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Abstract. Human-human communication is like a delicate dance where
listeners and speakers concurrently interact to maintain conversational
dynamics. Hence, an effective model for generating listener nonverbal be-
haviors requires understanding the dyadic context and interaction. In this
paper, we present an effective framework for creating 3D facial motions in
dyadic interactions. Existing work consider a listener as a reactive agent
with reflexive behaviors to the speaker’s voice and facial motions. The
heart of our framework is Dyadic Interaction Modeling (DIM), a pre-
training approach that jointly models speakers’ and listeners’ motions
through masking and contrastive learning to learn representations that
capture the dyadic context. To enable the generation of non-deterministic
behaviors, we encode both listener and speaker motions into discrete la-
tent representations, through VQ-VAE. The pre-trained model is further
fine-tuned for motion generation. Extensive experiments demonstrate the
superiority of our framework in generating listener motions, establishing
a new state-of-the-art according to the quantitative measures captur-
ing the diversity and realism of generated motions. Qualitative results
demonstrate the superior capabilities of the proposed approach in gen-
erating diverse and realistic expressions, eye blinks and head gestures.

Keywords: Behavior Generation· Self-supervised Learning · Facial Mo-
tions

1 Introduction

Human nonverbal communication is like a dance. In human-human interaction,
we concurrently encode and decode verbal and nonverbal messages, constantly
attending to and reacting to our counterparts to maintain the flow of the con-
versation and engage in effective turn-taking [18]. Hence, a socially intelligent
agent needs to learn the interactive nature of nonverbal communication to create
a seamless and compelling experience. In this paper, we present a method that
goes beyond a reactive agent that only considers speakers’ motions and voice
by learning the listener-speaker dyadic context through self-supervised masked
pre-training on a large dataset of human-human dyadic interactions, i.e., CAN-
DOR [54]. As illustrated in Figure 1, We aim to generate a listener’s lifelike
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Fig. 1: We propose Dyadic Interaction Modeling, a pre-training strategy that jointly
models speakers’ and listeners’ motions and learns representations that capture the
dyadic context. We then utilize the pre-trained weights and feed multimodal inputs
from the speaker into DIM-Listener. DIM-Listener is capable of generating pho-
torealistic videos for the listener’s motion.

and plausible head and facial movements in response to a speaker’s motions
and voice in a manner that resembles the contextualized bi-directional nature of
human-human communication. Generating listener reactions has a wide range
of applications, including in human-computer interaction [42, 77, 78], virtual re-
ality [35, 41], the metaverse [6, 8, 63], and media forensics [30, 57–59]. Given the
ability of DIM to model dyading interactions, it is also able to produce realistic
speaker motions.

Despite considerable progress, existing methods are limited, particularly in
capturing real-life conversation dynamics, and difficult to generalize across lis-
teners. Relevant work focused on either generating speakers’ or listeners’ move-
ments. Speaker motion generation [9,11,20,33,56,60,61,66,70] primarily focuses
on producing videos where lip movements are synchronized with speech, a.k.a.,
lip syncing. Listener motion generation, on the other hand, automatically in-
terprets the speaker’s voice and nonverbal behaviors to generate the listener’s
nonverbal responses. Traditionally, listener motion generation have not fully ad-
dressed the intricacies of dyadic interactions, which involve more than simple re-
actions to the speaker’s utterances including a multifaceted, concurrent exchange
of signals and emotions [47,62,80]. They were also sometimes tuned to specific
listeners and unable to generalize to others [47]. Earlier work used heuristics and
simple machine learning models to generate a limited set of reactions, e.g., head
nods [28]. The Responsive Listening Head Generation (RLHG) [80] approach
mimics the regression techniques found in Speaker Generation [11], leading to
a reduction in the unpredictability of responses and a smoothing over of lis-
tener motions. Ng et al. [47] proposed Learning2Listen (L2L) to mitigate this
issue through a motion categorization strategy. In L2L, a codebook is learned
through a VQ-VAE [45] that can be used to generate plausible and smooth
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behaviors. Emotional Listener Portrait (ELP) [62] utilizes an Adaptive Space
Encoder to map the discretized features combined with emotion to the listener’s
motion parameters. Similarly, Speaker motion generation techniques [22, 56, 74]
have struggled to incorporate the feedback present in actual dyadic interactions.
These shortcomings underscore a critical gap in the simulation of naturalistic hu-
man interactions, highlighting the need for a more holistic and dyadic modeling
approach.

