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Abstract—Genomic datasets are often characterized by high
dimensionality and a limited number of samples, making it
difficult to identify biologically meaningful features. Effective
feature selection is crucial in biomedical research, where both
genomic and clinical variables are abundant. In this study, we
evaluate multiple feature selection techniques on large-scale gene
expression datasets from breast cancer, lung adenocarcinoma,
and ovarian cancer. We specifically adapt and optimize a novel
reinforcement learning (RL) approach to address the challenges
of high-dimensional genomic data. The performance of the
RL-based method is compared against widely-used techniques,
including Least Absolute Shrinkage and Selection Operator
(LASSO), Recursive Feature Elimination (RFE), Random Forest,
and Principal Component Analysis (PCA). Our experimental re-
sults demonstrate that the RL approach outperforms traditional
methods in predicting cancer outcomes in most cases, highlighting
its potential for identifying biologically meaningful features in
genomic analysis.

Index Terms—Feature Selection, Reinforcement Learning,
LASSO, RFE, Random Forest, PCA, Gene Expression Data,
Cancer Outcome Prediction

I. INTRODUCTION

Powered by the high-throughput sequencing technologies,
the new DNA- and RNA-sequencing methods are capable
of measuring molecular activities in cells [1]. This allows
researchers to address unanswered important biological and
biomedical questions: 1) Elucidation of gene expressions
generated from mRNA-sequencing data could lead to new
molecular mechanisms such as gene regulations, and poten-
tially molecular signals for phenotype prediction [2]; 2) Single
nucleotide polymorphisms (SNPs) and copy number variations
(CNVs) identified from DNA-sequencing data contribute to
human genetic diversity and associated with common human
diseases [3]. These high-throughput sequencing datasets show
quantitative measures of more than hundreds of thousands of
genomic features for a cohort of hundreds of patients. How-
ever, due to the unavoidable patient heterogeneity, statistical
randomness, and experimental noise in the high-throughput
genomic data, extracting valuable information and discovering
the underlying patterns is becoming a serious challenge to
the computational biology and machine learning communities.
Feature selection plays a critical role in extracting meaningful
insights from high-throughput genomics data. However, inac-
curate information can undermine this process, potentially im-
peding progress toward accurate and efficient disease outcome
prediction.

Traditional feature selection methods such as Least Ab-
solute Shrinkage and Selection Operator (LASSO) [4] and
Recursive Feature Elimination (RFE) [5] are widely used in
genomic data analysis. While these techniques are effective
in reducing dimensionality, they often struggle to capture
complex interactions between features, particularly in high-
dimensional genomic datasets. Recently, reinforcement learn-
ing (RL), a paradigm for sequential decision-making [6], has
shown promise in various domains, including feature selection.
However, its application to genomic feature selection is still
relatively new and underexplored.

In this paper, we adapt and optimize a reinforcement learn-
ing based algorithm [7] for feature selection and apply it to
three cancer gene expression datasets: breast cancer (BRCA)
[8], lung adenocarcinoma (LUAD) [9], and ovarian cancer
(OV) [10]. Reinforcement learning, a branch of machine
learning, offers a promising alternative for feature selection. In
RL, an agent interacts with an environment, receiving rewards
based on the outcomes of its actions. The agent refines its
strategy through exploration (trying new actions) and exploita-
tion (using known actions that yield high rewards), aiming
to maximize cumulative rewards over time. When applied to
feature selection, RL can iteratively choose features while
evaluating their contribution to the predictive task, making
it well-suited for high-dimensional, complex datasets. Unlike
traditional methods, which either rank individual features or
perform an exhaustive search of feature subsets, RL ap-
proaches the problem dynamically, adjusting feature selection
based on feedback from the learning process. This framework
enables the exploration of feature dependencies and non-linear
interactions that are critical for accurate predictive modeling
in cancer genomics. Furthermore, RL can adapt to different
datasets and tasks, providing a versatile and powerful tool for
feature selection. We compare the performance of RL with
common feature selection methods including LASSO, RFE,
Random Forest, and PCA. Our results demonstrate that the RL
algorithm yields more accurate models, offering a promising
approach for feature selection in genomics.

