Bioinformatics, 2024, 40(11), btae674
https://doi.org/10.1093/bioinformatics/btae674
Advance Access Publication Date: 15 November 2024

Original Paper

OXFORD

Systems biology

Optimizing multi-omics data imputation with NMF and
GAN synergy

Md Istiaq Ansari'?, Khandakar Tanvir Ahmed'?, Wei Zhang ®"%*

'Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States
2Department of Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, United States

*Corresponding author. Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States. E-mail: wzhang.cs@ucf.edu.
Associate Editor: Jianlin Cheng

Abstract

Motivation: Integrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treat-
ment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can intro-
duce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics
data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix
Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation
process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data inte-
gration and prediction accuracy.

Results: For evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework,
OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed
data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and
disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological fea-

tures. This approach shows potential for advancing precision oncology by improving data integration and analysis.

Availability and implementation: Source code is available at: https://github.com/compbiolabucf/OmicsNMF.

1 Introduction

The biological sciences have seen a significant transition in re-
cent years, characterized by both a significant drop in costs
and a quick improvement in high-throughput omics technol-
ogies. This change has resulted in an unprecedented rise in
the production of high-throughput biological data, offering
scientists a comprehensive and detailed understanding of bio-
logical processes. One significant development arising from
this technological surge is the advent of multi-omics research.
This paradigm involves the simultaneous acquisition of vari-
ous omics data types, such as genomics, epigenomics, tran-
scriptomics, and proteomics, from the same set of biological
samples (Gomez-Cabrero et al. 2014). Analysis of these
omics data can help bring revolutionary advancement in
many aspects especially in biomedical research. The intercon-
nected nature of these omics data types through complex net-
works makes their integration a challenging task (Hawe et al.
2019). It is well-established that integrating multiple omics
data provides superior insights compared to analyzing single
omics data alone (Subramanian et al. 2020, Worheide et al.
2021, Ahmed et al. 2023b). There have been a lot of research
in finding the proper way to integrate multi-omics datatypes.
However, the biggest obstruction in the way forward seems
to be handling missing data in different omics profiles.
Missing value imputation studies represents a pivotal do-
main within multi-omics research addressing different types

of missing data problems (Ahmed et al. 2023a). Several impu-
tation methods are available for the scenario where only a
portion of a sample is missing. Traditional statistical and ma-
chine learning based algorithms like regression (Tibshirani
1996, Seber and Lee 2012) and k-nearest neighbor ensemble
based techniques (Troyanskaya et al. 2001, Lee and
Styczynski 2018) have been proposed to solve the imputation
problem. Recently, deep learning-based models have also
emerged as effective solutions for missing data imputation.
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) are prominent in the deep learning-based imputation
models because of its exceptional ability to generate reliable
synthetic data. Initially applied for image completion tasks
(Tran et al. 2017), GANs are now being used across various
domains to solve diverse problems (Isola ef al. 2017, Zhang
et al. 2017, Ahmed et al. 2021). Generative Adversarial
Imputation Nets (GAIN) (Yoon et al. 2018), for example, in-
troduced a novel approach by using GANs for data imputa-
tion, incorporating a conditional input mask to differentiate
observed data from missing data in each sample. However,
imputing a completely missing modality for a sample poses a
unique imputation challenge. In omics domain, one omics
profile may be collected for a patient, while another may be
missing due to factors like limited time, expensive data collec-
tion procedures, or patient non-attendance during data col-
lection. In this scenario the completely missing modality
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(target modality) can be imputed from another modality
(source modality) collected from the same set of samples. To
address this, several studies have focused on imputing
completely missing omics profiles. Classical methods such as
k-nearest neighbor (Dong et al. 2019) and multi-factor analy-
sis (MFA) (Voillet et al. 2016) have been proposed to solve
this problem. These methods often assume linear relation-
ships between different omics profiles and samples, limiting
their ability to capture the non-linear interactions inherent in
genomic data. Recent advancements in omics data imputa-
tion include machine learning approaches like TDimpute
(Zhou et al. 2020) and OmiTrans (Zhang and Guo 2022).
TDimpute utilizes a fully connected network optimized with
mean squared error (MSE) loss while OmiTrans employs a
GAN-based model combining MSE and adversarial loss for
missing sample generation. Although both methods theoreti-
cally model the non-linear relationships in omics data, they
are still focused on minimizing the mean square error be-
tween the available target samples and the generated samples
from the model which creates a bias towards available data-
sets specially when the sample size is not large enough to fit a
neural network.

