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Understanding how cortical circuits generate complex behavior requires

investigating the cell types that comprise them. Functional differences
across pyramidal neuron (PyN) types have been observed within cortical

areas, butitis not known whether these local differences extend throughout
the cortex, nor whether additional differences emerge when larger-scale
dynamics are considered. We used genetic and retrograde labeling to target
pyramidal tract, intratelencephalic and corticostriatal projection neurons
and measured their cortex-wide activity. Each PyN type drove unique neural
dynamics, both at the local and cortex-wide scales. Cortical activity and
optogeneticinactivation during an auditory decision task revealed distinct
functional roles. All PyNs in parietal cortex were recruited during perception
of the auditory stimulus, but, surprisingly, pyramidal tract neurons had
thelargest causalrole. In frontal cortex, all PyNs were required for accurate

choices but showed distinct choice tuning. Our results reveal that rich,
cell-type-specific cortical dynamics shape perceptual decisions.

The neocortex is organized into discrete layers that form a conserved
microcircuit motif. Each layer consists of distinct cell types that can be
categorized by genetic markers, morphology, anatomical projections
or developmental lineage'. The precise interplay across cell types s cru-
cial for cortical computations and their functional roles are intensely
studied. For cortical interneurons, cell-type-specific mouse lines have
enabled tremendous progress and revealed the functional arrangement
of inhibitory circuit motifs?*, for example, for network synchroniza-
tion®” and state-dependent sensory processing®"'. However, the roles of
glutamatergic PyNtypesare less well established, although PyNs make up
~80% of all cortical neurons and form almost all long-range projections
that enable the communication between cortex and other brain areas.

While often treated as a monolithic group, PyNs are far more
diverse than interneurons. RNA sequencing indicates at least 100
putative subtypes that are often intermingled within the same lay-
ers'””, PyNs are also broadly categorized into two major types based
on their long-range projections: intratelencephalic (IT) neurons pro-
ject to other cortical areas and the striatum, while pyramidal tract
(PT) neurons project to subcortical structures, such as the pons and
thalamus. PT and IT neurons also differ in their electrophysiological
properties, dendritic arborization, local connectivity and sensory
tuning” . Moreover, only PT neurons in sensory cortex are required
for perception of tactile or visual stimuli, suggesting that PT and IT
neurons encode separate streams of information'". Correspondingly,
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specific PT neurons in secondary motor cortex (M2) are involved in
motor generation°. The functional divergence of PyN types could
therefore be key for understanding cortical microcircuits, with PT and
IT neurons forming functionally distinct, parallel subnetworks that
independently process differentinformation. However, the functional
tuning of individual PyNs in frontal cortex remains best predicted by
cortical arealocation instead of laminar location or projection type®.
Because PyN-type-specificactivity hasonlybeenstudied insingle areas,
itistherefore not knownwhether PyN-specific subcircuits are the rule
orthe exceptionacross cortical areas.

Anideal method to address this question is widefield calcium
imaging, allowing neural measures across the dorsal cortex with
cell-type specificity?>**. Interneuron-specific widefield imaging
revealed distinct spatiotemporal dynamics for different inhibitory cell
typesduring anodor detection task”. However, cortex-wide studies of
different PyN types are lacking, partly due to the limited availability of
PyN-specific driver lines** %, Here, we used two novel knock-in lines*
and measured cortex-wide PT or IT activity while animals performed a
perceptual decision-making task. Moreover, we used retrograde labe-
ling to measure the activity of corticostriatal (CStr) projection neurons
throughout the dorsal cortex. Dimensionality-reduction and clustering
analyses revealed unique cortex-wide dynamics for each PyN type,
suggesting the existence of specialized subcircuits. Cortical dynam-
ics of different PyNs were further segregated based on their role in
decision-making, with encoder and decoder approaches revealing the
strongest stimulus-related and choice-related modulationin sensory,
parietal and frontal cortices. This was confirmed by PyN-type-specific
inactivation experiments. In parietal cortex, PT neurons were most
important for sensory processing, while all PyN types in frontal cor-
tex were needed for choice formation and retention. Taken together,
our results demonstrate that different PyN types exhibit functionally
distinct, cortex-wide neural dynamics with separate roles during per-
ceptual decision-making.

Results

Pyramidal tract and intratelencephalic neurons show distinct
cortex-wide activity patterns

We used CreER lines to measure the activity of two developmentally dis-
tinct PyN types: Fezf2-CreER targeting PT neurons and PlexinD1-CreER tar-
getingIT neurons®, crossed with Ai162 mice” toachieve PyN-type-specific
expression ofthe calciumindicator GCaMPé6s. As expected for corticofu-
gal PT neurons, GCaMP expressionin Fezf2 mice was concentratedinlayer
5b with axonal projections to subcortical regions and the corticospinal
tract (Fig. 1a). In PlexinD1 mice, expression was restricted to layers 2/3
and 5a with axonal projectionsin the corpus callosum and the striatum,
matchingintracortical and corticostriatal IT neurons (Fig. 1b).

We then measured PyN-type-specific cortical activity with wide-
fieldimaging. In both lines, we observed rich neural dynamics across
cortex (Supplementary Videos 1-3) and retinotopic mapping revealed
known visual area locations (Fig. 1c)***". Retinotopic maps were simi-
lar to those in Ai93D;Emx-Cre;LSL-tTA (EMX) mice with nonspecific
GCaMP6f expression across PyNs*, suggesting that the functional
architecture of visual areas is comparable across PyN types. However,
the variance of cortical activity was clearly PyN-type specific, being
largest in parietal and frontal regions in PT neurons, and visual and
somatosensory regionsinIT neurons (Fig.1d). Variance maps were also
highly consistent across individual mice in the same group (Extended
Data Fig. 1a), indicating PyN-type-specific differences in cortex-wide
activity patterns. Toisolate activity patterns, we therefore performed
semi-nonnegative matrix factorization (SNMF), reducing the imag-
ing data to a small number of spatial and temporal components that
capture >99% of all variance**, Surprisingly, PT neurons had a lower
dimension than IT neurons (Fig. 2a), potentially because IT neurons
encompass a larger number of specialized subtypes than PT neurons
and thus support awider range of functions™.

Next, we tested if spatial SNMF components, representing
cortex-wide maps of positively correlated areas, were PyN-type spe-
cific. Indeed, components from different mice of the same PyN type
strongly resembled each other but differed from other PyN types
(Fig. 2b). To assess if most components were PyN-type specific, we
performed auniform manifold approximation and projection (UMAP)
analysis of the first 20 components from all recordings, nonlinearly
embeddingthe pixels of each componentin atwo-dimensional space
(Fig. 2c)*. Inagreement with the notion that components of the same
PyNtyperesembled eachother, PT and IT components formed strong
clusters (green/blue markers). EMX neurons formed a third set of nono-
verlapping clusters, likely reflecting the combined cortical dynamics
fromdiverse PyN types beyond PT and IT neurons (red markers).

A simple classifier reliably identified each group, based on the
nearest neighborsina UMAP projection using data from other animals.
Remarkably, even single-component classification achieved very high
prediction accuracy, although components were pooled over many
sessions and mice (Fig. 2d). UMAP clusters therefore reflect consistent
PyN-type-specific activity patterns, rather than idiosyncratic differ-
ences or noise. Theseresults clearly demonstrate that PyN types differ
inthe complexity of cortical dynamics, containindependent variance
and exhibit unique cortex-wide correlation patterns.

An important concern is that nonuniform Cre expression could
contribute to PyN-specific spatial components. However, in vivo
GCaMP-related fluorescence was largely uniform, with no clear rela-
tionship between widefield fluorescence or PyN-type-specific spatial
components and Cre expression patterns (Extended DataFig. 2). Nev-
ertheless, particularly distinct PyN-type activity in specific cortical
areas could lead to cortex-wide correlation patterns either that are
dominated by highly active areas or where inactive areas are ‘miss-
ing’. We therefore used localized SNMF (LocaNMF)*, which extracts
components that are restricted to a specific cortical ‘seed’ region
(Fig. 2e). Analyzing LocaNMF components therefore allowed us to
reveal if PyN-specific differences mostly occur on a cortex-wide level
(reflecting theinteractions between cortical areas) or extend to specific
properties of local cortical areas (reflecting PyN-type-specific differ-
ences inthe shape orlocalization of individual areas).

The number of LocaNMF components was greater than SNMF and,
interestingly, more similar across PyN types (Fig. 2f). PyN-type-specific
differences in cortex-wide correlation patterns are therefore not due
to low activity in specific cortical areas (which would reduce the total
number of required components, for example, in PT mice) but reflect
differences in the coordinated activation of multi-area cortical net-
works. UMAP embedding of LocaNMF components also uncovered
PyN-type-specific clustering (Fig. 2g), which accurately identified each
PyNtypeacross most cortical regions (Fig.2hand Extended DataFig. 2d).
PyN-type specificity of LocaNMF components could indicate either
specific ‘subregions’, where PyN types are most active insmaller parts of
agivencorticalarea, or larger ‘superregions’, where PyN-type-specific
activity extends across areaborders. We compared the size of LocaNMF
components thataccurately predicted their respective PyN type (clas-
sifier accuracy > 99%) versus nonspecific components. Interestingly,
PyN-predictive components were significantly smaller than nonspe-
cificcomponents (Fig. 2i), suggesting that different PyNs might be most
activeindistinct subregions instead of larger multi-area components.
This indicates that smaller, PyN-type-specific subregions may reside
within the coarser, traditionally defined cortical areas.

Pyramidal tract and intratelencephalic neurons show distinct
task-related activity

We next assessed functional PyN-type-specific cortical dynamics by
imaging animals during auditory decision-making (Fig. 3a)**. Mice
touched small handles, triggering the simultaneous presentation of
clicksequences to their left side and right side. After a delay, choosing
one of two water spouts was rewarded when licking on the side where
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Fig.1|Knock-in mouse lines enable pyramidal neuron subtype-specific
recordings of cortex-wide neural activity. a, GCaMPé6s expression in Fezf2-
2A-CreER;Ail62 mice. Cortical labeling is largely confined to layer 5b. Axonal
projections were found in multiple subcortical regions such as the striatum and
the corticospinal tract. Scale bars, 100 pm. b, GCaMPé6s expression in PlexinD1-
2A-CreER;Ail62 mice is widespread throughout the cortex and restricted to
superficial layers 2/3 and layer 5a. Axonal projections were found in striatum

soueLiEA

and corpus callosum but absent in the corticospinal tract. ¢, Visual sign maps
from retinotopic mapping experiments. IT and PT populations showed clear
retinotopic responsesin primary and secondary visual areas where boundaries
largely resembled known areas from nonspecific PyNs (EMX). d, Total variance
maps from same mice as in ¢, showing most modulated cortical regionsin each
PyNtype.

more clicks were presented. To reduce temporal correlations across
task events, the durations of the initiation, stimulus and delay periods
were randomly varied across trials. In all mice, decisions varied system-
atically with stimulus strength (Fig. 3b) and were equally affected by
clicks throughout the stimulus period (Extended Data Fig. 3a).

