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Fig. 1: Proposed framework for personalized emotion recognition. The figure illustrates the following four steps: (1) We collect
unlabeled videos from VoxCeleb2 which is a diverse audiovisual dataset. (2) We use cross-modal labeling to create a large-scale
weakly-labeled emotion dataset, i.e., EmoCeleb. (3) We propose a novel personalization method, i.e., SetPeER with set learning.
The model is pre-trained on EmoCeleb and learns representative speaker embedding for personalization. (4) We fine-tune
SetPeER on downstream datasets with the provided manual labels.

Abstract—Individual variability of expressive behaviors is a
major challenge for emotion recognition systems. Personalized
emotion recognition strives to adapt machine learning models
to individual behaviors, thereby enhancing emotion recognition
performance and overcoming the limitations of generalized
emotion recognition systems. However, existing datasets for
audiovisual emotion recognition either have a very low number
of data points per speaker or include a limited number of
speakers. The scarcity of data significantly limits the development
and assessment of personalized models, hindering their ability
to effectively learn and adapt to individual expressive styles.
This paper introduces EmoCeleb: a large-scale, weakly labeled
emotion dataset generated via cross-modal labeling. EmoCeleb
comprises over 150 hours of audiovisual content from approx-
imately 1,500 speakers, with a median of 50 utterances per
speaker. This rich dataset provides a rich resource for developing
and benchmarking personalized emotion recognition methods,
including those requiring substantial data per individual, such
as set learning approaches. We also propose SetPeER: a novel
personalized emotion recognition architecture employing set
learning. SetPeER effectively captures individual expressive styles
by learning representative speaker features from limited data,
achieving strong performance with as few as eight utterances
per speaker. By leveraging set learning, SetPeER overcomes
the limitations of previous approaches that struggle to learn
effectively from limited data per individual. Through extensive
experiments on EmoCeleb and established benchmarks, i.e., MSP-
Podcast and MSP-Improv, we demonstrate the effectiveness of our
dataset and the superior performance of SetPeER compared to
existing methods for emotion recognition. Our work paves the way
for more robust and accurate personalized emotion recognition
systems.

Index Terms—Emotion Recognition, Personalization, Transfer
Learning, Machine Learning.

I. INTRODUCTION

EMOTION recognition is a foundational block for develop-
ing socially intelligent AI, with its applications spanning

various domains from healthcare to user satisfaction assessment.
Recent progress in the field has been driven by advancements
in deep learning and multimodal data processing [1]–[4].
Despite these advances, there are challenges in building robust
and generalizable emotion recognition. Specifically, effectively
capturing individual variations in emotional behaviors while
also addressing the scarcity of suitable data poses significant
hurdles.

A key challenge in emotion recognition is the inherent
variability of emotional expressions. Individuals exhibit diverse
expressive styles shaped by factors such as culture, upbringing,
personality, and situational context [5]. This variability poses a
significant challenge for general-purpose emotion recognition
models, resulting in inconsistent performance across speakers
[6]. To address this limitation, personalized emotion recognition
aims to adapt models to individual behaviors, leading to
more accurate and robust performance. Several approaches
have explored personalized emotion recognition for visual and
speech tasks [1], [4], [7], [8]. For example, Shahabinejad et
al. [4] jointly train a face recognition and a visual emotion
recognition model, enabling the model to learn personalized
emotion representations. Sridhar et al. [8] propose a speaker
matching method to find the most similar speakers in a fixed
training set to use as data augmentation to train personalized
speech emotion recognition systems. However, most existing
methods are limited in their applicability to other modalities,
extensibility to unseen speakers, or efficiency due to the need
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for model re-training.
Another significant obstacle in emotion recognition, particu-

larly for personalized approaches, stems from the scarcity
of appropriate data. Prior efforts in personalized emotion
recognition have predominantly focused on the speech modality
due to data availability. However, these approaches were mainly
trained and evaluated on a limited number of speakers [2], [9]–
[11]. While recent advancements, such as the development of
large pre-trained models like HuBERT [12] or Wav2Vec2 [13],
have narrowed the personalization gap, challenges persist in the
availability of comprehensive datasets for personalized visual
emotion recognition. Although databases like MSP-Podcast [14]
have been utilized for personalized speech emotion recognition
[1], [8], they often lack adequate number of samples for
each speakers and do not support personalized visual emotion
recognition due to their unimodality. As shown in Table I,
commonly used emotion recognition databases suffer from
limitations such as a small number of speakers or insufficient
samples per speaker. This scarcity of appropriate data not
only impedes the development of robust personalized emotion
recognition systems, particularly those incorporating visual
cues, but also makes it challenging to rigorously evaluate such
systems.

This paper addresses the aforementioned challenges in
personalized emotion recognition. In this paper, emotion
recognition refers to the automatic recognition of apparent
emotions observed by others. From the modeling perspective,
we introduce a novel approach called the Set-based Personalized
Representation Learning for Emotion Recognition (SetPeER).
This model is designed to extract personalized information from
as few as eight samples per speaker. Notably, SetPeER exhibits
versatility across different modalities by merely adjusting the
backbone encoder architecture, e.g., HuBERT [12] for audio
and VideoMAE [15] for vision, and remains effective on unseen
speakers without requiring any retraining of components. At
the core of SetPeER is a Personalized Feature Extractor module
P that encodes a set of utterances from the same speaker into
meaningful speaker embeddings. These embeddings are then
injected into pre-trained encoders to generate personalized
features, thereby enhancing the model’s ability to capture
individual characteristics in emotional expression. Regarding
data, we develop a scalable framework to weakly label in-
the-wild audiovisual videos. Specifically, we use pre-trained
models for text, vision, or audio-based emotion recognition to
assign weak labels to a target modality from the remaining
two modalities (text and audio or text and vision) to a large
dataset of unlabeled data with a large number of speakers. To
improve label quality, we only keep the utterances for which
two modalities predict similar labels. We use the bimodal
predictions for training emotion recognition models for the
third modality. With the scalability of the proposed weak
labeling approach, we introduce EmoCeleb-A and EmoCeleb-V,
two large-scale datasets with substantially more speakers and
samples per speaker than existing emotion recognition datasets.

Through extensive experiments, we validate the usefulness
of EmoCeleb-A and EmoCeleb-V. First, we demonstrate
the superior performance of our proposed weak labeling
pipeline compared to random guessing. Moreover, our findings

TABLE I: Comparison of EmoCeleb with previous emotion
recognition datasets. Mod indicates the available modalities,
(a)udio, (v)ision, and (t)ext. TL denotes the total number of
hours. # U and # S denote the number of utterances and
speakers respectively. Our datasets are larger and have more
speakers, with at least 50 utterances per speaker. All datasets are
audio-visual except for MSP-Podcast. * We exclude samples
without speaker identifications.

Dataset Mod TL (h) # U # S Per Speaker Stats
Mean Median

RAVDESS [17] {a,v} 1.5 1.4K 24 60 60
AFEW [18] {a,v} 2.5 1.6K 0.3K 5 -
HUMAINE [19] {a,v} 4 50 4 13 -
RECOLA [20] {a,v} 4 46 46 1 1
SEWA [21] {a,v} 5 0.5K 0.4K 1 1
SEMAINE [22] {a,v} 7 0.3K 21 13 6
CREMA-D [23] {a,v} 8 7.4K 91 82 82
MSP-Improv [16] {a,v} 9 8.4K 12 0.7K 0.7K
VAM [24] {a,v} 12 0.5K 20 25 -
IEMOCAP [25] {a,v} 12 10K 10 1.0K 1.0K
MSP-Face [26] {a,v} 25 9.4K 0.4K 23 15
CMU-MOSEI [27] {a,v,t} 66 24K 1.0K 24 4
MSP-Podcast [14] {a,t} 71 43K 1.0K 40 12

EmoCeleb-A {a} 159 74K 1.5K 50 50
EmoCeleb-V {v} 162 75K 1.5K 50 50

indicate that models trained with our dataset can surpass
those trained with human-annotated data in zero-shot out-of-
domain evaluations, underscoring the role of scalability and
diversity in enhancing generalization capabilities. We further
use EmoCeleb-A and EmoCeleb-V to both train and evaluate
SetPeER, alongside established emotion recognition datasets,
namely MSP-Podcast [14] for audio and MSP-Improv [16] for
vision tasks. Through comprehensive evaluation, we validate
our proposed model’s effectiveness compared to existing
personalized emotion recognition approaches.

The major contributions of this work are summarized as
follows.