To address these challenges, we introduce Dyadic Interaction Modeling (DIM),
an innovative pretraining strategy designed to enhance a model’s capacity to si-
multaneously encode a unified representation from both speaker and listener
behaviors. This strategy draws inspiration from the recognition of the impor-
tance of bidirectional communication in interaction modeling, as demonstrated
by Nojavanasghari et al. [49], and Eskimez et al. [20], who explored aspects of
interactive emotion recognition and speech-driven facial animation, respectively.
Moreover, the concept of integrating audiovisual information into a cohesive rep-
resentation, as explored by Karras et al. [36] and Zhou et al. [81], forms a foun-
dational pillar for our approach, suggesting that a holistic and contextualized
consideration of both audio and visual cues can significantly enhance animation
quality.

Leveraging self-supervised contrastive learning and focusing on the recon-
struction of masked-hidden units, DIM captures the intricate exchanges charac-
teristic of human dyadic conversations. This approach is inspired by the success
of self-supervised learning techniques in capturing complex data patterns, as
evidenced by the works of Chen et al. [12] and Gong et al. [27], which have
demonstrated significant advancements in data understanding without explicit
labeling.

DIM framework learns dyadic context for generating realistic motions. This
framework enables the generation of detailed and lifelike facial expressions and
head motions, marking a significant advancement in listener (DIM-Listener)
and speaker (DIM-Speaker) motion generation. Our method not only generates
listener behaviors from speaker audio-visual inputs but could also adeptly pro-
duce speaker facial motions from speaker speech (DIM-Speaker), showcasing the
framework’s ability to model the bidirectional nature of human interactions.

Our main contributions can be summarized as follows:

– We introduce Dyadic Interaction Modeling (DIM), a pre-training strategy
that enhances the model’s ability to encode a unified representation from
both speaker and listener behaviors through self-supervised contrastive learn-
ing, focusing on the reconstruction of masked-hidden units.

– Leveraging DIM, we develop DIM-Listener, a practical framework for lis-
tener motion generation in speaker-listener conversation with detailed and
realistic facial expressions and head motions.

– DIM is further leveraged to generate speaker facial behaviors from speaker
speech (DIM-Speaker).

– Extensive experiments and visualizations on motion generation demonstrate
superior performance and effectiveness of our method.
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2 Related Work

2.1 Speech-driven Speaker Generation

There is a wide body of work on automatic facial motion generation [4,7,25,37–
40,51,64,69,72,73,83]. A large number of studies focus on 2D facial animation [9,
10, 14, 17, 21, 33, 53, 70, 76, 79]. Traditional procedural techniques [19, 44, 68, 75]
rely on a framework of explicit rules for simulating the movements of a talking
mouth, such as the use of dominance functions [44] for delineating speech control
parameters.

These procedural strategies offer precise control over mouth movement ac-
curacy but are labor-intensive due to the extensive manual tuning required.
In contrast, data-driven methods [5, 15, 32, 36, 43, 52, 56, 65, 67] present an al-
ternative, proposing various techniques to generate 3D facial animations with
less manual intervention. Among these, Karras et al. [36] propose an end-to-
end network with linear predictive coding to generate audio and novel latent
codes with facial expression variations. In Zhou et al. [82], the proposed net-
work predicts viseme curves by integrating phoneme groups, landmarks, and
audio signals. VOCA [15] offers speaker-independent animation capturing di-
verse speaking styles, though it primarily affects the lower face. More recently,
MeshTalk [56] has made strides in disentangling audio-correlated and uncor-
related facial motions through a categorical latent space. Innovations continue
with FaceFormer [22] and CodeTalker [74], which leverage long-term audio con-
text via transformer-based models and augment them with a VQ-VAE motion
prior for autoregressive motion synthesis, respectively.

