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Metal-organic frameworks (MOFs) such as zeolitic imidazolate framework-8 (ZIF-8) are promising nanomaterials
for various applications like drug delivery and energy storage. The efficacy of ZIF-8 in these applications highly
depends on its morphology, including size and shape. However, understanding and controlling morphology
during synthesis is challenging due to the complex interactions among synthesis conditions such as precursor
concentration and reaction temperature. Traditional trial-and-error methods for morphology optimization are
inefficient and cannot effectively account for the combined effects of conditions. Machine learning (ML) offers a
powerful alternative for morphology prediction, which can accelerate the reverse engineering process to better
understand how synthesis conditions affect morphology. Despite recent advances, developing accurate ML
models and selecting the appropriate ones for specific applications remain a challenge. This study addresses these
issues by experimentally investigating how variations in synthesis conditions, such as precursor concentrations,
solvent properties, and temperature, affect ZIF-8 morphology. Using experimental data, this work further built
and compared three ML models: Random Forest (RF), Support Vector Regressor (SVR), and Neural Network
(NN). Among these, the NN model has the best performance in terms of R-squared and mean squared errors.
These ML models provide insights into how synthesis conditions affect ZIF-8, thus setting the basis for future
studies aimed at optimizing conditions and guiding more efficient manufacturing strategy to expand the appli-

cations of this versatile nanomaterial.

1. Introduction

Metal-organic frameworks (MOFs) are a school of nanomaterials
made from metal ions and organic ligands, which have porous structures
with high surface areas and tunable properties [1]. Among these
different MOFs, zeolitic imidazolate framework-8 (ZIF-8) has recently
gained growing attention. ZIF-8 is made from zinc ions and imidazolate
ligands, which creates a robust and highly porous network suitable for
applications such as drug delivery and water purification. For example,
the tunable size and surface area of ZIF-8 not only facilitates efficient
loading of therapeutic agents for targeted drug delivery but also enables
effective adsorption of contaminants in water purification.

Despite its potential, the performance of ZIF-8 in these applications
critically depends on its morphology, including size and shape. How-
ever, achieving precise control over these morphological properties
during synthesis is challenging due to the complex relationships of
synthesis conditions, such as the concentration of raw materials and

* Corresponding author.
E-mail address: ydu20@uh.edu (Y. Du).

https://doi.org/10.1016/j.mtcomm.2024.111177

reaction temperature. To overcome the challenge, it is critical to un-
derstand how different synthesis conditions affect the resulting
morphology of ZIF-8 and develop strategies for controlling these con-
ditions with high precision for future large-scale material manufacturing
[2].

Current approaches for understanding ZIF-8 synthesis and control-
ling its morphology generally rely on trial-and-error methods, which are
generally inefficient and time-consuming. Computational models, such
as those using machine learning (ML) algorithms, offer a powerful
alternative, which offer valuable insights for ZIF-8 synthesis and reduce
experimental costs by predicting the outcomes of future experiments
based on historical data [3]. Recent advances in ML have demonstrated
their potential to predict ZIF-8 nucleation and growth [4]. However,
existing models focus on individual synthesis conditions at a time, which
limits their ability to address the multifactorial nature of ZIF-8 synthesis.
This limitation also hinders a deep understanding of how synthesis
conditions collectively affect ZIF-8 morphology.
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Additionally, several key questions remain unaddressed in applying
ML to gain insights of ZIF-8 synthesis, although they have the potential
to reduce the reliance on time-consuming and costly experiments. These
challenges include selecting the most appropriate ML model for specific
predictive objectives and developing robust models that offer explain-
able insights. Among these, the choice of ML model is crucial, since it
directly affects prediction accuracy and reliability. Thus, assessing and
selecting the appropriate ML model is essential for effectively guiding
synthesis. Moreover, ML models should offer not only accurate pre-
dictions, but also interpretations of how different synthesis conditions
affect ZIF-8 morphology. The interpretability is critical for under-
standing synthesis process and informing future manufacturing strate-
gies. Developing ML models that can translate data into actionable
insights will enable more precise control over ZIF-8 synthesis, but this
field remains underexplored.