In this work, we propose a GAN-based framework with a loss
function that incorporates non-negative matrix factorization
(NMF) (Lee and Seung 1999). NMF is an efficient technique for
reducing high-dimensional omics data to a low-dimensional
structure, effectively capturing complex relationships between
multiple omics profiles (Stein-O’Brien ez al. 2018). This algorithm
has been employed not only to identify complex heterogeneous
networks in multi-modal omics data (Yang and Michailidis
2016) but also to impute missing values (Xu et al. 2021).
Typically, when the target modality has missing samples com-
pared to the source modality, these missing samples are not used
in training due to the lack of ground truth in the target modality
and are instead used for inference in a trained model. However,
by including NMF loss in our framework, we can incorporate
these missing subsets even during training, providing a significant
advantage for GAN training. While NMF alone, as a statistical
method, cannot fully address the limitations of complete missing
value imputation, combining it with the generative power of
GAN:s offers a robust solution. We have designed a framework
named OmicsNMF to achieve complete missing imputation of
target omics profiles from source omics profiles.

The remainder of this article is organized as follows.
Section 2.1 provides a high-level description of the frame-
work, followed by the technical details in Section 2.2. We
then discuss the baseline methods used for comparison in
Section 2.3 and present the dataset, experimental setup, and
results in Section 3. Finally, we address the limitations of our
work and propose future directions in Sections 4 and 5.

2 Materials and methods

In this section, we describe the proposed method, OmicsNMF,
and the mathematical notations used in this study for
multi-omics imputation. We first present an overview of the
framework and then provide a detailed methodology.

2.1 Overview of the framework

Missing sample imputation facilitates comprehensive analy-
ses and enhances biological insights in multi-omics datasets.
In this study, we focus on the imputation of completely miss-
ing samples from one omics modality using observed samples
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from multi-omics profiles so that the entire multi-omics data-
set can be utilized for downstream tasks. The overall pro-
posed framework is illustrated in Fig. 1. OmicsNMF is based
on a GAN, which uses the source omics profile as input in-
stead of random noise to generate the target omics profile.
GANSs have gained substantial attention in recent years due
to their proficiency in generating realistic synthetic data,
making them an ideal foundation for this framework.
Typically, GAN frameworks consist of two key components:
a generator and a discriminator. The generator generates syn-
thetic data samples that mimic the distribution of the target
dataset, while the discriminator learns to distinguish between
real and synthetic samples. Through an iterative training pro-
cess, the generator strives to produce synthetic samples that
are indistinguishable from real ones.

However, conventional GAN models often struggle to pre-
serve sample-specific information when generating samples.
To address this challenge, our framework focuses on imput-
ing missing samples while maintaining these specific charac-
teristics. Instead of using random noise, we use another
omics profile from the same sample as input, which encour-
ages the imputed values to retain sample-specific features. By
leveraging the neural networks within the GAN framework,
our method more effectively models the complex relation-
ships between omics profiles.

Unlike traditional GANs, which rely solely on adversarial
loss, we propose an additional loss based on NMF combined
with MSE loss for training. NMF decomposes the data into
two matrices: one representing the cluster memberships of
each sample, and the other representing the centroids of these
clusters. For omics data, it is crucial that the cluster represen-
tation remains consistent across different subsets of available
samples, and the centroids of missing samples should closely
resemble those calculated from the available samples of the
target omics. To achieve this, we calculate the cluster cent-
roids for each mini-batch and compare them to the pre-
calculated centroids derived from the available samples. This
enables us to compute the loss for missing samples without
requiring ground truth values, unlike traditional MSE loss.
By incorporating missing samples in this manner, our ap-
proach enhances the modeling of the translation from source
omics to target omics and enables the GAN to learn more ro-
bust feature representations. While NMF may have limita-
tions in handling non-linearity, combining it with GAN helps
overcome these challenges. Additionally, since NMF’s perfor-
mance can be sensitive to initial conditions, we set a high
maximum iteration count to ensure proper convergence. The
MSE loss ensures that the generated dataset aligns with the
original target omics profile. Finally, we evaluate OmicsNMF
through phenotype prediction using the generated data,
which includes the previously missing samples. A summary of
the notations used in this study is provided in Table 1.

