβÞ is the partial likelihood of the Cox model, 
α≥0 is a hyperparameter that controls the amount of shrink
age, r 2 ½0;1� is the relative weight of the L1-norm and L2-norm 
penalties, and βi, where i 2 ½1;q�, represents the coefficient for 
the ith genomic feature in the omics data. We split the data into 

training and test sets with an 80/20 ratio. The high-risk and 
low-risk groups in the test set are identified using the prognostic 
index (PI), which is the linear component of the Cox model: 
PI¼ βTX test, where X test is the omics profile of the test set, and 
the risk coefficients were estimated from the trained Cox model 
on the training set. The test set samples were divided into two 
equally sized groups using the median value of PI. The log-rank 
test P-value was calculated to compare the difference between 
the two groups. We implemented the Cox model using Python’s 
scikit-survival package (P€olsterl 2020), and the lifelines package 
(Davidson-Pilon 2019) was used for the Kaplan–Meier plots.

3 Results
3.1 Datasets
The experiments on our proposed framework were run on 
The Cancer Genome Atlas (TCGA) breast cancer (BRCA) 
dataset (The Cancer Genome Atlas Network 2012). The two 
omics profiles used here are RNA-seq mRNA expression and 
miRNA expression, downloaded from the UCSC Xena Hub 
(Goldman et al. 2020). The dataset contains miRNA expres
sion data for 830 patients. The dataset has mRNA expression 
data for 1218 patients, including the 830 patients present in 
the miRNA expression data. There are 20 530 genes with 
log2ðxþ1Þ transformed RSEM normalized expression values 
in the mRNA data and 2238 miRNAs with log2ðxþ1Þ trans
formed RPM feature values in the miRNA data. The clinical 
information for the breast cancer dataset was obtained from 
cBioPortal (Gao et al. 2013). For phenotype prediction, we 
predict the Estrogen Receptor and Triple Negative (TN) sta
tus of the breast cancer patients. There are 332 Estrogen 
Receptor positive (ERþ) and 80 Estrogen Receptor negative 
(ER−) samples in the clinical information data. For the TN 
phenotype, the dataset has 65 TN and 347 non-TN samples.

3.2 Imputation and cancer subtype prediction
In this section, we discuss how the two-stage experiment is 
set up. In the first stage, OmicsNMF is trained and the miss
ing samples are imputed. In the second stage, the imputed 
omics profile is used for cancer subtype prediction to ensure 
that the imputed data contains meaningful features for down
stream tasks.

The experiments were conducted for two cases: first, to im
pute miRNA from mRNA, and second, to impute mRNA 
from miRNA. For mRNA, we have 1218 samples, and for 
miRNA, we have 830 samples. Therefore, when imputing 
miRNA from mRNA, we have 388 missing samples. We split 
the 830 miRNA samples into training and validation sets, 
with 80% being training data. The 388 samples that are miss
ing for miRNA are available in the mRNA data as source 
omics. However, when imputing mRNA from miRNA, we 
keep 20% of the available 830 mRNA samples separated as 
missing samples. These samples are available in the miRNA 
data as source omics. We then split the remaining samples 
into training and validation sets with an 80/20 ratio. We per
formed 100 random splits following these conditions to avoid 
any data bias. For each of these hundred splits, OmicsNMF 
was trained. The validation data was used only to evaluate 
the model’s performance and to monitor convergence. The 
samples which are available on both source and target will be 
used to calculate both MSE and NMF loss during training. 
For NMF decomposition, we used a cluster size of 10 (ie, 
c¼10). Additionally, as discussed in Section 2.2 the samples 
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that are missing on the target omics but available in the 
source omics will still be used to calculate the NMF loss and 
assist the training via the second term in Equation (5). For 
evaluation we use the validation split to calculate the MSE 
for the generated or imputed samples.