The development of ML models is also hindered by the availability of
databases, especially when considering various synthesis conditions that
require many data. However, obtaining such datasets is often chal-
lenging due to the complexity and cost of experiments, such as ZIF-8
synthesis and characterization. Thus, maximizing information from
limited data becomes essential. For example, small datasets obtained
from the early stage of experimentation, where specific synthesis con-
ditions are studied, can provide valuable insights to inform future work
and enable more targeted experiments. Although building ML from
small datasets can expedite research iterations, this area remains rela-
tively overlooked.

To address these challenges, this work investigates how different
synthesis conditions, including the amounts of raw materials, solvent
properties, and reaction temperature, affect ZIF-8 morphology, with a
focus on its size. Using data collected from our experiments, this work
has built three different ML models to predict the size of ZIF-8, which
include random forest (RF), support vector regressor (SVR), and neural
network (NN). Based on these models, this study further conducted
thorough comparison to evaluate their accuracy and predictability.

Findings from this work show the potential of ML models, particu-
larly the NN model, not only for predicting ZIF-8 morphology but also
for offering interpretative insights into the synthesis process. These
models provide a digital platform for navigating the parameter space
defined by various synthesis conditions, thus setting a foundation for the
controlled synthesis of ZIF-8 with desirable morphology. By enhancing
our ability to predict and control ZIF-8 morphology, these models pave
the way for developing more efficient and precise synthesis strategies in
the future, thus ultimately broadening the applications of this versatile
nanomaterial.

2. Experimental details
2.1. Synthesis and characterization of ZIF-8

A one-pot method by combining zinc nitrate hexahydrate (Zn
(NOs3)2:6H20) and 2-methylimidazole (Hmim) was used for ZIF-8 syn-
thesis [5]. Specifically, the objective was to study how varying different
synthesis conditions individually and collectively affect ZIF-8
morphology, and to collect data for ML model development.

For ZIF-8 synthesis, the molar ratio of Zn(NOs)2-6H20 to Hmim was
first varied by adjusting the amount of Hmim used, while maintaining
the total amount of solvent constant. For example, previous studies, such
as those by Kida et al. [6]., have shown that increasing the molar ratio of
Zn to Hmim may decrease the average size of the ZIF-8. Based on these
findings, three molar ratios of 1:60:2228, 1:100:2228, and 1:140:2228
(Zn:Hmim:solvent) were used in this work.

Additionally, this work investigated the effects of solvent composi-
tion on ZIF-8 morphology. Mixtures made of double distilled water
(ddH20) and methanol were used for adjusting solvent properties,
including density, polarity, and viscosity, and for evaluating their effects
on ZIF-8 morphology. For example, previous research has shown that
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the volume ratios between ddH,0 and methanol affects the morphology
of ZIF-8, with higher methanol volumes resulting in larger nanoparticles
[7,8]. Thus, the volume ratios between methanol and ddH,O were
chosen as 50/50, 70/30, and 90/10 in our experiments.

This study also adjusted the temperature to evaluate its effect on the
morphology of ZIF-8 due to conflicting reports. For example, as sug-
gested in the literature, higher temperature accelerates nucleation,
which generally reduce the size of ZIF-8 [9], while others have shown
limited temperature influence on morphology [10]. Given these, ZIF-8
was synthesized at three different temperatures of 0°C, 24°C, and
50°C to investigate their effects on morphology. These synthesis factors
(i.e., molar ratio, solvent composition, and temperature), each with
three level, led to 27 unique experimental combinations. To obtain
reliable results, replicates of experiments for each combination were
performed to collect sufficient data for model development.