2.2 Network architecture

Our proposed framework uses the Wasserstein Generative
Adversarial Network (WGAN) (Arjovsky et al. 2017), a mod-
ified version of GAN known for its efficient training capabili-
ties and ability to overcome common GAN training problems
such as mode collapse and vanishing gradients. The wGAN
architecture consists of two neural networks: the generator
(G) and the discriminator, referred to as the critic (C). These
networks engage in an adversarial training process to itera-
tively refine the generated samples. The generator aims to
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Figure 1. The overview of the OmicsNMF framework. The framework aims to train a Generator to synthesize target omics data from source omics data
and a Critic to differentiate between real and synthetic samples through adversarial training. The Critic is trained using adversarial loss, while the
Generator's training is guided by minimizing both the NMF loss between synthetic and real target omics profiles and the MSE loss.

Table 1. Notations.

Name Definition

P> q number of features for source omics and target
omics profiles, respectively

X eR"*? source omics profile and 7 is the number of available
samples

Y e R target omics profile and » is the number of available
samples

Y e R"*4 Generated target omics expression including k
missing samples, where k =n—-m

G Generator

C Critic

produce data that is indistinguishable from the real samples,
while the critic tries to differentiate between real and syn-
thetic data. GANS are typically implemented with a decoder
fashioned generator (Wu et al. 2016) and a binary classifier
discriminator model. However, as we input source omics to
the generator instead of random noise vector and generate
the target omics, our generator is designed using an encoder-
decoder architecture (Cho et al. 2014). Given that our
domain of interest is a 1D-signal domain, we implement a
shallow fully-connected encoder-decoder network as the gen-
erator and a shallow fully-connected model with a single out-
put node as the critic. The generator is a fully connected
neural network with two hidden layers consisting of 512 and
768 nodes, respectively. The critic also has two hidden layers
with 256 and 128 nodes, respectively, and has a single node
in the output layer. All layers in the generator and the critic
are followed by RelU (rectified linear unit) activation func-
tion. The critic is expected to assign higher scores to real sam-
ples than to synthetic ones. The generator of the framework
is designed to generate missing samples of target omics, Y,
from source omics, X. Therefore, the input to the generator is
the source omics X, as shown in Equation (1) below:

Ynxq:G(anp)~ (1)

As described in Table 1, # represents the number of sam-
ples in the source omics, and m represents the number of
samples in the target omics, where k =n-m and k is the
number of missing samples. Additionally, p and g are the
number of features in the source and target omics, respec-
tively. The objective function for training the critic is given by
Equation (2), where Y represents the true target omics profile

and Y represents the generated target omics profile. The loss
function aims to train the critic to distinguish between real
and synthetic samples.

Lc=C(Yxq)— C(Ypxq)- (2)

NMF decomposes a non-negative data matrix into two
non-negative matrices, typically representing basis vectors
and coefficients, such that their product approximates the
original data matrix. We use this factorization to decompose
the available target omics (Y) and generated omics (Y) into
two matrices, U and V, as shown in Equations (3) and

(4) below:

meq:VmXCXUchp (3)
Ynxq:ancXchq, (4)

where ¢ represents the number of clusters, V,,x. represents
the cluster membership of each sample, and U,y 4 gives the
values of the centroids of those clusters for Y. We perform
the same decomposition on Y to obtain the centroid matrix
U, x4 Note that U, which comes from the generated tar-
get omics, includes the k& samples that are missing from the
target omics data but are available in the source omics data.
In Fig. 1, the NMF block calculates both U and V, and we use
only the centroid matrix U to calculate the NMF loss. This
decomposition is performed for each mini-batch, using the
generator’s output with random initialization and a large
maximum iteration count to ensure convergence. The objec-
tive function is designed to minimize the distance between the
centroid matrix derived from the available target omics and
that from the generated target omics. It is to ensure that the
properties of g features in Y after imputation of k samples
are similar to Y which only contains true values.