II. RELATED WORK

Molecular signatures are markers of a particular cell or a
tissue phenotype. Exploring the complex relations of molec-
ular signatures and disease phenotype is the most effective
and efficient way to understand the causes of diseases for



patients [11]. Identifying representative molecular signatures
(biomarkers) from the tremendous number of genomic features
has became a central problem in data-driven clinical decision-
making and personalized medicine. The goal is to apply
feature selection techniques to identify the most discriminative
biological features for predicting a given disease phenotype.
Feature selection methods can generally be categorized into
the following main approaches [12]:

Filter Methods: Filter methods evaluate each feature inde-
pendently using statistical criteria, such as correlation with
the target variable or mutual information. Common filter
methods in cancer genomics include chi-square tests [13],
t-tests [14], and correlation-based feature selection [15]. Al-
though these methods are computationally efficient, they often
fail to capture feature dependencies or interactions between
features. Consequently, they may not perform optimally in
highly complex datasets, such as those found in genomics.

Wrapper Methods: Wrapper methods evaluate subsets of
features based on their impact on model performance. A
typical wrapper method involves training a model on various
subsets of features and selecting the subset that produces
the best results. Recursive Feature Elimination (RFE) [16]
and Genetic Algorithms [17] are popular wrapper methods
in cancer genomics. While wrapper methods often produce
better results than filter methods, they can be computationally
expensive, especially when applied to large genomic datasets
containing thousands of biological features.

Embedded Methods: Embedded methods integrate feature
selection directly into the model training process. Examples
include LASSO [4], which applies an L1 penalty to shrink
less important feature weights to zero, and decision trees
[18], which inherently perform feature selection based on
information gain or other splitting criteria. Embedded methods
are popular in genomics due to their ability to balance feature
selection with model performance. Although PCA [19] is not a
primary feature selection method, it reduces dimensionality by
transforming features into uncorrelated principal components.

III. METHODOLOGY

A. Reinforcement Learning for Feature Selection

In this paper, we adapt the reinforcement learning for feature
selection [7] and apply it for the aforementioned cancer ge-
nomic datasets. [7] presents a multi-agent reinforcement learn-
ing (MARL) approach, which automates the feature subspace
exploration, improving both the efficiency of feature selection
and the accuracy of predictive models. [7] treats each feature
as an independent agent in the multi-agent framework. These
agents make decisions (actions) about whether to select or
deselect their corresponding features. Compared with single-
agent RL, where each agent requires evaluating the entire
feature space, multi-agent RL reduces the action space by
allowing each agent to handle one feature at a time. The
agents work collaboratively and competitively to select the
most optimal subset of features. When designing RL approach,
there are two major things to consider: state representation and
reward function.

State Representation. A state indicates the current feature
subspace (i.e., the subset of selected features). The agents must
learn from this state to make decisions. In [7], three methods
are proposed for constructing state representations: (a) Meta
Descriptive Statistics (MDS): This method computes first-level
descriptive statistics (e.g., mean, variance) for each selected
feature and then further derives second-level statistics from the
first-level features. This ensures that the state representation
has a fixed length, regardless of how many features are selected
at any given time. (b) Autoencoder-Based Deep Representation
(AE): A two-level autoencoder approach is used to learn a
latent representation of the selected feature subspace. The first
autoencoder encodes the selected features into a latent space,
and the second autoencoder reduces the dimensionality of this
latent representation to ensure a fixed-length state vector. (c)
Graph Convolutional Network (GCN): This method captures
relationships between features by constructing a dynamic
graph where nodes represent features, and edges represent
their correlations. A GCN is then applied to learn a latent
representation of the selected feature subset. This method
is particularly effective in modeling dependencies between
features.

B. Extended Reinforced Learning for Cancer Genomics

[7] was designed as a general RL method for feature
selection. We extended it to cancer genomics. Figure 1 shows
the adapted MARL framework from [7], which operates in
two main stages.