Trial-averaged temporal SNMF and LocaNMF components also
showed pronounced clustering, suggesting that PyN types exhibit
unique task-related temporal dynamics (Extended Data Fig. 3b). Cor-
respondingly, trial-averaged neural activity between PyN types was
clearly distinct, especially during stimulus presentation when EMX
activity was uniformly suppressed, IT activity was partially suppressed
in somatosensory and visual cortex, and PT activity was uniformly
elevated (Fig. 3c,d). Cortical activity was largely symmetric between
hemispheres, even when only analyzing trials where both stimuli and
subsequent choices were leftward (Extended Data Fig. 4). Moreover,
stimulus responses were much weaker than movement-related activ-
ity, such as trial initiation or licking (Fig. 3d). Lateralized, task-related
activity could have therefore been obscured by cortical activity due to
animal movements**" %,

Toisolate task-related activity, we used a linear encoding model,
combining many task-related and movement-related variables (Supple-
mentary Table1) to predict single-trial fluctuationsin cortical activity
(Fig.4a)*. Task variables included sensory stimuli, and past and current
choices. Movement variables included licking, handle touch or facial
movements (see Methods for acomplete variable list). After combin-
ingall variables and fitting the model, we obtained time-varying event
kernels, showing how each variable (for example, the sensory stimulus)
relatesto cortical activity. This allowed us to separate task-related and
movement-related activity.

To assess the accuracy of model predictions, we computed the
cross-validated explained variance (cvR?). Across PyNs, the model
captured a large fraction of single-trial variance throughout dorsal
cortex (Fig. 4b) and, consistent with earlier results**’, movements
captured more variance than task variables (Fig. 4c). We then focused
on the event kernels for stimulus and choice, to reveal their respec-
tive PyN-type-specific cortical dynamics. To ensure that stimulus
and choice accounted for a sizable amount of the neural activity, we
computed the variance that each kernel contributed to the fullmodel
compared to the sum of allmovement variables (Fig. 4d). While move-
ment variables made the largest model contributions (~60% explained

variance), both stimulus and choice also made sizable contributions
(10-20% explained variance). Stimulus and choice therefore remain
important for understanding cortical activity patterns and can be
leveraged to selectively isolate task-related activity.

We first investigated responses to the auditory stimulus. In con-
trasttotrial averages of AF/F (Fig. 3¢), EMX stimulus kernels uncovered
lateralized responses in auditory, parietal and frontal cortex while
somatosensory and visual cortex, were inhibited (Figs. 4a and 5a).
Sensory-locked responses were also present in auditory, parietal and
frontal cortices of PT and IT mice but no inhibition was apparentin PT
mice. Sensory responses were particularly PyN-type-specific in the
parietal cortex: EMX and IT responses were localizedinarea A, while PT
responses were most prominent at the border between areas AM and
RS (Fig. 5b). While some areas, such as auditory cortex, preferentially
responded to contralateral stimuli, PT neurons in parietal cortex were
activated bilaterally inresponse toipsilateral or contralateral stimuli.
To assess such side-specificity, we subtracted ipsilateral from con-
tralateral stimulus kernels (Fig. 5c). EMX responses were lateralized
in auditory, frontal, and to a lesser extent parietal cortex (Fig. 5c,d).
Lateralized IT responses were found in auditory and parietal but not
frontal cortex. In contrast, PT responses were lateralized in auditory
and frontal but not in parietal cortex. Such differences in unilateral
versus bilateral responsesin PT and IT neurons may also reflect diver-
gent functional roles, with unilateral responses encoding the spatial
location of sensory information and bilateral responses representing
stimulus salience.

Pyramidal neuron-type-specific choice signals in frontal
cortex

Havingidentified PyN-type-specific sensory responses, we then exam-
ined choice-dependent activity and again observed clear differences
across PyN types.InEMX mice, choice-related activity was strongestin
the frontal cortex, while sensory and parietal regions were only weakly
modulated (Fig. 6a). We also found choice signals in whiskers and nose
somatosensory areas that slowly increased during the trial (Extended
DataFig.5a), potentially because of subtle, choice-predictive whisker
or facial movements*. In contrast, frontal choice-specific activity
strongly increased after stimulus onset and remained elevated into
the delay period (Fig. 6a). While PT neurons showed similarly robust
choicesignals, there waslittle evidence of IT choice activity (Fig. 6b and
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Fig. 2| Pyramidal neuron types exhibit unique cortical activity patterns.

a, Number of sSNMF components, accounting for 99% of variance per PyN type.
Violin plots show individual mice; dots indicate individual sessions. b, Spatial
sNMF components from different mice of the same PyN type (colored rectangles)
strongly resembled each other. ¢, UMAP embedding of spatial SNMF components
for EMX (red), IT (green) and PT (blue) mice. Maps show spatial components

at different UMAP locations. Marker types denote individual mice. Blown-up
areas show examples of PT-specific regions. d, Accuracy of a PyN-type classifier.
Data points represent the mean classification accuracy per session. Asterisks
represent Bonferroni-corrected P <107 against 33% chance (two-sided ¢-test,
neyx =124 sessions; ny; =133, np,; = 93 sessions). e, Map of seed regions used for
LocaNMF analysis. f, Number of LocaNMF components, accounting for 99% of
variance per PyN type. Conventions asina. g, UMAP projection embedding of
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spatial LocaNMF components. Conventions as in ¢. The UMAP shows clustering
of LocaNMF components from similar regions (same 24 regions asine).
Components withinindividual regions are further divided for different PyN
types. Maps show example LocaNMF components (I-111). h, Accuracy of aPyN
type classifier, based on individual LocaNMF components. Conventions as in

d. Asterisks denote Bonferroni-corrected P <107 against 33% chance (two-
sided t-test, ngyy = 124 sessions; n,; =133, nyr = 93 sessions). i, Peak normalized
distributions of area size for PyN-type-predictive (blue) versus nonspecific (red)
LocaNMF components. PyN-predictive components are smaller than nonspecific
components (PyN-predictive: median = 0.59 mm?, n = 6,317 components;
nonspecific: median = 0.68mm?, n =18,938 components; two-sided rank-

sum test: P<107'%). Examples of PyN-predictive (1and II) and nonspecific (IlI)
components in right parietal cortex.

Extended Data Fig. 5b,c). In EMX and PT mice, positive contralateral
choice signals were concentrated in the medial M2 with some inhibi-
tion in primary motor cortex (M1). This could indicate accumulation
of sensory evidence and motor preparation in M2, and inhibition in
parts of M1 when early lick responses must be witheld*.

Although choice kernels revealed PyN-type-specific differences,
they only accounted for a small amount of the total neural variance
(Fig.4d). Because the encoding model maximizes explained variance,
we hypothesized that it might miss specific but low-magnitude choice
signals. Toisolate all choice-related activity, we therefore used alogistic

Nature Neuroscience | Volume 26 | March 2023 | 495-505

498


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-022-01245-9

a b
Initiate Delay 100
0.25-0.75 s 0-1s 2
+_ Handle < 75
' ' 3
+ 1-15s ' S 50
_:_H_*_'_: Left stim 5
' ' . . = EMX
s H s Right stim 'gn 25 T
H LIl Licks (L) x PT
0 0 0
' '
—'—'J‘ : L Water 0 50 100
Initiate Response Right clicks (%)
C
Initiate Stimulus Response
<
g
Stimulus Delay Response
&
= oow
[y
g
Stimulus Response
&
—
o -
g
d EMX Auditory EMX Frontal
T stimulus IT stimulus
” PT 14 PT
=) ~ 7 —
o o
’ Ne? I RT?
; ~
- T £ T 7T A T T T £ T T T A
-1 (0] 1 2 -1 o 1 2

Time (s) Time (s)

Fig. 3| Anauditory decision-making task reveals distinct functional activity
patternsin each pyramidal neuron type. a, Auditory discrimination task
structure. Mice touched paw handles to initiate randomized click sequences on
theleft and/or right side. After adelay period, alick response on the correct side
was rewarded with water. b, Psychometric functions fit to behavioral data from
the discrimination taskinafor individual EMX (red), IT (green) and PT (blue)
mice. ¢, Trial-averaged response maps for all correct, leftward trials in different
PyN types. Shown are averages for the ‘initiation’, ‘stimulus’, ‘delay’ and ‘response’
periodsina.d, Averaged activity of each PyN type in auditory (left) and frontal
cortex (right) (dashed circlesin c). Averages were separately aligned to each
ofthe four trial periods, indicated by short gaps. The left dashed line indicates
time of initiation, the gray box indicates stimulus presentation and the right
dashed lineindicates the animal’s response. Traces show standard deviation units
(SDUs). Colors asinb. Shading shows the s.e.m.; ngyy =4, n;; = 4, npr =5 mice. AF/F,
fluorescence intensity change.

regression classifier with L1 penalty. In contrast to the encoding model,
this decoder approach isolates cortical signals that are best suited
to predict choices, regardless of their magnitude. Across PyNs, the
decoder predicted trial-by-trial choices with high accuracy (Extended
DataFig. 5d). When analyzing the decoder weights, we found compa-
rable patterns to the encoding model’s choice kernels but with much
clearer separation of cortical areas (compare the top row for ‘Delay’in
Fig. 6¢ to left of Fig. 6a). Here, positive decoder weights denote areas
thatare most predictive for contralateral choices but, importantly, this

does not suggest that these areas are necessarily the most active. We
found substantial choice signalsin multiple areas of the anterior cortex
thatevolved during decisions (Fig. 6¢c and Extended Data Figs. 5e and 6).
In EMX and PT mice (top and bottom rows), large parts of M2 were
again highly choice predictive, including the anterior lateral motor
cortex (ALM) and the medial motor cortex (MM)?*. M2 choice weights
strongly increased immediately after stimulus onset and remained
elevated during the subsequent delay period (Fig. 6¢,d). Additionally,
cortical choice signals persisted after removing movement-related
activity from the data, suggesting that they are not explained by
choice-predictive animal movements but instead reflect the forma-
tion of sensory-driven decisionsin frontal cortex (Extended Data Fig. 7).

Surprisingly, we also found a mild ipsilateral choice preference
for M2 in IT mice, despite strong bilateral activation of frontal cortex
during the delay period (Fig. 3c). Ipsilateral choice signals evolved
more slowly during the stimulus and delay periods (Fig. 6¢,d) and were
spatially restricted to the ALM (Fig. 6e). No choice signals were seenin
parietal cortex of any PyN type (Fig. 6d), suggesting that parietal cortex
is mostly involved in sensory processing instead of choice formation
or motor execution**,

Corticostriatal projections neurons are a functionally
divergentintratelencephalic subclass

The decoder recovered fine-structured choice maps, especially in fron-
tal cortex, revealing contralateral and ipsilateral choice signals in PT
and IT mice, respectively. This unexpected inversion could be due to
different choice selectivity of specificIT subtypes: intracortical versus
CStr projection neurons. Earlier work suggested an even distribution
ofipsilateral and contralateral choice selectivity in frontal intracortical
projection neurons*?, We thus hypothesized that IT choice selectiv-
ity is shaped by CStr neurons. To address this, we developed a retro-
grade labeling approach by injecting CAV-2-Cre in reporter mice to
induce widespread expression of GCaMP6s in CStr neurons (Fig. 7a,b).

