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A B S T R A C T

Metal-organic frameworks (MOFs) such as zeolitic imidazolate framework-8 (ZIF-8) are promising nanomaterials 
for various applications like drug delivery and energy storage. The efficacy of ZIF-8 in these applications highly 
depends on its morphology, including size and shape. However, understanding and controlling morphology 
during synthesis is challenging due to the complex interactions among synthesis conditions such as precursor 
concentration and reaction temperature. Traditional trial-and-error methods for morphology optimization are 
inefficient and cannot effectively account for the combined effects of conditions. Machine learning (ML) offers a 
powerful alternative for morphology prediction, which can accelerate the reverse engineering process to better 
understand how synthesis conditions affect morphology. Despite recent advances, developing accurate ML 
models and selecting the appropriate ones for specific applications remain a challenge. This study addresses these 
issues by experimentally investigating how variations in synthesis conditions, such as precursor concentrations, 
solvent properties, and temperature, affect ZIF-8 morphology. Using experimental data, this work further built 
and compared three ML models: Random Forest (RF), Support Vector Regressor (SVR), and Neural Network 
(NN). Among these, the NN model has the best performance in terms of R-squared and mean squared errors. 
These ML models provide insights into how synthesis conditions affect ZIF-8, thus setting the basis for future 
studies aimed at optimizing conditions and guiding more efficient manufacturing strategy to expand the appli
cations of this versatile nanomaterial.

1. Introduction

Metal-organic frameworks (MOFs) are a school of nanomaterials 
made from metal ions and organic ligands, which have porous structures 
with high surface areas and tunable properties [1]. Among these 
different MOFs, zeolitic imidazolate framework-8 (ZIF-8) has recently 
gained growing attention. ZIF-8 is made from zinc ions and imidazolate 
ligands, which creates a robust and highly porous network suitable for 
applications such as drug delivery and water purification. For example, 
the tunable size and surface area of ZIF-8 not only facilitates efficient 
loading of therapeutic agents for targeted drug delivery but also enables 
effective adsorption of contaminants in water purification.

Despite its potential, the performance of ZIF-8 in these applications 
critically depends on its morphology, including size and shape. How
ever, achieving precise control over these morphological properties 
during synthesis is challenging due to the complex relationships of 
synthesis conditions, such as the concentration of raw materials and 

reaction temperature. To overcome the challenge, it is critical to un
derstand how different synthesis conditions affect the resulting 
morphology of ZIF-8 and develop strategies for controlling these con
ditions with high precision for future large-scale material manufacturing 
[2].

Current approaches for understanding ZIF-8 synthesis and control
ling its morphology generally rely on trial-and-error methods, which are 
generally inefficient and time-consuming. Computational models, such 
as those using machine learning (ML) algorithms, offer a powerful 
alternative, which offer valuable insights for ZIF-8 synthesis and reduce 
experimental costs by predicting the outcomes of future experiments 
based on historical data [3]. Recent advances in ML have demonstrated 
their potential to predict ZIF-8 nucleation and growth [4]. However, 
existing models focus on individual synthesis conditions at a time, which 
limits their ability to address the multifactorial nature of ZIF-8 synthesis. 
This limitation also hinders a deep understanding of how synthesis 
conditions collectively affect ZIF-8 morphology.
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Additionally, several key questions remain unaddressed in applying 
ML to gain insights of ZIF-8 synthesis, although they have the potential 
to reduce the reliance on time-consuming and costly experiments. These 
challenges include selecting the most appropriate ML model for specific 
predictive objectives and developing robust models that offer explain
able insights. Among these, the choice of ML model is crucial, since it 
directly affects prediction accuracy and reliability. Thus, assessing and 
selecting the appropriate ML model is essential for effectively guiding 
synthesis. Moreover, ML models should offer not only accurate pre
dictions, but also interpretations of how different synthesis conditions 
affect ZIF-8 morphology. The interpretability is critical for under
standing synthesis process and informing future manufacturing strate
gies. Developing ML models that can translate data into actionable 
insights will enable more precise control over ZIF-8 synthesis, but this 
field remains underexplored.

The development of ML models is also hindered by the availability of 
databases, especially when considering various synthesis conditions that 
require many data. However, obtaining such datasets is often chal
lenging due to the complexity and cost of experiments, such as ZIF-8 
synthesis and characterization. Thus, maximizing information from 
limited data becomes essential. For example, small datasets obtained 
from the early stage of experimentation, where specific synthesis con
ditions are studied, can provide valuable insights to inform future work 
and enable more targeted experiments. Although building ML from 
small datasets can expedite research iterations, this area remains rela
tively overlooked.

To address these challenges, this work investigates how different 
synthesis conditions, including the amounts of raw materials, solvent 
properties, and reaction temperature, affect ZIF-8 morphology, with a 
focus on its size. Using data collected from our experiments, this work 
has built three different ML models to predict the size of ZIF-8, which 
include random forest (RF), support vector regressor (SVR), and neural 
network (NN). Based on these models, this study further conducted 
thorough comparison to evaluate their accuracy and predictability.