(1) Control Stage: Feature Selection, State Generation, &
Transitions Generations: Each agent selects or deselects its
corresponding feature based on its policy network, which
takes the current state as input. The selected feature subset is
considered the environment, and the actions of all agents lead
to a new state. The agents then receive a reward based on the
performance of the feature subset. Here, the reward is mainly
measured by predictive accuracy of the selected features, com-
pared with the entire features, as well as feature redundancy
and relevance, etc. For state generation, according to [7], Meta
Descriptive Statistics (MDS) plus Autoencoder-Based Deep
Representation (AE) obtains the best performance as it takes
both explicit and implicit information into consideration from
the selected features. We also adopt this method. In Figure 1,
Q1, Q2, ..., Qn indicates the statistical measures (such as stan-
dard deviation, minimum, maximum, quartiles) with respect to
data samples; Q1, Q2, ..., Qm indicates the statistical measures
with respect to features. Similarly, Latent1, ..., Latentt is the
encoded latent values with respect to data samples, where
Latenta, ..., Latentk are with respect to features.

(2) Training Stage: Each agent independently updates its
policy network by performing experience replay on mini-
batches of samples from its memory. The Deep Q-Network
(DQN) algorithm is used to update the agents’ policies, where
the goal is to maximize the long-term reward. The control
stage and training state cooperate to finally find out the best
feature subset with highest reward.
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Fig. 1: The Framework of the Reinforcement Learning Approach for Automated Feature Selection in Cancer Genomics.

C. Comparative Algorithms

We compared the performance of our RL-based feature
selection algorithm with the following traditional methods:

• Least Absolute Shrinkage and Selection Operator
(LASSO): A popular feature selection method utilizing
regularization. It is based on L1 regularization, which
shrinks coefficients of less important features to zero. In
particular, λ is the regularization parameter that controls
the strength of the penalty. λ controls the trade-off be-
tween achieving a good fit and penalizing the complexity
of the model. A higher λ increases regularization, re-
sulting in fewer selected features. LASSO is particularly
useful in high-dimensional datasets, where many features
may be irrelevant or redundant.

• Recursive Feature Elimination (RFE): A feature selection
technique that aims to identify the important features by
recursively removing the least important ones. It works
by training a model, ranking the features based on their
importance, and then eliminating the least significant
features in a step-by-step process. RFE is a powerful tool
for improving model performance by selecting the most
relevant features while eliminating noise and reducing
overfitting.

• Random Forrest (RF): An ensemble learning method
that consists of multiple decision trees built from ran-
dom subsets of data and features, and aggregates their
predictions to improve accuracy and reduce overfitting.
One of the key advantages of Random Forest is its
ability to rank features by their importance. Each decision
tree in the forest uses different subsets of features, and
the importance of a feature is calculated based on how
much it contributes to reducing the impurity (e.g., Gini

impurity or entropy) in the tree’s decision nodes. Random
Forest can capture complex interactions between features,
making it robust for feature selection in datasets with
nonlinear relationships. Unlike some other methods, Ran-
dom Forest does not require explicit feature selection; it
automatically ranks and selects important features based
on its internal mechanism.

• Principal Component Analysis (PCA): A dimensionality
reduction technique used to transform a large set of
features into a smaller set while preserving as much
variance as possible. However, PCA is not a feature se-
lection method in the traditional sense because it doesn’t
select original features but rather creates new features
(called principal components) that are combinations of
the original features. PCA could be effective when the
goal is to reduce dimensionality and improve model
efficiency, particularly in cases where there are many
correlated features. However, it is not ideal for selecting
individual and interpretable features.

IV. EXPERIMENTS

A. Datasets

The RL framework and baseline methods were tested on
TCGA datasets for breast invasive carcinoma (BRCA) [8],
lung adenocarcinoma (LUAD) [9], and ovarian serous cystade-
nocarcinoma (OV) [10]. RNA-seq mRNA expression data for
each cancer type was downloaded from the UCSC Xena Hub
[20], using transformed RSEM normalized counts for 20,531
genes. Clinical information for the three cancer studies was
obtained from cBioPortal [21]. In the breast cancer study,
patients were classified based on estrogen receptor status
(ER+ vs. ER-) and triple-negative status (TN+ vs. TN-).
Triple-negative breast cancer patients lack estrogen receptors,



progesterone receptors, and excess HER2 protein. For lung
and ovarian cancer studies, patients were classified based on
their survival time.