L = C(G(Xuxp)) -
=AY mxq

a([[Ucxq - U

exqll3)
~Yxqll2) ®)
mxqll2)-

Equation (5) represents the overall objective function for
the generator. The first term is the critic loss, which aims to
fool the critic into identifying the generated samples as real
ones. This forces the generator to learn to produce samples
that imitates the distribution of real samples and are hard to
distinguish. The second term ensures that the cluster repre-
sentation of the original target omics and the generated target
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omics are similar by minimizing the distance between them.
This term also allows us to incorporate the completely miss-
ing samples into the loss function, as the centroid matrix rep-
resents an overall distribution of the omics profile rather than
specific samples. From Equations (3) and (4), it is evident
that it is not necessary to have the same number of samples to
generate U for both the available target omics and the gener-
ated target omics. Therefore, we can calculate U including
the missing samples and thus calculate the NMF loss. Finally,
the third term represents the L, norm calculated between the
true target omics and the generated target omics profile (MSE
loss). This part is calculated only over the available samples
in the target omics data. The two tuning parameters a and
control the weight put on the last two terms.

Finally, after training OmicsNMF, we use the generator to
impute missing samples for the target omics using the available
target and source omics profiles. Further testing and evaluations
are then performed on the generated omics profile.

2.3 Baselines and evaluation methods

For performance comparison, several previous methods were
implemented as baselines using the same data splitting setup
to ensure the results are comparable with OmicsNMF.
OmiTrans (Zhang and Guo 2022) is the latest proposed
method for imputing one missing omics profile from another
available profile, using a vanilla GAN architecture combined
with MSE loss during the generator training step. TDimpute
(Zhou et al. 2020) is another method that uses MSE loss with
a simple feed-forward network. A statistical machine learning
method, TOBMI (Dong ef al. 2019), is also implemented.
TOBMI uses the k-nearest neighbor algorithm to find the
nearest neighbors from m available samples in source omics
data and averages those samples in the target omics data to
impute the missing samples. Additionally, we compare our
method with traditional linear regression. Finally, we also
evaluate a modified version of our framework where the
MSE loss term is removed and only the NMF loss is used for
training the GAN model. This version is referred to as “NMF
Only” in the tables and figures.

One of the main reasons for investigating the imputation
of omics profiles is to address completely missing samples for
downstream tasks and analyses. First, we evaluate the quality
of the imputed omics profiles for the phenotype classification
task. For this evaluation, we use a basic Random Forest clas-
sifier to predict phenotypes using the generated omics pro-
files, including the imputed missing samples. Second, we
perform survival analysis on the imputed omics profiles to as-
sess the quality of the imputed data. We use an Elastic Net-
penalized Cox proportional hazards model (Simon ez al.
2011) to analyze the relationship between patients’ overall
survival time or disease-free time and their omics profiles.
The Elastic Net penalty combines Li-norm and L,-norm pen-
alties by maximizing the following log-likelihood function:

q 1—7 q
log L(B) —a(rz Bl + —5— ﬂf) (6)
=1 i—1
where g € R1*9 is the vector of regression coefficients or risk
coefficients, L(f) is the partial likelihood of the Cox model,
a>0 is a hyperparameter that controls the amount of shrink-
age, r € [0, 1] is the relative weight of the L-norm and L,-norm
penalties, and f;, where i € [1,q], represents the coefficient for
the ith genomic feature in the omics data. We split the data into
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training and test sets with an 80/20 ratio. The high-risk and
low-risk groups in the test set are identified using the prognostic
index (PI), which is the linear component of the Cox model:
PI = ﬂTXtest, where X is the omics profile of the test set, and
the risk coefficients were estimated from the trained Cox model
on the training set. The test set samples were divided into two
equally sized groups using the median value of PL. The log-rank
test P-value was calculated to compare the difference between
the two groups. We implemented the Cox model using Python’s
scikit-survival package (Polsterl 2020), and the lifelines package
(Davidson-Pilon 2019) was used for the Kaplan—-Meier plots.

3 Results
3.1 Datasets

The experiments on our proposed framework were run on
The Cancer Genome Atlas (TCGA) breast cancer (BRCA)
dataset (The Cancer Genome Atlas Network 2012). The two
omics profiles used here are RNA-seq mRNA expression and
miRNA expression, downloaded from the UCSC Xena Hub
(Goldman et al. 2020). The dataset contains miRNA expres-
sion data for 830 patients. The dataset has mRNA expression
data for 1218 patients, including the 830 patients present in
the miRNA expression data. There are 20 530 genes with
log2(x+ 1) transformed RSEM normalized expression values
in the mRNA data and 2238 miRNAs with log2(x+ 1) trans-
formed RPM feature values in the miRNA data. The clinical
information for the breast cancer dataset was obtained from
cBioPortal (Gao et al. 2013). For phenotype prediction, we
predict the Estrogen Receptor and Triple Negative (TN) sta-
tus of the breast cancer patients. There are 332 Estrogen
Receptor positive (ER+) and 80 Estrogen Receptor negative
(ER-) samples in the clinical information data. For the TN
phenotype, the dataset has 65 TN and 347 non-TN samples.