Using widefield imaging, we observed robust CStr-related fluo-
rescence (Supplementary Video 5) and identified visual areas using
retinotopic mapping (Extended Data Fig. 8a). SNMF showed that the
dimensionality of CStr mice was intermediate between PT and IT activ-
ity, with spatial components forming independent clusters from other
PyN types (Extended Data Fig. 8b,c). The clear difference between
IT and CStr mice suggests that IT dynamics represent a mixture of
intracortical-projecting and corticostriatal-projecting IT neurons with
distinct activity patterns.

Trial-averaged CStr activity during the auditory task partially
resembled IT activity (for example, in frontal cortex) but also showed
clear differences, such as alack of pre-stimulus suppressionin sensory
cortex (Fig. 7c,d). CStr and IT mice also differed in their respective
stimulus kernels: stimulus-related CStr activity in parietal cortex was
stronger thaninsensory and frontal cortex but the peak parietal activity
was more medial compared to IT mice (Fig. 7e). Interestingly, the loca-
tion of stimulus-driven parietal regions (Fig. 7f) closely resembled the
anatomical and functional topography to the dorsomedial striatum***,
Aswith PT neurons (Fig. 5b,d), parietal CStr responses were similar for
contralateral and ipsilateral stimulation (Fig. 7f).

Todetermineif CStractivity contributed to ipsilateral-preferring
IT choice signals, we used the decoder that predicted choices with
equally high accuracy as for PT and IT mice (Extended Data Fig. 8d).
We then extracted choice weights for each task episode. CStr activity
was overall similar to IT mice, with an even stronger ipsilateral choice
preferenceinfrontal cortex that started after stimulus onset and lasted
throughout the delay and response periods (Fig. 7g). This inversion
from contralateral toipsilateral choice preference was again prominent
in ALM but did not extend to MM, strongly suggesting that ipsilateral
choice preference is driven by IT-CStr neurons.

To confirm these results at cellular resolution, we recorded all
PyNsin frontal cortex with two-photon calciumimaging and identified
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CStr neurons through retrograde viral labeling (Fig. 7i). Comparing
the choice tuning of CStr and unlabeled PyNs revealed a specific dif-
ference in ipsilateral versus contralateral choice preference in the
ALM (Fig. 7j). Most choice-selective CStr neurons preferredipsilateral
choices, whereas unlabeled PyNs were mildly contra-selective (Fig. 7k).
In agreement with our widefield results, these differences were seen
inthe ALM but not the MM. Interestingly, ipsilateral choice preference
was restricted to superficial IT-CStr neurons (cortical depth, 200-
400 pm). Infragranular CStr neurons (400-600 pm), which are also
often PT cells”, showed strong contralateral choice tuning (Extended
Data Fig. 9a). Lastly, we tested if neuropil choice signals may have
masked somatic activity in our widefield measures. Neuropil largely
resembled somatic choice tuning of unlabeled neurons (Extended
Data Fig. 9b), confirming that PyN-type-specific widefield measures
indeed represented local somatic activity. Here, IT-specific widefield
signals matched the mixed choice-selectivity of superficial layers, while
PT-specificimaging was well aligned with the clear contralateral choice
tuning in deeper cortical layers.

Pyramidal neuron-type-specific causal contributions to
perception and choice formation

The observed differences between PyNs suggest that each type may
drive distinct aspects of decision-making. To causally test their func-
tionalrole, we performed PyN-type-specific optogeneticinactivation
inauditory, parietal and frontal cortex, using the inhibitory opsin stG-
tACR2 (ref. *°; Fig. 8a,b). For CStr neurons, we used an intersectional
approach to maximize the efficiency of retrograde expression and
reduce potential viral tropism*. Cortical inactivation coordinates were
determined from our stimulus and choice analyses (Figs. 5a and 6a).
Totest whether optogenetic effects are area specific, we also targeted
the primary visual cortex (V1) in a subset of EMX mice.

Asexpected, decision accuracy wasimpaired by bilateral silencing
of EMX neurons in auditory, parietal or frontal cortex but unaffected
bysilencing V1 (Fig. 8c). We theninactivated each areafor 0.5 sduring
four different task episodes: early and late stimulus (the first and last
0.5 s of the stimulus), delay and response (Fig. 8d). Consistent with
the notion that auditory and parietal cortex reflect stimulus-driven
activity (Fig. 5a), silencing either area strongly impaired task perfor-
mance, particularly during the stimulus period (Fig. 8e,f). Behavioral
impairments (the normalized difference between performance in
non-optogenetic trialsand chance) were weaker during the subsequent
periods, indicating that these areas are most important for early pro-
cessing of auditory stimuli.

Consistent with earlier work*, silencing CStr neurons in Al
impaired auditory decisions (Fig. 8e). However, the effects were more
transient and weaker compared to silencing EMX neurons, suggest-
ing that CStr neurons were not exclusively required for accurate task
performance. Inactivating IT or CStr neurons in parietal cortex caused
surprisingly mild effects, while silencing PT neurons robustly impaired
performance (Fig. 8f). This indicates that subcortical PT projection
from parietal cortex are more important for sensory processing than
intracortical IT or CStr projections, suggesting a role for PT neurons
beyond movement preparation and execution.

Frontalinactivationsresulted inthe strongestimpairment, withIT
and CStrinactivation causing similar effects during the stimulus and
delay periods (Fig. 8g). Impairments in IT mice are therefore not solely
due to the disruption of intracortical processing? but also involve
alterations of CStr neurons. Inactivating PT neurons equally impaired
performance during the stimulus and delay period but showed stronger
effects during the final response period. Impairments in the response
period were similar for EMX and PT mice, suggesting that PT neurons
are particularly involved in licking responses. Multiple PyN types in
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Fig. 5| Pyramidal neuron-specific differences are evident in the location
and specificity of cortical stimulus responses. a, Left, response kernels for
contralateral stimuliin EMX (red), IT (green) and PT neurons (blue), averaged
between 0 and 200 ms across all mice per group. Right, stimulus-evoked activity
inauditory (blue), parietal (red) and frontal cortices (yellow). Dashed circles
onthe left show cortical locations. b, Magnified view of parietal cortex for
stimulus maps in a. PyNs differed in the location of sensory responses. Arrows
show location of parietal areas A, AM and retrosplenial cortex (RS; Allen Brain
Atlas, CCF v3)*.. ¢, Side-specific stimulus responses, computed as the difference
between contralateral and ipsilateral stimulus kernels. Hot colors denote
stronger contra-response. Conventions asina. d, Magnified view of parietal
cortex for side-specific mapsin c.IT neurons show clear, side-specific parietal
responses that were weaker in EMX and absent for PT neurons.

frontal cortex are therefore involved in the formation and maintenance
of choices, despite clear differences in their respective choice tuning.
Lastly, we also analyzed licking patterns to test if optogeneticinhibition
broadly disrupted animal movements. Frontal inactivationin the delay
period had amild effect on response latency but did not affect response
probability or licking patterns, arguing against a strong motor impair-
ment (Extended Data Fig. 10). PyN-type-specific inhibition therefore
selectively reduced the animals’ response accuracy rather than broadly
disrupting their ability for movement initiation and execution.

Discussion

We measured and manipulated PyN types to determine whether they
play distinct roles in decision-making. Cortex-wide activity patterns
were PyN-type specific, each reflecting distinct neural dynamics at
multiple spatial scales. Functional specificity across PyN types was also
evidentduring decision-making: each PyN type exhibited unique cor-
tical localization and specificity associated with stimulus and choice.
These response patterns were not seen when imaging from PyNs
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Fig. 6| The temporal dynamics of choice-related activity differ across
pyramidal neuron types. a, Left, averaged contralateral choice kernels for EMX
mice during the delay period. Positive weights indicate increased choice-related
activity for contralateral choices, while negative weights indicate decreased
choice-related activity. Right, choice-related activity in auditory (blue), parietal
(red) and frontal cortices (yellow). Traces are realigned to the initiation, stimulus,
delay and response periods, indicated by gapsin weight traces. b, Zoomed-in
map for delay-period frontal choice kernels of EMX, IT and PT neurons. ¢, Cortical
maps of contralateral choice weights for different trial episodes. Several areas
inanterior cortex showed clear choice signals. d, Baseline-corrected decoder
weights in parietal (left) and frontal (right) cortices throughout the trial.
Conventions asina. Dashed circles in the delay maps of ¢ show the parietal and
frontal locations used to compute the traces. e, Zoomed-in map for frontal delay-
period decoder weights of EMX, IT and PT mice. Dashed circle shows the ALM.

nonspecifically. PyN-type-specific optogeneticinactivation confirmed
distinct functional rolesin parietal and frontal cortex, highlighting the
importance of subcortical projections for decision formation. Our
results suggest that different PyN types are functionally distinct, and
perform separate roles during auditory decision-making.
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Fig.7| Anintersectional approach to measure cortex-wide activity of
corticostriatal neurons. a, Retrograde CAV-2-Cre induced GCaMP6s expression
in CStr neurons of reporter mice. b, GCaMPé6s expression throughout brain
regions (left) and dorsal cortex (right). Scale bars, 100 pm. ¢, CStr activity

during auditory discrimination. Trial averages over all correct, leftward trials
indifferent trial episodes. d, Mean activity for auditory (left) and frontal cortex
(right) over all CStr (orange) and IT (gray) mice. Dashed lines indicate initiation
and response times, gray areas indicate stimulus period, and shading is the s.e.m.
n=4miceper group.e, Left, contralateral stimulus kernel, averaged over four
CStr mice, 0-200 ms after stimulus onset. Right, traces show changes in auditory
(blue), parietal (red) and frontal cortex (yellow). Dashed circles indicate cortical
locationsin the weight map. f, Top, weights from e zoomed-in for parietal cortex.
Bottom, difference of contralateral versus ipsilateral stimulus kernels. g, Left,
choice decoder weights during the delay period, averaged over CStr mice. Right,
baseline-corrected decoder weights in parietal (left) and frontal (right) cortcices
for CStr (orange) and IT mice (gray). Traces were realigned to the initiation,

stimulus, delay and response periods (gapsin traces). h, Weights fromgin
frontal cortex. i, Two-photon field-of-view images in Camk2a-tTA;G6s2 mice with
GCaMPé6s expressioninall PyNs (green) and retrograde-labeled CStr neurons
(red).j, Left, choice-tuned neurons in ALM (top) and MM (bottom; cortical
depth of 200-400 pum). AUC values below 0.5 indicate stronger responses for
ipsilateral choices. Right, trial-averaged activity of choice-selective neurons for
ipsilateral (red) versus contralateral choices (blue). CStr neurons in ALM (top
right) show higher activity for ipsilateral choices. k, Fraction of ipsilateral versus
contralateral choice-selective cells. Top, more CStr neurons in ALM were ipsi-
selective (CStry,, 20.4%; CStr o, 15.5%; P=0.0018, n =450 cells), while more
unlabeled neurons were contra-selective (unlabeled,;, 14.3%; unlabeled gy,
17.2%, P=3.5x107"°,n=4,179 cells). Bottom, most CStr and unlabeled neurons

in the MM were contra-selective (CStry,, 10.2%; CStrcony,, 19.1%; P=2.7 107,

n =315 cells; unlabeled,;, 9.3%; unlabeled oy, 19.6%; P <1x107°, n= 3,450 cells).
Data are presented as the mean + 95% confidence intervals. Asterisks indicate
Bonferroni-corrected P < 0.01, two-sided binomial test.