• A large-scale weakly-labeled dataset. We introduce
EmoCeleb, a new dataset for personalized speech emotion
recognition created using cross-modal labeling. This
dataset comprises over 150 hours of speech from ap-
proximately 1,500 speakers, with each speaker having at
least 50 utterances. This resource provides valuable data
for both pretraining and evaluating personalized emotion
recognition models. EmoCeleb will be publicly released
upon acceptance of this paper.

• A novel personalization method. We propose a novel
approach, SetPeER, for personalization that leverages set
learning. Our method effectively learns a representative
speaker embedding using only eight unlabeled utterances
from a given speaker, enabling rapid adaptation to unseen
individuals.

• Extensive evaluation. We conduct thorough experiments
demonstrating the validity and utility of EmoCeleb. Fur-
thermore, we demonstrate the effectiveness of SetPeER
in personalized emotion recognition by visualizing the
learned speaker embedding distributions.
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II. RELATED WORK

A. Emotion Recognition Databases

Access to expansive, natural databases that capture different
facets of emotional expression is essential for improving
emotion recognition. Table I presents some of the widely used
emotion recognition databases. Generally, emotion recognition
datasets can be categorized into three main types. Acted
databases constitute the first type, where speakers are directed
to express specific emotions while reciting predetermined
sentences. This method is employed in various databases
such as RAVDESS [17] and CREMA-D [23]. The second
and most prevalent type consists of datasets captured within
controlled laboratory environments. Participants are typically
instructed to engage in interactions surrounding a given
topic or to respond to emotion-inducing videos. Notable
examples of this type include HUMAINE [19], SEWA [21],
IEMOCAP [25], and MPS-Improv [16]. Lastly, the third type
comprises fully natural utterances sourced from real-world
settings, such as YouTube, and subsequently annotated through
crowdsourcing. Datasets falling into this category include
CMU-MOSEI [27], MSP-FACE [26], and MSP-Podcast [14].
Arguably, datasets of the third type are optimal for developing
generalized emotion recognition systems applicable across
diverse environments. Their potential is particularly promising
as in-the-wild utterances are readily accessible online. However,
the expense associated with human annotations often impedes
large-scale development efforts, especially in personalized
emotion recognition, where both the dataset size and the number
of samples per speaker are crucial. As illustrated in Table I,
existing large-scale emotion recognition datasets typically suffer
from a scarcity of utterances per speaker. This paper aims to
bridge the gap by leveraging the wealth of in-the-wild data
to construct a large-scale weakly-labeled dataset customized
for training and evaluating personalized emotion recognition
systems and explore the trade-off between annotation accuracy
and automated labeling.

B. Personalized Emotion Recognition

Various modalities have been investigated for personalized
emotion recognition, e.g., physiological signals [28]–[30],
speech [1], [8], [9], [31], and facial expressions [4], [7]. Bang
et al. [31] introduce a framework for robust personalized
speech emotion recognition, which incrementally provides a
customized training model for a target user via virtual data
augmentation. Their method is evaluated on IEMOCAP [25]
with ten speakers. Zhao et al. [28], [29] explore the impact
of personality on emotional behavior through physiological
signals using graph learning. Their studies are conducted on
the ASCERTAIN dataset [32], which comprises data from
58 subjects. Zen et al. [33] propose an SVM-based vision
regression model to learn the relationship between a user’s
sample distribution and the parameters of that individual’s
classifier and use the learned model to transfer to new users
with unseen distributions. Chen et al. [9] develop a two-layer
fuzzy random forest using features extracted from openSMILE
[34] and train on different categories of people generated via
a fuzzy C-means clustering algorithm. They demonstrate a

potential performance gain in four subjects. Shahabinejad et al.
[4] introduce an innovative attention mechanism tailored for
facial expression recognition (FER). This mechanism generates
an attention map using a face recognition (FR) network, thereby
personalizing the FER process with FR features. However, their
method relies on a single image for personalization, which
raises concerns about the reliability of the personalization.
Barros et al. [35] propose a Grow-When-Required network
that learns person-specific features on seen speakers via a
conditional adversarial autoencoder. In another work, Barros et
al. [36] introduce a set of layers designed to learn both clusters
of general facial expressions and individual behaviors through
online learning and affective memories. However, the method
is not applicable to unseen speakers. Barros et al. [37] presents
Contrastive Inhibitory Adaption (CIAO) to adapt the last layer
of facial encoders to model nuances in facial expressions across
different datasets.

Most prior studies are either limited by the number of
subjects available in the existing emotion datasets or rely
on a single data point for personalization, compromising the
learned personalized features’ reliability and hindering their
applicability to unseen speakers. Two notable exceptions are the
studies by Sridhar et al. [8] and Tran et al. [1] that utilize MSP-
Podcast [14], benefiting from its extensive range of subjects.
However, the dataset is limited to the audio modality. Sridhar
et al. [8] propose to find speakers in the training set whose
acoustic patterns closely match those of the testing speakers to
create an adaptation set. The approach needs additional training
(model adaptation) at inference time, limiting its applicability
to unseen speakers. Tran et al. [1] present PAPT, a personalized
adaptive pre-training method, where the model is pre-trained
with learnable speaker embeddings in a self-supervised manner
and personalized label distribution calibration, which adjusts
the predicted label distribution using label statistics from similar
training speakers. PAPT has demonstrated superior effectiveness
in personalization compared to Sridhar et al.’s method [1] while
eliminating the necessity for retraining on new speakers.

C. Set Learning

Set representation learning extracts meaningful embeddings
invariant to permutations for set inputs. DeepSets [38] op-
erates by independently processing elements within a set
and subsequently aggregating them using operations such as
minimum, maximum, mean, or sum. Set Transformers [39]
explore self-attention to model interactions between elements
of a set. In addition to designing permutation-invariant modules
for set encoding, alternative set-learning methodologies have
emerged. These include methods that learn set representations
by minimizing the disparity between an input set and a
trainable reference set through bipartite matching [40] or
optimal transport [41]. In this paper, we expand the scope
of set representation learning to the realm of personalization,
in which we aim to extract meaningful information about
an individual based on a set of data samples. By leveraging
personalized information, we enhance the encoding of the
individual’s data.
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Fig. 2: Overview of cross-modal labeling: (i) Emotion recog-
nition with two modalities (vision+text or audio+text) to
provide weak supervision. (ii) Weak labels are retained when
two modalities are in sufficient agreement (measured by KL
divergence). (iii) Inference results are averaged to generate a
weak label for the target modality (audio or vision).

III. EMOCELEB DATASET

Existing datasets for audiovisual emotion recognition have
few speakers or lack enough data points per individual. This
motivates us to develop a novel dataset via cross-modal
labeling, i.e., utilizing information from one or more modalities
to annotate another. Our approach enables the development
of a large-scale emotion dataset with weak labels suitable
for training and evaluating personalized emotion recognition
systems.

Figure 2 provides an overview of the EmoCeleb dataset
generation process. To enhance the utility of the dataset, we
diverge from previous approaches such as the one by Albanie et
al. [42], which utilizes a single modality input for cross-modal
distillation (from vision to audio). Instead, we perform emotion
recognition using two modalities to provide weak supervision.
Weak labels are retained only when the emotion recognition
results from both modalities agree. In particular, with the three
modalities (vision, audio, and text), we perform cross-modal
labeling in two directions: combining vision and text to label
audio (EmoCeleb-A) and leveraging audio and text to label
vision (EmoCeleb-V).

A. Labeling Dataset

We perform weak labeling on VoxCeleb2 [43], which is an
audiovisual dataset for speaker recognition. VoxCeleb2 includes
interview videos of celebrities from YouTube, which contains
over 1M utterances with more than 6K speakers. The dataset
is roughly gender balanced (61% male), and the speakers
span a wide range of ethnicities, accents, professions and ages
[43]. The dataset provides the identities and apparent gender
information for the speakers, but it does not have any emotion
labels. We only use the English portion1 of VoxCeleb2, which
contains 1,326 hours of content.

1https://github.com/facebookresearch/av hubert/blob/main/avhubert/
preparation/data/vox-en.id.gz

TABLE II: Number of utterances in each class for EmoCeleb.

Dataset Neutral Anger Happiness Surprise Total

EmoCeleb-A 45,288 3,682 21,466 3,664 74,100
EmoCeleb-V 39,774 6,909 19,168 9,259 75,110

B. Unimodal Emotion Recognition

1) Vision: For vision-based analysis, we utilize Masked
Auto-Encoder (MAE) [44] as the backbone. We begin by
initializing the MAE with a pre-trained checkpoint2, which
is trained on the EmotionNet dataset [45]. Subsequently, we
perform supervised training on the Aff-Wild2 dataset [46]
for frame-level emotion recognition. We perform frame-level
inference for every utterance in the VoxCeleb2 dataset and
employ average pooling to aggregate the results, thereby
obtaining utterance-level logits for categorical emotions.