3.2 Imputation and cancer subtype prediction

In this section, we discuss how the two-stage experiment is
set up. In the first stage, OmicsNMF is trained and the miss-
ing samples are imputed. In the second stage, the imputed
omics profile is used for cancer subtype prediction to ensure
that the imputed data contains meaningful features for down-
stream tasks.

The experiments were conducted for two cases: first, to im-
pute miRNA from mRNA, and second, to impute mRNA
from miRNA. For mRNA, we have 1218 samples, and for
miRNA, we have 830 samples. Therefore, when imputing
miRNA from mRNA, we have 388 missing samples. We split
the 830 miRNA samples into training and validation sets,
with 80% being training data. The 388 samples that are miss-
ing for miRNA are available in the mRNA data as source
omics. However, when imputing mRNA from miRNA, we
keep 20% of the available 830 mRNA samples separated as
missing samples. These samples are available in the miRNA
data as source omics. We then split the remaining samples
into training and validation sets with an 80/20 ratio. We per-
formed 100 random splits following these conditions to avoid
any data bias. For each of these hundred splits, OmicsNMF
was trained. The validation data was used only to evaluate
the model’s performance and to monitor convergence. The
samples which are available on both source and target will be
used to calculate both MSE and NMF loss during training.
For NMF decomposition, we used a cluster size of 10 (ie,
¢=10). Additionally, as discussed in Section 2.2 the samples
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that are missing on the target omics but available in the
source omics will still be used to calculate the NMF loss and
assist the training via the second term in Equation (5). For
evaluation we use the validation split to calculate the MSE
for the generated or imputed samples.

To evaluate the contribution of the imputed data in cancer
subtype prediction, a Random Forest Classifier was used.
The imputed training, validation, and missing samples were
used for a 5-fold cross-validation on the Random Forest
Classifier for the prediction task. The average AUC (Area
Under the Curve) was calculated over the S5-fold cross-
validation for both ER and TN prediction as the performance
metric. Since the GAN was trained using 100 different data
splits, the 5-fold cross-validation was performed after train-
ing on each split. The AUC results from the 5-fold cross-
validation were then averaged over the hundred splits and
reported as the Overall AUC in Tables 2 and 3. Figures 2 and
3 show the distribution of the average AUC across the 100
different splits for various methods.

We also evaluated the quality of the imputed data by train-
ing the Random Forest Classifier using the training and vali-
dation samples and then testing it on the imputed missing
samples. We refer to this as the Testset in Tables 2 and 3,
which consists of the samples assumed missing from the ini-
tial dataset and imputed after training OmicsNMF. This per-
formance on the test set represents the effectiveness of the
downstream task on the completely missing samples after im-
putation, with the Random Forest Classifier trained only on
the available samples. From the Tables 2 and 3 it is evident
that OmicsNMF consistently performs better than the other
baseline methods. However, in some cases, other methods
may perform slightly better, but even in those instances, our
method performs on par with them.

The MSE between the available omics and the generated
omics was calculated for the samples in the validation split.
From Table 4, it is observable that OmicsNMF does not have
the lowest MSE loss for the imputation task. However,
OmicsNMF performs competitively with other methods,
given that most baseline methods directly or indirectly aim to
minimize only the MSE loss during the training phase. In con-
trast, OmicsNMF is a GAN-based method with an advanced
objective function that seeks to minimize both the MSE loss
and the NMF loss, along with the adversarial loss. Therefore,
despite not achieving the lowest MSE loss, our proposed
method demonstrates competitive performance by optimizing
a multi-faceted training objective, balancing MSE, NMF, and
adversarial losses. From the classification results of the
“NMF Only” model in Tables 2 and 3, we see that it can im-
pute samples with a high MSE loss but still preserve impor-
tant features for predicting breast cancer subtypes. However,
it is also essential to keep the reconstruction loss as low as
possible. The MSE loss helps the GAN model steer the

imputation towards better reconstruction error while con-
serving the features.