Dimensionality reduction of cortical dynamics®***° revealed
that nearly all spatial components were PyN-type specific. Large-scale
activity patterns are therefore shaped by PyN-specific dynamics. This
has importantimplications for studies of cortex-wide neural dynam-
ics, which are often based on nonspecific measures of neural activ-
ity>">*. Earlier work revealed functional modules that span the entire
cortex***7¢ and follow intracortical connectivity patterns®%, Our
results point to the existence of additional, PyN-type-specific motifs,
especially for subcortical projections, such as PT or CStr neurons.
Furthermore, most PyN-specific LocaNMF components consisted
of spatially precise subregions that were smaller than classic cortical

areas. Future studies could reveal even more detailed cortical struc-
tures by combining large-scale measures of multiple PyN types with
multicolor widefield imaging***® and observing interactions between
PyN-specific cortical dynamics within the same animal.

We also observed unique sensory response patterns for each PyN
type. Thisisinline with recent results from primary somatosensory'®*°
and visual cortex'’, arguing that different PyN types play separate roles
during sensory processing. The clear differences in magnitude, locali-
zation and lateralization of sensory responses in parietal and frontal
cortex demonstrate that the functional specialization of different PyN
typesis ageneral feature of cortical circuit function.
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Fig. 8| Temporally restricted, pyramidal neuron-specific inactivation of
parietal and frontal cortex disrupts decisions. a, Left, schematic of injection
scheme to induce stGtACR2 expression in EMX, IT or PT neurons. Vlinjections
were performed ina subset of EMX mice. Right, intersectional viral approach

for targeting CStr neurons. A mixture of AAV-DJ-hSYN-DIO-{hCAR} and
AAV1-SI0-hSynl-stGtACR2-FusionRed was injected into the cortex to enhance
CAV-2-Cre uptake, subsequently inducing stGtACR2 expression in CStr neurons.
b, Laminar distribution of stGtACR2-FusionRed in EMX, PT, IT and CStr neurons.
¢, Behavioral performance (percentage correct) of EMX mice during inactivation
of V1(n=2mice), auditory (n = Smice), parietal (n =3 mice) or frontal (n = 5mice)
cortex. Dataare presented as the mean + s.e.m. Circles denote individual mice.
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d, Schematic of optogeneticinactivation paradigm; 0.5-s-long optogenetic
inhibition was performed during the first or last half of the stimulus period,

the subsequent delay or the response period. Light power ramped down after
0.3 s. e, Behavioral impairment (percentage change from control performance)
withinhibition of EMX or CStr neurons in auditory cortex. Circles denote mean
impairments, and error bars represent 95% confidence intervals. ngyx = 702,
nes = 834 trials. f, Behavioral impairments from parietal PyN-type-specific
inhibition. Conventions asin e. ngyy =1,627, np; = 1,082, n;; = 890, s, =1,033
trials. g, Behavioral impairments from parietal PyN-type-specific inhibition.
Nevx = 1,888, npr =1,304, nir =791, ngg,, = 1,372 trials. Conventions as in f. Asterisks
indicate Bonferroni-corrected P < 0.01, two-sided binomial test.

Correspondingly, we found diverse behavioral effects when inac-
tivating PyN types. Consistent with earlier work, inactivating CStr
neurons in auditory cortex impaired task performance*®, suggesting
that corticostriatal projections are important for sensory perception.
Inactivating parietal cortex also caused strong behavioralimpairments
during sensory stimulation but not when silencing CStr or IT neurons.
This shows that the importance of CStr projections does not general-
ize from auditory to parietal cortex and also argues against models in
which sensoryinformationisintracortically transmitted from parietal
to frontal cortex during decision formation**®*?, Instead, silencing
parietal PT neurons during the stimulus presentation strongly dis-
rupted decisions, highlighting the importance of subcortical projec-
tions for decision-making®.

These results are at odds with earlier studiesinrats, showinglittle
ornoimpact of parietal inactivation on auditory performance®*. Con-
versely, other work in head-fixed mice reported robust impairments
in visual***¢"% and auditory® tasks. This could be due to differences
betweenrats and mice or the precise location of parietal inactivation.
Sensory modalities are processed along amediolateral gradient in pari-
etal cortex, emphasizing the need to precisely target specific parietal
areas to obtain a modality-specific behavioral effect®’. Our task also
requires evidence accumulation and working memory, which engage
awiderrange of cortical regions and could explain theinvolvement of
parietal cortex for accurate decisions®’.

The accumulation and memory requirements might also
explain why we found clear cortical choice signals, whereas recent
cortex-wide studies reported little choice selectivity®>®’. The lack
of side-specific choice tuning in IT populations matches earlier
work, showing thatintracortical projectionsin ALM equally include

contralateral and ipsilateral choice-preferring cells?>*. In contrast,
CStr populations were more selective for ipsilateral choices and
we confirmed that this was also present in individual CStr neurons.
PyN-specific widefield signals therefore selectively reflect somatic
activity and not just superficial neuropil signals. Ipsilateral choice
signals in CStr neurons were restricted to superficial ALM, which is
mostly implicated inmovement generation'>”°. Arecent study showed
that CStr projections from the anterior cingulate cortex inhibit stri-
atal activity and motor behavior”'. Ipsilateral choice tuning of CStr
neurons could therefore serve to disinhibit striatal circuits when
releasing a targeted licking response.

Frontal inactivation strongly impaired animal behavior during
the stimulus and delay periods, suggesting an important role for the
translation of sensory inputs into behavior?*”*7* Impairments were
largely similar across frontal PyN types, which appear to be equally
required for choice formation and retention. Frontal PyNs may thus
be more reliant on each other to maintain accurate function than
in sensory areas’'**, As the only exception, PT neurons were more
important during the response period, consistent with a specific role
of brainstem-projecting PT neurons for motor execution®.

Our work offers a new perspective on cortex-wide dynamics by
viewing them through the lens of different PyN types and strongly
supports the view that cortical circuits perform parallel computa-
tions, even within the same cortical layer>'®'°”, Future work to reveal
how cortical circuits generate behavior should therefore include
PyN types to resolve the heterogeneity that is often encountered
when studying cortical decision circuits. A powerful tool to achieve
this goal are novel mouse lines, such as inducible knock-in lines that
permit reliable targeting of PT and IT neurons. These mouse lines
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also overcome several earlier problems, such as unstable expression
patterns or cell-type mixtures due to interactions with surrounding
genetic elements®’®. Moreover, combining genetic mouse lines with
retrograde labeling will enable the targeting of specific PyN subtypes,
such as projection-specific PT neurons'>", that might serve a large
array of functions from sensory processing, to working memory and
motor function™',

Online content
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Methods
Mouse lines
All surgical and behavioral procedures conformed to the guidelines
established by the National Institutes of Health (NIH) and were approved
by the Institutional Animal Care and Use Committee of Cold Spring
Harbor Laboratory. Mice were 8-to 25-week-old males (Supplementary
Table 2). No statistical methods were used to predetermine sample
sizesbut sample sizes are similar to those reportedin previous publica-
tions?>*. Mouse strains were acquired from the Jackson Laboratory,
Allen Brain Institute, or generated at Cold Spring Harbor Laboratory.
The mouse room had a relative humidity of 30-70%, and a room tem-
perature of 69-78 °F. Transgenic strains crossed to generate double- and
triple-transgenic mice used for imaging were: Emx-Cre (JAX 005628),
LSL-tTA (JAX 008600), Ai93D (JAX 024103), Ail62 (JAX 031562),
TRE-GCaMP6s (G6s2, JAX 024742) and H2B-eGFP (JAX 006069; Sup-
plementary Table 3). EMX mice, used for calcium imaging, were bred
as Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activ-
ity patterns, EMX mice were on a doxycycline (DOX)-containing diet,
preventing GCaMPé6s expression until they were 6 weeks or older®>.
For widefield imaging of PT and IT neurons, inducible knock-in
drivers Fezf2-2A-CreER and PlexinD1-2A-CreER, respectively, were
crossed with Ail62 reporter mice to drive cortex-wide GCaMPé6s expres-
sion. Cre expression was induced through two doses of intraperitoneal
injections of tamoxifen (200 mg per kg body weight; 20 mgml™ corn oil
solution) at postnatal day (P) 28 and P32, yielding expression patterns
consistent with prior reports®. For widefield imaging of corticostriatal
neurons, we crossed Ail62 with G6s2 to create a double-transgenic
reporter strain Ail62;G6s2 with two hemizygous copies of GCaMP6s
under tetO control. Because LSL-tTA is incorporated in tandem with
thereporter genein the Ail62 strain®, this hybrid reporter line permits
Cre-dependent expression of GCaMP6s at higher levels than Ail62
hemizygotes while avoiding potential leaky reporter gene expression.
Toachieve widespread GCaMP6s expressionin corticostriatal neurons,
we performed striatalinjections of retrograde virus (CAV-2-Cre) inthe
hybrid Ail62;G6s2reporter line (see ‘Viral injections’). For two-photon
imaging, GCaMP6s expressionin PyNs was generated using the hybrid
strain Camk2a-tTA;G6s2.

General surgical procedures
Surgeries were performed under1-2%isoflurane in oxygen anesthesia.
After induction of anesthesia, 1.2 mg per kg body weight meloxicam
was injected subcutaneously and sterile lidocaine ointment was applied
topically to the skin incision site. After making a midline cranial inci-
sion, the skin was retracted laterally and fixed in position with tis-
sue adhesive (Vetbond, 3M). We then built an outer wall using dental
cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) along the
lateral edge of the dorsal cranium (frontal and parietal bones). A custom
titanium skull post was then attached to the dental cement. For skull
clearing, the skull was thoroughly cleaned followed by the application
of athinlayer of cyanoacrylate (Zap-A-Gap CA+, Pacer technology)®.
For two-photon imaging, a circular craniotomy (¢ =3 mm) over
theright frontal cortex (1.75 mm lateraland 1.75 mm rostral to bregma),
was made using a biopsy punch. A circular coverslip (g =3 mm) was
then lowered to the surface of the brain and sealed to the skill with
Vetbond and Metabond. Lastly, a titanium skull post was implanted
asdescribed above.