To evaluate the contribution of the imputed data in cancer 
subtype prediction, a Random Forest Classifier was used. 
The imputed training, validation, and missing samples were 
used for a 5-fold cross-validation on the Random Forest 
Classifier for the prediction task. The average AUC (Area 
Under the Curve) was calculated over the 5-fold cross- 
validation for both ER and TN prediction as the performance 
metric. Since the GAN was trained using 100 different data 
splits, the 5-fold cross-validation was performed after train
ing on each split. The AUC results from the 5-fold cross- 
validation were then averaged over the hundred splits and 
reported as the Overall AUC in Tables 2 and 3. Figures 2 and  
3 show the distribution of the average AUC across the 100 
different splits for various methods.

We also evaluated the quality of the imputed data by train
ing the Random Forest Classifier using the training and vali
dation samples and then testing it on the imputed missing 
samples. We refer to this as the Test set in Tables 2 and 3, 
which consists of the samples assumed missing from the ini
tial dataset and imputed after training OmicsNMF. This per
formance on the test set represents the effectiveness of the 
downstream task on the completely missing samples after im
putation, with the Random Forest Classifier trained only on 
the available samples. From the Tables 2 and 3 it is evident 
that OmicsNMF consistently performs better than the other 
baseline methods. However, in some cases, other methods 
may perform slightly better, but even in those instances, our 
method performs on par with them.

The MSE between the available omics and the generated 
omics was calculated for the samples in the validation split. 
From Table 4, it is observable that OmicsNMF does not have 
the lowest MSE loss for the imputation task. However, 
OmicsNMF performs competitively with other methods, 
given that most baseline methods directly or indirectly aim to 
minimize only the MSE loss during the training phase. In con
trast, OmicsNMF is a GAN-based method with an advanced 
objective function that seeks to minimize both the MSE loss 
and the NMF loss, along with the adversarial loss. Therefore, 
despite not achieving the lowest MSE loss, our proposed 
method demonstrates competitive performance by optimizing 
a multi-faceted training objective, balancing MSE, NMF, and 
adversarial losses. From the classification results of the 
“NMF Only” model in Tables 2 and 3, we see that it can im
pute samples with a high MSE loss but still preserve impor
tant features for predicting breast cancer subtypes. However, 
it is also essential to keep the reconstruction loss as low as 
possible. The MSE loss helps the GAN model steer the 

imputation towards better reconstruction error while con
serving the features.

As MSE loss is an important metric for imputation, it can 
be observed from the tables that the methods with the mini
mum MSE are not always the best performing in terms of TN 
or ER classification. This suggests that the NMF loss is con
serving meaningful features for the imputed samples, leading 
to better performance on downstream tasks. Furthermore, 
the formulation of NMF loss, as discussed in Section 2.2, 
shows that it enables the use of source omics samples that are 
completely missing in the target omics for training. This is 
not possible when training a model using only MSE loss. This 
advantage of our framework makes it more reliable for prac
tical use, as the imputation is not entirely dependent on the 
training data and the fitted model. Instead, it incorporates 
source omics information through the cluster centroid loss 
for imputation.

3.3 Survival analysis
To ensure the quality of the imputed data, survival analysis 
was conducted on the breast cancer dataset to predict overall 
survival and disease-free status. The analysis utilized the Cox 
proportional hazards model with Elastic Net penalty, de
tailed in Section 2.3. The dataset was partitioned into train
ing and testing sets using the method outlined in Section 3.2. 
Following model training, the prognostic index PI was com
puted for the test set, enabling the separation of high-risk and 
low-risk groups for generating Kaplan–Meier plots. Figures 4 
and 5 display the Kaplan–Meier plots generated by 
microRNA and mRNA, respectively, for the imputed data 
from the test set using our proposed method. The distinct 
separation observed between the high-risk and low-risk 
groups in both survival and disease-free status plots indicates 
that the imputation quality of OmicsNMF is robust and 
meaningful. Additionally, the log-rank test P-values confirm 
the significant prognostic power of the imputed omics pro
files in survival analysis.