Findings from this work show the potential of ML models, particu
larly the NN model, not only for predicting ZIF-8 morphology but also 
for offering interpretative insights into the synthesis process. These 
models provide a digital platform for navigating the parameter space 
defined by various synthesis conditions, thus setting a foundation for the 
controlled synthesis of ZIF-8 with desirable morphology. By enhancing 
our ability to predict and control ZIF-8 morphology, these models pave 
the way for developing more efficient and precise synthesis strategies in 
the future, thus ultimately broadening the applications of this versatile 
nanomaterial.

2. Experimental details

2.1. Synthesis and characterization of ZIF-8

A one-pot method by combining zinc nitrate hexahydrate (Zn 
(NO₃)₂⋅6H₂O) and 2-methylimidazole (Hmim) was used for ZIF-8 syn
thesis [5]. Specifically, the objective was to study how varying different 
synthesis conditions individually and collectively affect ZIF-8 
morphology, and to collect data for ML model development.

For ZIF-8 synthesis, the molar ratio of Zn(NO₃)₂⋅6H₂O to Hmim was 
first varied by adjusting the amount of Hmim used, while maintaining 
the total amount of solvent constant. For example, previous studies, such 
as those by Kida et al. [6]., have shown that increasing the molar ratio of 
Zn to Hmim may decrease the average size of the ZIF-8. Based on these 
findings, three molar ratios of 1:60:2228, 1:100:2228, and 1:140:2228 
(Zn:Hmim:solvent) were used in this work.

Additionally, this work investigated the effects of solvent composi
tion on ZIF-8 morphology. Mixtures made of double distilled water 
(ddH2O) and methanol were used for adjusting solvent properties, 
including density, polarity, and viscosity, and for evaluating their effects 
on ZIF-8 morphology. For example, previous research has shown that 

the volume ratios between ddH2O and methanol affects the morphology 
of ZIF-8, with higher methanol volumes resulting in larger nanoparticles 
[7,8]. Thus, the volume ratios between methanol and ddH2O were 
chosen as 50/50, 70/30, and 90/10 in our experiments.

This study also adjusted the temperature to evaluate its effect on the 
morphology of ZIF-8 due to conflicting reports. For example, as sug
gested in the literature, higher temperature accelerates nucleation, 
which generally reduce the size of ZIF-8 [9], while others have shown 
limited temperature influence on morphology [10]. Given these, ZIF-8 
was synthesized at three different temperatures of 0◦C, 24◦C, and 
50◦C to investigate their effects on morphology. These synthesis factors 
(i.e., molar ratio, solvent composition, and temperature), each with 
three level, led to 27 unique experimental combinations. To obtain 
reliable results, replicates of experiments for each combination were 
performed to collect sufficient data for model development.

After synthesis, ZIF-8 samples were characterized by focusing on the 
size since it is crucial for applications such as drug delivery, for which 
the size of ZIF-8 affects endocytosis and drug loading rate[11]. Trans
mission electron microscopy (TEM) was used to obtain high-resolution 
images, and the sizes of ZIF-8 were quantified using ImageJ software. 
Based on the imaging data, 100 nanoparticles of ZIF-8 were identified 
and analyzed per experiment to determine the size distribution and es
timate the average size. The average size data (model output) was 
further used together with the synthesis factors (model inputs) to 
develop and validate ML models.

To validate the synthesis and further characterize the ZIF-8, X-ray 
diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses were also 
performed. XRD was used to confirm the crystalline structure and phase 
purity of the synthesized ZIF-8, while BET analysis was used to obtain 
information on the specific surface area and pore volume, which offered 
additional insights into ZIF-8’s morphological features and confirmed 
the success of our experiments.

2.2. Machine learning model development

To address key challenges in optimizing ZIF-8 synthesis and 
improving predictability of computational tools, this work built and 
compared three ML models by considering difference in algorithms and 
our modeling objectives. Random Forest (RF), which is a type of decision 
tree-based algorithms, is chosen for its capability to ensemble the results 
from individual decision trees for reducing the effect of data uncertainty. 
This ability of RF is important since the goal in this study is to build 
models with small datasets, which may contain uncertainty and affect 
the modeling results. Thus, an RF model may potentially address such 
issues and offer insights of the effects of synthesis conditions on ZIF-8 
morphology [12]. For the second model, this study focused on the 
regression-based algorithms and used Support Vector Regressor (SVR). 
This method was used for its high flexibility in modelling non-linear 
relationships without requiring explicit mathematical expressions 
[13]. To leverage the superior self-learning capabilities of neural 
network (NN) [14], an NN model was built to compare prediction ac
curacy and model interpretability. By comparing these models, the 
specific objective in this work was to identify the most effective 
modeling approach for predicting ZIF-8 morphology and for gaining 
interpretable insights into the synthesis process of ZIF-8.