2) Audio: In the audio domain, we adopt an open-source
model3 based on WavLM [47] trained on the MSP-Podcast
dataset [14] for speech emotion recognition.

3) Text: The VoxCeleb2 dataset [43] does not provide tran-
scripts. Thus, we first use Whisper [48] for speech recognition.
Then, we employ an open-source model4 for text emotion
recognition. This model is built upon RoBERTa [49] and has
been trained on diverse text emotion datasets sourced from
Twitter, Reddit, student self-reports, and television dialogue
utterances, e.g., GoEmotions [50], AIT-2018 [51], MELD [52],
and CARER [53].

The aforementioned methods produce logits corresponding
to Ekman’s six basic emotions [54], namely, anger, disgust,
fear, happiness, sadness, and surprise, in addition to neutral.

4) Comparison to State-of-the-Art Methods: The models
employed for unimodal labeling demonstrate performance that
is near the state-of-the-art methods within their respective
domains and datasets (MSP-Podcast [14] for audio and Aff-
Wild2 [46] for vision). For the MSP-Podcast dataset, Naini
et al. [55] conducted a comprehensive evaluation of sev-
eral self-supervised learning frameworks, including HuBERT
[12], Wav2Vec2 [13], Data2Vec [56], and WavLM [47], and
concluded that WavLM achieved the best performance with
significantly superior results. In our study, we utilized the
same fine-tuned WavLM checkpoint reported in their work.
Regarding the Aff-Wild2 dataset, a central benchmark for the
ABAW challenges at CVPR [57]–[59], leading approaches
consistently utilize Masked Autoencoder (MAE) pre-training
on large-scale facial datasets [60], [61]. For example, Zheng et
al. [60], winners of the 6th ABAW Challenge at CVPR 2024
for facial expression recognition, pre-trained their model on
a private dataset containing millions of face images and fine-
tuned it on Aff-Wild2, achieving state-of-the-art performance
with an F1 score of 49.5 for the visual modality. As the
official weights were not publicly available, we replicated
their MAE pre-training process and achieved an F1 score of
42.6. While our performance falls slightly short of the reported
best performance, we tried our best to replicate the state-of-the-

2https://github.com/AIM3-RUC/ABAW4
3https://huggingface.co/3loi/SER-Odyssey-Baseline-WavLM-Categorical
4https://huggingface.co/j-hartmann/emotion-english-roberta-large
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TABLE III: Unsupervised domain adaptation experiments on
generic domain.

CMU-MOSEI (A) CMU-MOSEI (V)
ACC F1 ACC F1

FT on [14], [46] 52.2 34.7 37.4 24.4
FT + UDA [62] 46.2 31.9 35.8 23.1

art recipe. For the text modality, we employ a model trained
on an extensive and diverse corpus of text-based emotion
recognition tasks. While no standardized benchmark exists for
evaluating emotion recognition in spoken language, we believe
the comprehensive scope of the combined corpus provides a
robust and generalized checkpoint.

Given the ultimate goal of deploying these unimodal emotion
recognition models in generalized settings (e.g., YouTube
videos), we investigate whether adapting to a more generic
domain, such as YouTube videos, can improve generalization
performance. Specifically, we utilize an unsupervised domain
adaptation framework [62], where the source data comprises
the datasets used to train the models (Aff-Wild2 for visual
and MSP-Podcast for audio). We select random videos from
the VoxCeleb2 dataset for the target domain, which provides a
representative sample of generic YouTube content. In addition
to fine-tuning the models for emotion recognition on the source
datasets, we incorporate a domain classifier coupled with a
gradient reversal layer to encourage the generation of domain-
invariant feature representations. To assess the effectiveness
of domain adaptation, we evaluate the models on the CMU-
MOSEI dataset, which is also curated from YouTube videos.

The results are presented in Table III. Notably, we observe
that applying unsupervised domain adaptation [62] to a generic
domain reduces generalization performance. We hypothesize
that this occurs because the generic domain (e.g., YouTube
videos) lacks distinctive features that the model can leverage
for learning while introducing the domain classifier branch
may add noises that adversely affect the learning process of
the emotion classifier.

5) Cross-modal Labeling: We illustrate the labeling process
using the vision + text → audio direction as a representative
example. The approach used in the alternate direction (audio +
text → vision) is identical.

For a given utterance x, we independently generate the logits
for categorical emotions with vision and text, denoted as hv

and ht, respectively. Weak labels are retained only when the
two modalities are in agreement. We compute the Kullback-
Leibler (KL) divergence between the inference results from
both modalities. If the KL divergence exceeds 1, we discard
the data point. If the KL divergence is less than or equal to 1,
we average the inference results to formulate a weak label for
the audio

ĥa =
1

2
(hv + ht). (1)

Because of the high agreement between the two distributions,
significant information loss is avoided, making simple averaging
an effective and straightforward method to merge predictions.
The threshold of 1 is selected based on agreement with ground
truth labels in CMU-MOSEI dataset and the balance of label

TABLE IV: Fine-tuning performance on MSP-Podcast-4 of
models pre-trained on EmoCeleb-A using different probability
distribution distance metrics.

ACC F1

EmoCeleb-A w/ KL-divergence 49.4 49.9
EmoCeleb-A w/ JS-divergence 49.2 50.0

distribution. The predicted category ŷa is then obtained by
selecting the argument with the maximum value in ĥa.

We compare two probability distribution distance
metrics—Kullback-Leibler (KL) divergence and Jensen-
Shannon (JS) divergence. By adjusting the JS divergence
threshold, we ensure the number of training samples (in
EmoCeleb-A) is approximately equal to that obtained using
KL divergence. Our analysis reveals that both metrics retrieve
largely overlapping samples, with about 80% of those selected
by KL divergence also appearing in the JS divergence set.
To further verify the quality of the samples filtered by the
two metrics, we first pre-train a HuBERT-base model [12]
on the EmoCeleb-A datasets collected using KL-divergence
and JS-divergence, then fine-tune the resulting models on
the MSP-Improv dataset [16]. The experimental results are
presented in Table IV, showing the average outcomes over
five runs. Statistical significance tests (p < 0.05) indicate no
significant differences between the two metrics. Consequently,
we choose KL divergence as our preferred metric.

C. Post-processing

EmoCeleb exhibits a highly imbalanced distribution of labels,
particularly with a sparse representation of disgust, fear, and
sadness. This scarcity is likely attributed to the nature of the
VoxCeleb2 dataset, which predominantly comprises interview
videos featuring celebrities. Within such contexts, expressions
of these three emotions are uncommon. Thus, we remove these
three emotion classes. Furthermore, to ensure that each speaker
has sufficient utterances for effective training and evaluation
of personalized emotion recognition models, we also discard
speakers with fewer than 50 utterances.

After this procedure, we have over 150 hours of con-
tent for both directions of cross-modal labeling. Specifically,
EmoCeleb-A contains 1,480 speakers with 74,100 utterances,
and EmoCeleb-V includes 1,494 speakers with 75,110 utter-
ances. Importantly, each speaker contributes a minimum of 50
utterances. Detailed statistics of the two datasets are provided
in Tables I and II. Examples of emotions in EmoCeleb are
shown in Figure 3.

Figure 4 illustrates the distribution of Gini coefficient
values [63] for speakers in the EmoCeleb-A and MSP-Podcast
datasets, offering insights into the diversity of emotional class
distributions across speakers. To ensure a fair comparison, we
exclude speakers from the MSP-Podcast dataset with fewer
than 50 samples, matching the lower sample limit for speakers
in the EmoCeleb dataset. This filtering results in 73 speakers
from MSP-Podcast compared to 1.5K speakers in EmoCeleb-A.

The Gini coefficient quantifies the inequality in class distribu-
tions, with higher values indicating greater imbalance. For the
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I was so happy today. He was like 
jumping in the pool and everything like 
it's so happy.
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the hell are you going to say?

I felt quite well. I had a great 
communication with my teammates, they 
held me a lot.

Everything you can imagine helps me get 
better. That was incredible.

I'm just impressed as a work 
environment. It looks fantastic. It really 
does.