4 Discussion
GAN-based models have already proven to be excellent in 
generative tasks by minimizing adversarial loss. In this study, 
we formulated the imputation task as a generation problem 
to harness the power of GANs. However, differentiating be
tween real and imputed omics samples is challenging due to 
the inherent high dimensionality of omics data. As a result, 
relying solely on adversarial loss is insufficient for training a 
GAN for omics data generation, especially with low sample 
sizes. NMF is well-suited for handling large-scale matrices. 
While MSE helps maintain the similarity between the gener
ated and original data, NMF can identify the underlying 

Table 2. Phenotype classification performance comparison using imputed microRNA.

OmicsNMF TDimpute Regression OmiTrans NMF only TOBMI

Overall ER 0.963 0.958� 0.944� 0.957� 0.949� 0.958�

TN 0.961 0.962 0.951� 0.951� 0.959� 0.958�

Test set ER 0.974 0.967� 0.923� 0.967� 0.970� 0.969�

TN 0.981 0.981 0.955� 0.981 0.979 0.979

The performance of different methods compared to omicsNMF on the mRNA to microRNA imputation task is presented. The “Overall” AUC represents the 
average AUC from 5-fold cross-validation over 100 training splits. The AUC on “Test set” shows the AUC by evaluating on the test set only, averaged over 
the 100 splits. Both AUC values are reported separately for TN and ER prediction. The best two results are bolded. The (�) marks indicate that OmicsNMF is 
statistically significant than the marked methods with a P-value <.05.
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patterns in omics data by decomposing it, thus ensuring the 
preservation of biological characteristics.

From Table 4, it is observable that our framework does not 
achieve the lowest MSE loss for the imputed data compared 
to the baselines as most baselines directly optimize their mod
els by minimizing MSE loss during training. However, 
OmicsNMF optimization is based on three different loss 

terms, as shown in Equation (5), resulting in a slightly higher 
MSE that comes with a significant reward in terms of more 
meaningful feature generation. As shown in Tables 2 and 3, 
the methods with the lowest MSE loss are not always the best 
for breast cancer subtype prediction tasks, suggesting a signif
icant contribution of NMF loss in OmicsNMF for generating 
features with discriminative power. The inclusion of test data 
during training through NMF provides limited supervision 
for the samples that need imputation, rather than relying 
solely on the model trained on the available data. However, 
this advantage diminishes when a significant portion of the 
data is missing and requires imputation. For OmicsNMF to 
accurately estimate the centroids of the complete dataset 
post-imputation, a majority of the data must be available. To 
mitigate this issue, a smaller value of α in Equation (5) can be 
used, which emphasizes the importance of adversarial loss 
and MSE loss in model training.

Table 3. Phenotype classification performance comparison using imputed mRNA.

OmicsNMF TDimpute Regression OmiTrans NMF only TOBMI

Overall ER 0.959 0.941� 0.952� 0.938� 0.937� 0.936�

TN 0.941 0.938� 0.938� 0.940 0.938� 0.917�

Test set ER 0.932 0.937 0.936 0.933 0.934 0.965
TN 0.893 0.887 0.898 0.884 0.883� 0.876�

The performance of different methods compared to omicsNMF on the microRNA to mRNA imputation task is presented. The “Overall” AUC represents the 
average AUC from 5-fold cross-validation over 100 training splits. The AUC on “Test set” shows the AUC by evaluating on the test set only, averaged over 
the 100 splits. Both AUC values are reported separately for TN and ER prediction. The best two results are bolded. The (�) marks indicate that OmicsNMF is 
statistically significant than the marked methods with a P-value <.05.

Figure 2. Classification results using imputed microRNA. Average 5-fold validation AUC result distribution over 100 random splits for different 
methodologies on the mRNA to microRNA imputation task for (a) ER prediction and (b) TN prediction by the random forest classifier.

