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ABSTRACT

We present a database for automatic understanding of Social En-
gagement in MultiParty Interaction (SEMPI). Social engagement
is an important social signal characterizing the level of partici-
pation of an interlocutor in a conversation. Social engagement
involves maintaining attention and establishing connection and
rapport. Machine understanding of social engagement can enable
an autonomous agent to better understand the state of human
participation and involvement to select optimal actions in human-
machine social interaction. Recently, video-mediated interaction
platforms, e.g., Zoom, have become very popular. The ease of use
and increased accessibility of video calls have made them a pre-
ferred medium for multiparty conversations, including support
groups and group therapy sessions. To create this dataset, we first
collected a set of publicly available video calls posted on YouTube.
We then segmented the videos by speech turn and cropped the
videos to generate single-participant videos. We developed a ques-
tionnaire for assessing the level of social engagement by listeners in
a conversation probing the relevant nonverbal behaviors for social
engagement, including back-channeling, gaze, and expressions. We
used Prolific, a crowd-sourcing platform, to annotate 3,505 videos of
76 listeners by three people, reaching a moderate to high inter-rater
agreement of 0.693. This resulted in a database with aggregated
engagement scores from the annotators. We developed a baseline
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multimodal pipeline using the state-of-the-art pre-trained mod-
els to track the level of engagement achieving the CCC score of
0.454. The results demonstrate the utility of the database for future
applications in video-mediated human-machine interaction and
human-human social skill assessment. Our dataset and code are
available at https://github.com/ihp-lab/SEMPL
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1 INTRODUCTION

Social engagement is the degree of attention and involvement of an
interlocutor in a conversation. Understanding the attentiveness and
participation of listeners in social interaction can provide a valu-
able social signal for the measurement of rapport, active listening,
and interaction quality. Machine understanding of engagement can
enable a multitude of applications. An agent facilitator which can
sense the engagement and involvement of its social counterparts
can re-calibrate its conversational strategies to improve interaction
quality. Machines could also be used to assess human-human in-
teraction in soft skill training and evaluation [11, 20, 48]. With the
growing popularity of video-mediated communication platforms,
e.g., Zoom, our social interactions, including support groups and
group therapy sessions, are moving online.

Despite the increasing prevalence of video-mediated interaction,
to the best of our knowledge, there is no database of video-mediated
social interactions with emotional and social labels. There are also


https://orcid.org/0000-0001-8529-2281
https://orcid.org/0000-0001-5558-2421
https://orcid.org/0009-0005-5680-1899
https://orcid.org/0009-0005-9378-4215
https://orcid.org/0000-0002-0806-125X
https://orcid.org/0009-0008-4860-4643
https://orcid.org/0000-0002-5873-1434
https://doi.org/10.1145/3678957.3685752
https://github.com/ihp-lab/SEMPI
https://doi.org/10.1145/3678957.3685752

ICMI *24, November 4-8, 2024, San Jose, Costa Rica

only a few labeled databases for understanding social engagement
in dyadic and multiparty interactions between humans [7, 45] and
humans and robots [3, 10, 31] interactions. However, no database
has been developed with the goal of understanding social engage-
ment in multiparty human-human video-mediated interactions.
Moreover, none of the publicly available databases are related to
the domain of mental health and support groups.

In this work, we present a database for understanding the Social
Engagement of listeners in video-mediated MultiParty Interaction
(SEMPI). Leveraging publicly available recorded virtual meetings
primarily consisting of pre-recorded support groups on YouTube,
we develop a database of listener videos annotated for their level of
engagement. We have created this database to help us train tools
that can measure participation and group climate in support groups
and group therapies. To improve the consistency and validity of the
annotations, we designed a rating scale with six questions that can
capture different behaviors that are associated with engagement and
disengagement, e.g., the presence of back-channeling and distracted
behavior. After segmenting video calls by utterance, cropping, and
filtering the videos that are of low quality or low duration, we
annotated 3,505 videos of 76 listeners’ reactions in multiparty video
calls through crowdsourcing. The inter-rater agreement among
the raters is 0.693 measured by Krippendorff’s alpha [29]. We then
train a multimodal machine learning model for detecting the level
of engagement, achieving the CCC score of 0.454.