EmoCeleb-A EmoCeleb-V

Anger Anger

Happiness

Surprise Surprise

Fig. 3: Examples of emotional expressions in EmoCeleb-A and
EmoCeleb-V. Green solid lines denote the modalities used for
cross-modal labeling, while red dashed lines refer to the target
modalities. The weak labels reflect the examples’ emotions

Fig. 4: Distributions of the Gini Coefficients between
EmoCeleb-A and MSP-Podcast dataset (Avg Gini value for
MSP-Podcast=0.63, Avg Gini value for EmoCeleb-A is 0.51).

EmoCeleb dataset (blue), Gini values are primarily concentrated
between 0.2 and 0.6, with a notable peak around 0.4–0.5.
This distribution reflects a relatively balanced emotional class
representation among speakers, consistent with the curated
nature of the dataset. In contrast, the MSP-Podcast dataset
(orange) exhibits a broader range of Gini values, with a
significant portion exceeding 0.6. The mean Gini coefficient for
MSP-Podcast is 0.63, compared to 0.51 for EmoCeleb, further
highlighting the per-speaker emotion diversity of EmoCeleb.

D. Label Quality Evaluation

We evaluate our weak labels through (i) a comparison with
human annotations and (ii) a comparison of the utility of labels
for model training with existing emotion recognition datasets.
To maintain consistency with the label space of EmoCeleb, our
analysis focuses on four emotions: anger, happiness, surprise,
and neutral.

TABLE V: Weak label generation with one or more modalities.
V, A, T stand for vision, audio, and text respectively.

CMU-MOSEI MSP-Face
ACC F1 ACC F1

Random 30.5 24.9 27.4 24.6
V 37.4 24.4 29.6 26.3
A 52.2 34.7 34.3 28.9
T 43.6 33.7 36.6 36.2
V+T 50.8 36.4 43.4 41.2
A+T 57.2 42.2 41.8 38.4
Human 70.8 49.6 69.4 69.2

TABLE VI: Comparison with existing emotion datasets. Accu-
racy (ACC %, ↑) and F1-score (F1 %, ↑) are the evaluation
metrics. Model trained with EmoCeleb outperforms RAVDESS
and CMU-MOSEI which are manually labeled.

Train
dataset

Test
dataset IEMOCAP MSP-Face MSP-Face

Audio Audio Vision

ACC F1 ACC F1 ACC F1

Random 35.5 24.5 27.4 24.6 27.4 24.6
RAVDESS [17] 31.3 28.0 21.0 16.5 12.9 6.7
CMU-MOSEI [27] 39.1 29.9 27.7 20.8 32.3 18.5
MSP-Podcast [14] 53.8 38.0 39.1 34.7 - -

EmoCeleb 48.1 31.9 35.7 30.1 33.5 26.9

1) Comparison with human annotations: The objective of
this experiment is to evaluate the performance of the proposed
cross-modal labeling pipeline compared to random guessing
and human performance. To ensure the availability of ground-
truth labels, we use existing emotion recognition datasets with
annotations obtained through crowdsourcing. Specifically, we
apply the labeling process to two well-established emotion
datasets, CMU-MOSEI [27], and MSP-Face [26], and compare
the generated weak labels against the ground-truth annotations
provided by these datasets.

Since both datasets include annotations from multiple anno-
tators, we also assess the performance of a single annotator’s
judgments relative to the consensus ground truth. The results
of these evaluations, summarized in Table V, display expected
behaviors: the weak-labeling pipeline produces label quality
that is significantly better than random guessing yet still lags
behind the quality of manually annotated labels.

We also provide the contribution of each modality in the
labeling process in table V. The contribution of each modality
to prediction accuracy varies depending on the evaluation
datasets. However, combining two modalities to generate labels
consistently outperforms using any single modality, as expected.
This finding motivates our approach to leveraging multiple
modalities to generate higher-quality weak labels.

2) Comparison with existing emotion datasets: The objective
of this experiment is to evaluate the position of EmoCeleb-A/V
within the dataset hierarchy presented in Table I, specifically
regarding its usefulness as a source dataset for emotion
recognition models. EmoCeleb-A/V offers superior diversity
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Answer session where Jeff and I welcome any 
questions from you

Label: Happiness Pred: Neutral

Why am I telling my best friend this?

Label: Happiness Pred: Surprise

Any negative consequences of my choice they 
will only experience vicariously

Label: Surprise Pred: Anger

I help their employees, customers, communities, 
lead healthier, happier, and more productive lives.

Label: Anger Pred: Happiness

Fig. 5: Examples of CMU-MOSEI dataset [27] samples that
the proposed weak labeling pipeline produced wrong labels
given video and text inputs.

and scale compared to existing datasets but falls behind in
label quality compared to human annotations (as demonstrated
in III-D1).

We conduct a zero-shot evaluation experiment to benchmark
our dataset against existing emotion recognition datasets.
Specifically, we train emotion recognition models (HuBERT
[12] for audio and VideoMAE [15] for vision) on one of the
source datasets and evaluate their performance on different
target datasets. The source datasets used in our experiments
include RAVDESS [17], CMU-MOSEI [27], MSP-Podcast [14],
and the proposed EmoCeleb-A/V. The target datasets selected
for evaluation are IEMOCAP [25] and MSP-Face [26]. For all
datasets, we limit the emotion categories to the four present in
EmoCeleb-A/V: happiness, anger, neutral, and surprise.

Detailed results of the zero-shot transfer experiments are
presented in Table VI. Notably, we exclude IEMOCAP [25]
from the vision model evaluations due to its non-frontal face
views, which introduce a significant domain gap, affecting
model generalization. Similarly, MSP-Improv [16] is excluded
as a target dataset for audio because it lacks the ”surprise”
emotion class, complicating comparative analysis.

The results reveal that EmoCeleb-A/V not only significantly
surpasses random guessing (Random) but also outperforms two
established emotion datasets, RAVDESS and CMU-MOSEI.
These findings underscore the efficacy and utility of our weakly-
labeled dataset as a valuable resource for pre-training emotion
recognition models.

3) Failure cases analysis: Fig. 5 presents four instances
where our labeling pipeline, applied to the CMU-MOSEI [27]
dataset, yields incorrect emotion labels given video and text
inputs. These errors come from the conflicting emotional cues
expressed through different modalities. For example, in the
top left case, the speaker’s neutral expression clashes with
the happiness implied by the uttered language, ”Jeff and I
welcome any questions.” Conversely, in the bottom left case, the
woman’s happy expression contradicts the surprised emotion
conveyed in the text. These failure cases indicate that our
pipeline struggles to reconcile conflicting multimodal cues.
While adjusting the KL divergence threshold could potentially
reduce such inconsistencies, this approach presents a trade-off.
A lower threshold might improve multimodal alignment but
could also lead to a smaller dataset with a less balanced label

distribution, potentially hindering overall performance.

IV. METHOD

The goal of the SetPeER is to learn personalized representa-
tions for emotion recognition using a set of K utterances from
a single speaker. Drawing inspiration from recent advancements
in set-based representation learning, our approach focuses
on deriving personalized speaker representations from the
input set of utterances. These personalized representations are
then conditioned on the features generated by deep encoders,
as illustrated in Figure 6. SetPeER comprises two main
components: a multi-layer backbone encoder E designed to
produce high-level representations from audio/visual input
signals and a lightweight personalized feature extractor P aimed
at generating personalized representations from input sets.

A. Backbone Encoder

The backbone encoder E produces high-level feature repre-
sentations from raw audio or video inputs. Although SetPeER
is applicable to many backbone encoders with transformer
architecture, we adopt the widely-used HuBERT [12] and
VideoMAE [15] as the backbone encoders for our audio
and vision modalities, respectively. As a high-level overview,
both architectures consist of two main components: a feature
extractor E0 to extract low-level representations from raw audio
or video inputs and a deep encoder E

′
to extract high-level

representations from the extracted low-level features. For Hu-
BERT [12], E0 consists of several layers of 1D Convolutional
Neural Networks (1D-CNN) to generate features at 20ms audio
frames from raw waveforms sampled at 16kHz. For VideoMAE
[15], E0 is a space-time cube embedding that maps 3D raw
video tokens to patches with a pre-specified channel dimension.
The deep encoder E

′
for both architectures are a stack of

N transformer encoder layers [64], i.e., E
′
= {E1, . . . ,EN},

where the output of the i-th layer Ei is xi = Ei(xi−1) for
i ∈ [1, 2, . . . , N ] and x0 is the features produced by E0. The
output of the last layer xN is temporally mean-pooled and fed to
linear layers to produce the emotion classification predictions.