Figure 3. Classification results using imputed mRNA. Average 5-fold validation AUC result distribution over 100 random splits for different methodologies 
on the microRNA to mRNA imputation task for (a) ER prediction and (b) TN prediction by the random forest classifier.

Table 4. MSE loss comparison between different methods.

Method mRNA to microRNA microRNA to mRNA

OmicsNMF 0.692 1.801
TDimput 0.744 1.911
Regression 0.515 1.467
OmiTrans 0.634 1.956
NMF only 29.196 49.699
TOBMI 0.701 1.984
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OmicsNMF is designed to impute omics profiles from a 
single source omics dataset. Although our study focused on 
microRNA and mRNA datasets, this method can be applied 
to any two types of omics data. Additionally, integrating mul
tiple omics profiles has proven to be more effective for down
stream tasks, suggesting that imputation from multiple 
source omics profiles, rather than a single source, could en
hance imputation accuracy. A more complex generator mod
ule could be developed to take multiple source omics as input 
and generate the target omics from the combined informa
tion. Future research focused on developing and refining 
these multi-omics integration methods could fully leverage 
the potential of diverse biological datasets for complete miss
ing omics sample imputation.

Our experiments were conducted on an NVIDIA RTX 
A4500 GPU. The framework uses only 1GB of vRAM during 
execution due to the relatively small dataset size: 1218 
patients with 20 530 mRNA features and 2238 microRNA 
features, respectively. Therefore, the framework can be 
implemented on a smaller GPU without any increase in run
time. OmicsNMF requires approximately 25 minutes to com
plete 50 epochs, including the NMF decomposition for this 
dataset. The pipeline should remain computationally efficient 
even with larger omics datasets, as long as the generator and 
critic architectures are not excessively large.

5 Conclusion
In this study, we introduced OmicsNMF, a GAN-based model 
designed to impute missing values in completely missing sam
ples within multi-omics data. The novel objective function in 
OmicsNMF incorporates NMF loss, aligning the optimization 
of the model with underlying omics patterns to generate missing 
values while preserving genomic features. We observed that the 
imputed dataset has strong discriminative power for cancer out
come prediction, and its consistently better performance across 
different tasks demonstrates the robustness of the framework. 
Although OmicsNMF does not always achieve the lowest MSE 
loss compared to the baselines, it performs very well in down
stream tasks. This is because the model is not focused solely on 
minimizing MSE loss but is optimized through a multi-faceted 
training objective. Additionally, the NMF loss allows the frame
work to incorporate all available data, even when some samples 
are missing in the target omics, enhancing its reliability. Survival 
analysis using a Cox proportional hazards model indicates the 
quality of the imputed data, and Kaplan–Meier plots demon
strate the strong prognostic power of the imputed omics profiles 
for both overall survival and disease-free status in the cancer 
dataset. In conclusion, OmicsNMF offers a powerful and reli
able solution for multi-omics data imputation, providing more 
accurate and comprehensive analyses in cancer research and 
other biomedical applications. Future work could explore 

Figure 4. Kaplan–Meier survival analysis on breast cancer patients using imputed microRNA. The imputed features were used for (a) survival prediction 
and (b) disease free prediction on breast cancer patients. The number of samples in low or high risk group is indicated by the number in the parenthesis. 
Log-rank test is used to calculate the P-value for the comparison between two risk groups.

Figure 5. Kaplan–Meier survival analysis on breast cancer patients using imputed mRNA. The imputed features were used for (a) survival prediction and 
(b) disease free prediction on breast cancer patients. The number of samples in low or high risk group is indicated by the number in the parenthesis. Log- 
rank test is used to calculate the P-value for the comparison between two risk groups.
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applying this framework to many-to-one omics imputation 
tasks and investigate potential enhancements in the GAN archi
tecture to further improve imputation performance.
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