This database can be used to analyze nonverbal and verbal be-
haviors of interlocutors in video-mediated multiparty interactions.
This database is particularly useful for developing models that can
track listener engagement to measure interaction quality and group
connectedness in video-mediated multiparty interactions. Given
the common usage of virtual meetings in mental healthcare, this
database is particularly useful for research on empathy and social
cues in such settings. The major contributions of this work are as
follows.

e We introduce a publicly available database of speaker and
listener videos in multiparty video calls with annotations
regarding their engagement, distraction, and the frequency
of back channels.

e We develop a multiscale questionnaire to assess social en-
gagement. This questionnaire results in superior inter-rater
agreement compared to a simple rating of engagement, reach-
ing a moderate to high inter-rater agreement of a = 0.693.

e We propose and evaluate a baseline multimodal model for de-
tecting the level of listener engagement, achieving the CCC
score of 0.454 in a participant and video call independent
cross-validation. The results demonstrate the utility of the
proposed database.

2 RELATED WORK
2.1 Engagement

Engagement is a complex concept studied in various contexts [21,
40, 46]. Engagement can be described as an affective, cognitive,
or behavioral construct [16]. The cognitive view of engagement
focuses on conscious components or effort. The affective view of
engagement considers engagement an emotional state [44]. Finally,
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the behavioral view considers actions and participation to charac-
terize engagement. Engagement in interaction is defined as main-
taining joint attention, performing coordinated activities, and es-
tablishing connection and rapport.

Engagement is related to motivation, interest, experience, at-
tention, and action [40]. Rich et al. [44] identified four cues for
measuring engagement, including gesture, speech, gaze, and con-
versational activity.

This paper focuses on social engagement that includes the pro-
cesses by which people establish and maintain their connection,
including verbal responses and nonverbal acknowledgments, e.g.,
head nods [49]. There is a wide body of work on understanding
engagement with tasks or educational material [14, 27]. Student en-
gagement is different from social engagement as it mainly concerns
task engagement and is related to mind wandering and focus.

2.2 Engagement Detection

Behavioral markers associated with engagement can be tracked
through audiovisual verbal and nonverbal behavior analysis. Meth-
ods for recognizing engagement are similar to those used in emo-
tion recognition and rely on identifying patterns in behavioral and
physiological changes.

Engagement recognition methods may be divided into two broad
categories: traditional machine learning approaches with hand-
crafted features and deep learning approaches. Traditional machine
learning methods often rely on handcrafted features inspired by
social psychology, which often include visual cues such as gaze
[35, 47] and facial action units (AUs) [15, 22, 55]. Interpersonal cues
often serve as reliable features for engagement detection. Proxim-
ity or the relative distance between people in a conversation has
been used for tracking engagement [47]. Body behaviors have been
also used for estimating engagement, e.g., body posture [26, 50],
and global quantity of movement during interaction [47, 50] that
may be computed from skeleton joints in both Human-Robot and
Human-Human Interactions (HRI and HHI). Linguistic cues such
as greetings may be a sign of engagement [4]. Spoken language has
been used for detecting engagement [19, 59]. Vocal features can be
also used to detect engagement, albeit more for the speakers. Oertel
et al. [37] used basic vocal features — voice span and intensity - to
detect involvement in conversation.

A variety of classical machine learning models has been applied
to address engagement estimation task, including support vector
machine (SVM) [9, 18, 47, 55, 59], linear regression [18, 22], Hidden
Markov Models [25, 26], Naive Bayes [12, 25], and Ensemble-based
methods [5, 18, 25, 47]. Deep learning approaches have shown
superior performance for engagement estimation tasks, including
convolutional neural networks (CNN), recurrent neural networks
(RNN) [12, 15, 25, 51], multi-layer perceptron (MLP) [18, 25] and
multimodal transformer models [51].

2.3 Databases for Engagement Understanding

In this section, we review the most relevant publicly available
databases (see Table 1). Databases with engagement scores include
human-human and human-robot interactions.
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Table 1: Overview of the publicly available relevant engagement and multimodal interaction databases. # S denotes the number
of subjects. TL means the total length. Biophysical data refers to various signals such as temperature, electrodermal activity,

wrist acceleration, and EGG.