B. Personalized Feature Extractor

The objective of P is to produce personalized embeddings
given a set of utterances. As mentioned in Section II-C, a key
property of set-based learning is permutation invariance, i.e.,
the output for a set remains the same regardless of the ordering
of the input. We follow the previous work [38], [39] and use
permutation-invariant modules to build the personalized feature
extractor P. Specifically, P consists of several linear layers to
reduce the dimensionality of the inputs, a transformer encoder
layer (without positional encoding), and a Vector Quantization
module [65] to discretize the learned representations into
meaningful concepts. Formally, we want to extract personalized
features for each encoder layer in E

′
, given a set of utterances of

the same speaker Sx = {x1, x2, . . . , xK}. For the first encoder
layer, P takes as inputs p0 the temporally mean-pooled features
extracted from E0 while for the remaining layers, P takes as
inputs pl the temporally mean-pooled features extracted from
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Fig. 6: SetPeER overview. The personalized feature extractor P generates layer-specific personalized embeddings from the
input and feeds the embeddings to the backbone encoder layer. These personalized embeddings serve as contextual cues for
the current layer, aiding in generating more targeted features. The weights of P are shared across layers. Additionally, we
apply contrastive learning for embeddings generated from P to enhance the consistency in producing personalized speaker
embeddings.

the l-th layer El in E
′
. In other words, p1 = Pool(E0(Sx)) and

pl = Pool(xl−1). The dimension of pl is RK×D, where K is
the size of the input set and D is the feature dimension. Given
pl, P extracts the speaker embeddings for the set as follows.

1) Dimensionality reduction: We want to keep the parameter
count of SetPeER analogous to the original encoders to
demonstrate the effectiveness of the proposed method. Hence,
we first use a linear layer L1 to reduce the dimensionality of
the inputs from D to C and share P across all layers of E
using a learnable layer embedding Φ(·)

ql = L1(pl +Φ(l)). (2)

2) Contextualized feature learning: Then, we leverage a
transformer encoder layer T [64] to generate contextualized
representations for the set of processed vectors. We do not
add any positional encoding to the ql to ensure permutation
invariance.

rl = T(ql). (3)

3) Personalized embedding generation: Next, we average
the produced contextualized representations to generate a single
vector representing the set and use another linear layer L2 to
resize the generated embedding to a target output dimension
of size Q× C, where Q denotes the number of embeddings
per speaker we want to extract.

sl = L2(Pool(rl, dim = 0)). (4)

4) Quantized Speaker Representation Codebooks: VQ-VAE
is a popular technique for learning a quantized codebook of
image elements, facilitating the autoregressive synthesis of
images. We extend Vector Quantization (VQ) [65] to create
personalized speaker embeddings with two main motivations.
First, certain individual attributes, such as race, gender, and age,
are inherently discrete. Moreover, VQ facilitates the creation
of compact and generalized feature representations by filtering
out irrelevant information from the continuous space.

For VQ, we use a discrete codebook Z = {zi}Mi=1 where
zi ∈ RC to generate Q embeddings from sl, where M denotes
the number of entries in the codebook. In particular, we first

reshape sl into RQ×C . Then, for each personalized vector of
size C in sl, we look up the nearest entry j in Z and output
the corresponding representation zj for the entry. During back-
propagation, we use a straight-through gradient as in [65].
Finally, we use a linear layer L3 to map the produced speaker
embeddings from C to D.

tl = L3(VQ(sl)) ∈ RQ×D. (5)

C. Training Scheme

In section IV-B, we present the personalized embedding
extraction process of P for a single speaker. In each training
step, SetPeER receives B sets of labeled utterances, each
representing a speaker and consisting of K utterances. We
utilize P to derive personalized speaker embeddings for
every layer of E. These embeddings are concatenated with
contextualized features extracted from the previous layer (or
features from E0 for the first layer), thereby integrating personal
information into the features generated at each layer. This
technique is commonly called Prefix Tuning [66].

xl = El([tl ; xl−1]), (6)

where El is the l-th layer of E′. We later show the difference
in fusion strategies between the extracted personalized em-
beddings and the deep, contextualized features in an ablation
study. Finally, the encoder’s output is temporally mean-pooled
and fed into a linear head to predict emotions relative to the
ground-truth labels using the cross-entropy loss LCE(ỹ, y).

Consistency-aware embedding generation. Ideally, P
should produce identical outputs given two sets of utterances
from the same speaker. Hence, to enhance the consistency of
P in producing personalized speaker embeddings, we propose
to use contrastive representation learning. Specifically, given
the input p ∈ RK×D for the personalized feature extractor, we
split it into two equal subsets p1 and p2 ∈ RK

2 ×D. We use P
to extract the speaker embeddings t1 and t2 for these two sets.
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TABLE VII: Speech emotion recognition on EmoCeleb-A and downstream datasets. Accuracy (ACC %, ↑) and F1-score (F1 %,
↑) are the evaluation metrics. Average accuracy (A-ACC %, ↑) and average F1-score (A-F1 %, ↑) across speakers are also
reported. ∗ denotes statistical significance (p < 0.05) based on 5 runs.

EmoCeleb-A MSP-Podcast-4 MSP-Podcast-8 MSP-Improv
Method ACC A-ACC F1 A-F1 ACC A-ACC F1 A-F1 ACC A-ACC F1 A-F1 ACC A-ACC F1 A-F1

HuBERT [12] 47.7 51.2 46.5 41.8 47.3 46.2 49.0 43.3 24.5 25.5 22.4 21.4 54.1 54.0 51.8 51.5
HuBERT-PT - - - - 49.4 46.1 49.9 42.0 24.4 26.8 23.9 24.1 56.0 55.7 53.8 53.3
Sridhar et al. [8] 48.3 52.0 46.9 41.8 49.0 46.7 49.5 42.2 25.0 27.5 24.8 24.2 55.7 54.9 53.1 52.5
PAPT [1] 48.6 53.4 47.1 42.1 50.0 48.3 50.9 43.5 25.2 27.4 24.8 24.4 56.2 56.0 53.6 53.4

SetPeER (ours) 50.1∗ 54.4 49.0∗ 45.4∗ 51.7∗ 51.1∗ 52.6∗ 46.9∗ 26.2 28.4∗ 26.1∗ 25.0 57.2 57.6∗ 54.0 53.9

TABLE VIII: Visual emotion recognition on EmoCeleb-V and MSP-Improv. SetPeER surpasses the baseline methods across all
evaluated metrics. ∗ denotes statistial significance (p < 0.05) based on 5 runs.

EmoCeleb-V MSP-Improv
Method ACC A-ACC F1 A-F1 ACC A-ACC F1 A-F1

VideoMAE [15] 38.6 33.6 36.7 27.0 52.8 52.0 49.9 48.2
VideoMAE-PT - - - - 54.1 54.3 52.7 51.7
Sridhar et al. [8] 39.0 33.5 37.6 27.4 54.2 54.2 52.5 52.1
PAPT [1] 39.2 33.4 38.0 27.2 54.5 54.7 53.0 52.8

SetPeER (ours) 39.2 34.2∗ 38.7∗ 28.0 57.5∗ 55.6∗ 56.6∗ 55.2∗

We enhance P’s ability to extract consistent features with an
InfoNCE contrastive loss [67].

LNCE = − 1

B

B∑
i=1

log[
exp(t1i · t2i /τ)∑

i̸=k exp(t
1
i · t2k/τ) + exp(t1i · t2i /τ)

],

(7)
where B represents the number of speakers we use for training
in one batch and τ stands for the temperature parameter.

Overall, SetPeER is optimized with the following loss
function with hyper-parameters λ1, λ2, and λ3

L = λ1LCE + λ2LNCE + λ3LV Q, (8)

where LV Q is the commitment loss associated with Vector
Quantization. More details on the commitment loss are in
[65].

V. EXPERIMENTS

A. Implementation and Training Details
All methods are implemented in PyTorch [68]. We provide

code in the supplementary materials. The code and datasets
will be published upon acceptance.

1) Model architecture: We adopt HuBERT-base [12] and
VideoMAE-tiny [15] as our audio and vision encoders, respec-
tively. These models are widely used foundational backbones
across various audio and vision tasks. It is important to note
we aim to develop and validate a general model suitable
for personalization across various backbone architectures.
Consequently, we select two widely used backbones across
various audio and vision tasks but with a relatively small
number of parameters for efficient training. Both architectures
consist of 12 transformer encoder layers with the feature
dimension D = 768 for HuBERT and D = 384 for VideoMAE.
We use the same personalization network P for both audio and
vision experiments, in which C = 64, Q = 4, and M = 512.
This results in ∼ 400K additional trainable parameters, about
0.5% of the number of parameters of HuBERT-base [12] and
1.2% of the number of parameters of VideoMAE-tiny [15].