Viralinjections

After induction with isoflurane anesthesia, animals were placed in a
stereotaxic frame (David Kopf Instruments). Injections were made
using a programmable nanoliter injector (Nanoject Ill, Drummond Sci-
entific). For widefield imaging of CStr mice, widespread corticostriatal
GCaMPé6s expressionwas generated in Ail62;G6s2 reporter mice by per-
forming bilateral stereotaxic injections of CAV-2-Cre (at 3-4 weeks of
age) intothe dorsal striatum at three targets per hemisphere, spanning

the rostrocaudal (RC) axis. The target coordinates (relative tobregma
and dura,inmm)are: (1) RC + 0.75, mediolateral (ML) + 1.8, dorsoventral
(DV)3.0;(2)RCO,ML £2.2,DV3.1;(3) RC-0.75,ML £ 2.9,DV3.1. For each
striatal target, a burr hole was created using a small dental burr fol-
lowed by injection of 1.8 x 10° purified particles (pp) of CAV-2-Cre using
pipettes with long taper tips pulled from borosilicate capillaries (3.5
inch,3-000-203-G/X, Drummond Scientific). For two-photonimaging
experiments, CStrneurons were labeled through striatal injections of
AAV-2-retro-CAG-tdTomato (using the same approach and coordinates
asdescribed above) in Camk2a-tTA;G6s2 mice.

For cell-type-specific optogenetic silencing experiments,
we performed bilateral injections in frontal, parietal and auditory
cortices (coordinates relative to bregma: frontal: RC + 2.5 mm,
ML + 1.5 mm:; parietal: RC-1.7 mm, ML £ 2.5 mm; auditory: RC-2.5 mm,
ML £ 4.6 mm) to induce expression of Cre-dependent stGtACR2 (AA
V1-hSyn-SIO-stGtACR2-FusionRed, Upenn Vector Core). Cortical injec-
tions were performedin P42 to P56 Fezf2-2A-CreER, PlexinD1-2A-CreER
and EMX-Cre reporter mice. In CreER mice, intraperitoneal tamoxifen
wasadministered 1week after viralinjections. Cortical injections were
made at300and 600 pm per area. Intwo EMX-Cre mice, bilateral injec-
tions were performed in the frontal and visual cortex (RC -4, ML + 2.5).
Totarget CStr neurons, injections were performed in C57BL/6) micein
two stages. First, we utilized a viral receptor complementation strat-
egy” by injecting both AAV-DJ-hSYN-DIO-{hCAR} and AAV1-SIO-hSy
nl-stGtACR2-FusionRed (Supplementary Table 3) in cortex (coordi-
nates as described above) in P21-P28 mice. Second, we performed
bilateral striatal CAV-2-Cre injections, 6 weeks after cortical injections.
hCAR is expressed in all transfected neurons in a Cre-OFF manner,
where Cre expression stops expression of hCAR while simultaneously
inducing stGtACR2 expression.

Optical fiberimplantation

Foroptogeneticsilencing, we used the soma-targeted anion-conducting
channelrhodopsin stGtACR2 (ref. *¢). Optical fibers (NA = 0.36,
¢ =0.4 mm, FT400UMT, Thorlabs) were glued into metal or ceramic
ferrules (# =1.25 mm, Thorlabs) and secured above the cortex fol-
lowing viral injections. Ferrule-enclosed optical fiber implantations
immediately followed cortical AAV (Supplementary Table 3) injections
in Fezf2, PlexinD1 and Emx mice and striatal injections in CStr mice.
One polished end of the optical fiber was positioned extradural to
the site of cortical injections and interfaced with thinned skull using
cyanoacrylate. Next, the fiber was fixed to the skull using light-cured
glassionomer (Vitrebond, 3M). Additional layers of dental cement and
dental acrylic (Lang Dental Jet Repair Acrylic, 1223MEH) were applied
around the fiber implant and the skull to reinforce for durability and
long-term stability. After all layers were cured, afinal outer coating of
cyanoacrylate and nail polish were applied.

Behavioral training

The behavioral setup was controlled with a microcontroller-based
(Arduino Due) finite state machine (Bpod r0.5, Sanworks) using cus-
tom MATLAB code (2015b, MathWorks) running on a Linux PC. Servo
motors (Turnigy TGY-306G-HV) and touch sensors were controlled by
microcontrollers (Teensy 3.2, PJRC) running custom code. Fifty-four
mice were trained ona delayed, spatial discrimination task. Mice initi-
ated trials by placing their forepaws on at least one of the two handles,
which were mounted on servo motors that rotated out of reach dur-
ing the intertrial period. Upon trial initiation, animals placed their
forepaws on the handles and, after a variable duration of 0.25-0.75 s
of continuous contact, the auditory stimulus was presented. Auditory
stimuli consisted of a sequence of Poisson-distributed, 3-ms-long audi-
tory click sounds®, presented from either aleftand/or aright speaker
for a variable duration between 1and 1.5 s. The stimulus period was
followed by a variable delay of up to1s, then the servo motors moved
two lick spouts close to the animal’s mouth. If the animal licked twice
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on the side where more clicks were presented, adrop of water reward
was dispensed. The amount of water rewarded for each trial (typically
1.5 to 3 pl) was constant within a single session but was sometimes
adjusted daily based on the animal’s body weight. After a spout was
licked twice, the contralateral spout moved out of reach to force the
animal to commit to its decision.

All trained mice were housed in groups of two or more under a
reverse light cycle (12-h dark and 12-h light) and trained during their
active dark cycle. Animals were trained over the course of approxi-
mately 30-60 d. After 2-3 d of restricted water access, animals began
habituation to head fixation and received water from spouts in the
behavior chamber. During these sessions, unilateral auditory stimuli
were presented followed by adroplet of water from the ipsilateral water
spout. After several habituation sessions, animals were required to
touch the handles to trigger stimulus presentation. Once mice could
reliably reach for the handles, the required touch duration was progres-
sively increased to 0.75 s. During the next training stage, both spouts
moved within reach of the animal following stimulus presentation. An
animal was considered trained whenits detection performance across
two or more sessions was >80%.

Behavioral monitoring

Data were collected from multiple sensors in the behavioral setup.
Touch sensors using a grounding circuit on handles and lick spouts
detected contact with the animal’s forepaws and tongue, respectively.
A piezo sensor (1740, Adafruit) below the animal’s trunk was used for
monitoring body and hindlimb movements. Two webcams (C920 and
B920, Logitech) were positioned to capture the animal’s face (side view)
and the ventral surface of the body (ventral view).

Widefield imaging

Widefield imaging was done as reported previously using an
inverted tandem-lens macroscope and an sCMOS camera (Edge 5.5, PCO)
running at 30 frames per second (fps). The focal lengths of the top lens
(DC-Nikkor, Nikon) and bottom lens (85M-S, Rokinon) were 105 mm and
85 mm, respectively. The field of view was 12.5 x 10.5 mm?and the imag-
ingresolutionwas 640 x 540 pixels after 4x spatial binning, resultingina
spatial resolution of ~20 pm per pixel. To capture GCaMP fluorescence, a
525-nmbandpassfilter (86-963, Edmund optics) was placed in front of the
camera. Usingexcitation light at two different wavelengths, weisolated
Ca*-dependent fluorescence and corrected for intrinsic signals (for
example, hemodynamicresponses)**, Excitation light was projected on
the cortical surface using a495 nmlong-pass dichroic mirror (T495lpxr,
Chroma) placed between the two macro lenses. The excitation light was
generated by a collimated blue LED (470 nm, M470L3, Thorlabs) and a
collimated violet LED (405 nm, M405L3, Thorlabs) that were coupled
into the same excitation path using a dichroic mirror (87-063, Edmund
optics). We alternated illumination between the two LEDs from frame
to frame, resulting in one set of frames with blue and the other with
violet excitationat15 fps each. Excitation of GCaMP at 405 nmresultsin
non-calcium-dependent fluorescence’, allowing us to isolate the true
calcium-dependent signal by rescaling and subtracting frames with
violet illumination from the preceding frames with blue illumination.
Subsequent analyses were based on this differential signal. Imaging data
were thenrigidly aligned to the Allen Mouse Brain Common Coordinate
Framework (CCF), using four anatomical landmarks: the left, center and
right points where anterior cortex meets the olfactory bulbs, and the
medial point at the base of retrosplenial cortex. Retinotopic visual map-
ping experiments®>”’ confirmed accurate CCF alignment and showed
high correspondence between functionally identified visual areas and
the CCF across PyN types (Fig. 1c).

23,32,77

Two-photonimaging
We used atwo-photonresonant scanning microscope (Moveable Objec-
tive Microscope, Sutter Instruments) for continuous image acquisition

at30.9 Hz. Ax16, 0.8-NA Nikon objective lens was used for single-plane
imaging with a field of view of 512 x 512 pixels (575 um x 575 pm).
Mode-lockedillumination at 930 nmwas delivered using a Ti:Sapphire
laser (Ultrall, Coherent). The depth of focal planes was 200-600 pm
below the dura. Emission was collected using bandpass red (670/50 nm)
and green (525/50 nm) filters (Chroma Technologies). MScan soft-
ware (Sutter Instruments) was used for image acquisition. Recordings
were performedin ALM (2.5 mmrostraland 1.5 mm lateral to bregma)
or MM (1.5 mm anterior and 1 mm lateral to bregma) in randomized
order across mice. Across imaging session, we selected planes that
differed from those of prior sessions to maximize the number of
unique neurons.

Raw images were processed using the Suite2P package®® to per-
form motion correction, model-based region of interest (ROI) detec-
tion, correction for neuropil contamination and spike deconvolution.
Somatic and non-somatic (neuropil) ROl identification was performed
through a combination of a pretrained classifier and manual cura-
tion. Somata with tdTomato expression were identified in a two-step
process. First, potential green channel bleed-through was subtracted
from the red channel using nonrigid regression with individual chan-
nelsbeing divided into smaller blocks. Next, all sessions were manually
inspected toidentify aconservative red fluorescence threshold, which
was subsequently applied to all sessions. Analyses of neural activity
were based ondeconvolved values (‘inferred spiking activity’). Because
the deconvolved values do not represent absolute firing rates, we
performed z-score normalization for each neuron before computing
trial averages across cells. The total number of recorded neurons for
each sessionwas 396 + 105 (mean = s.d.).

Optogeneticinactivation

Photostimulation was performed using a 470-nm high-power LED
(M470F3, Thorlabs) with a power density of 25 mW/mm?. Stimuli
consisted of a square-wave stimulus that ramped down in power for
200 ms, to avoid an excitatory post-illumination rebound due to sud-
den release of inhibition®. To prevent animals’ visual detection of
photostimulation, through either external leakage from light-insulated
matingsleeves or transmission to the retinaacross the brain, an exter-
nal LED with matching wavelength placed at the center of the animal’s
visual field was flashed throughout the duration of every trial. Pho-
toinhibition was performed in 20% of total trials and randomly inter-
leaved between light-offtrials. Once ananimal was habituated and able
to complete detection behavior trials with >90% accuracy, bilateral
optogenetic inactivation trials were introduced. During these initial
sessions, optogenetic inhibition was performed from the beginning
of the stimulus epoch until the end of the delay epoch. Additionally,
we performed 0.5-s inhibition during four predefined epochs of the
detection behavior trials: (1) first half of the stimulus, (2) second half
of the stimulus, (3) delay and (4) response.