Database ‘ #8S TL Modality Annotations Interaction Type

MHHRI [10, 33] | 18 4h audio, video, biophysical personality, self-reported engagement HRI / HHI

RECOLA [45] 46 4h audio, video, EDA, ECG ordinal (7-point scale) ratings of en- HHI
gagement

NoXi [7] 87 25h audio, video, depth, body skeleton  discrete/continuous (behavioral, en- HHI
gagement)

UE-HRI [3] 54 - audio, video, sonar, laser, depth  ordinal engagement labels HRI

PInSoRo [31] 120  45h  audio, video and depth ordinal engagement labels HRI/HHI

SEMPI (ours) 76 ~ 7h30m audio, video, transcript continuous engagement scores and five HHI

other relevant cues

The Remote Collaborative and Affective Interactions (RECOLA)
[45] includes remote dyadic human-human spontaneous interac-
tions. The database provides continuous emotion annotations as
well as engagement scores. However, the engagement labels were
obtained from the post-study questionnaire by asking the person
whether they enjoyed the interaction. The expert NOvice eXpert
Interaction (NoXi) database is a multilingual human-human dyadic
database [7], where all lab-based interactions were performed over
video. The database includes audio, visual, depth, body movements,
and face features data with additional social signals markup. Manu-
ally annotated behavioral cues include low-level social signals such
as gestures and smiles, functional descriptors such as turn-taking
and dialogue acts as well as interaction descriptors such as interest,
fluidity, and discrete engagement labels.

Given the significance of engagement in human-robot interac-
tion, a number of HRI databases have been developed. Multimodal
Human-Human-Robot Interactions (MHHRI) database [10] is a mul-
timodal database for studying how personality affects engagement
in human-human and human-robot interaction. The dataset was
collected in a controlled environment, where people participated in
two settings: dyadic interactions between two human participants
and interactions between two human participants and a robot. In
both setups, participants were asked personal questions. The en-
gagement labels were obtained via a post-study questionnaire by
asking people whether they enjoyed the interaction. Later study
[47] used the Temple Presence Inventory (TPI) questionnaire [33] to
collect additional labels for the MHHRI database, where external ob-
servers annotated engagement labels via an online crowd-sourcing
platform. Another database focusing on spontaneous social HRI
is the User Engagement in Spontaneous HRI (UE-HRI) database
[3]. Participants interacted with a humanoid robot, i.e., Pepper, for
four to 15 minutes. The database was collected using a variety of
sensors, including directional microphones, cameras, and depth
sensors. User feedback was captured through the robot’s touch
screen. Annotators labeled the collected data by first finding the
beginning and the end of each interaction and then by indicat-
ing engagement breakdown and temporary disengagement and
assigning corresponding negative effects for the segment (e.g., ner-
vousness, boredom). PInSoRo [31] is a database of child-child and
child-robot interaction with children engaging in virtual free-play

with a sandbox accompanied by a humanoid Nao robot. Social and
task engagement was annotated by coders, indicating the level of
cooperation and involvement of children with each other, the robot,
and the game. More than 45 hours of videos were collected from
120 children.

None of the existing databases addresses listener engagement in
multiparty human-human interaction in-the-wild. Even though
NoXi [7] and RECOLA [45] are video-mediated, they are both
recorded in the lab and are dyadic interactions. CANDOR [43]
is a large open dyadic database without engagement annotations.
Its license is restrictive; therefore, we could not annotate it for
engagement to create a new database, as no derivatives are al-
lowed. Hence, SEMPI fills this gap by providing listener-focused
engagement ratings with in-the-wild videos. Technical details of
the datasets, including the number of subjects, total session dura-
tion, modalities used, setting, and interaction type, are described in
Table 1.

3 SEMPI DATABASE

Figure 1: Screenshots of the selected videos from YouTube
for social engagement understanding,.
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Table 2: Details of the videos for engagement understanding.
14 videos are collected from YouTube in which video ID (vid)
are provided. # S denotes the number of subjects.