As MSE loss is an important metric for imputation, it can
be observed from the tables that the methods with the mini-
mum MSE are not always the best performing in terms of TN
or ER classification. This suggests that the NMF loss is con-
serving meaningful features for the imputed samples, leading
to better performance on downstream tasks. Furthermore,
the formulation of NMF loss, as discussed in Section 2.2,
shows that it enables the use of source omics samples that are
completely missing in the target omics for training. This is
not possible when training a model using only MSE loss. This
advantage of our framework makes it more reliable for prac-
tical use, as the imputation is not entirely dependent on the
training data and the fitted model. Instead, it incorporates
source omics information through the cluster centroid loss
for imputation.

3.3 Survival analysis

To ensure the quality of the imputed data, survival analysis
was conducted on the breast cancer dataset to predict overall
survival and disease-free status. The analysis utilized the Cox
proportional hazards model with Elastic Net penalty, de-
tailed in Section 2.3. The dataset was partitioned into train-
ing and testing sets using the method outlined in Section 3.2.
Following model training, the prognostic index PI was com-
puted for the test set, enabling the separation of high-risk and
low-risk groups for generating Kaplan—Meier plots. Figures 4
and 5 display the Kaplan—-Meier plots generated by
microRNA and mRNA, respectively, for the imputed data
from the test set using our proposed method. The distinct
separation observed between the high-risk and low-risk
groups in both survival and disease-free status plots indicates
that the imputation quality of OmicsNMF is robust and
meaningful. Additionally, the log-rank test P-values confirm
the significant prognostic power of the imputed omics pro-
files in survival analysis.

4 Discussion

GAN-based models have already proven to be excellent in
generative tasks by minimizing adversarial loss. In this study,
we formulated the imputation task as a generation problem
to harness the power of GANs. However, differentiating be-
tween real and imputed omics samples is challenging due to
the inherent high dimensionality of omics data. As a result,
relying solely on adversarial loss is insufficient for training a
GAN for omics data generation, especially with low sample
sizes. NMF is well-suited for handling large-scale matrices.
While MSE helps maintain the similarity between the gener-
ated and original data, NMF can identify the underlying

Table 2. Phenotype classification performance comparison using imputed microRNA.

OmicsNMF TDimpute Regression OmiTrans NMF only TOBMI
Overall ER 0.963 0.958" 0.944" 0.957* 0.949" 0.958"
N 0.961 0.962 0.951" 0.951" 0.959" 0.958"
Test set ER 0.974 0.967* 0.923" 0.967" 0.970" 0.969"
N 0.981 0.981 0.955" 0.981 0.979 0.979

The performance of different methods compared to omicsNMF on the mRNA to microRNA imputation task is presented. The “Overall” AUC represents the
average AUC from 5-fold cross-validation over 100 training splits. The AUC on “Test set” shows the AUC by evaluating on the test set only, averaged over
the 100 splits. Both AUC values are reported separately for TN and ER prediction. The best two results are bolded. The (*) marks indicate that OmicsNMF is

statistically significant than the marked methods with a P-value <.05.
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Table 3. Phenotype classification performance comparison using imputed mRNA.

OmicsNMF TDimpute Regression OmiTrans NMF only TOBMI

Overall ER 0.959 0.941" 0.952" 0.938" 0.937" 0.936"
TN 0.941 0.938" 0.938" 0.940 0.938" 0.917*

Test set ER 0.932 0.937 0.936 0.933 0.934 0.965
TN 0.893 0.887 0.898 0.884 0.883" 0.876"

The performance of different methods compared to omicsNMF on the microRNA to mRNA imputation task is presented. The “Overall” AUC represents the
average AUC from 5-fold cross-validation over 100 training splits. The AUC on “Test set” shows the AUC by evaluating on the test set only, averaged over
the 100 splits. Both AUC values are reported separately for TN and ER prediction. The best two results are bolded. The (*) marks indicate that OmicsNMF is

statistically significant than the marked methods with a P-value <.05.
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Figure 2. Classification results using imputed microRNA. Average 5-fold validation AUC result distribution over 100 random splits for different
methodologies on the mRNA to microRNA imputation task for (a) ER prediction and (b) TN prediction by the random forest classifier.
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Figure 3. Classification results using imputed mRNA. Average 5-fold validation AUC result distribution over 100 random splits for different methodologies
on the microRNA to mRNA imputation task for (a) ER prediction and (b) TN prediction by the random forest classifier.