2.2 Speaker-driven Listener Generation

Compared to Speaker Generation, Listener Generation pays more attention to
the feedback of the listener’s motion to the speaker. Ahuja et al. [1] focus on
the non-verbal body behaviors generation, [3] and Greenwood et al. [29] study
synchronized conversational agent motion in dyadic conversation adapt speech.
Recent methods focus on generating 3D facial motions with additional inputs
from the listener, such as text [13] or speech [34, 35]. Song et al. [62] proposed
ELP which learns the non-verbal listener motion in a dynamic communication.
RealTalk [26] retrieves possible videos of the listener’s face with a large language
model. The most similar work to our approach is that of Learning2Listen [47],
which regresses the discrete listener head motion with VQ-VAE [50]. However,
L2L model is unidirectional and does not consider the dyadic context. Unlike
this work, the L2L [47] fixes the pre-trained VQ-Decoder to decode continu-
ous signals from discrete motion predictions, we integrate the VQ-Decoder into
motion prediction and optimize both discrete units (discrete latent codes) and
continuous motions.
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3 Method

This section provides an overview of the proposed framework DIM-Listener.
We first delve into the facial motion representation EMOCA [16], as discussed
in Section 3.1. Subsequently, we revisit VQ-VAE [50], one of the core compo-
nents in DIM-Listener, in Section 3.2. We further detail our novel pre-training
strategy, Dyadic Interaction Modeling, designed to foster the model’s proficiency
in developing a unified representation for both speakers and listeners in dyadic
conversations. This is followed by an explanation of the fine-tuning stage for
DIM-Listener, presented in Section 3.3. We finally describe the rendering net-
work [55], transforming the estimated motions into realistic videos in Section. 3.4.

3.1 Facial Motion Representation

Following [48], we utilize EMOCA [16], a 3D morphable model (3DMM), param-
eters as the representation for facial motions. EMOCA disentangles face shape,
expression and head pose in three sets of parameters, allowing for capturing and
expressing person-independent behaviors. Compared to DECA [24] used in pre-
vious work [46], EMOCA can better capture facial expressions and head poses.
Following prior work [48, 62], we extract camera, shape, expression and pose
codes from the speakers and listeners frame by frame. Note that only expression
code and pose code are used for representing human facial motions while camera
code and shape code are only used for face mesh visualization purposes.

3.2 Learning discrete Speaker-Listener motions

Formally, we train two separate VQ-VAE models, denoted as V Q(s) and V Q(l),
to handle speaker and listener motions, respectively. For clarity, we present only
the broad overview of the VQ-VAE workflow for encoding and reconstructing
listener motions. In particular, the encoder Enc

(l)
V Q processes the listener motions

l1:T to produce the continuous latent representation z
(l)
cont = Enc

(l)
V Q(l1:T ). The

latent representation is then quantized to z(l) using the nearest vector from the
shared codebook C. The reconstruction of the listener motion is then given by:
l̂1:T = Dec

(l)
V Q(z

(l)).

V Q(l)’s training objective incorporates both reconstruction and codebook
losses. The reconstruction loss Lrecon aims to minimize the difference between
the original and reconstructed motions:

L(l)
recon = ∥l1:T − l̂1:T ∥22, (1)

where ∥ · ∥2 denotes the squared Euclidean norm. The codebook loss Lcodebook,
comprising the commitment loss and the codebook utilization loss, is defined as:

L(l)
codebook = ∥sg[E(l1:T )]− z(l)∥22 + β∥sg[z(l)]− E(l1:T )∥22, (2)
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Fig. 2: Dyadic Interaction Modeling learns a unified speaker-listener representa-
tion from dyadic interactions. 1) The framework takes both the ground-truth speaker
motion s and the listener motion l as input. 2) VQ-Encoders of speaker and listener
then encode the motions to discrete units (discrete latent codes) z(s) and z(l). 3) The
masked speaker’s and listener’s motions are further encoded and concatenated so that
a unified representation is learned with contrastive loss. 4) Then, the split unified rep-
resentation and speaker audio feature a are decoded into discrete unit predictions z′(s)

and z′(l) supervised by cross-entropy loss. 5) Finally, the generated speaker motions s′

and listener motions l′ are decoded from these discrete unit predictions to optimize the
reconstruction loss.

with sg[·] denoting the stop-gradient operator, and β is a hyperparameter that
balances the commitment of the encoded vectors to the codebook. The overall
loss combines these components:

LVQ
(l) = L(l)

recon + γL(l)
codebook, (3)

where γ is a weighting factor for the codebook loss.
Following L2L [47] and ELP [62], which leverage discrete motions to model

the complex interplay in human interactions and animate listener motion from
speaker audiovisual inputs, we use VQ-VAE [50] to learn discrete motion code-
books for both speaker and listener behaviors, and use the learned codebooks
to generate discrete latent codes for our Dyadic Interaction Modeling process.