An overview of the modeling approach in this work is briefly given in 
Fig. 1. To build individual ML models, our collected data was divided 
into training and testing sets. Initially, the training set was used to 
identify the optimal hyperparameters for each of the three models 
considered. For this purpose, hyperparameters were randomly assigned 
to build surrogate models within the searching domains of hyper
parameters, which were defined offline for different algorithms. 
Following this, a grid search method [15] was used to identify the 
optimal hyperparameters for individual models. To expedite model 
development and reduce complexity, constraints were also used for 
these hyperparameters of individual models considered in this study.
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Once the optimal hyperparameters have been identified, they were 
fixed for the final model calibration. These models describe the re
lationships between the size of ZIF-8 (the model output) and the syn
thesis conditions (the model inputs). In this study, these inputs include 
the amount of Hmim, reaction temperature, and the density, polarity, 
and viscosity of the solvents used in material synthesis. To evaluate the 
accuracy and performance of each model, metrics such as R-squared (R2) 
and mean squared errors (MSE) were used, which were calculated using 
equations as follows: 

MSE =
1
n

∑n

i=1
(yi − yi)

R2 = 1 −

∑n

i=1
(yi − yi)

∑n

i=1
(yi − y)

where yi is the ZIF-8 size determined with collected data, yi represents 
model predictions, y is the mean of ZIF-8 size, and n is the total number 
of datapoints for MSE and R2 calculations.

To evaluate model predictability, the testing set that was not used for 
hyperparameter optimization or model training were used to calculate 
R2 and MSE. To provide a comprehensive comparison among models, 
violin plots were adopted to visualize the distributions of R2 and MSE, 
which enabled a visual comparison of central tendencies and variabil
ities among different models. To achieve this, the collected data was 
reshuffled to create new, distinct datasets that were not used in the 
original model training and testing phases. The violin plot analysis and 
visualization ensured a robust comparison and helped with the identi
fication of the most suitable model for predictive analysis.

3. Results and discussion

3.1. Morphological changes in synthesized ZIF-8

The morphology of ZIF-8 is significantly affected by different syn
thesis factors, including the amount of Hmim, solvent density, polarity, 
viscosity, and reaction temperature. Fig. 2 shows some of our repre
sentative results of ZIF-8 synthesized under three different conditions. 
For Fig. 2(a)~(c), ZIF-8 was synthesized at a molar ratio of Zn 
(NO₃)₂⋅6H₂O to Hmim to solvent of 1:60:2228 at a temperature of 50 ◦C, 
using a solvent made from 8 ML of double distilled water (ddH2O) and 
8 ML of methanol. By contrast, Fig. 2(d)~(f) show the results at a lower 
temperature of 0 ◦C, while keeping other synthesis factors unchanged. In 
addition, Fig. 2. (g)~(i) show the results of ZIF-8 made at a different 
molar ratio of Zn(NO₃)₂⋅6H₂O to Hmim to solvent of 1:140:2228 and at a 
temperature of 24 ◦C, using a mixed solvent with 8 ML of ddH2O and 
8 ML of methanol.

As shown in Fig. 2(a) and (d), reducing the synthesis temperature 
leads to an increase in the size of ZIF-8, by examining several randomly 
selected ZIF-8 nanoparticles. This trend is further confirmed by the size 
distributions as given in Fig. 2(c) and (f), for which 100 nanoparticles 
were identified from TEM images and used for analysis. Furthermore, 
the size of ZIF-8 increases when both the molar ratio and temperature 
are adjusted as shown in Fig. 2(g) and (h). Additionally, despite the size 
changes among different conditions, ZIF-8 nanoparticles maintained 
their characteristic rhombic dodecahedron shapes with distinct angles 
and truncated corners for both synthesis conditions as shown in Fig. 2
(b), (e), and (h). These results are consistent with existing literature on 
ZIF-8 morphology [6]. It is important to note that the size of ZIF-8 at 24 
◦C is different from these at 0 ◦C and 50 ◦C, due to changes in both the 
molar ratio and temperatures. At 24 ◦C, as shown in Fig. 2(g), the 
increased concentration of Hmim likely promoted ZIF-8 nucleation and 
growth, thus resulting in larger crystals. However, when the molar ratio 
was kept constant, as in the experiments shown in Fig. 2(a) and (d), the 
size of ZIF-8 at 24 ◦C changed from 59 nm to 67 nm, which is similar to 
the sizes observed at 0 ◦C and 50 ◦C. This further suggests that the 
changes in both molar ratio and temperature are the primary factors that 
can affect ZIF-8 morphology.

All ZIF-8 samples were characterized using XRD. Fig. 3(a), (b), and 
(c) show the XRD spectra for ZIF-8 synthesized under three conditions 
described earlier. Fig. 3(a) shows the XRD results for samples prepared 
with a molar ratio of 1:140:2228 at 24 ◦C, using 8 ML of ddH2O and 
8 ML of methanol as the solvent. Fig. 3(b) shows the results at a molar 
ratio of 1:60:2228 at 0◦C, whereas Fig. 3(c) shows the results at 50◦C 
under the same molar ratio. These XRD patterns indicate that the syn
thesized ZIF-8 samples are highly crystalline, thus suggesting that var
iations in the experimental conditions did not significantly affect the 
crystal structures.