After synthesis, ZIF-8 samples were characterized by focusing on the
size since it is crucial for applications such as drug delivery, for which
the size of ZIF-8 affects endocytosis and drug loading rate[11]. Trans-
mission electron microscopy (TEM) was used to obtain high-resolution
images, and the sizes of ZIF-8 were quantified using ImageJ software.
Based on the imaging data, 100 nanoparticles of ZIF-8 were identified
and analyzed per experiment to determine the size distribution and es-
timate the average size. The average size data (model output) was
further used together with the synthesis factors (model inputs) to
develop and validate ML models.

To validate the synthesis and further characterize the ZIF-8, X-ray
diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses were also
performed. XRD was used to confirm the crystalline structure and phase
purity of the synthesized ZIF-8, while BET analysis was used to obtain
information on the specific surface area and pore volume, which offered
additional insights into ZIF-8’s morphological features and confirmed
the success of our experiments.

2.2. Machine learning model development

To address key challenges in optimizing ZIF-8 synthesis and
improving predictability of computational tools, this work built and
compared three ML models by considering difference in algorithms and
our modeling objectives. Random Forest (RF), which is a type of decision
tree-based algorithms, is chosen for its capability to ensemble the results
from individual decision trees for reducing the effect of data uncertainty.
This ability of RF is important since the goal in this study is to build
models with small datasets, which may contain uncertainty and affect
the modeling results. Thus, an RF model may potentially address such
issues and offer insights of the effects of synthesis conditions on ZIF-8
morphology [12]. For the second model, this study focused on the
regression-based algorithms and used Support Vector Regressor (SVR).
This method was used for its high flexibility in modelling non-linear
relationships without requiring explicit mathematical expressions
[13]. To leverage the superior self-learning capabilities of neural
network (NN) [14], an NN model was built to compare prediction ac-
curacy and model interpretability. By comparing these models, the
specific objective in this work was to identify the most effective
modeling approach for predicting ZIF-8 morphology and for gaining
interpretable insights into the synthesis process of ZIF-8.

An overview of the modeling approach in this work is briefly given in
Fig. 1. To build individual ML models, our collected data was divided
into training and testing sets. Initially, the training set was used to
identify the optimal hyperparameters for each of the three models
considered. For this purpose, hyperparameters were randomly assigned
to build surrogate models within the searching domains of hyper-
parameters, which were defined offline for different algorithms.
Following this, a grid search method [15] was used to identify the
optimal hyperparameters for individual models. To expedite model
development and reduce complexity, constraints were also used for
these hyperparameters of individual models considered in this study.
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Fig. 1. Schematic overview of the model development and evalua-
tion procedures.

Once the optimal hyperparameters have been identified, they were
fixed for the final model calibration. These models describe the re-
lationships between the size of ZIF-8 (the model output) and the syn-
thesis conditions (the model inputs). In this study, these inputs include
the amount of Hmim, reaction temperature, and the density, polarity,
and viscosity of the solvents used in material synthesis. To evaluate the
accuracy and performance of each model, metrics such as R-squared (Rz)
and mean squared errors (MSE) were used, which were calculated using
equations as follows:

1¢ _
mse= 13-y
i=1

S0 -3
Rz _ l_l:nl
Y-y

where y; is the ZIF-8 size determined with collected data, y; represents
model predictions, y is the mean of ZIF-8 size, and n is the total number
of datapoints for MSE and R? calculations.

To evaluate model predictability, the testing set that was not used for
hyperparameter optimization or model training were used to calculate
R? and MSE. To provide a comprehensive comparison among models,
violin plots were adopted to visualize the distributions of R? and MSE,
which enabled a visual comparison of central tendencies and variabil-
ities among different models. To achieve this, the collected data was
reshuffled to create new, distinct datasets that were not used in the
original model training and testing phases. The violin plot analysis and
visualization ensured a robust comparison and helped with the identi-
fication of the most suitable model for predictive analysis.
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3. Results and discussion
3.1. Morphological changes in synthesized ZIF-8