3.3 Dyadic Interaction Modeling

Notations. We denote the input speaker motions as s1:T , the input speaker
audio features as a1:T , the input listener motion as l1:T , the encoders (and quan-
tization modules) of the VQ-VAE models trained for speaker motions and lis-
tener motions as Enc

(s)
V Q and Enc

(l)
V Q, respectively. We refer to the decoder of

the VQ-VAE models trained for speaker motions and listener motions as Dec
(s)
V Q

and Dec
(l)
V Q, respectively.



Dyadic Interaction Modeling 7

The overall pipeline is illustrated in Figure 2. Given s1:T and l1:T , DIM-
Listener first generates z(s) and z(l) as the discrete motion sequences produced
by the learned motion codebooks: z(s) = Enc

(s)
V Q(s1:T ) and z(l) = Enc

(l)
V Q(l1:T ),

and uses these sequences as the discrete latent codes to later train the network.
It is important to note that both Enc

(s)
V Q and Enc

(l)
V Q are frozen to produce

consistent discrete latent codes. Then, we independently mask p% of random
frames for both speakers and listeners, i.e.,

smasked = Maskp(s+ Es + EP
s ) ; lmasked = Maskp(l + El + EP

l ) (4)

where Es and El denote the learnable speaker and listener embeddings and EP
s

and EP
l denote the sinusoidal positional embeddings. s and l are speaker motions

and the listener motions from ground truth.
We then feed smasked and lmasked to independent role-specific Transformer en-
coders Enc(s) and Enc(l) to produce x

(s)
masked and x

(l)
masked. To further enhance

Enc(s) and Enc(l) to extract robust features for speaker and listener inputs, we
propose using contrastive learning to match speaker-listener pairs. We use the
contrastive loss for the task

Lc = − 1

N
ΣN

i=1log[
exp(x

(s)
i · x(l)

i /τ)

Σi̸=k exp(x
(s)
i · x(l)

k /τ) + exp(x
(s)
i · x(l)

i /τ)
] (5)

where x
(s)
i and x

(l)
i are the temporally mean-pooled feature representations of

the ith sample of x(s)
masked and x

(l)
masked, respectively.

We further concatenated x
(s)
masked and x

(l)
masked along the feature dimension and

forward the fused feature into a joint Transformer encoder to produce j
(s−l)
masked

and later split j
(s−l)
masked back into separate speaker and listener features, i.e.,

[j
(s)
masked ; j

(l)
masked] = j

(s−l)
masked = Enc(joint)([x

(s)
masked ; x

(l)
masked]) (6)

For the masked frames reconstruction task, we pad j
(s)
masked and j

(l)
masked with

trainable mask tokens at the masked positions as j(s) and j(l). We further add
learnable speaker and listener embeddings, along with sinusoidal positional em-
beddings, to j(s) and j(l) before concatenating them with extracted audio fea-
tures for predicting the masked discrete motions via a joint Decoder.

z′(s) = Dec(joint)([j(l) + ED
l + Ep

l ; a1:T ])

z′(l) = Dec(joint)([j(s) + ED
s + Ep

s ; a1:T ])
(7)

The predicted discrete motions z′(s) and z′(l) are then forwarded into Dec
(s)
V Q

and Dec
(l)
V Q for final continuous motion predictions.

s̃ = Dec
(s)
V Q(z

′(s)) ; l̃ = Dec
(l)
V Q(z

′(l)) (8)
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Fig. 3: For fine-tuning the model on listener motion generation, speaker input is not
masked, and the listener input is entirely masked. We train the framework with the
same cross-entropy loss and reconstruction loss from Dyadic Interaction Modeling while
keeping the weights of listener VQ-Encoder fixed.