Additionally, BET analysis was performed under N2 at 77.35 K to 
characterize the surface area and micropore volume of the synthesized 
ZIF-8 samples. For the three aforementioned experimental conditions, 
the surface area of ZIF-8 synthesized at 50 ◦C with a molar ratio of 
1:60:2228 was approximately 1410.1 m2/g, with a micropore volume of 
about 0.7036 cm3/g. In contrast, ZIF-8 synthesized at 0 ◦C with the same 
molar ratio exhibited a surface area of about 1260.83 m2/g and a 
micropore volume around 0.877 cm3/g. ZIF-8 synthesized with a molar 
ratio of 1:140:2228 at 24 ◦C has a surface area around 1140.94 m2/g and 
a micropore volume approximately 0.863 cm3/g. These material char
acterization results in this study are consistent with reported values in 
the literature [16].

3.2. ML model development and comparison

Selecting the most suitable ML modelling approach and optimizing 
model hyperparameters for predictive analysis are critical. The grid 
search was used to identify the optimal combinations of 

Start 

Training data 

Surrogate model design 

Model predictions 

Grid search to 
identify the optimal 

hyperparameters 

Predicting morphology to 
guide future experiments  

Yes 

No 

Model 
training 

Experiments to collect data 

Testing data 

Testing 

Optimized model 

Fig. 1. Schematic overview of the model development and evalua
tion procedures.
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hyperparameters for individual models. Fig. 4 shows the heatmaps 
generated from the grid search for different models, where R2 was used 
to evaluate the effect of various combinations of two specific hyper
parameter on model training. In each heatmap, the rows and columns 
represent different values of selected hyperparameters. Each cell shows 
the R2 value corresponding to a specific combination of these hyper
parameters defined by its row and column. Color changes within the 
heatmaps also visually demonstrate the effect of these combinations on 
model performance, thus facilitating the optimization of 
hyperparameters.

To build the RF model, this work focused on optimizing several 
hyperparameters to improve its performance. Simulations were per
formed to study if bootstrapping that adjusts random sampling with 
replacements could improve model accuracy. Additionally, this work 
optimized the minimum samples required for leaf nodes in order to build 
a smooth RF model, tested the minimum samples required for splitting 
nodes to avoid overfitting, and adjusted the maximum depth of trees to 
improve model generalization. Furthermore, the number of decision 
trees were optimized to balance the tradeoff between computational 
cost and model accuracy. Given these hyperparameters create a multi
dimensional space that is challenging to visualize, Fig. 4(a) shows a 
heatmap of R2 for the combination of the number of trees and the 

minimum samples for leaf as an example. As seen, increasing the number 
of trees improves the performance of the RF model.

For SVR model, this work optimized the regularization factor (C) to 
find a tradeoff between model accuracy and complexity while avoiding 
overfitting. Both Gaussian and Sigmoid kernels were considered initially 
to determine which kernel better captures patterns in the data. Addi
tionally, the effect of gamma and epsilon were studied, since these two 
parameters define the acceptable margin of prediction errors and affect 
the model’s robustness [17]. Similar to the RF model, Fig. 4(b) shows a 
heatmap of R2 values for the combinations between the regulation 
parameter and epsilon of the SVR model. This heatmap suggests that 
higher values of these hyperparameters lead to increased model 
accuracy.

For the NN model, this work focused on identifying the optimal 
numbers of hidden layers and neurons per layer, considering our data 
size. Similar to the other two models, this creates a multidimensional 
parameter space for the heatmap based visualization. Thus, Fig. 4(c) 
only shows how different combinations of the total number of hidden 
layers and the number of neurons used in the first hidden layer affect the 
model performance for demonstration. The cell values and color gradi
ents in Fig. 4(c) indicate complex relationship between these two 
hyperparameters since no clear trends can be observed. Using the grid 

Fig. 2. Characterization results of ZIF-8 morphology: (a), (b), (d), (e), (g) and (h) present the size and structure of ZIF-8 synthesized under three different conditions, 
(c), (f), and (i) show the size distributions of the materials based on 100 characterized samples of ZIF-8.
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search algorithm, Table 1 summarizes the optimal hyperparameters of 
each model.

To evaluate and compare the accuracy and predictability of different 
models, the MSE and R² values were calculated between the predicted 
sizes and these estimated from imaging data. For visualization and 
demonstration, scatter plots were used for one set of training and testing 
data as shown in Fig. 5. In these plots, red triangles represent the 
training data, while blue circles represent testing data points. In all 
models for both the training and testing datasets, the predictions are 
randomly scattered around the perfect prediction line (the dotted red 
line), thus suggesting that these ML models can provide accurate 
predictions.

Additionally, to better demonstrate the capability of each model for 
dealing with potential uncertainty in the data, the collected data was 
shuffled to create multiple distinct training and testing datasets. 
Following this, multiple rounds of model evaluation were performed 
using these datasets and calculated the MSE and R² values in each round. 
To ensure the reliability of analysis, violin plots were used to visualize 
the distributions of MSE and R2 for both the training and testing phases. 
The comparison results are shown in Fig. 6, where the red markers 
represent the median values of MSE and R2 in these violin plots for each 
model.