YouTube vid Start time End time Length #S
E5rDIGZr-bM 00:00:00 01:05:00 1hO06min 6
6jY61ZTbzFw 00:00:00  00:45:00 45min 9
EjigN1mTU4g 00:14:22 01:07:57 54min 5
dQWDgDdmk9s  00:56:42 01:31:32 35min 5
LLpot3VFXmA 00:05:57  00:25:00 20min 4
CtZMLcelacA 00:00:00  00:51:35 51min 5
kFPSpoGmYaE 00:00:00  00:15:48 16 min 5
YO1ntZ23uRg 01:03:02  01:38:30 35min 5
qQqsjvDubSo 01:03:00  01:31:00 28min 7
ulQMSLUIgNg 00:00:00 00:24:21 24min 3
InI2NK_5fps 00:00:00 00:45:30 45min 4
bTINIyV]GQw 01:47:00 02:22:00 35min 7
L273NSU1hhw 00:00:00 00:40:33 41min 6
a6kAdamVXIE 00:04:12 00:35:24 3lmin 5
Total - - 8h46min 76

3.1 Overview

In this work, we present the SEMPI database for social engage-
ment understanding in video-mediated multiparty interaction. The
dataset consists of in-the-wild videos of virtual meetings from
YouTube (see Table 2 and Figure 1). Except for one meeting, all
videos are sourced from pre-recorded support groups that are
posted on YouTube. The development and annotation of this data-
base have been reviewed and approved by the University of South-
ern California’s institutional review board (IRB). Content owners
have been informed about the study and agreed or did not object to
the usage of their data for research. To ensure the label quality and
high agreement among raters, we propose to annotate the listeners’
engagement based on multiple dimensions that can be combined to
generate an aggregate engagement score (refer to Table 3), which
yields an inter-rater agreement of 0.693 by Krippendorft’s alpha.

Overall, the database comprises listener responses to 3,505 utter-
ances with around 7.5 hours of audiovisual content from 76 people.
Each utterance is annotated with an engagement score ranging
from —1 to 1. The database also includes the speakers’ videos. How-
ever, the speaker videos are not annotated for engagement since
the annotation scheme was designed for listeners. Each sample is
five to ten seconds long with a cropped video feed, audio, and the
corresponding transcript. Examples of the database are shown in
Figure 2.

3.2 Data Collection and Processing

Data collection. To understand social engagement in multiparty
interaction, we collect in-the-wild videos of virtual meetings from
YouTube. Specifically, we select videos from various YouTube chan-
nels according to the following requirements: (1) Relevance to sup-
port group topics, ensuring each participant interacts with the host
and other speakers. (2) A maximum of nine speakers per video,
with a minimum resolution of 720p, to ensure clear video quality
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Figure 2: Examples of high engagement (first row) and low
engagement (second row). Each sample has a cropped face,
audio, and transcript. We annotate the listeners’ engagement
score ranging from -1 to 1.

suitable for engagement analysis. (3) A minimum video length of 30
minutes to provide sufficient data for model training and evaluation.
(4) Sourcing data from a variety of channels to ensure a diverse
database.

Overall, we collected 14 videos of virtual meetings with 76 people,

which was about nine hours long in total. To simplify the processing
pipeline (cropping and segmenting), for every video, we selected
the period where the number of speakers and their corresponding
positions in the videos are fixed. Detailed information for each
video is provided in Table 2. Screenshots of selected videos are
shown in Figure 1.
Data processing. We show the overview of the data processing
pipeline in Figure 3. Given a raw video with multiparty interactions,
we first use voice activity detection from PyAnnote [6, 41] to get
the timestamps of each speech activity and then segment the video
into utterances. Each utterance is about five to ten seconds long
and contains only one speaker’s speech. Subsequently, we crop
the whole frame into images of individual speakers. We then use
Whisper-tiny [42] for speech recognition to generate the transcripts.
We utilize dlib [28] for facial landmark detection to crop and align
the faces. Following this procedure, we obtain an initial set of
6,400 video clips with cropped faces, audio, and the corresponding
transcript.

3.3 Questionnaire Design

Past work, e.g., Noxi [7], simply asked the raters to indicate the
level of engagement by the speakers on a multi-point scale. Such an
annotation process may result in a low agreement among multiple
coders, as we initially observed. Therefore, we propose to annotate
the listeners’ engagement based on multiple dimensions. In par-
ticular, we had two coders watch a small set of videos and write
down observations of what behaviors constitute low or high en-
gagement. The observations are then aggregated into five questions
with non-overlapping markers (see Q1 to Q5 in Table 3, step 3).
The annotators are asked to answer each question on a five-point
scale (1-never, 2-rarely, 3-sometimes, 4-often, 5-very often). Finally,
they will be asked about the listeners’ overall engagement (see Q6
in Table 3, step 3). Q6 has three answer choices (yes, unsure, no).
We have decided to use a different scale for the last question, as
the coders have found directly distinguishing engagement beyond
three levels difficult.
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Figure 3: Overview of the data processing pipeline. (1) We
first use voice activity detection to segment the raw video into
utterances. (2) We crop the whole frame into video sequences
of individual speakers. (3) We crop and align the faces and
generate the transcript with speech recognition.