For reconstruction, we train our network on both a cross-entropy loss on the
discrete motions and a reconstruction loss

L(s)
rec = Σt∈M − logp(z

(s)
t |z′(s)t ) + ||st − s̃t||22

L(l)
rec = Σt∈M − logp(z

(l)
t |z′(l)t ) + ||lt − l̃t||22

(9)

where M denotes the masked position during the masking process. Our final loss
is defined as

L = λ1Lc + λ2(L(s)
rec + L(l)

rec) (10)

where λ1 and λ2 are hyperparameters.
We then fine-tune the model for listener motion generation with initialized

weights from Dyadic Interaction Modeling, as shown in Figure 3. During the fine-
tuning phase where s1:T and a1:T are available but l1:T is the target prediction,
we do not mask s1:T (i.e., ps = 0%) while mask entirely the listener input (i.e.,
pl = 100%). The VQ-Encoders are frozen while the remaining weights are fine-
tuned with the reconstruction loss of the listener motions L(l)

rec.

3.4 Photorealistic Render

To visualize the real-human listener video from the predicted expression and
pose EMOCA parameters, we re-train PIRenderer, a motion-to-video rendering
network [55]. Collecting long-term person-specific portrait videos to train high-
quality person-specific models is challenging and out of the scope of this work.
Hence, we collect listener-speaker pairs and train a separate rendering network on
pairs with the same speaker-listener identities. We feed the first frame of each
video as the reference portrait image, together with the EMOCA parameters
extracted from the later frames, into the renderer and train it with an image
reconstruction loss. In this way, we use the predicted EMOCA motion prediction
to drive the reference portrait and generate a vivid photorealistic video, as shown
in the right side of Figure 3.
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4 Experiments

4.1 Experimental Settings

Listener Behavior Generation. We evaluate the speaker-driven listener mo-
tion generation of DIM-Listener on ViCo [80] and LM_Listener [48] dataset.ViCo [80]
consists of 483 video sequences featuring 50 unique listeners. The dataset that
was proposed in LM_Listener [48] is an extended version of the dataset intro-
duced in Learning2Listen [47] (L2L), which contains 2366 training segments, 222
validation segments, and 543 test segments of a single listener (Trevor Noah).
Speaker Behavior Generation. We evaluate the speech-driven speaker mo-
tion generation on BiWi [23]. BiWi [23] comprises affective speech recordings
and the associated high-resolution, dynamic 3D facial geometry data. It fea-
tures recordings from 14 participants who were instructed to read 40 sentences
in English, recorded at a frame rate of 25 frames per second. On average, each
recorded sequence is approximately 4.67 seconds.
Dyadic Interaction Modeling is performed on CANDOR [54] dataset. It con-
sists of a collection of 1,656 conversations in English. With a total duration of
over 850 hours, this large corpus includes more than 7 million words, encom-
passing rich audio, video, and speech transcripts. It enables detailed moment-to-
moment analysis of vocal and facial expressions as well as semantic and conver-
sational contexts. CANDOR provides speech diarization and alignment, which
was used for speaker/listener designation at the utterance level. The dataset also
provides separate speech tracks, so there is no overlapping speech.
Implementation Details For the pre-training stage, we use an Adam opti-
mizer with a learning rate of 1e−5 and train the model on CANDOR [54] for
100 epochs. We use a masking ratio p = 75%, which is determined with hyper-
parameter tuning with respect to the pre-training validation reconstruction loss.
We use HuBERT [31] as our audio feature extractor. We use the same archi-
tectures for the Transformer encoders and decoders of DIM-Listener and VQ-
VAE, which consists of a transformer with 8 hidden layers, 8 attention heads and
an intermediate size of 768. For pre-processing of CANDOR, we use the provided
transcript with the dataset to extract utterance-level samples of speaker-listener
behaviors. For pre-processing of ViCo [2] and LM_Listener [48], we follow the
pre-processing guidelines and train-test splits from prior works [2, 47, 62] for
fair comparisons. For all experiments, we extract EMOCA [16], an expressive
3DMMs parameter set, from visual data and adopt it as facial representation
for all methods and re-train them for the sake of fair comparison. We follow
previous work [47,62,80] and adopt expression code (Exp) and pose code (Pose)
of EMOCA [16] parameters as the description of the speaker and listener’s mo-
tions. We use HuBERT [31] to extract audio features. Since HuBERT is already
a robust pre-trained speech encoder, we do not use the audio features in our en-
coders and directly feed them into our model’s decoder. For the implementation
source code of our method, please see supplementary materials.
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Table 1: Quantitative Comparison of Listener Generation on ViCo [80] Dataset. †
denotes the corresponding method has been pre-trained on the CANDOR [54] dataset.
∗ denotes the method didn’t release any code, and we re-implement it from scratch on
our own.