As shown in Fig. 6(a) and (c), different models have demonstrated 
distinct performance during the training phase. The SVR model has 
significantly poor performance as compared to other models. Its larger 
MSE and smaller R2 values, with a wider and spread distributions of 
these metrics, indicate the less robustness and lower generalization 
capability of the SVR model. In contrast, the RF and NN models have 
smaller MSE and larger R2 values, which suggests that these models have 
the capability to capture and describe the variability in the training data. 
Additionally, the R2 values for the RF and NN models are above 0.9, thus 
confirming their strong predictability on training data.

To further compare the performance of these models, Fig. 6(b) and 
(d) show the violin plots of the MSE and R2 during the testing phases, 
using the models from the training phases. As compared to the results 
from the training phases, the NN model outperforms the other models. 

Fig. 3. XRD characterization to confirm the crystal structures of ZIF-8 syn
thesized under different conditions.

Fig. 4. Heatmaps illustrating the effect of hyperparameter combinations on R2 values: (a) shows how variations in the number of trees and minimum samples per leaf 
affect R2 for the RF model, (b) shows the effects of regularization parameter and epsilon on R2 for the SVR model, and (c) demonstrates how the total numbers of 
hidden layers and neurons in the first hidden layer jointly affect R2 for NN model.

Table 1 
Hyperparameters of the RF, SVR, and NN models.

Models Optimized hyperparameters

RF Bootstrapping was set to False. The minimum samples of leaf and the 
minimum samples of split were optimized as 1 and 3, respectively. The total 
number of trees was set to 10 and the maximum depth of trees was set to 20.

SVR Gaussian kernel function was used. The regularization factor, gamma, and 
epsilon values were set to 30, 1, and 5, respectively.

NN The optimal number of hidden layers was 3 and the number of neurons 
used in each layer was 30, 18, and 6, respectively.
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The NN model exhibits much smaller MSE and larger R2 values, each 
with a narrower and more concentrated distribution. This indicates that 
the NN model is more consistent and accurate when dealing with 
different datasets unseen during the training phases. In comparison, 
other models all have wider distributions of the MSE and R2 metrics, 
which indicates their less effective generalization to unseen data that 
might be distinct from training data. Integrating these observations from 
Fig. 6, the NN model’s narrower distributions of MSE and R2 across both 
the training and testing phases confirm its superior performance for 
morphology prediction.

The superior performance of the NN model may come from three 
aspects. (i) The NN’s model structures may help improve prediction 
performance. In this work, the NN’s model structure is optimized by 
adjusting the number of hidden layers and the number of neurons in 
individual layers. This optimization allows the NN model to effectively 
extract information from data and handle the complex nonlinear re
lationships between the morphology of ZIF-8 and synthesis conditions, 
thus contributing to the model’s robustness and generalization perfor
mance. (ii) The NN model may benefit from a more focused hyper
parameters optimization. By concentrating on a limited set of 

hyperparameters in this work, namely, the hidden layer and neurons, 
the risk of overfitting can be reduced as compared to other models that 
required extensive hyperparameter tuning to obtain similar perfor
mance as the NN model. For example, the RF model has to use the grid 
search method to adjust multiple parameters to obtain similar MSE re
sults as the NN model, which include the number of decision trees, 
maximum tree depth, minimum samples per node for splitting, mini
mum samples per leaf, and bootstrapping. This complexity may lead to 
overfitting, thus causing the variability in the MSE and R2 distribution 
during the testing phases with unseen datasets. (iii) The algorithm itself 
used for developing each individual model may play a significant role in 
performance. While the RF model performs well on training datasets, it 
struggles with the testing datasets, which is possibly caused by the po
tential imbalances and representative issues in datasets. Essentially, RF 
model uses bagging with random subsets of training data to build mul
tiple decision trees, which may limit its capability to interpret unseen 
data from other subsets. Based on the results in Fig. 6, the NN model has 
better overall performance with larger R2 and smaller MSE values, as 
compared to decision tree and regression-based modeling approaches.

Fig. 5. Predicted vs. actual mean values of ZIF-8 size (nm): (a), (b), and (c) show the predictions for the RF, SVR, and NN models, respectively. Red triangles 
represent the training data, while blue circles represent testing data. The x-axis shows the estimated ZIF-8 size from TEM images using ImageJ and the y-axis show the 
predicted size using these models and measurements of synthesis conditions.

Fig. 6. Violin plots evaluating model consistency and generality: (a) and (b) show the MSE values for the training and testing datasets of the RF, SVR, and NN models 
respectively; (c) and (d) present the R2 values for the training and testing datasets using the same models.
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3.3. Explainable analysis using ML models

Computational models offer valuable insights into how different 
synthesis conditions affect the morphology of ZIF-8. This work focuses 
on RF, SVR, and NN models due to their distinct methodological 
strengths. For example, as an ensemble method, RF integrates results 
from multiple decision trees to make model prediction, which addresses 
data uncertainty and improves model robustness and stability. The SVR 
model is chosen for its ability to handle complex and nonlinear re
lationships since liner models may not sufficiently describe the effects of 
synthesis conditions on ZIF-8 morphology. Moreover, the NN model is 
selected for analysis due to its superior flexibility in modeling compli
cated patterns and relationships in data. Using these models, the 
objective in this work is to identify the most significant conditions that 
affect the size of ZIF-8 for future further studies aimed to address 

limitations in current synthesis approaches that often focus on experi
mentally adjusting one condition at a time. Ranking significant synthesis 
conditions will also set the basis to prioritize future experiments by 
focusing on these most critical factors to accelerate knowledge discovery 
and ZIF-8 synthesis with tunable morphology.