Immunohistology, microscopy and image analysis

After behavioral experiments, we performed transcardial perfusion
with PBS followed by fixation with 4% paraformaldehyde in 0.1 M phos-
phate buffer. Brains were post-fixed in 4% paraformaldehyde for an
additional 12-18 hat 4° C. Before sectioning, brains were rinsed three
timesinPBS and embeddedin4%agarose-PBS. Then, 50-pum-thickslices
were made using a vibrating microtome (Leica, VT100S). Sections were
thensuspended inblocking solution (10% Normal Goat Serum and 0.1%
Triton-X100in1x PBS) for 1 h followed by overnightincubation at4 °C
with the primary antibody. Next, sections were washed with PBS, incu-
bated for1hatroomtemperature with the secondary antibody at1:500
dilution. For histological visualization of GCaMPé6s, we used primary
goat polyclonal anti-GFP antibody (1:500 dilution; Abcam, ab6673) and
secondary donkey anti-goat Alexa Fluor 488 (1:500 dilution; Abcam,
ab150129). Sections were then dry-mounted on slides using Vectash-
ield (Vector Labs, H1I000) before imaging. No immunostaining was
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performed for the visualization of FusionRed or tdTomato. Imaging
was performed using an upright fluorescence macroscope (Olympus
BX61). Images were acquired using Ocular Scientific Image Acquisi-
tion Software (Teledyne Imaging). Visualization and analysis were
performed using Image)/FlJl software packages.

Quantification of cortex-wide gene expression

Cell-count quantification was performed using publicly available serial
two-photon tomography datasets (http://www.brainimagelibrary.
org/)*. Cre expression patterns for IT and PT neurons were charac-
terized with data from eight mice, expressing either Cre-dependent
GFP (PlexinD1-2A-CreER;Snap25-LSL-2A-EGFP) or tdTomato (Fezf2-
2A-CreER;Ail4), respectively. Cell counting was performed via auto-
mated somadetection, using a trained convolutional neural network®.
Datasets were then registered to the Allen CCF v3 using the Elastix
toolbox®. To obtain the density of Cre-expressing neurons for indi-
vidual cortical areas, we used the area outlines from the Allen CCF and
computed the average sum of detected IT or PT neuronsineach area,
normalized by its surface area.

Preprocessing of neural data

We used a rigid-body image registration method implemented in the
frequency domain® to align each imaging frame to the median over
all frames inthefirst trial. To reduce the computational cost of subse-
quent analyses, we then computed the 200 highest-variance compo-
nents using singular value decomposition (SVD). These components
accounted for at least 95% of the total variance in each recording,
whereas computing 500 components accounted for little additional
variance (~0.15%). SVD reduces the raw imaging data Y to a matrix
of ‘spatial components’ U (of size pixels by components), ‘temporal
components’ V' (of size components by frames) and singular values S
(of size components by components) to scale temporal components to
the original data. The resulting decomposition has the form Y = USV".
All subsequent analysis in the time domain (such as the encoder and
decoder models described below) were performed on the product SV*
and therespective results were later multiplied by U, to recover results
for the original pixel space. To avoid slow driftin the imaging data, SV'
was high-pass filtered above 0.1 Hz using a zero-phase, second-order
Butterworth filter.

To compute trial averages and perform choice decoder analy-
sis (see below), imaging data in individual trials were aligned to the
four trial periods, each marked by a specific event. This was required
because the duration of different trial events was randomized to
reduce temporal correlations, for example, between trial initiation,
the stimulus presentation and subsequent lick responses. The first
period (initiate) was aligned to the time when animal initiated a trial
by touching the handles, the second (stimulus) was aligned to the
stimulus onset, the third (delay) to the end of the stimulus sequence,
and the fourth (response) to the time when spouts were moved in to
allowalick response. After alignment, the total trial durationwas 2 sand
durations of respective trial episodes were 0.5 s (initiate), 1 s (stimulus),
0.2 s (delay) and 0.3 s (response).

Spatial clustering and classification

To obtain moreinterpretable spatial components and assess the dimen-
sionality of cortical activity in different PyN types, we used SNMF. As
with SVD, sNMF creates spatial and temporal components for each ses-
sion butenforces positive spatial components. Temporal components
were not enforced to be nonnegative because hemodynamic correc-
tion produces temporal dynamics that can be positive or negative,
relative to baseline. We used the LocaNMF toolbox* (https://github.
com/ikinsella/locaNMF/) to transform the spatial and temporal com-
ponents U and SVTinto corresponding matrices Aand C. A is a matrix
of nonnegative spatial components (of size pixels by components).
Cis the corresponding temporal components (of size components

by frames). In addition to regular SNMF, the LocaNMF toolbox can be
initialized with spatial constraints based on the Allen CCF. To obtain
spatially restricted localized LocaNMF components, we constructed a
map of larger seed regions by merging areas in the Allen CCF together
(Fig. 2e). This region map was then used to enforce that each compo-
nentin A is sparse outside the boundary of a given region. To obtain
dense spatial components, we used alocalization threshold of 50%. For
sNMF components, we used the LocaNMF toolbox with asingle region
that spanned the entire cortex to obtain cortex-wide components
while ensuring that all other analysis steps were identical for SNMF
and LocaNMF components. In both cases, we determined how many
componentsin Aand C were needed to explain 99% of the variance of
Y (with Y = AC) after the initial SVD.

To compare spatial SNMF and LocaNMF components from differ-
ent PyN types, we embedded them in a two-dimensional space, using
UMAP analysis (Fig. 2c,g). UMAP analysis was performed with the UMAP
toolbox™ (https://github.com/Imcinnes/umap/). For each recording,
the first 20 spatial components in A were downsampled by a factor
of 2, smoothed with a two-dimensional Gaussian filter (5 x 5 pixels,
2-pixel standard deviation) and peak normalized. Components from
all recordings and animals were then combined into a larger matrix
(of size pixels by components). We used UMAP to project pixels into
two, maximally separating nonlinear dimensions. Each point in the
two-dimensional space (Fig. 2c,g) reflects a single component from
one animal in one imaging session. The same approach was used for
temporal sSNMF and LocaNMF components. Before the UMAP projec-
tion, we first computed the trial-averaged and z-scored activity of each
component to achieve temporal dynamics that are comparable across
sessions and individual mice.

To identify PyN types based on individual spatial components
(Fig. 2d,h), we performed a separate UMAP analysis for each mouse.
Each of these projections excluded all components from the test ani-
mal, ensuring that the UMAP projection was not shaped by potential
noise patterns or other unknown features of the test components
that could affected the classifier result. We then tested the first 20
components of each session of the test animal with 100 repetitions
per component. Inevery repetition, 1,000 components fromeach PyN
type wererandomly selected from the pre-computed UMAP space. We
assigned the PyN type of the test component based on the identity of
its ten nearest neighbors in UMAP space. For LocaNMF components,
we performed the same procedure but additionally enforced an equal
number of components from each seed region and PyN type. This
prevented PyN types with alarger number of componentsin aregion
from biasing the classifier result. Classifier accuracy for each session
(Fig. 2d,h) was computed as the mean probability over all repetitions
to accurately identify the PyN type.

Todetermine the size of PyN-predictive LocaNMF components, we
selected all spatial components that achieved a classification accuracy
0of99% or higher (all other components were assigned as nonspecific)
and thresholded each component above 0.2 to obtain binary images.
The size of each component was then computed as the square root of
the sum of all pixels and converted to square millimeters.

Linear encoding model

Thelinearencoding modelincluded task-related and movement-related
variables (Supplementary Table 1), as described previously®. Each
variable consisted of multiple regressors that were combined into
alarger design matrix. Binary regressors contained a single pulse
that signaled the occurrence of specific events, such as the stimulus
onset, and additional regression copies that were shifted forward or
backward in time to account for changes in cortical activity before
or after the respective event. For auditory stimuli, the time-shifted
copies spanned all frames from the onset of the auditory sequence
until the end of the trial. Individual click sounds were also captured
by an additional regressor set that spanned the 2 s after click onset.
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For licks and whisks, the time-shifted copies spanned the frames from
1s before until 2 s after each event. For some variables, for example,
previous choice, the time-shifted copies spanned the whole trial. Other
variables were analog, such as measures from the piezo sensor, pupil
diameter and the 200 highest temporal components of video informa-
tion fromboth cameras (using SVD as described above). This ensured
that the model could account for animal movements and accurately
isolate task-related activity. Movement and task variables were addi-
tionally decorrelated due to the variable durations of the initiation,
stimulus and delay period. The model was fit using ridge regression
toallow for similar contributions from different correlated variables.
To determine the regularization penalty A for each column of the wide-
field data, we used marginal maximum likelihood estimation (MLE)®.
MLE expresses the encoding model as a Bayesian linear model and
determines the ridge penalty A by maximizing the marginal likelihood
1(DIA) of the model, given data D. This was done iteratively by testing
different A values to determine a global minimum for the negative
log-likelihood -log t(D|A). The main advantage of this approachisthat A
canbedetermined without computationally expensive cross-validation
procedures, resultingin a~-50-fold decrease in required compute time
on aregular work station. Moreover, the faster MLE approach allows
adjustingA values for individual widefield data components, resulting
in higher cross-validated explained variance of the encoding model,
compared toaregular cross-validation approach.

Variance analysis

Explained variance (cvR?) was obtained using tenfold cross-validation.
This was done by fitting the model weights to a continuous 90%-large
section of theimaging data and then computing the explained variance
inthe remaining10% of the data. The procedure was repeated ten times,
while shifting the training and test data to ensure that each part of the
recording was usedin the test datain one of the folds. To assess unique
explained variance by individual variables (AR?), we created reduced
models in which all regressors of a specific variable were shuffled in
time. Shuffling of each regressor was done within individual trials to
account fora potentialimpact of very slow temporal correlations due
to the kinetics of the calcium indicator. The difference in explained
variance between the full and the reduced models yielded the unique
contribution AR?of that model variable that could not be explained by
othervariablesin the model. The same approach was used tocompute
unique contributions for groups of variables, that is, ‘movements’
and ‘task’. Here, all variables that corresponded to agiven group were
shuffled together.

Decoding model

To predict animal’s left/right choices from widefield data, we trained
logistic regression decoders with an L1 penalty on the temporal
component matrix SV' in each session. The L1 penalty was defined
as the inverse of the number of observations in the test dataset dur-
ing cross-validation, which yielded a good balance between the
cross-validated prediction accuracy of the decoder and the number
of nonzero model regressors. When decoding choice, we randomly
removed trials until there were equal numbers of correctandincorrect
trials where mice chose the left and the right side. By balancing left/
right choices and correct/incorrect trials, we ensured that the decoder
would notreflect choices due to corresponding sensory information or
sidebiases. Thelogistic regression model was implemented in MATLAB
using the ‘fitclinear’ function and run repeatedly for each time point
inindividual trials after realigning them to trial periods as described
above.Ineachsession, all decoder runs were performed with the same
number of trials (at least 250). We used tenfold cross-validation to
compute decoder accuracy at each time point. 3-weights were aver-
aged from all models created during cross-validation and convolved
with the spatial component matrix U to create cortical maps of the
choice decoder weights.