Method
FD↓ P-FD↓ MSE↓ SID Var rPCC↓

Exp Pose Exp Pose Exp Pose Exp Pose Exp Pose Exp Pose

Random 72.88 0.12 75.82 0.12 2.05 0.03 4.68 3.83 1.49 0.02 0.09 0.17
Nearest Audio 65.77 0.10 68.84 0.10 1.77 0.03 4.81 3.93 1.49 0.02 0.07 0.11
Nearest Motion 42.41 0.06 45.33 0.06 1.27 0.02 4.62 3.74 1.49 0.02 0.08 0.12
ELP∗ [62] 47.17 0.08 47.48 0.08 0.98 0.02 1.76 1.66 1.49 0.02 0.09 0.01
RLHG [80] 39.02 0.07 40.18 0.07 0.86 0.01 3.62 3.17 1.52 0.02 0.08 0.02
L2L [47] 33.93 0.06 35.88 0.06 0.93 0.01 2.77 2.66 0.83 0.02 0.06 0.08
L2L† [47] 31.03 0.06 33.02 0.06 0.87 0.01 3.53 3.05 0.83 0.02 0.06 0.09
GT - - - - - - 5.03 4.07 0.93 0.01 - -

DIM-Listener † 23.88 0.06 24.39 0.06 0.70 0.01 3.71 2.35 1.53 0.02 0.06 0.03

Baselines We compare the performance of DIM-Listener on Listener Gener-
ation with random and nearest neighbor baselines in addition to the following
state-of-the-art methods.

– RLHG [80] is a regression method. We use their released official code for a
fair comparison.

– L2L [47] utilizes a discrete codebook to synthesize motion patterns. We use
their released official code for a fair comparison.

– ELP [62] extracts speaker-style features and emotion vectors. Due to the
unavailability of the source code, we re-implement the baseline following the
paper. We provide our re-implementation in the supplementary materials.

The random and nearest neighbor baselines are also widely reported in pre-
vious work [47,62,80], which include:

– We randomly select the facial and head motion parameters in the training
data, and inject random small perturbations into the normal distribution.

– We use the smoothed speaker’s motion as the listener’s motion.
– For arbitrary input speaker motion or audio input, we find its nearest neigh-

bor from the training set and use its corresponding listener motion as output.

Metrics We re-implement all baselines and train them with EMOCA 3DMM
as output motion representation. We then evaluate them using the metrics re-
ported in LM_Listener [48] and ELP [62], namely the Frechet Distance (FD),
Paired FD (P-FD) for synchrony , Mean Squared Error (MSE), SI for Diversity
(SID), Variance (Var), and Residual Pearson Correlation Coefficient (rPCC).
We provide more details about the used metrics in the supplementary materials.
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Table 2: Quantitative Comparison of Listener Generation on LM_Listener [48]
Dataset. † denotes the corresponding method has been pre-trained on the CAN-
DOR [54] dataset. ∗ denotes the method didn’t release any code, and we re-implement
it from scratch on our own.

Method
FD↓ P-FD↓ MSE↓ SID Var rPCC↓

Exp Pose Exp Pose Exp Pose Exp Pose Exp Pose Exp Pose

Random 63.37 0.10 67.14 0.10 2.14 0.03 4.06 3.49 1.57 0.01 0.08 0.06
Mirror 69.25 0.16 87.11 0.19 1.95 0.03 4.06 3.54 1.51 0.01 0.74 0.86
Nearest Motion 56.00 0.07 58.94 0.08 2.04 0.02 3.94 3.46 1.62 0.01 0.13 0.13
ELP∗ [62] 22.06 0.01 22.09 0.01 0.45 0.01 5.07 3.64 0.49 0.01 0.09 0.04
RLHG [80] 30.50 0.02 31.74 0.02 0.69 0.01 3.84 3.65 0.94 0.01 0.09 0.03
L2L [47] 23.56 0.02 23.94 0.02 0.75 0.01 3.50 3.00 0.58 0.01 0.12 0.04
L2L† [47] 21.63 0.02 22.03 0.02 0.73 0.01 3.50 3.00 0.67 0.01 0.14 0.03
GT - - - - - - 4.97 3.69 0.78 0.01 - -