To achieve this, SHapley Additive exPlanation (SHAP) analysis were 
used to rank the effect of synthesis conditions on ZIF-8 size and validate 
these findings with the permutation analysis. Fig. 7 shows the SHAP 
summary plots and bar plots of the permutation analysis, which quan
titatively and visually demonstrate the impacts of synthesis conditions. 
The results in Fig. 7 indicate that the amount of Hmim in reactions, 
solvent properties, and temperature can affect ZIF-8 synthesis, but with 
varying degrees of impacts. For example, the SHAP summary plots in 
Fig. 7(a), (c), and (e) show that Hmim and polarity are consistently 
identified as the most significant conditions across the RF, SVR, and NN 

Fig. 7. Visual demonstration and comparison of the effect of synthesis conditions on ZIF-8: (a), (c), and (e) show the SHAP analysis for the RF, SVR, and NN models, 
respectively, while (b), (d), and (f) present the results of permutation analysis using the same models.
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models. Additionally, the SHAP plots of Hmim exhibit spare dot distri
butions with different colors that highlight the contribution of each 
datapoint for analysis, which confirms the significant effect of Hmim on 
ZIF-8 synthesis. In contrast, density as shown in these figures, particu
larly Fig. 7(c) and (e), has more centralized dot distributions, which 
suggests that density has less influence and might cause model redun
dancy for the SVR and NN models.

Additionally, there are discrepancies in the rankings across different 
models. While the SVR and NN models provide consistent rankings, the 
RF model has different results. For example, all three solvent properties 
have a greater impact on ZIF-8 size in the RF model as shown in Fig. 7(a), 
as compared to reaction temperature. This discrepancy may arise from 
several factors, which include how data from synthesis experiments are 
used for RF model development and the methodological difference in 
modeling methods. Both SVR and NN models can more effectively 
capture the nonlinear relationships between synthesis conditions and 
the size of ZIF-8 by looking into data directly [18]. In contrast, the RF 
model as an ensemble decision tree-based method may prioritize syn
thesis conditions differently based on how the algorithm splits the data 
for training individual trees, which affects the final ranking of conditions 
when merging the results from individual trees.

Moreover, the RF model quantifies the effect of synthesis conditions 
on ZIF-8’s size by measuring changes in the training objective function 
across trees, thus potentially contributing to different rankings 
compared to the SVR and NN models. The discrepancy in SHAP value 
rankings between the RF model and the SVR and NN models can be also 
introduced by how these modeling algorithms treat discrete datapoints. 
Although synthesis conditions can be theoretically continuous, con
ducting massive experiments is impractical and only limited numbers of 
experiments were conducted to collect discreate data points for model 
training. As compared to the SVR and NN models that can generalize 
well from sampled discrete data, RF model is more sensitive due to its 
decision tree-based structure, which splits data based on specific values. 
This could further introduce sparse and concentrated datapoints that 
may shift the ensemble results towards these dense regions of data, thus 
leading to biased results. This methodological difference may affect 
feature importance calculation and contribute to ranking discrepancies.

As shown in Fig. 7(b), (d), and (f), permutation analysis is also used 
to validate and compare SHAP values for individual modeling methods. 
For the SVR and NN models, permutation analysis confirms that Hmim 
and polarity are the most significant synthesis conditions, followed by 
reaction temperature, viscosity and density. However, the RF model 
provides different rankings among solvent properties. Specifically, the 
RF model ranks Hmim as the most significant condition, but identifies 
viscosity as the second most significant factor, according to permutation 
analysis, where the SHAP summary plot of the same model shows po
larity as the second most important. This discrepancy may be caused by 
the fact that SHAP accounts for the interactions among synthesis con
ditions, while permutation analysis emphasizes the impact of individual 
conditions.

Recognizing the changes in rankings among three solvent properties 
for the RF model, it is important to point out that viscosity, density, and 
polarity show similar permutation values in Fig. 7(b). The similarity in 
permutation values indicates their comparable effects on ZIF-8 synthe
sis, though Hmim remains the impactful factor. For example, the per
mutation analysis shows values of 0.14 for polarity, 0.18 for viscosity, 
and 0.12 for density. These values are significantly lower than the value 
of 0.54 for Hmim. This suggests that while all solvent properties have 
similar effects, Hmim can directly control ZIF-8 nucleation and growth, 
which may lead to significant size changes in ZIF-8 with even minor 
variations in the amount of Hmim.