The morphology of ZIF-8 is significantly affected by different syn-
thesis factors, including the amount of Hmim, solvent density, polarity,
viscosity, and reaction temperature. Fig. 2 shows some of our repre-
sentative results of ZIF-8 synthesized under three different conditions.
For Fig. 2(a)~(c), ZIF-8 was synthesized at a molar ratio of Zn
(NOs3)2:6H20 to Hmim to solvent of 1:60:2228 at a temperature of 50 °C,
using a solvent made from 8 ML of double distilled water (ddH>0) and
8 ML of methanol. By contrast, Fig. 2(d)~(f) show the results at a lower
temperature of 0 °C, while keeping other synthesis factors unchanged. In
addition, Fig. 2. (g)~() show the results of ZIF-8 made at a different
molar ratio of Zn(NOs)2-6H20 to Hmim to solvent of 1:140:2228 and at a
temperature of 24 °C, using a mixed solvent with 8 ML of ddH0 and
8 ML of methanol.

As shown in Fig. 2(a) and (d), reducing the synthesis temperature
leads to an increase in the size of ZIF-8, by examining several randomly
selected ZIF-8 nanoparticles. This trend is further confirmed by the size
distributions as given in Fig. 2(c) and (f), for which 100 nanoparticles
were identified from TEM images and used for analysis. Furthermore,
the size of ZIF-8 increases when both the molar ratio and temperature
are adjusted as shown in Fig. 2(g) and (h). Additionally, despite the size
changes among different conditions, ZIF-8 nanoparticles maintained
their characteristic rhombic dodecahedron shapes with distinct angles
and truncated corners for both synthesis conditions as shown in Fig. 2
(b), (e), and (h). These results are consistent with existing literature on
ZIF-8 morphology [6]. It is important to note that the size of ZIF-8 at 24
°C is different from these at 0 °C and 50 °C, due to changes in both the
molar ratio and temperatures. At 24 °C, as shown in Fig. 2(g), the
increased concentration of Hmim likely promoted ZIF-8 nucleation and
growth, thus resulting in larger crystals. However, when the molar ratio
was kept constant, as in the experiments shown in Fig. 2(a) and (d), the
size of ZIF-8 at 24 °C changed from 59 nm to 67 nm, which is similar to
the sizes observed at 0 °C and 50 °C. This further suggests that the
changes in both molar ratio and temperature are the primary factors that
can affect ZIF-8 morphology.

All ZIF-8 samples were characterized using XRD. Fig. 3(a), (b), and
(c) show the XRD spectra for ZIF-8 synthesized under three conditions
described earlier. Fig. 3(a) shows the XRD results for samples prepared
with a molar ratio of 1:140:2228 at 24 °C, using 8 ML of ddH,0 and
8 ML of methanol as the solvent. Fig. 3(b) shows the results at a molar
ratio of 1:60:2228 at 0°C, whereas Fig. 3(c) shows the results at 50°C
under the same molar ratio. These XRD patterns indicate that the syn-
thesized ZIF-8 samples are highly crystalline, thus suggesting that var-
iations in the experimental conditions did not significantly affect the
crystal structures.

Additionally, BET analysis was performed under Ny at 77.35K to
characterize the surface area and micropore volume of the synthesized
ZIF-8 samples. For the three aforementioned experimental conditions,
the surface area of ZIF-8 synthesized at 50 °C with a molar ratio of
1:60:2228 was approximately 1410.1 m%/g, with a micropore volume of
about 0.7036 cm®/g. In contrast, ZIF-8 synthesized at 0 °C with the same
molar ratio exhibited a surface area of about 1260.83 m%/g and a
micropore volume around 0.877 cm®/g. ZIF-8 synthesized with a molar
ratio of 1:140:2228 at 24 °C has a surface area around 1140.94 m?/g and
a micropore volume approximately 0.863 cm®/g. These material char-
acterization results in this study are consistent with reported values in
the literature [16].