B. Experiment Setting

In the experimental setup for all methods, the data is split
into training and testing sets in a ratio of 80:20. Classifiers are
trained on the training set using the selected genomic features
from large-scale gene expression datasets and tested on the
testing set with the same selected features. All approaches
except for RL are based on scikit-learn [22]. Additional
settings are shown below for these methods.

• LASSO: We use cross validation to find the optimal
regularization weight λ, which is set to 0.03 in the
experiments.

• RFE: The number of selected features is set to 100, and
the maximum iterations is set to 500 in our experiments.
Logistic regression classifier is applied for prediction.

• Random Forrest (RF): The hyperparameter in Random
Forest is the number of estimators, which is set to 100
in the experiments.

• PCA: The number of principle components are set to 10,
50, and 30 for BRCA, LUAD and OV datasets, respec-
tively, and the logistic regression classifier is applied for
the final classification.

• Multi-agent Reinforcement Learning: We set the batch
size during training to 32 and use the Adam Optimizer
with the learning rate of 0.01.

C. Evaluation Metrics

To evaluate the effectiveness of each feature selection
method, we use is a we used the following metrics:

• Accuracy: The classification accuracy of a predictive
model using the selected features. Accuracy measures the
overall correctness of the model by determining the ratio
of correctly classified instances to the total instances.

• Precision: The proportion of true positives among all
positive predictions. It measures the accuracy of positive
predictions.

• Recall: The proportion of true positives out of all actual
positive instances. It measures how well the model cap-
tures all the actual positive instances.

• F-measure (F1 Score): A measure of model performance
that considers both precision and recall. It is particularly
useful when there is an uneven class distribution.

• AUC: A metric used to evaluate the performance of a
classification model, especially for imbalanced data.

The outcomes of these metrics depend not only on feature
selection but also on the choice of predictors. In this study,
we employ a random forest model with 100 decision trees as
the predictor.

D. Experimental Results

We experimented on six datasets and reported Accuracy,
precision, recall, and the macro F1-score in Tables I, II
and III. From the experimental results, we can draw the

TABLE I: Experimental results on breast cancer dataset (BRCA).
The table presents the classification results for four breast cancer
subtypes, using the genes selected by each method.

Dataset Method AUC Accuracy Precision Recall F1-score

BRCA(ER)

LASSO 0.8833 0.9277 0.9161 0.8886 0.9012
RFE 0.8614 0.9036 0.8725 0.8725 0.8725
RF 0.8329 0.8916 0.8705 0.8329 0.8492
PCA 0.8644 0.8916 0.8536 0.8644 0.8588
MARLFS 0.8886 0.9640 0.9800 0.8833 0.9163

BRCA(HER2)

LASSO 0.7083 0.9156 0.9551 0.7083 0.7706
RFE 0.7197 0.8675 0.7311 0.7148 0.7224
RF 0.6250 0.8916 0.9438 0.6250 0.6702
PCA 0.6180 0.8795 0.8180 0.6180 0.6542
MARLFS 0.6346 0.8927 0.9264 0.6346 0.6681

BRCA(PR)

LASSO 0.8300 0.8554 0.8634 0.8300 0.8410
RFE 0.8801 0.8915 0.8927 0.8768 0.8834
RF 0.8045 0.8313 0.8354 0.8045 0.8145
PCA 0.8357 0.8554 0.8558 0.8358 0.8434
MARLFS 0.8340 0.8926 0.9117 0.7840 0.8157

BRCA(TN)

LASSO 0.7767 0.8554 0.7999 0.7767 0.7872
RFE 0.8332 0.8916 0.8504 0.8372 0.8435
RF 0.7845 0.8675 0.8228 0.7845 0.8009
PCA 0.7582 0.8434 0.7840 0.7504 0.7647
MARLFS 0.9000 0.9757 0.9871 0.9000 0.9267

TABLE II: Experimental results on lung cancer dataset (LUAD).