2) Model training: We optimize the network weights using
the AdamW optimizer [69] on a single NVIDIA Quadro
RTX8000 GPU. The weight decay is 1e−4. The gradient
clipping is 1.0. We train all the models for 100 epochs with
a learning rate of 3e−5. We set λ1 = 1.0, λ2 = 0.1, λ3 = 0.1
for training loss weights. It is important to note that the
parameters λ1, λ2, and λ3 are selected through hyper-parameter
tuning. Setting λ2 too high prioritizes learning speaker-specific
attributes at the expense of overall emotion recognition ability,
leading to degraded performance. Conversely, setting λ2 too low
encourages the model to focus on general emotion recognition
without considering personalized features, which also results in
reduced performance, as demonstrated empirically in Section
V-C.

To facilitate set learning, our data loaders are designed at the
speaker level. Specifically, during training, a batch comprises
B speakers, each composed of a set of K utterances randomly
drawn from all utterances of the corresponding speaker. Con-
sequently, within an epoch, SetPeER encounters every speaker
in the dataset, though not necessarily all utterances. During
testing, we conduct inference on one speaker at a time, i.e.,
B = 1, accommodating varying numbers of utterances (K) per
speaker. However, we ensure the model never encounters more
than K utterances within a single batch. In all our experiments,
we set B = 8 and K = 8 during training.

3) Experiment overview & Notations: We utilize EmoCeleb-
A/V in two experimental scenarios: (1) as a new personalized
emotion recognition (ER) evaluation dataset, leveraging its
suitability as a benchmark due to its large number of speakers,
substantial samples per speaker, and diverse emotional labels
per speaker, and (2) as a pre-training dataset for personalization.
In the latter scenario, we first train SetPeER and baseline
models on the EmoCeleb-A/V dataset, followed by fine-tuning
these pre-trained personalized models on existing personalized
ER benchmarks (e.g., MSP-Podcast [14] for audio and MSP-
Improv [16] for vision). The primary experimental results are
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provided in Tables VII and VIII. The first four columns of
these tables present results when using EmoCeleb-A/V as the
evaluation dataset, while the remaining columns show results
when EmoCeleb-A/V is used for pre-training personalized
models, which are subsequently evaluated on other datasets.
We provide details of the used baselines in Section V-C1.

We evaluate SetPeER across multiple datasets in this study
(as detailed in Section V-B), each featuring a distinct number
of emotional categories. For the MSP-Podcast dataset, we
additionally report results on the four emotional categories
that overlap with EmoCeleb-A/V (happiness, anger, neutral,
and surprise). This allows us to benchmark the effectiveness
of EmoCeleb-A/V as a pre-training dataset under both same-
emotion-class (MSP-Podcast-4) and different-emotion-class
(MSP-Podcast-8) settings.

B. Datasets

We divide EmoCeleb into train, validation and test sets with
a distribution ratio of 70%, 10%, and 20%, respectively, on a
speaker-independent basis. This means speakers included in
the training set are excluded from the validation and test sets
to ensure no overlap. Additionally, we perform experiments on
two benchmark emotion datasets, i.e., MSP-Improv [16] and
MSP-Podcast [14] to evaluate the utility of our weakly-labeled
dataset and the effectiveness of our proposed method.

While MSP-Podcast has been used in prior research on
personalized speech emotion recognition [1], [8], no suitable
dataset has emerged with both high-quality visual data and a
diverse pool of speakers for audiovisual emotion recognition
experiments. Existing datasets like CMU-MOSEI and MSP-
Face offer visual information with a large speaker pool;
however, CMU-MOSEI lacks speaker identity labels, while
MSP-Face yields performance akin to random guessing [26].
Consequently, for visual evaluation, we opted for MSP-Improv
alongside EmoCeleb-V. Although MSP-Improv features a small
number of speakers (12), it remains a popular choice in current
visual and audio-visual emotion recognition literature.

• MSP-Improv is an acted audiovisual emotional database
that explores emotional behaviors during acted and impro-
vised dyadic interaction [16]. The dataset consists of 8,438
turns (over 9 hours) of emotional sentences, categorized
into four primary emotions: neutral, happiness, sadness,
and anger. The corpus has six sessions, and each session
has one male and one female speaker (12 in total). We
use sessions 1 − 4 as the training set, session 5 as the
validation set, and session 6 as the testing set.

• MSP-Podcast is the largest corpus for speech emotion
recognition in English. The dataset contains speech
segments from podcast recordings. Each utterance in the
dataset is annotated using crowd-sourcing with continuous
labels of arousal, valence and dominance in addition to
the categorical emotions. In this paper, we exclude any
samples that lack speaker identification. This refinement
process yields a total of 42,541 utterances, encompassing
over 71 hours of emotional speech content. The corpus
provides the official data split and has eight emotion
classes: neutral, happiness, sadness, anger, surprise, fear,

disgust, and contempt. We conduct the downstream
evaluation in two ways: (i) we use the subset with the four
emotion categories in EmoCeleb (MSP-Podcast-4); (ii)
we use all the eight emotion categories (MSP-Podcast-8).

C. Experimental Results

1) Quantitative Analysis: We pre-train SetPeER on Emo-
Celeb and then fine-tune it on the downstream datasets with
supervised emotion recognition. Thus, we report the model
performance on both EmoCeleb and downstream datasets.
Accuracy (ACC %, ↑) and F1-score (F1 %, ↑) are the evaluation
metrics. Additionally, we report the average accuracy (A-ACC
↑) and the average F1-score (A-F1 ↑) across speakers.

Four baseline methods are implemented and compared. We
do not benchmark our method against existing approaches
tuned for maximum within-domain performance with more
complex backbone architectures, as the backbone in SetPeER
can be interchangeable.

• Vanilla backbones. We train HuBERT / VideoMAE
on EmoCeleb and downstream datasets with the official
checkpoints.

• Pre-trained backbones (PT) This baseline represents the
performance of the backbone models with an intermediate
pre-training stage on the collected EmoCeleb-A/V datasets.
This serves as an ablation to isolate the contribution of our
dataset creation method alone, allowing us to distinguish
the impact of dataset pre-training from that of our proposed
architectural improvements.

• PAPT [1] trains speaker embeddings on an extensive
set of training speakers in a self-supervised fashion.
These embeddings are then incorporated into the gen-
erated features via prefix tuning for personalized emotion
recognition. In the testing phase on unseen speakers,
the method identifies the most closely aligned speakers
from the training set and uses the corresponding trained
embeddings to generate personalized features. SetPeER
differs from PAPT in two key aspects: Firstly, while PAPT
requires two iterations for personalization, our model can
be trained directly with labels, bypassing the need for
initial self-supervised training. Secondly, PAPT relies on
a diverse and large training speaker set for matching
unseen speakers, whereas our dataset performs well with
fewer speakers (see Table VIII). Efficiency-wise, our
model eliminates the need to match each test speaker with
every training speaker, substantially reducing inference
time. Nevertheless, as far as we know, PAPT remains the
only personalization method for unseen speakers without
retraining any components. For a fair comparison, we
initialize the backbone encoder of PAPT with our pre-
trained backbone (PT) on EmoCeleb.

• Sirdhar et al. [8] propose performing speaker matching,
in which for each unseen speaker, the method finds the
closest speakers in the train set and retrains the original
model with more weights on the selected speakers for
more personalized predictions. For fair comparisons, we
use features extracted from HuBERT [12] pre-trained
on EmoCeleb. It is important to note that the method



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 11

TABLE IX: Demographics (EmoCeleb-A). # S: # subjects. F1
(%) per demographic category.

Group # S HuBERT PAPT Ours

Caucasian (American) 452 47.2 48.1 50.2
Caucasian (European) 535 47.7 48.2 50.3

Caucasian (Australian) 63 39.6 40.3 40.9
East Asian 36 35.9 35.9 36.2

South Asian 122 45.4 47.9 46.7
African 52 44.9 45.7 47.9

African American 108 39.3 42.1 41.9

required model re-training and is not directly comparable
with PAPT [1] and SetPeER.