Receiver-operating characteristic analysis

We computed the areaunder the receiver-operating characteristic curve
(AUC) to quantify choice preference of single neurons obtained from
two-photonimaging. AUC values were computed by comparing the mean
neural activity during the stimulus and delay periodinall trials with ipsilat-
eralversus contralateral choices. AUC values denote the specificity of the
neuralactivity toipsilateral or contralateral choices, with valuesbelow 0.5
signifying ipsilateral choice selectivity and AUC values above 0.5 denot-
ing contralateral choice selectivity. To identify statistically significant
choice-selective neurons, AUC values were also computed for shuffled
triallabels (randomly assigningipsilateraland contralateral choices across
trials) for each neuron. This procedure was repeated 100 times to create
adistribution of shuffled AUC values for each neuron. A neuron’s choice
selectivity wasthen deemed significant if the probability of obtaining the
actual AUC from the shuffled AUC distribution was less than 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data from this study are available at https://doi.org/10.25452/
figshare.plus.21538458. Alink tothe datarepository withadescriptionof
the behavioraland imaging data can be found at https://churchlandlab.
dgsom.ucla.edu/pages/code/.

Code availability

The MATLAB and Python code used for the data analysis in this study
is available as a public GitHub repository. The link to the repository
can be found at https://churchlandlab.dgsom.ucla.edu/pages/code/.
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Extended Data Fig. 1| Pyn-specific cortical maps of total variance and
inter-regional correlations. (a) Maps of variance over all frames for individual
micein each PyN type group. Colors are normalized between zero and the 95th
percentile for each animal. Distinct variance patterns for each PyN type were
largely conserved across individual mice. (b) Map of cortical regions, used for
correlation analysis. V1= primary visual cortex, V2 = secondary visual cortex,

RS =retrosplenial cortex, Aud = auditory cortex, PPC = posterior parietal cortex,
SSw =somatosensory whisker area, SSb =somatosensory body area, SSf=
somatosensory face area, M1 = primary motor cortex, M2p = posterior secondary
motor cortex, M2a =anterior secondary motor cortex. (c) Correlations between
cortical regionsin EMX, PT and IT neurons averaged over all sessions and mice.
Inter-region correlations were comparable between EMX and IT neurons but
overallincreased for PT neurons. (d) R*of EMX, IT and PT reconstructions (top to

# components / region

uone|e1100

0.5

bottom panels), using components from different PyN types (red, green, and blue
traces). For within-group reconstructions, only components from other mice
were used. (e) Single-frame reconstructions of IT data, using PT components.

IT imaging data (original) was projected onto PT components to assess if they
would be applicable to capture IT variance. While the reconstruction captured a
large fraction of variance (-93%, Supplementary Video 4, comparing individual
frames showed that PT components did not recreate more fine-grained spatial
features of the IT data. (f) R of EMX, IT and PT reconstructions, using locaNMF
components from different PyN types (formatting as in panel a)). Shown are
results for different number of components per region, using 24 regionsin total.
The minimum number of components was therefore 24 (1component per region)
and the maximum 96 (4 components per region).
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Extended Data Fig. 2| Cortex-wide expression patterns of PT and IT neurons.
(a) Brainslices from IT and PT neurons show robust cortex-wide expression of
GCaMPé. (b) Left: Raw fluorescence from widefield imaging of 3 different PT and
IT mice. Inboth lines, we obtained strong fluorescence throughout the cortex,
although minor fluctuations in brightness were visible across regions. Right:
Example sNMF components from an individual PT/IT mouse (mouse #3 for both
lines). SNMF components did not strongly reflect differences in raw fluorescence
across cortex. We also observed no clear relationship between fluorescence
patterns to total variance (Fig. 1D) or ongoing activity patterns (Supplementary.
Movies 2, 3). (c) Left: Example brain slices from IT-and PT-Cre mice to quantify

neurons / mm?
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the density of Cre-expressing neurons in each line. Blow-up shows a magnified
regionin cortex with individual somata. Right: Expression density was largely
even across dorsal cortex with higher density of IT neuronsin lateral regions and
no expression in the olfactory bulb. Density was slightly reduced in M2 for both
lines. (d) Map of PyN type decoding accuracy with locaNMF components for
different cortical regions. Decoding accuracy was high across cortical regions
and we found no clear relation between expression patterns and regions with
particularly high locaNMF decoding accuracy. Olfactory bulb was omitted from
the analysis, due to the lack of strong fluorescence signals.
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Extended Data Fig. 3| Temporal structure in animal behavior and cortical
activity patterns. (a) Micein all PyN groups integrate sensory information
throughout the stimulus period. Shown is the normalized difference between
auditory clicks on the left or right side, when animals successfully responded

to theleft (green) or the right (red). Binsize is 50 ms. Positive numbersindicate
ahigher probability of observing a leftward click sound, negative numbers
indicate more clicks on the right. In all mice, the probability of observing more
stimulion the correct side is consistently higher throughout the stimulus period.
This shows that mice integrate sensory evidence from the entire stimulus period
and auditory clicks equally influence animal decisions, regardless of whether
they occur early or late in the stimulus sequence. (b) Clustering of temporal

components. UMAP embedding of temporal sSNMF components for EMX (red),
IT (green) and PT (blue) mice. Clustering for cell types is weaker as with spatial
components (Fig. 2c) but clearly visible, suggesting that SNMF components

are both spatially and functionally distinct. Insets show 10 example traces of
trial-averaged activity from cell-type specific clusters (left, bold line shows

the mean) and an example of a corresponding spatial component (right). (c)
UMAP embedding of temporal locaNMF components from left frontal cortex.
Conventions asin a). Temporal locaNMF components also show cell- type-
specific clustering, revealing task-specific dynamics (inset, left). Spatial locaNMF
components also show separate shapes for each cell type (inset, right).
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Extended Data Fig. 4 | Symmetric bilateral activation during decision-
making and unique explained variance. (a) Trial-averaged response maps for
all correct, leftward trials across different PyN types. Cortical maps are as shown
inFig.3aand Fig. 7c. (b) Average activity in auditory, parietal, and frontal cortex
ontheleft (black) and right hemisphere (green), which are contra- and ipsilateral
tothe chosenside, respectively. Inall PyN types, different trial events, such as
initiation, sensory stimulation and animal responses increased neural activity.
However, surprisingly few differences were seen between cortical hemispheres.
Toresolve differences in inter-hemispheric activation for left- versus rightward
choices we therefore employed the choice decoder analysis (Figs. 6 and 7). Note
that low or negative weights from the choice decoder (as seen for IT and CStr
neurons in frontal cortex) do not reflect alack of choice-related activity activity
butare rather based on small differences in the activation of hemispheres

that are either ipsi- or contralateral to the chosen side. (c) To isolate unique
contributions from movement or task variables, we computed averaged maps of
theloss in predicted variance (AR?) by removing either group of variables from
the full model. This allowed us to separately examine their respective impact

on cortex-wide activity by determining, for each PyN type, where in the cortex
predictive power was lost. While movement AR? patterns were comparable
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across PyN types (top row), PyN-type-specific differences were uncovered when
removing task variables: AR? was highest in frontal cortex of EMX and PT mice,
but more diffuse in IT mice with the highest AR?in auditory cortex (bottom row).
Note differences in scale between two rows. (d) Examination of AR for individual
task variables further suggest distinct roles for each PyN type. Here, the ‘choice’
variable had the highest contributions in PT neurons but was overall weaker in

IT neurons. Conversely, contributions from other task variables were higher in

IT neurons. This dichotomy was not observed in EMX neurons, indicating that

IT and PT neurons might have different functional roles that cannot be resolved
without PyN-type specific measurements. Each row represent amouse. (e)
Comparison of AR*for choice (top) and stimulus variables (bottom) between PyN
types. IT mice had significantly lower AR?for choice (pgy,=1.4 X107, p;;=1.1 %
107; ngyx = 62, Nyy = 71, npr = 59 sessions) but higher AR 2 for the stimulus as EMX
or PT mice (pgy,=1.2x107%, p;;=4.9 x10™). Note that lower AR?for choice inIT
mice does notimply alack of involvement in decision formation but rather that
their population activity does not clearly differ for left versus right choices. Dots
indicate individual sessions. Stars indicate significant differences across sessions
(two-sided unpaired t-test, p < 0.01, bonferroni-corrected).
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Extended DataFig. 5| Choice-related activity in somatosensory cortex.

(a) Averaged choice kernel maps for EMX mice during the initiation and delay
period. Dashed circles show location of somatosensory whisker (SSyhiser)»
somatosensory nose (SSy..), and frontal cortex. SSyisier (Dlue trace) and SSyse
(red trace) were constantly positive or negative, respectively, even during the
initiation period. In contrast to frontal cortex (yellow trace), both areas were
only weakly modulation by the stimulus onset (gray box). (b) Choice kernel
maps for IT mice during the delay period. Dashed circles show location of
auditory, SSyhisker» and frontal cortex. Choice-related activity in SSypiser (red
trace) increased over the course of the trial. No choice-related modulation was
apparent in frontal cortex. (c) Choice kernel maps for PT mice during the delay
period. Conventions asin (b). Choice-related activity strongly increased in
frontal cortex after stimulus onset and was weaker in other cortical areas. (d)
10x cross-validated decoder performance, predicting animal’s left/right choices
at different times during the trial. Inall PyN types, decoder performance was