3.4 Data Annotation

The questionnaire for the engagement annotation was delivered
through Qualtrics, a popular platform used to create surveys and
gather responses. We used Prolific, an online platform designed
to connect researchers with participants for academic studies and
market research for all our annotations. We only recruited English-
speaking participants from the United States. The crowd-workers
were compensated on average with an effective average hourly rate
of $12 per hour.

To maintain consistent annotation standards among participants,
we provided annotation guidance at the beginning of the survey,
including examples of high and low ratings for each question (see
Table 3, step 1). Additionally, to reduce annotation confusion, we
introduced three filtering questions before presenting the main
questions for every video clip to be annotated. Specifically, data
samples falling into the following three categories were skipped
for annotations: (i) No one is visible in the video, or the camera is
turned off. (ii) The individual in the video is speaking rather than
listening. (iii) Low video quality. (refer to Table 3, step 2). Examples
of the skipped video clips are shown in Figure 4.

To ensure the label quality, we first conducted a pilot study with
five sample videos to identify the best annotators. Participants are
assumed to be qualified if they achieve a high level of agreement
with our internal annotations. In particular, we screened 300 anno-
tators for the pilot study, from which 170 were invited to the main
annotation phase.

In the main annotation phase, each annotation batch contained
20 videos, which were randomly selected from the whole pool of
video clips. The video clips are not selected if they have already been
annotated three times. The random sampling of videos and their
annotation status on Qualtrics was managed by a backend server
developed in Python. Overall, the selected 170 coders annotated 960
batches of 20 video batches. The average annotation time for each
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Table 3: Proposed questionnaire for engagement annotation.
During the annotation process, (1) annotation guidance is
shown to maintain consistent annotation standards among
participants; (2) three filtering questions are introduced to
reduce annotation ambiguity; and (3) the listeners’ engage-
ment is annotated on multiple dimensions, the responses
to six questions are aggregated to yield a high inter-rater
agreement.

Step 1. Annotation Guidance

You will watch a short video of a person participating in a
Zoom meeting. You will then be asked six questions to evaluate
the person’s engagement. If no one is in the video or the camera
is turned off, you may skip the annotation questions. If the
person is the main speaker or the video quality is too poor to
evaluate the person’s engagement in the meeting, you may also
skip the annotation questions. The main speaker is the person
who is presenting for the majority of the meeting clip; speaking
for 1-2 seconds does not count. Please answer these questions
truthfully; your answers will be checked for accuracy, and if
they are found incorrect, you may not be compensated for this
survey. For Q1 to Q5, answer the questions on a scale of 1-5
(1-never, 2-rarely, 3-sometimes, 4-often, 5-very often). Q6 has
three answer choices (yes, unsure, no). Please answer these
questions to the best of your ability.

Examples of each question with high and low ratings are pre-
sented in the survey.

Step 2. Filtering Questions

Q1: No one is in the video, or the camera is turned off.

Q2: Is the person in the video the main speaker? (The main
speaker is the person who is presenting for the majority of
the meeting clip; speaking for 1-2 seconds does not count.)
Q3: Is the video quality too poor to see the person’s features
clearly?

If any one of the answers is true, step 4 will be skipped.

Step 3. Main Questions

Q1: The listener produced verbal/audible sounds in re-
sponse to the conversation. (e.g., As the speaker was present-
ing, the listener said “yeah” and “uh huh”)

Q2: The listener nodded or shook their head in response
to the conversation. (e.g., As the speaker was presenting, the
listener was nodding their head in agreement)

Q3: The listener made facial expressions in response to the
conversation. (e.g., The speaker was telling a sad story, and
the listener frowned with their eyebrows furrowed)

Q4: The listener was engaged in some other activity other
than listening to the speaker. (e.g., The listener was typing
while the speaker presented.)