Table 4. MISE loss comparison between different methods.

Method mRNA to microRNA microRNA to mRNA
OmicsNMF 0.692 1.801
TDimput 0.744 1.911
Regression 0.515 1.467
OmiTrans 0.634 1.956
NMF only 29.196 49.699
TOBMI 0.701 1.984

patterns in omics data by decomposing it, thus ensuring the
preservation of biological characteristics.

From Table 4, it is observable that our framework does not
achieve the lowest MSE loss for the imputed data compared
to the baselines as most baselines directly optimize their mod-
els by minimizing MSE loss during training. However,
OmicsNMF optimization is based on three different loss

terms, as shown in Equation (35), resulting in a slightly higher
MSE that comes with a significant reward in terms of more
meaningful feature generation. As shown in Tables 2 and 3,
the methods with the lowest MSE loss are not always the best
for breast cancer subtype prediction tasks, suggesting a signif-
icant contribution of NMF loss in OmicsNMF for generating
features with discriminative power. The inclusion of test data
during training through NMF provides limited supervision
for the samples that need imputation, rather than relying
solely on the model trained on the available data. However,
this advantage diminishes when a significant portion of the
data is missing and requires imputation. For OmicsNMF to
accurately estimate the centroids of the complete dataset
post-imputation, a majority of the data must be available. To
mitigate this issue, a smaller value of « in Equation (5) can be
used, which emphasizes the importance of adversarial loss
and MSE loss in model training.
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OmicsNMF is designed to impute omics profiles from a
single source omics dataset. Although our study focused on
microRNA and mRNA datasets, this method can be applied
to any two types of omics data. Additionally, integrating mul-
tiple omics profiles has proven to be more effective for down-
stream tasks, suggesting that imputation from multiple
source omics profiles, rather than a single source, could en-
hance imputation accuracy. A more complex generator mod-
ule could be developed to take multiple source omics as input
and generate the target omics from the combined informa-
tion. Future research focused on developing and refining
these multi-omics integration methods could fully leverage
the potential of diverse biological datasets for complete miss-
ing omics sample imputation.

Our experiments were conducted on an NVIDIA RTX
A4500 GPU. The framework uses only 1GB of vRAM during
execution due to the relatively small dataset size: 1218
patients with 20 530 mRNA features and 2238 microRNA
features, respectively. Therefore, the framework can be
implemented on a smaller GPU without any increase in run-
time. OmicsNMF requires approximately 25 minutes to com-
plete 50 epochs, including the NMF decomposition for this
dataset. The pipeline should remain computationally efficient
even with larger omics datasets, as long as the generator and
critic architectures are not excessively large.

5 Conclusion

In this study, we introduced OmicsNMF, a GAN-based model
designed to impute missing values in completely missing sam-
ples within multi-omics data. The novel objective function in
OmicsNMF incorporates NMF loss, aligning the optimization
of the model with underlying omics patterns to generate missing
values while preserving genomic features. We observed that the
imputed dataset has strong discriminative power for cancer out-
come prediction, and its consistently better performance across
different tasks demonstrates the robustness of the framework.
Although OmicsNMF does not always achieve the lowest MSE
loss compared to the baselines, it performs very well in down-
stream tasks. This is because the model is not focused solely on
minimizing MSE loss but is optimized through a multi-faceted
training objective. Additionally, the NMF loss allows the frame-
work to incorporate all available data, even when some samples
are missing in the target omics, enhancing its reliability. Survival
analysis using a Cox proportional hazards model indicates the
quality of the imputed data, and Kaplan-Meier plots demon-
strate the strong prognostic power of the imputed omics profiles
for both overall survival and disease-free status in the cancer
dataset. In conclusion, OmicsNMF offers a powerful and reli-
able solution for multi-omics data imputation, providing more
accurate and comprehensive analyses in cancer research and
other biomedical applications. Future work could explore
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applying this framework to many-to-one omics imputation
tasks and investigate potential enhancements in the GAN archi-
tecture to further improve imputation performance.
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