The audio and vision performances are provided in Tables
VII and VIII, respectively. Results in both tables show that
our proposed method outperforms all other competing methods
across various metrics. We can observe that HuBERT-PT
consistently outperforms HuBERT across both audio and
visual experiments. This underscores the suitability of our
datasets, EmoCeleb-A and EmoCeleb-V, not only as effective
evaluation datasets for personalization but also as promising
resources for large-scale pre-training in emotion recognition
tasks. SetPeER further boosts the performance of HuBERT-PT
by a large margin, especially in the per-speaker metrics (A-ACC
and A-F1), demonstrating the effectiveness of the proposed
personalized feature extraction pipeline. Compared to PAPT
[1], we not only demonstrate superior performance overall
but also remain effective on the MSP-Improv dataset with a
limited number of training speakers (ten speakers). On the
other hand, PAPT only achieves marginal improvements over
HuBERT-PT on the MSP-Improv dataset for both audio and
visual modalities, indicating its limitations when confronted
with a small pool of training speakers.

A demographic breakdown of the EmoCeleb-A dataset and
per-demographic performance is provided in Table IX. We
prompted Chat-GPT to collect celebrities’ demographics. The
demographic distribution is unbalanced (due to VoxCeleb’s
language). However, the dataset is still relatively diverse
compared to existing ones. The model’s performance with
demographic info compared to the baselines is provided; our
method outperforms the baselines for most groups.

2) Qualitative Analysis: To understand the information
learned in speaker embedding, we inspect the information
learned by the personalized encoder P. In particular, we
investigate the relation between the extracted speaker embed-
dings and gender, which is the only demographic information
available for the MSP-Podcast dataset [17]. Figure 7 displays
the 2D T-SNE visualizations [70] of speaker embeddings
from MSP-Podcast, with each point representing an utterance5.
Colors denote gender, with blue representing male and orange
representing female. It is evident that SetPeER can generate
linearly separable features with respect to gender, even without
explicit gender labels. This not only showcases SetPeER’s
capability in producing useful personalized features but also

5We cannot produce the T-SNE plot for our visual model due to the limited
speaker pool of MSP-Improv.

(a) Training set, full model (b) Testing set, full model

(c) Training set, w/o VQ (d) Testing set, w/o VQ

Fig. 7: t-SNE visualizations of speaker embeddings from MSP-
Podcast. Blue points represent male speakers and orange points
indicate female speakers. Representations by SetPeER (first
row) show clear separation w.r.t. gender.

TABLE X: Ablations for SetPeER. Fusion refers to fusing
speaker embedding with audiovisual features for personalized
emotion recognition. A and V stand for audio and vision
modalities respectively.

Modules MSP-Podcast-4 (A) MSP-Improv (V)
ACC F1 ACC F1

SetPeER 51.7 52.6 57.3 56.7
−LNCE 51.3 51.6 55.4 54.9
−V Q 51.0 51.8 56.4 55.1

Fusion Strategy
Prefix [66] 51.7 52.6 57.3 56.7
Addition 50.9 51.4 53.8 48.7
Cross-attn [72] 48.2 49.5 55.9 52.8

underscores the significance of gender in emotion recognition,
aligning with the literature [71].

3) Ablations: We perform extensive ablation studies to
demonstrate the effectiveness of each component, as shown in
Table X.

• Contrastive loss LNCE . Removing the contrastive loss
leads to notable performance degradation, with approx-
imately a 2% decrease in both accuracy and F1 score
on MSP-Improv (V). This underscores the importance of
maintaining uniform representations across various inputs
from the same speaker.

• Vector Quantization. Quantizing personalized speaker
embeddings proves to be effective, increasing the F1
metric by 1% on the MSP-Podcast-4 (A) and 1.8% on
the MSP-Improv (V) dataset. Furthermore, in Figures 7(a)
and 7(b), we can see a clear degradation in cluster quality
when a model is trained without the VQ module.

• Fusion strategy. Information in speaker embedding is
fused with the input to provide personalized emotion



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 12

Fig. 8: Impact of set size K on performance. Larger set sizes
lead to higher performance.

TABLE XI: SetPeER performance on the MSP-Podcast-4
dataset with different weak labeling strategies.

Acc A-Acc F1 A-F1
A → A 47.6 46.8 48.8 42.4
V → A 49.2 48.6 50.1 44.5
T → A 48.3 47.8 49.5 42.9
T + V → A 51.7 51.1 52.6 46.9
A+ V → A 51.0 50.2 50.9 45.2
T +A → A 51.5 50.9 52.8 46.1
A+ V + T → A 50.1 47.8 49.8 43.5

recognition. This work used Prefix Tuning for this purpose.
In addition to Prefix Tuning [66], which temporally
prepend tl with xl−1, we explore two other fusion
strategies, namely addition and cross-attention [72]. For
addition, we set Q = 1 and directly add tl to xl−1. For
cross-attention, we adapt the cross-attention formulation
proposed by Tsai et al. [72], where keys and values are
xl−1 and queries are tl. Overall, Prefix Tuning exhibits
notably superior performance compared to the other two
fusion strategies. The discrepancy likely arises because
Addition is constrained by a fixed number of embeddings
(Q = 1), whereas Cross-attention suffers from information
loss.

• Set size K. In Figure 8, we investigate the impact of set
size (K) on SetPeER’s learning process. Ideally, a larger
set size enables more precise construction of personal-
ized information, leading to more accurate predictions.
However, the practicality of having a large set size is
often limited by the availability of samples per speaker.
Therefore, finding the optimal value for K that balances
performance and practicality is crucial. As expected,
SetPeER becomes increasingly effective as K increases,
yet the returns appear to diminish at K = 8.

4) Effects of Cross-modality labeling: We investigate the
impact of different modality labeling strategies on the quality
of pre-trained personalized emotion recognition models. Specif-
ically, we use audio as the target label modality and construct
pre-training datasets by combining weak labels from audio,
video, and text. Using the proposed SetPeER architecture, we
pre-train on the curated weak labels and subsequently fine-
tune the models on the MSP-Podcast-4 dataset to identify the
modality labeling strategies that achieve the best performance.

The experimental results are presented in Table XI. Notably,
the proposed cross-modal labeling strategy, which uses two
auxiliary modalities to label the target modality, produced the
most effective pre-training checkpoints. This outcome can be
attributed to several factors. For single-modality labeling (e.g.,

V → A), the resulting labels tend to be of lower quality due
to their reliance on the performance of unimodal emotion
recognition models, which often degrade significantly in out-
of-domain settings. Conversely, labeling strategies that include
the target modality (e.g., A+ T → A) predominantly capture
easy samples—cases where the speech emotion recognition
model agrees with another modality—which limits their effec-
tiveness. Prior work has shown that training mostly on easy-
to-learn samples does not result in robust model performance
[73]. Cross-modal labeling strikes a balance between these
limitations. In particular, V + T → A avoids the pitfalls of
low-quality labels by retaining only high-agreement samples
between visual and textual emotion recognition models. At
the same time, it reduces the likelihood of retrieving overly
simplistic samples, as an emotion that is evident in audio and
text may not necessarily be straightforward in speech emotion
recognition.

VI. LIMITATIONS

Our work has several limitations. First, our cross-modal
labeling pipeline does not explicitly consider the relationships
between different emotions, treating all misclassifications
equally. This could lead to suboptimal label quality as some
misclassifications might be more acceptable than others, e.g.,
misclassifying sadness as neutral might be less problematic than
misclassifying anger as happiness). In future work, we plan
to explore alternative metrics that account for inter-emotion
relationships, potentially leading to more nuanced consistency
assessments between modalities.

Second, our current cross-modal labeling approach is limited
to generating single-modality labels using two other modalities,
e.g., vision + text → audio. This is because transferring from
a single modality to multimodal labels resulted in low-quality
annotations, e.g., text → audio + vision. Developing more
robust cross-modal transfer techniques that can reliably generate
multi-modal labels could further improve the quality and utility
of our dataset.

Finally, SetPeER requires a sufficient number of utterances
per speaker (at least eight in our experiments) for effective
set learning. This limits its applicability to scenarios where
fewer utterances are available per speaker. Addressing this
limitation by developing techniques that can effectively learn
from limited data is an important direction for future research.

VII. CONCLUSIONS

In this study, we introduce SetPeER, a modality-agnostic
framework designed for personalized emotion recognition. Our
approach leverages cross-modal labeling to curate a large
dataset for both training and evaluating personalized emotion
recognition models. We present an innovative personalized
architecture, enhanced with set learning, which is adept
at efficiently learning distinctive speaker features. Through
comprehensive experiments, we showcase the utility of the
EmoCeleb dataset and the superior efficacy of the proposed
method for personalized emotion recognition, outperforming
baseline models on the MSP-Podcast and MSP-Improv bench-
marks.
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[34] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the munich versatile
and fast open-source audio feature extractor,” in Proceedings of the 18th
ACM international conference on Multimedia, pp. 1459–1462, 2010.