Q5: The listener looked away from the speaker. (e.g., The
listener was looking elsewhere and not at the speaker)

Q6: Overall, would you say that the listener was socially
engaged with the speaker? (e.g., The listener was paying at-
tention to words and tones while considering the emotion and
perspective of the speaker.)
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(a) No one in the video

(b) Camera is turned off

(c) Person is the main speaker

(d) Low video quality

Figure 4: Examples of the skipped video clips for engagement
annotations.

video clip was around one minute and 20 minutes for the whole
batch.

3.5 Post-processing

To calculate the overall engagement score, we collect six scores for
each utterance, representing responses to the main questions. For-
mally, we denote the answers as a;, where i € [1,2,...,6]. The last
question offers three choices, which we convert using the following
mapping: 1 for "no," 3 for "unsure,’ and 5 for "yes." Subsequently, all
the six responses range from 1 to 5. Q1, Q2, Q3, and Q6 contribute to
high engagement, while Q4 and Q5 are related to low engagement.
We aggregate the answers and normalize the result to [-1,1].

e=(ay+azx+as—aq—as+ag—6)/12, (1)

where e is the overall engagement score.

Out of 6,400 utterances, we have 4,705 annotated at least twice
and 3,505 annotated at least three times. Some utterances are skipped
for annotation by crowdworkers due to the filtering questions, e.g.,
whether the video feed shows a face. The final SEMPI database
comprises 3,505 labeled utterances, in addition to the correspond-
ing unlabeled speaker videos. For each utterance, we calculate the
final engagement annotation by averaging the responses from the
participants. We measure the inter-rater agreement by Krippen-
dorff’s alpha [29]. The agreement score for utterances annotated
twice is 0.688, and for those annotated three times is 0.693. The
results indicate a moderate to high level of agreement among raters,
demonstrating the utility of our proposed annotation process of
engagement.

3.6 Data Observations and Analysis

We analyze the engagement annotations as well as the statistics
for the SEMPI database. Specifically, we present the histogram
illustrating the distribution of engagement scores in Figure 5a. We
observe that the distribution closely resembles a bell curve with a
slight skewness towards positive engagement and only a minority of
utterances displaying notably high or low engagement scores. More
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than half of the data samples fall within the range of values near
0, ranging from —0.25 to 0.25. The highest recorded engagement
score is 0.83, while the lowest is —1.0.

Additionally, we count the number of utterances extracted per
video meeting and per subject in descending order in Figures 5b and
5¢, respectively. The video meetings with the highest and lowest
utterance counts contain 531 and 57 samples, contributing to 15.1%
and 1.6% of the database, respectively. Six out of 14 videos have
more than 200 utterances. The subjects with the highest and lowest
utterance counts contain 112 and 1 sample, contributing to 3.2% and
0.03% of the database, respectively. 35 out of 76 subjects have more
than 40 utterances. The observations suggest that our database
is diverse, and each video and subject has a sufficient number of
samples for training and evaluation of machine learning models
for understanding social engagement.

4 METHOD

To demonstrate the validity and utility of the developed database,
we leveraged it to train and evaluate a multimodal machine learning
model for estimating social engagement.

In this section, we introduce a baseline multimodal model for
engagement estimation (see Figure 6). The method incorporates
multimodal information, including vision, language, and speech.
A set of features were selected, based on their past usage in a
similar context [36, 58]. For the visual modality, we utilize both
raw frames and high-level visual features, e.g., facial action units
[17], facial landmarks, head pose, and gaze. We employ separate
encoders to extract meaningful representations from each modality.
Subsequently, features from different modalities are concatenated
and fed into a linear regression model to predict the engagement
score.

4.1 Problem Formulation

Engagement estimation. Given a participant’s video clip with
the corresponding audio and transcript, we aim to estimate their
engagement score on a continuous range from —1 (no engagement)
to 1 (fully engaged) using function F.

e =F(v,a,t), (2

where e denotes the engagement score, v, a, and ¢ refer to the video,
audio, and text, respectively. One noteworthy point is that we focus
on studying the listeners’ engagement; thus, we utilize the listeners’
videos as input. Given that listeners typically do not vocalize much,
we utilize the speakers’ audio and text as inputs for the engagement
estimation model.