Method AUC Accuracy Precision Recall F1-score

LASSO 0.5000 0.9231 0.4615 0.5000 0.4800
RFE 0.5000 0.9231 0.4615 0.5000 0.4800
RF 0.5000 0.9231 0.4615 0.5000 0.4800
PCA 0.5000 0.8846 0.6449 0.7083 0.6681
MARLFS 0.5583 0.8867 0.6433 0.7000 0.6687

following conclusions: 1) Multi-agent Reinforcement Learning
performs the best. MARFLS performs the best in term of
most comprehensive metrics such as AUC, accuracy and F1-
score, which demonstrates its ability to identify the most
relevant features for cancer prognosis while maintaining or
improving model performance. Specifically, if we considering
the AUC, the overall performance ranking of these algo-
rithms on the 6 datasets (BRCA-ER, BRCA-HER2, BRCA-
PR, BRCA-TN, LUAD, and OV) is MARLFS > RFE >
LASSO/RF/PCA; if considering accuracy, the ranking is
MARLFS > LASSO/RFE/RF > PCA; if considering F1-score,
the ranking is MARLFS > LASSO/RFE/PCA > RF.

2) RFE performs well among all the methods, second only
to MARLFS. RFE recursively removing the least important
features in order to identify the important features. It performs
well on the datasets. However RFE is computation-instensive

TABLE III: Experimental results on the ovarian cancer dataset (OV).

Method AUC Accuracy Precision Recall F1-score

LASSO 0.5992 0.6087 0.6923 0.5992 0.5965
RFE 0.5992 0.6087 0.5962 0.5992 0.5965
RF 0.5595 0.6087 0.5735 0.5595 0.5548
PCA 0.6706 0.6957 0.6792 0.6706 0.6734
MARLFS 0.7194 0.7000 0.4970 0.7000 0.5794



due to its recursive execution.
3) LASSO also performs well among all the methods,

ranking just behind RFE. For our datasets with high dimension
for which the number of features far exceeds the number
of samples, LASSO’s can effectively prevent overfitting and
improve the model’s generalization ability.

4) Both random forest and PCA are not good at handling the
gene expression datasets. Random forest works lightly better
than PCA but worse than others. Random Forest provides
intrinsic measures of feature importance during training, and
does not require explicit feature selection. As a dimensionality
reduction technique which preserves most of the variance
information through principal components, PCA may result
in the loss of some specific features that are crucial for
classification. In our experiments, one tricky problem is the
selection of the number of principal components, which has a
significant impact on the performance.

Note that none of the methods show good AUC in Table II
due to the extremely unbalanced dataset in LUAD.

V. DISCUSSION

The results indicate that RL presents a powerful alternative
to traditional feature selection techniques. By modeling feature
selection as a sequential decision-making problem, the RL
approach effectively explores complex feature interactions,
leading to the development of more accurate models. This ca-
pability is advantageous in high-dimensional gene expression
datasets, where the relationships between genes are biologi-
cally relevant.

Additionally, the RL algorithm reduces the number of fea-
tures needed while maintaining accurate predictions, highlight-
ing its efficiency. This reduction is important in biomedical
research, where identifying a smaller number of more biolog-
ical meaningful features is essential for constructing robust
predictive models. Such models can significantly enhance
clinical decision-making, as they focus on the most relevant
genomic features that influence disease outcomes.

Importantly, the selected genes from large-scale cancer
patients gene expression data, can serve as promising targets
for drug development. By identifying key genes that play
critical roles in cancer progression or response to treatment,
researchers can prioritize these targets for further investigation.
This targeted approach can simplify the drug discovery process
and open up new strategies for personalized medicine.

VI. CONCLUSION

In this study, we introduced a reinforcement learning-based
approach for feature selection, demonstrating its effectiveness
on large-scale gene expression datasets from breast cancer,
lung adenocarcinoma, and ovarian cancer. Our reinforcement
learning algorithm performed comparably to or better than
traditional feature selection methods, such as LASSO, RFE,
Random Forest, and PCA, in terms of accuracy, precision,
recall, F1 score, and AUC. These findings suggest that rein-
forcement learning has the potential to enhance feature selec-
tion in large-scale genomic data for cancer studies, potentially

leading to improved prognostic models and more personalized
treatment strategies. Future work will explore the application
of this reinforcement learning-based approach to additional
cancer types and its integration into clinical pipelines.
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