(o
Stimulus Stimulus
""""" = x10%
— 25 L
-/-/Ssxmws-m % ’_M Whisker
Auditory 'g Auditory
........... N & e _
1 1
time (s) 2.5 time (s)
Y ssWhisker
Stimulus  EMX
-53 2 P PT
g — IT
A0
f————A T
0 05 1
time (s)

above chance atall times, including the initiation period before the stimulus
(gray box). This suggests that, in some trials, animals follow a pre-conceived
choice thatis stimulus-independent and can be decoded from cortical activity.
Decoder performance was highest in the response period (dashed vertical

line) when animals performed licking movements. (e) Contralateral choice
weight maps during the delay period (same as in Fig. 6¢). Dashed circles show
the location of somatosensory whisker cortex (SSypiser)- In all PyN types, choice
weights in SSyyqer Were increased in the initiation period before the stimulus
(gray box). A potential explanation could be that pre-stimulus choices are
reflected in choice-specific whisker movements. However, choice signalsin
SSwhisker PETSISted when removing movement-related activity from the imaging
data (Supplementary Fig.12). Whisker or other facial movements might therefore
be too subtle to be captured by our analysis or choice signals in SSyyq.r reflect
non-overt choice-related activity.
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Extended Data Fig. 6 | Significance of choice decoder weights. To assess inwhite (¢-test, p < 0.05, bonferroni-corrected for 3364 pixels). Significant
significant weights of the choice decoder, we combined spatially downsampled pixels closely match choice decoder weights (Fig. 6¢) with significant regions
choice maps fromall sessions in each PyN type and subsequently performed a beinglargely tied to anterior cortex. Inall PyN types, weights in frontal cortex
t-test in each pixel to determine which decoder weights are significantly different  are significant in the stimulus and delay period, thus supporting the main
from zero. The resulting maps show significant pixels for different trial periods conclusions of the choice kernel analysis.
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Extended Data Fig. 7| Movement-corrected choice decoder. (a) Using amodel
based on movement variables, we subtracted allmovement-related activity from
raw fluorescence data and applied the choice decoder analysis to the resulting
residuals. (b) Removing movement-related activity reduced choice prediction
accuracy, in particular during the delay and response period when most
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choice-related movements occur. Inall PyN types, predictions remained above
chancelevels, suggesting that part of the choice-related activity isindependent
of observable movements. (c¢) Movement-corrected choice kernels revealed
the same cortical patterns as seenin the regular choice decoder (Fig. 6¢),
demonstrating that choice signals are not solely driven by movements.
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Extended Data Fig. 8 | Retrograde labeling of CStr neurons reveals distinct
cortical dynamics. (a) Visual sign maps from retinotopic mapping experiments.
CStrneurons responded to visual stimulation and reveal comparable retinotopic
organization as other PyN types. (b) Number of SNMF components, accounting
for 99% of cortical variance in EMX and CStr mice, dots represent individual
sessions. CStr neurons required less components as EMX and IT but more
components as PT neurons (compare with Fig. 2a). (c) UMAP embedding of
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spatial SNMF components for EMX (red), IT (green), PT (blue) and CSt (black)
mice. Dots show individual spatial components. CStr components were clearly
distinct from other PyN types. (d) Cross-validated choice-decoder accuracy.
Results are shown for EMX (red) and CStr mice (black). Decoder accuracy
continuously increased throughout the trial for all PyN types. Dashed line
indicates time of response, gray area is the stimulus period.
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Extended Data Fig. 9 | Infragranular CStr neurons are tuned to contralateral
choices. (a) Left: Overview of significantly choice-tuned neurons in deeper
layers (400-600 pm) of ALM (top) and MM (bottom). Orange line: CStr neurons,
labeled by tdTomato. Gray lines: unlabeled PyNs. AUC values below 0.5 indicate
stronger responses for ipsilateral choices. Right: Trial-averaged activity for all
choice-selective neurons, separated for ipsi- (red) versus contralateral choices
(blue). Both CStr and unlabeled neurons show strong contralateral choice tuning
with no clear difference between PyN-types (p <1x 107 for all conditions).

This suggest that ipsilateral choice tuning is limited to IT-CStr neurons in
superficial layers of ALM. (b) Fraction of cells responding selectively for ipsi-
(red) versus contralateral choices (blue) in ALM and MM. CStr and unlabeled
neurons in both show similar contralateral choice tuning. (ALM: ng,, =177 cells,
Nyniabeled = 1190 cells; MM: ngg,, = 287 cells, Ny, aneeq = 2620 cells). (c) To differentiate
somatic versus neuropil choice signals, we quantified ipsi- and contralateral
choice tuning for neuropil ROIs. Each neuropil ROl represents the background
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fluorescence that surrounded a given somatic ROI. Conventions asin a). (d)
Fraction of neuropil ROIs responding selectively for ipsi- versus contralateral
choices. Conventions asin (b). Neuropil ROIs were equally tuned to ipsi- and
contralateral choices in superficial ALM layers (p = 0.14) but otherwise showed
contralateral choice-specificity (p <1x107 for other conditions), generally
recapitulating choice-specificity from unlabeled neurons. The symmetry found
in neuropil choice tuning might explain the bilateral ALM activation observed
with IT-specific widefield imaging (Fig. 3¢), suggesting that IT-specific widefield
signals are comprised of somatic and neuropil activity in the superficial cortex.
In contrast, the stronger choice-selectivity in EMX- and PT-specific widefield
imaging, suggests that these signals may emerge frominfragranular neural
activity . (ALM: neg,, = 177 cells, Nygiapeieq = 1190 cells; MM: neg,, = 287 cells,

Nuniabelea = 2620 cells). Data are presented as mean +/-95% confidence intervals.
Starsindicate bonferroni-corrected p < 0.01, all tests are two-sided binomial test.
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Extended Data Fig. 10 | Effects of optogenetic perturbation in frontal and
parietal cortex on licking behavior. (a) To test if frontal or parietal inactivation
impairs movement planning or execution, we computed the fraction of missed
trials with and without optogenetic inhibition in frontal cortex. No increase in
missed trials was detected, demonstrating that the animals’ ability to respond
was notimpaired (ngyx = 2009, np; =1192, Ny = 669, ngg,, = 1408 trials). (b) Same
asina) for parietal inactivation (ngyy = 1721, np; = 1108, n;; = 844, n¢g, = 1093
trials). (c) Top: Quantification of licking behavior after spouts were moved in
for all correct trials in a single EMX animal (10 ms bins). Licking probability
varies rhythmically at ~10 Hz as the animal licks the spout repeatedly (black
line). The same pattern is observed with frontal optogenetic inactivationin
different trial episodes (colored lines), demonstrating that motor generation

isnot generally perturbed. Bottom: While the lick patternis largely similar with
optogenetics, inactivation during the delay period (yellow line) reduces the
lick probability during the first 40 ms (gray area). Frontal inactivation during
the delay might thus increase animals’ reaction times. (d) Same as in (¢) but for
parietal inactivation. (e) Quantification of lick probability in the first 40 ms for
all cell types. Frontal inactivation during the delay period reduces early lick
probability in EMX, PT and IT mice but not CStr mice (ngyyx =2009, np; =1192,

n; =669, n¢g, = 1408 trials). (f) Same as in (e) for parietal inactivation. Only EMX
inactivation during the delay caused a small reductionin first lick probability
(Ngvx =1721, npr = 1108, ny; = 844, ncg,, =1093 trials). Data are presented as mean
+/-95% confidence intervals. Stars indicate bonferroni-corrected p < 0.005,
two-sided binomial test.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Behavioral data was collected using Bpod r0.5, a commercially available data acquisition system (https://www.sanworks.io/shop/
products.php?productFamily=bpod). Imaging data was collected using custom Matlab (2015b) software (for widefield data) and MScan 2.3
(commercially available through Sutter Instruments and used to acquire 2-photon data).

Data analysis Data were analyzed using custom Matlab (2018b) code. As in previous papers, we will make all code available for public use via GitHub
(https://github.com/churchlandlab).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Provide your data availability statement here.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected based on our extensive knowledge of mouse-to-mouse variability in behavior (quantified in (Odoemene et al,
2018). This led us to include 54 animals in total. The number of animals for each cell type is listed in the Methods section. Sample sizes were
based on previous studies of widefield/2-photon imaging (Musall*, Kaufman* et al, 2019) and optogenetics (Odoemene et al, 2018).
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Data exclusions  All animals tested were included in the study.

Replication For both encoding and decoding analyses, we report only cross-validated data; that is, the results from "held out" trials that are not used to fit
the model parameters. This demonstrates that our results are not due to over fitting of the model. We also replicated previous results (Musall
2019) that demonstrate movements dominate neural activity in this new dataset (see Figure 4B). We did not perform additional replication
experiments.

Randomization  Animals were presented with stimuli of randomized difficulty. In optogenetics experiments, stimulation trials were randomly interleaved (20%
of trials). Animals were randomly selected for participation in widefield imaging vs. optogenetics experiments. Controls are all done within
each animal (e.g., stimulating in primary visual cortex and in parietal cortex in the same animal) so that comparisons were not usually made
across groups. When we did make comparisons across groups (e.g., optogenetics for PT vs. IT neurons), animals were assigned to each group
based on their genetic background (e.g., whether they were Fezf2-creER or PlexinD1-creER mice).

Blinding Experimenters were not blinded to which cell type expressed calcium indicators in a given mouse. However, the data collection process is
entirely computer controlled and automatic so that experimenter's knowledge of the animal's genetic background was not able to influence
stimulus presentation, stimulus difficulty, or any other experimental parameters. During data analysis, we often used existing pipelines (e.g.,
encoding and decoding models in Figs 4-6). Experimenters' were not blinded to group membership, but also had no opportunity to intervene
because the analysis is entirely automated and is run in the same way for all subjects. For other analyses, e.g., SNMF and LocaNMF (Fig 2), we
re-purposed existing analysis tools designed for other experiments (see S. Saxena et al, 2020). These analyses were not blinded, but the
analysis consists of decomposing matrices into spatial and temporal components and there is no opportunity for the user to influence the
outcome.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
[] Eukaryotic cell lines [] Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
[ ] Human research participants
[] Clinical data

[ ] Dual use research of concern
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Antibodies

Antibodies used For histological visualization of GCaMP6s, we used primary goat polyclonal anti-GFP antibody (1/500 dilution, Abcam ab6673) and
secondary donkey anti-goat Alexa Fluor 488 (1/500 dilution, Abcam ab150129)

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.




Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

All mouse strains were acquired from the Jackson Laboratory, the Allen Brain Institute, or generated at Cold Spring Harbor
Laboratory. Transgenic strains crossed to generate double- and triple-transgenic mice used for imaging: Emx-Cre (JAX 005628), LSL-
tTA (JAX 008600), Ai93D (JAX 024103), Ai162 (JAX 031562), G6s2 (JAX 024742) and H2B-eGFP (JAX 006069). EMX mice, used for
calcium imaging, were bred as Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activity patterns, EMX mice were on a
doxycycline-containing diet (DOX), preventing GCaMP6 expression until they were 6 weeks or older. To obtain PT- and IT-specific
transgenic lines, we used two inducible knock-in mouse lines (Fezf2-2A-CreER and PlexinD1-2A-CreER) that were generated by
inserting a 2A-CreER or 2A-Flp cassette in-frame before the STOP codon of the targeted gene. Both strains have been extensively
characterized to reflect endogenous gene expression patterns that are closely linked to specific excitatory neuron types and induce
robust and uniform expression throughout the cortex. Only male animals were used. We have since designed a subsequent study
including sex as a biological variable. Mice/rats were housed as breeding pairs or were weaned and housed by sex in individually
ventilated autoclaved caging (Thoren Caging Systems, Hazelton, PA). Animals were maintained on sanitized cages and irradiated
bedding with 1/4 inch corn cob bedding (The Andersons, Maumee, OH) and were fed a closed-formula, natural-ingredient, y-
irradiated diet (PicoLab Mouse Diet 5053, Purina LabDiet, St. Louis MO) ad libitum. A complete cage change was performed every
7-10 days within a biological safety cabinet (model Nu602-400Class Il Type Nuaire, Plymouth, MN). The room was maintained on a
12:12-h light:dark cycle with a relative humidity of 30 — 70%, and room temperature ranging from 69-780F.

The study did not involve wild animals.
The study did not involve samples collected from the field.

The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal procedures and experiments. All surgical
and behavioral procedures conformed to the guidelines, established by the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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