4.2 Feature Extraction

Visual features. We extract deep visual features using the Incep-
tion_I3d model [8, 58], which extends the traditional Inception
model [52] to video via 3D convolutions. Specifically, the model
captures spatio-temporal features, resulting in a 1024-dimensional
feature vector hyq.

High-level visual features. Following prior work [36], we extract
both facial and head-pose features for each frame with OpenFace
2.0 [53], which is an open-source framework for facial behavior
analysis. In particular, we extract 35 facial action unit intensity and
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Figure 5: Data observation for the SEMPI database. (a) The histogram of the engagement scores shows that most engagement
scores are concentrated in the middle, with a slight asymmetry towards positive engagement. (b) Videos were extracted from
different video calls, with some calls contributing fewer samples than others. (c) Given that the majority of samples are from a
few video calls and some participants appear in different calls, the distribution of instances per participant is not uniform,

with a single participant having more than 100 samples.

presence [1], six head pose features [2], and eight gaze features [56],
56 3D facial landmarks, and 56 2D facial landmarks [60], resulting
in a total of 329 features. These high-level features are mean-pooled
across the temporal dimension and then encoded into a more dense
64-dimensional latent representation h,y via a linear projection
layer.

Speech features. Each video clip is accompanied by a correspond-
ing audio recording that captures the speaker’s speech. We ex-
tract audio features using the HuBERT-base model [23], which is
pre-trained with masked modeling of hidden units objective. The
HuBERT model shares a similar architecture to BERT [13], and it
has demonstrated high performance in various downstream tasks
for signal processing, including continuous emotion recognition
[54] and keyword spotting [57]. The speech features from the last
layer are mean-pooled across the temporal dimension, resulting in
a 768-dimensional vector h, per audio sequence.

Language features. We utilize the transcripts generated from the
speaker’s audio and feed them to a pre-trained language model, i.e.,
RoBERTa [32]. RoBERTa is an encoder-only model, similar to BERT
[13], trained with a masked language modeling objective on a large
corpus of text. The model yields semantically rich hidden states,
which show competitive performance on various downstream tasks
such as text classification [32]. We extract the text features from
the last layer of the encoder and employ mean pooling to aggregate
the temporal dimension, resulting in a 768-dim feature h;.

4.3 Multimodal Fusion

With the encoded hidden representations hy1, hy2, hq, and by, we
concatenate them together and input the concatenated features
into a multilayer perceptron (MLP) (three fully-connected layers)
to estimate the person’s engagement level.

h = Concat(hy1, ho2, ha, ht), (3)
é = MLP(h). (4)
where € is the estimated engagement score.

4.4 Training Objective

The learning objective for the baseline method is the Concordance
Correlation Coefficient (CCC) loss between the predictions and the
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Figure 6: Overview of the multimodal baseline for engage-
ment estimation. The model inputs include vision (raw
frames and high-level visual features), audio, and language
modalities. Each modality is fed into a separate encoder, and
their outputs (embeddings) are fused to predict the engage-
ment score.
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where é and e are the predictions and ground-truth labels respec-
tively.

5 EXPERIMENTS

5.1 Implementation Details

All methods are implemented in PyTorch [38]. All models were
trained on a single NVIDIA L40S GPU.

Model architecture. To avoid over-fitting and make training effi-
cient, we only fine-tuned the last two layers for the visual, speech,
and language encoders. The MLP for engagement estimation com-
prises three fully connected layers where the number of hidden
units is 32. Each linear layer is followed by a batch normalization
layer [24]. A 10% dropout is applied to linear layers.
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Model training. We optimized the network weights using the
AdamW optimizer [34] with a learning rate of 3e-4. The batch
size was set to 8. We applied regularization to avoid over-fitting
via a weight decay with a 0.01 penalty coefficient. We trained the
models for 30 epochs with an early stopping technique — if the
validation performance did not improve for ten consecutive epochs,
the training was stopped.

5.2 Evaluation metrics

Two evaluation metrics are used to assess the performance of the
continuous engagement estimation, i.e.,, Concordance Correlation
Coefficient (CCC) [30] and Pearson Correlation Coefficient (PCC)
[39]. These two metrics measure the agreement between the pre-
dictions and reference engagement values. The CCC and PCC co-
efficients range from —1 for perfect disagreement to 1 for perfect
agreement. Higher CCC and PCC refer to better model performance.