[35] P. Barros, G. Parisi, and S. Wermter, “A personalized affective memory
model for improving emotion recognition,” in International Conference
on Machine Learning, pp. 485–494, PMLR, 2019.

[36] P. Barros, E. Barakova, and S. Wermter, “Adapting the interplay between
personalized and generalized affect recognition based on an unsupervised
neural framework,” IEEE Transactions on Affective Computing, vol. 13,
no. 3, pp. 1349–1365, 2020.

[37] P. Barros and A. Sciutti, “Ciao! a contrastive adaptation mechanism for
non-universal facial expression recognition,” in 2022 10th International
Conference on Affective Computing and Intelligent Interaction (ACII),
pp. 1–8, IEEE, 2022.

[38] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” Advances in neural information processing
systems, vol. 30, 2017.

[39] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh, “Set
transformer: A framework for attention-based permutation-invariant
neural networks,” in International conference on machine learning,
pp. 3744–3753, PMLR, 2019.

[40] K. Skianis, G. Nikolentzos, S. Limnios, and M. Vazirgiannis, “Rep the
set: Neural networks for learning set representations,” in International
conference on artificial intelligence and statistics, pp. 1410–1420, PMLR,
2020.

[41] D. dan Guo, L. Tian, M. Zhang, M. Zhou, and H. Zha, “Learning
prototype-oriented set representations for meta-learning,” in International
Conference on Learning Representations, 2021.

[42] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman, “Emotion
recognition in speech using cross-modal transfer in the wild,” in
Proceedings of the 26th ACM international conference on Multimedia,
pp. 292–301, 2018.

[43] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker
recognition,” arXiv preprint arXiv:1806.05622, 2018.

[44] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp. 16000–16009, 2022.

[45] C. Fabian Benitez-Quiroz, R. Srinivasan, and A. M. Martinez, “Emotionet:
An accurate, real-time algorithm for the automatic annotation of a million
facial expressions in the wild,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5562–5570, 2016.

[46] D. Kollias and S. Zafeiriou, “Expression, affect, action unit recog-
nition: Aff-wild2, multi-task learning and arcface,” arXiv preprint
arXiv:1910.04855, 2019.

[47] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda,
T. Yoshioka, X. Xiao, et al., “Wavlm: Large-scale self-supervised pre-
training for full stack speech processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.

[48] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak supervision,”
in International Conference on Machine Learning, pp. 28492–28518,
PMLR, 2023.

[49] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[50] D. Demszky, D. Movshovitz-Attias, J. Ko, A. Cowen, G. Nemade, and
S. Ravi, “Goemotions: A dataset of fine-grained emotions,” arXiv preprint
arXiv:2005.00547, 2020.

[51] S. Mohammad, F. Bravo-Marquez, M. Salameh, and S. Kiritchenko,
“Semeval-2018 task 1: Affect in tweets,” in Proceedings of the 12th
international workshop on semantic evaluation, pp. 1–17, 2018.

[52] S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihal-
cea, “Meld: A multimodal multi-party dataset for emotion recognition
in conversations,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Association for Computational
Linguistics, 2019.

[53] E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S. Chen,
“Carer: Contextualized affect representations for emotion recognition,”
in Proceedings of the 2018 conference on empirical methods in natural
language processing, pp. 3687–3697, 2018.

[54] P. Ekman, “An argument for basic emotions,” Cognition & emotion,
vol. 6, no. 3-4, pp. 169–200, 1992.

[55] A. R. Naini, M. A. Kohler, E. Richerson, D. Robinson, and C. Busso,
“Generalization of self-supervised learning-based representations for
cross-domain speech emotion recognition,” in ICASSP 2024-2024 IEEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 12031–12035, IEEE, 2024.

[56] A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “Data2vec:
A general framework for self-supervised learning in speech, vision and
language,” in International Conference on Machine Learning, pp. 1298–
1312, PMLR, 2022.

[57] D. Kollias, “Abaw: Valence-arousal estimation, expression recognition,
action unit detection & multi-task learning challenges,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2328–2336, 2022.

[58] D. Kollias, P. Tzirakis, A. Baird, A. Cowen, and S. Zafeiriou, “Abaw:
Valence-arousal estimation, expression recognition, action unit detection
& emotional reaction intensity estimation challenges,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5889–5898, 2023.

[59] D. Kollias, P. Tzirakis, A. Cowen, S. Zafeiriou, I. Kotsia, A. Baird,
C. Gagne, C. Shao, and G. Hu, “The 6th affective behavior analysis in-the-
wild (abaw) competition,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4587–4598, 2024.

[60] W. Zhang, F. Qiu, C. Liu, L. Li, H. Du, T. Guo, and X. Yu, “Affective
behaviour analysis via integrating multi-modal knowledge,” arXiv preprint
arXiv:2403.10825, 2024.

[61] W. Zhou, J. Lu, C. Ling, W. Wang, and S. Liu, “Boosting continuous
emotion recognition with self-pretraining using masked autoencoders,
temporal convolutional networks, and transformers,” arXiv preprint
arXiv:2403.11440, 2024.

[62] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in International conference on machine learning,
pp. 1180–1189, PMLR, 2015.

[63] C. Gini, “Measurement of inequality of incomes,” The economic journal,
vol. 31, no. 121, pp. 124–125, 1921.

[64] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[65] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation
learning,” Advances in neural information processing systems, vol. 30,
2017.

[66] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for
generation,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 4582–
4597, 2021.

[67] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NeurIPS Autodiff Workshop, 2017.

[69] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations (ICLR), (New
Orleans, LA, USA), OpenReview, 2019.

[70] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal
of machine learning research, vol. 9, no. 11, 2008.

[71] M. Sidorov, A. Schmitt, E. Semenkin, and W. Minker, “Could speaker,
gender or age awareness be beneficial in speech-based emotion recogni-
tion?,” in Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pp. 61–68, 2016.

[72] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal
language sequences,” in Proceedings of the conference. Association
for computational linguistics. Meeting, vol. 2019, p. 6558, NIH Public
Access, 2019.

[73] S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A.
Smith, and Y. Choi, “Dataset cartography: Mapping and diagnosing
datasets with training dynamics,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pp. 9275–9293, 2020.

[74] M. Norman, V. Kellen, S. Smallen, B. DeMeulle, S. Strande, E. Lazowska,
N. Alterman, R. Fatland, S. Stone, A. Tan, K. Yelick, E. Van Dusen,
and J. Mitchell, “Cloudbank: Managed services to simplify cloud
access for computer science research and education,” in Practice and
Experience in Advanced Research Computing 2021: Evolution Across
All Dimensions, PEARC ’21, (New York, NY, USA), Association for
Computing Machinery, 2021.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 15

Minh Tran is currently a fifth year Ph.D. candidate
in computer science from the University of Southern
California under the supervision of Prof. Mohammad
Soleymani. He received his bachelor’s degree in
Computer Science from University of Rochester in
2020. His research interests are Affective Computing,
Self-supervised Learning, and Machine Learning.

Yufeng Yin is currently a machine learning engineer
at Google Search Notification team. He received his
Ph.D. in computer science from the University of
Southern California in 2024 under the supervision
of Prof. Mohammad Soleymani. He received his
bachelor’s degree in Computer Science from Ts-
inghua University in 2019. His research interests
are Affective Computing, Multimodal Learning, and
Machine Learning.

Mohammad Soleymani (S’04, M’12, SM’19) is
a research associate professor of computer science
with the USC Institute for Creative Technologies.
He received his PhD in computer science from the
University of Geneva in 2011. From 2012 to 2014,
he was a Marie Curie fellow at Imperial College
London. Prior to joining ICT, he was a research
scientist at the Swiss Center for Affective Sciences,
University of Geneva. His main line of research
involves machine learning for emotion recognition
and behavior understanding. He is a recipient of the

Swiss National Science Foundation Ambizione grant and the EU Marie Curie
fellowship. He has served on multiple conference organization committees
and editorial roles, most notably as associate editor for the IEEE Transactions
on Affective Computing (2015-2021), general chair for ICMI 2024 and ACII
2021 and technical program chair for ACM ICMI 2018 and ACII 2017. From
2019-2022, he served as the president of the Association for the Advancement
of Affective Computing (AAAC). He is a member of the ACM, the AAAC
and a Senior Member of the IEEE.