The consistent ranking about the effect of synthesis conditions on 
ZIF-8 from the SHAP summary plots and permutation analysis for both 
the SVR and NN models confirms their robustness in identifying influ
ential synthesis conditions. The agreement between the SVR and NN 
models also cross validates their accuracy and suggests a reliable 

understanding of how synthesis conditions affect the morphology of ZIF- 
8. In contrast, the different rankings from the RF model, particularly 
among solvent properties, highlight the complex interactions and 
varying impacts of these conditions. For example, viscosity affects mass 
transfer during synthesis, which changes molecules movements and 
bonding between zinc ions and organic ligands. On the other hand, 
polarity is related to dielectric constants and dipole moments, which 
affects molecular interactions in the reactions. Although mass transfer 
affects how molecules interact, viscosity does not directly affect polarity. 
These may highlight the inherent complex nature among different sol
vent properties in the synthesis process.

In summary, integrating SHAP and permutation analyses with ML 
models provides a thorough understanding of individual and interactive 
effects of synthesis conditions. This combined approach improves model 
explainability and provides implementable insights for experimental 
design. Leveraging the combined analytical methods, it may become 
possible to narrow down the number of conditions to test for material 
synthesis optimization. The reliability of SVR and NN for synthesis 
condition analysis, coupled with the unique insights from RF, also 
highlights the value of using multiple models for a comprehensive 
evaluation. Considering the accuracy and consistency of the NN model 
compared to other models, we therefore focus on using the NN model for 
predictable analysis below.

3.4. Predictable analysis using ML models

To illustrate the potential applications of the NN model, how changes 
in synthesis conditions affect ZIF-8 size were visualized. However, 
visualizing predictions using the NN model has its inherent challenges 
due to the five-dimensional nature of the synthesis conditions (or five 
model inputs). To address this, two-dimensional (2D) slices were used to 
demonstrate the relationship between the size of ZIF-8 and a pair of 
synthesis conditions as shown in Fig. 8. Specifically, this work focuses on 
visualizing the joint effect of Hmim with other conditions since Hmim is 
the dominating condition that affects ZIF-8 size based on the SHAP and 
permutation analyses above.

Using the NN model, Fig. 8(a) shows the predicted joint effects of 
Hmim and polarity on the size of ZIF-8, with other synthesis conditions 
held constant at their mean values. The color bar indicates the size of 
ZIF-8, and these white dotted lines represent contours that distinguish 
regions with different sizes. As seen, the size of ZIF-8 increases when 
polarity is lower and the concentration of Hmim is higher. This is likely 
because a lower polarity increases the solubility of Hmim, thus 
increasing the concentrations of the ligand in the solution. The higher 
concentration of Hmim therefore can accelerate nucleation and promote 
the growth of larger ZIF-8 by providing more ligands. In contrast, a 
decrease in the concentration of Hmim results in a limited number of 
ligands in the solution, thus leading to formation of smaller ZIF-8.

Additionally, the contours in Fig. 8(a) are curvy and nonuniformly 
distributed within the 2D parameter space defined by Hmim and po
larity. This indicates a nonlinear relationship between these two syn
thesis conditions, which may present challenges for controlling the ZIF-8 
synthesis process, thus requiring additional attention in future large- 
scale manufacturing of ZIF-8. For example, at low Hmim concentra
tions, even small changes in polarity can cause significant variations in 
the size of ZIF-8, as illustrated by the narrow gap between adjacent 
contours in Fig. 8(a). Understanding this nonlinear relationship is crit
ical for precise control over ZIF-8 size. By analyzing and visualizing how 
different concentrations of Hmim interact with varying polarities, it 
becomes possible to tailor the synthesis conditions to achieve desired 
morphology. For example, when larger ZIF-8 is preferable, optimizing 
both the solvent polarity and Hmim concentration within the identified 
regions can help achieve the desired results. Similarly, if smaller ZIF-8 is 
required, adjusting these parameters can help refine the synthesis 
process.

A similar nonlinear relationship can be also observed between Hmim 
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and temperature as shown in Fig. 8(b). As seen, temperature plays a key 
role in ZIF-8 synthesis and must be carefully selected. For temperature 
below 20◦C, the size of ZIF-8 increases with higher Hmim concentra
tions. Likely, this is because, at low temperatures, low concentrations of 
Hmim, cannot provide sufficient ligands to facilitate ZIF-8 growth, thus 
leading to the formation of small particles. In contrast, with the tem
perature in the range between 20 ◦C and 30 ◦C, the size of ZIF-8 is larger 
and increases with higher Hmim concentrations. This observation sug
gests that this temperature range may provide sufficient kinetic energy 
to improve reactant diffusion, thus creating more opportunities for 
molecular interactions and ZIF-8 growth. In this case, this temperature 
range can likely be the desired synthesis condition when larger ZIF-8 is 
preferred for specific applications.

When the temperature is higher than 30 ◦C, these contours that 
describe the changes in ZIF-8 size appear to follow the patterns similar to 
these observed at temperature below 20 ◦C. The possible reason is that a 
high temperature increases molecular kinetic energy to accelerate re
action, but also reduces interaction time, as the speed of molecules in the 
solution increases. The reduced reaction time and rapid movement of 
Hmim at a high temperature thus limits ZIF-8 growth. However, 
increasing the concentration of Hmim at high temperature can provide 
more ligands, which results in larger ZIF-8.