Table 4: Performance of engagement estimation on SEMPI
database. CCC (T) and PCC (1) are reported for participant-
independent five-fold cross-validation. Numbers in the brack-
ets are standard deviations measured across folds. "-" indi-
cates removing a modality.

Method cce pPCC

All features 0.454 (0.110)  0.496 (0.100)
- speech 0.430 (0.102)  0.477 (0.099)
- language 0.401 (0.115)  0.453 (0.104)

- speech - language
- high-level visual 0.418 (0.115)  0.453 (0.104)
- visual 0.188 (0.108) 0.212 (0.113)

)
)
)
0.394 (0.127)  0.413 (0.131)
)
)
- high-level visual - visual 0.102 (0.045) 0.127 (0.054)

5.3 Experimental Results

We used subject-video-independent five-fold cross-validation to
evaluate the performance of engagement estimation. Specifically,
we allocated 80% of videos to the training set and 20% to the valida-
tion set. Data samples from the same video meeting or subject did
not appear in both training and validation data.

We report the performance of engagement estimation in Ta-
ble 4. The multimodal model achieves a CCC score of 0.454 and
a PCC value of 0.496. In an ablation study, we analyzed the im-
portance of each modality on engagement prediction by removing
each unimodal encoder from the model. We observe that similar
to the past work, visual modality is the most important channel
of information, with a CCC score of 0.394. This is superior to the
results reported for facial expressions in NoXi [36] (CCC= 0.31).
Unlike NoXi [36], we do not have a full video of the upper body in
these in-the-wild videos, hence, body pose features cannot be used
with this dataset. Speech and language, even though they mostly
come from the speaker rather than the listeners, contribute to the
estimation. Speech was not diarized, and it is possible that the vo-
calized backchannels could contribute to this. However, given that
this is a multiparty interaction and the effect of the paralinguistic
vocal features according to the ablation is minimal, we speculate

Maksim Siniukov, Yufeng Yin, Eli Fast, Yingshan Qi, Aarav Monga, Audrey Kim, and Mohammad Soleymani

that the effect is negligible for an individual listener. This shows
that the variations in the verbal and nonverbal features in speech
affect the engagement of the listeners (CCC of 0.188, which is more
than the chance level of 0). The multimodal fusion achieves the
best result, combining all the features from the speaker’s speech
and the listener’s visual behaviors.

6 CONCLUSIONS

In this paper, we present SEMPI, a novel database for understanding
social engagement in multiparty video-mediated interactions. The
database primarily consists of participant videos in online support
groups. Hence, the database can serve as a research resource for
understanding support groups and group therapies. To annotate
the level of engagement of listeners, we developed a multi-scale
questionnaire that assesses typical listener behaviors associated
with active and engaged listening, e.g., back-channeling. We seg-
mented and cropped videos of video calls into individual videos of
responses to utterances of five to ten seconds long. The videos were
annotated by two to three raters on Prolific and the ratings were
aggregated to form a continuous engagement score. We trained a
multimodal machine learning model to detect engagement, achiev-
ing a CCC score of 0.454. The result achieved by a relatively simple
model demonstrates the utility of the proposed database for au-
tomatic engagement understanding. This database can serve as a
resource for further research on the behavioral markers of engage-
ment and group climate in multiparty interaction in the mental
health context.

Limitations and future work. Our approach relies on third-
person annotations, focusing on observed engagement rather than
first-party annotations. Our primary goal is to build an agent who
tracks observable engagement, similar to humans, in multiparty
interactions for group facilitation and management, however, the
dataset does not capture the subjective experience of the partici-
pants. In addition, we could not reach all the participants to col-
lect demographic data. Future work will consider collecting demo-
graphic information to ensure a diversity of the dataset. On the
modeling side, to demonstrate the validity of the database, we im-
plemented a simple baseline for engagement estimation, which only
takes the listeners’ videos as input. One future direction is to incor-
porate the speakers’ social behaviors, enabling the model to capture
the dyadic interactions and entrainment between speakers and lis-
teners. Furthermore, our current approach utilizes mean-pooling
to aggregate features across the temporal dimension, potentially
discarding valuable dynamic information. To address the problem,
we will implement a cross-attention in our future work.
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