DIM-Listener † 12.49 0.01 12.95 0.02 0.29 0.01 4.53 2.93 0.94 0.01 0.04 0.02

4.2 Benchmark Performances

Quantitative Results. We retrain RLHG [80], L2L [47] and ELP [62] on the
ViCo dataset [80]. Since the Dyadic Interaction Modeling of our pipeline is con-
ducted on CANDOR [54], we also pre-train L2L [47], a recent state-of-the-art
method, which adopts a similar approach using VQ-VAE [50] in the model, on
CANDOR [54], for fair comparison. Table 1 shows the quantitative comparison
of Listener Generation on ViCo [80]. Based on the metrics presented in Table 1,
it is clear that our proposed DIM-Listener outperforms existing methods by a
significant margin. Our method is about 1.5 times better than the current state-
of-the-art method L2L [47] in terms of the most important metrics FD and P-FD
of expressions in the Listener Generation task. The performance gain of L2L af-
ter being trained on CANDOR [54] remains limited compared to the gain of our
method, which shows that the effectiveness of Dyadic Interaction Modeling is as
a result of our novel framework rather than additional data. In measuring mo-
tion diversity (Var, SID), DIM-Listener generates diverse listener reactions to
the speaker. We expect that listeners’ movements will showcase a greater range
of diversity when the FD and MSE are kept to a minimum. As demonstrated in
Table 1, it is evident that even when FD and MSE are performing well (close to
ground truth), DIM-Listener remains highly effective in both the Var and SID,
which benefits from our proposed Dyadic Interaction Modeling between speak-
ers and listeners. The RPCC measures the motion synchronization between the
speaker and the listener, and it can be found that our method achieves compet-
itive performance.

We also retrain RLHG [80], L2L [47] and our model on LM_Listener [48]
dataset. Table. 2 demonstrates the quantitative comparison. We can observe that
FD and P-FD of expressions of DIM-Listener is about two times better than
L2L [47] and three times better than RLHG [80]. We also achieve state-of-the-art
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Fig. 4: Comparison with L2L [47](pre-trained on CANDOR [54]), ELP [62], and
RLHG [2]. Our method can generate diverse head movements while maintaining fa-
cial expressions that better align with speakers’ sentiments.

in all metrics evaluating the data distribution distances or accuracy between gen-
eration and ground-truth while maintaining the ability to generate more diverse
motions.

Table 3: Ablation Analysis of Lis-
tener Generation on ViCo [80] and
LM_Listener [48] Datasets. VQ represents
the VQ-VAEs for speakers and listeners,
DIM represents Dyadic Interaction Model-
ing on CANDOR [54], Dec

(l)
V Q represents

unfreezing listener’s VQ decoder, Lc rep-
resents contrastive loss, and S-L represents
the two-branch architecture that jointly
models speaker and listener behaviors.

VQ DIM Dec
(l)
V Q

Lc S-L
ViCo LM_Listener

MSE↓ FD↓ MSE↓ FD↓
✓ ✓ ✓ ✓ ✓ 0.62 24.15 0.27 12.94
✗ ✓ ✗ ✓ ✓ 0.92 42.52 0.66 33.07
✓ ✗ ✓ ✓ ✓ 0.75 33.84 0.60 27.43
✓ ✓ ✗ ✓ ✓ 0.81 39.63 0.69 31.93
✓ ✓ ✓ ✗ ✓ 0.65 28.47 0.32 17.92
✓ ✓ ✓ ✗ ✗ 0.72 30.92 0.47 21.27

Qualitative Results. We first com-
pare with the photorealistic results of
RLHG [80] and L2L [47] in Figure 4.
We feed the EMOCA [16] 3DMM
predictions and the listener appear-
ance into PIRenderer [55] and render
the corresponding images frame by
frame. Since there is no guideline or
source code on the renderer’s settings
in L2L [47], we use PIRenderer [71]
official code for training and genera-
tion. We fine-tune a unique renderer
for each speaker-listener pair and ren-
der the listener image sequence us-
ing the same fine-tuned weight of
each pair for all approaches. Com-
pared to RLHG [80], L2L [47], and
ELP [62]: 1) our method demon-
strates more expressive behaviors that
synchronize with speakers’ and target
listeners’ sentiments (first example),
2) our method can generate diverse head movements compared to other methods
(second example). We also demonstrate our method’s ability to model emotions
and facial behaviors of our model in Figure 5. In particular, we show that DIM-
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Fig. 5: DIM-Listener can generate diverse listener emotions (e.g. Happy and Angry)
and facial behaviors (e.g. Eyes Blinking and Head Shaking).