It is also important to note that during our simulations with the NN 
model, other factors related to the solvent properties were fixed by using 
their mean values. This has resulted in different synthesis conditions in 

our experiments that focused on only a few synthesis conditions since 
the goal was to build models with a limited dataset to demonstrate the 
predictivity of ML models. From these simulated changes using the NN 
model, it can be inferred that maintaining an optimal reaction temper
ature is vital for balancing ZIF-8 growth rates and obtaining the desired 
ZIF-8 morphology.

Additionally, unlike the relationship between Hmim and polarity in 
Fig. 8(a), the relationship between Hmim and temperature appears to 
have multiple directional trends. This may be due to the limitations of 
the experimental design as this work mainly focused on three temper
atures with a relatively large gap between the median and highest 
temperatures. This suggests a critical need for further extensive exper
imental validation, which is planned for future. However, considering 
the predictability of the NN model, it now becomes possible to visualize 
and study the changes in ZIF-8 size, while adjusting multiple synthesis 
conditions simultaneously.

A nonlinear relationship between viscosity and the concentration of 
Hmim is also observed in Fig. 8(c). High viscosity can slow the diffusion 
of reactants, but the high concentration of Hmim can still promote faster 
ZIF-8 growth. Thus, the top right corner of Fig. 8(c) shows that this 
combination can lead to a larger ZIF-8. In contrast, low viscosity facil
itates diffusion, but low Hmim concentration results in limited ligand 
availability. This typically leads to slower growth and smaller ZIF-8, as 
shown in the bottom left corner of Fig. 8(c).

Compared to the relationship between Hmim and temperature or 

Fig. 8. Predictive analysis of the effect of synthesis conditions on ZIF-8 size: (a) predicts the joint effect of varying polarity and Hmim on ZIF-8, (b) shows the 
combined effect of temperature and Hmim on ZIF-8, (c) demonstrates how viscosity and Hmim collectively affect ZIF-8, and (d) shows the effect of density and Hmim 
on ZIF-8.
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viscosity, the relationship between Hmim and density appears to be 
linear as shown in Fig. 8(d). The size of ZIF-8 increases as the concen
tration of Hmim increases as expected. This is because density affects the 
overall mass and volume of the solution, but it doesn’t directly deter
mine the molecular interactions or diffusion rates in the same way as 
viscosity and polarity. Although density changes can indirectly affect 
reaction conditions, such as by affecting how reactants are mixed, its 
role in reaction is less significant, as compared to the direct effects of 
viscosity and polarity. This aligns well with the SHAP summary plots 
and permutation analysis, as the SHAP values of density are close to zero 
for both the SVR and NN models as shown in Fig. 7(c) and (e), thus 
confirming that density is not crucial for the models’ predictions.

3.5. Prospect of ML assisted analysis

This work demonstrates that integrating ML models with ZIF-8 
synthesis can provide computational tools to improve the efficiency 
and address the limitations of conventional trial-and-error approaches. 
This study focused on several synthesis conditions, which generated 
training data to computationally evaluate the collective effects of these 
conditions on ZIF-8 size. The combination of modeling and experimental 
data shows the potential of ML to extract meaningful insights from 
limited datasets, even when the dimension of the synthesis condition 
space is high due to the complex relationships among different factors. 
This illustrates how ML can effectively guide experimental design and 
optimize synthesis conditions, even considering the constraints of small 
dataset and their correlations.

This work also exemplifies the synergy between ML models and 
experimental methodologies, which will set the basis for precise control 
over the morphology of ZIF-8 by adjusting reaction conditions, while 
facilitating rapid experimentation. It is expected that, in ongoing 
studies, automating the adjustment of key synthesis conditions, such as 
the amount of Hmim, can reduce the number of required experiments 
and further improve efficiency. These analyses and observations here, 
such as the 2D visualizations of synthesis conditions, highlight the 
capability of the ML-based approaches to uncover complex interactions 
that may be undetectable via conventional techniques. Despite technical 
difficulties, like the extensive validation of results from ML models, the 
integration of ML with advanced experimental setups holds promise for 
revolutionizing ZIF-8 synthesis. Such an experimental and computa
tional integrated strategy will build a paradigm for future 
manufacturing, expedite ZIF-8 synthesis, and accelerate the adoption of 
this material for various applications.

4. Conclusions

This work experimentally investigated how synthesis conditions 
affect the morphology of ZIF-8 and built three ML models to predict the 
effect of these conditions on ZIF-8 size. The predictive accuracy of the 
RF, SVR, and NN models were compared using MSE and R2 metrics, 
which highlight the superior performance of NN model for explainable 
modeling. The findings from this work build the foundation for future 
experimental validations to identify critical synthesis conditions and 
better understand the complex relationship between synthesis condi
tions and ZIF-8 size. These computational tools to assist ZIF-8 synthesis 
also offer an efficient strategy for optimizing experimental conditions 
and advancing manufacturing capabilities.
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