Listener can generate multiple types of social signals such as smiles, head
shaking and blinks. These suggest the benefits of Dyadic Interaction Modeling
of DIM-Listener on the large-scale CANDOR [54] dataset with more diverse
dyadic behaviors.

4.3 Ablation Analysis

Table 3 illustrates the contribution of each component to DIM-Listener. Ini-
tially, we note that VQ-VAE stands out as the most crucial module in our frame-
work. Furthermore, our observation that directly predicting listener’s motions
as continuous signals yields less diverse motions aligns with prior research in
L2L [47] and ELP [62]. As expected, Dyadic Interaction Modeling on large-
scale dyadic behaviors significantly enhances performance for both ViCo and
LM_Listener datasets. In contrast to the pre-training approach in L2L [47]

that fixes the VQ-Decoder to decode continuous signals from discrete mo-
tion predictions, integrating the VQ-Decoder into the listener motion prediction
model notably enhances performance, ranking as the second most important
component in DIM-Listener. While Lc ranks as the least important compo-
nent, it still contributes significantly to performance by encouraging role-specific
encoders to extract meaningful information from input signals relevant not only
to the current person but also the conversational partner. Finally, we demon-
strate the benefits of jointly modeling both speaker and listener behaviors with
S − L, which aligns with existing literature indicating that speaker and listener
behaviors correlate and mutually influence each other. we also provide modality
ablation as well as online listener behavior generation results in the supplemen-
tary material.

4.4 Speaker Generation
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Fig. 6: For Speech-Driven Speaker Generation, we fine-tune the pre-trained weights of
the joint decoder and speaker VQ-Decoder from DIM. The generated speaker’s motion
from DIM-Speaker is optimized by the same cross-entropy and reconstruction loss as
DIM-Listener.

Table 4: Quantitative Comparison of
Speech-Driven Speaker Generation on
BiWi [23] Dataset.

Method
LVE↓ FDD↓
(×10−4) (×10−4)

MeshTalk [56] 6.14 2.53
FaceFormer [22] 5.40 1.37
CodeTalker [74] 5.93 2.42
DIM-Speaker 3.86 0.98

As mentioned in the previous sections,
since we introduce a dyadic frame-
work capturing contextualized inter-
actions among listeners and speak-
ers, our approach can also an-
imate speaker motion from the
speaker’s speech input. We name it
DIM-Speaker, and the fine-tuning
pipeline is shown in Figure 6. For
this task, we compared the results to
several state-of-the-arts methods, e.g.
MeshTalk [56], FaceFormer [22] and
CodeTalker [74] on BiWi [23] dataset.

We retrain these methods and compare the output motion parameters in
the FLAME point cloud space, which consists of 5023 vertices converted from
EMOCA 3DMMs. We follow the past work and adopt Lip Vertex Error (LVE),
which measures the discrepancy in lip movement for a generated sequence com-
pared to the ground truth by calculating the maximum Euclidean (L2) distance
error for the lip vertices in each frame, averaged over all frames, and upper-face
dynamics deviation(FDD), which evaluates the variation of facial dynamics for
a motion sequence, as evaluation metrics.

As shown in Table. 4, we outperform previous methods in this evaluation
space, which demonstrated the effectiveness of our framework for the Speaker
Generation task.

5 Conclusion

In this study, we introduced Dyadic Interaction Modeling, a novel self-supervised
pre-training strategy designed to improve the model’s capability to effectly en-
code representations from both speaker and listener motions via large-scale
dyadic data. Our comprehensive experiments and detailed visualizations demon-
strate the capability of DIM-Listener and DIM-Speaker in generating accu-
rate and realistic motions for both listeners and speakers.
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