3.2. ML model development and comparison
Selecting the most suitable ML modelling approach and optimizing

model hyperparameters for predictive analysis are critical. The grid
search was wused to identify the optimal combinations of
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Fig. 2. Characterization results of ZIF-8 morphology: (a), (b), (d), (e), (g) and (h) present the size and structure of ZIF-8 synthesized under three different conditions,
(c), (), and (i) show the size distributions of the materials based on 100 characterized samples of ZIF-8.

hyperparameters for individual models. Fig. 4 shows the heatmaps
generated from the grid search for different models, where R? was used
to evaluate the effect of various combinations of two specific hyper-
parameter on model training. In each heatmap, the rows and columns
represent different values of selected hyperparameters. Each cell shows
the R? value corresponding to a specific combination of these hyper-
parameters defined by its row and column. Color changes within the
heatmaps also visually demonstrate the effect of these combinations on
model performance, thus facilitating the optimization of
hyperparameters.

To build the RF model, this work focused on optimizing several
hyperparameters to improve its performance. Simulations were per-
formed to study if bootstrapping that adjusts random sampling with
replacements could improve model accuracy. Additionally, this work
optimized the minimum samples required for leaf nodes in order to build
a smooth RF model, tested the minimum samples required for splitting
nodes to avoid overfitting, and adjusted the maximum depth of trees to
improve model generalization. Furthermore, the number of decision
trees were optimized to balance the tradeoff between computational
cost and model accuracy. Given these hyperparameters create a multi-
dimensional space that is challenging to visualize, Fig. 4(a) shows a
heatmap of R? for the combination of the number of trees and the

minimum samples for leaf as an example. As seen, increasing the number
of trees improves the performance of the RF model.

For SVR model, this work optimized the regularization factor (C) to
find a tradeoff between model accuracy and complexity while avoiding
overfitting. Both Gaussian and Sigmoid kernels were considered initially
to determine which kernel better captures patterns in the data. Addi-
tionally, the effect of gamma and epsilon were studied, since these two
parameters define the acceptable margin of prediction errors and affect
the model’s robustness [17]. Similar to the RF model, Fig. 4(b) shows a
heatmap of R? values for the combinations between the regulation
parameter and epsilon of the SVR model. This heatmap suggests that
higher values of these hyperparameters lead to increased model
accuracy.

For the NN model, this work focused on identifying the optimal
numbers of hidden layers and neurons per layer, considering our data
size. Similar to the other two models, this creates a multidimensional
parameter space for the heatmap based visualization. Thus, Fig. 4(c)
only shows how different combinations of the total number of hidden
layers and the number of neurons used in the first hidden layer affect the
model performance for demonstration. The cell values and color gradi-
ents in Fig. 4(c) indicate complex relationship between these two
hyperparameters since no clear trends can be observed. Using the grid
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Fig. 3. XRD characterization to confirm the crystal structures of ZIF-8 syn-
thesized under different conditions.

search algorithm, Table 1 summarizes the optimal hyperparameters of
each model.

To evaluate and compare the accuracy and predictability of different
models, the MSE and R? values were calculated between the predicted
sizes and these estimated from imaging data. For visualization and
demonstration, scatter plots were used for one set of training and testing
data as shown in Fig. 5. In these plots, red triangles represent the
training data, while blue circles represent testing data points. In all
models for both the training and testing datasets, the predictions are
randomly scattered around the perfect prediction line (the dotted red
line), thus suggesting that these ML models can provide accurate
predictions.
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Additionally, to better demonstrate the capability of each model for
dealing with potential uncertainty in the data, the collected data was
shuffled to create multiple distinct training and testing datasets.
Following this, multiple rounds of model evaluation were performed
using these datasets and calculated the MSE and R? values in each round.
To ensure the reliability of analysis, violin plots were used to visualize
the distributions of MSE and R? for both the training and testing phases.
The comparison results are shown in Fig. 6, where the red markers
represent the median values of MSE and R? in these violin plots for each
model.

As shown in Fig. 6(a) and (c), different models have demonstrated
distinct performance during the training phase. The SVR model has
significantly poor performance as compared to other models. Its larger
MSE and smaller R? values, with a wider and spread distributions of
these metrics, indicate the less robustness and lower generalization
capability of the SVR model. In contrast, the RF and NN models have
smaller MSE and larger R? values, which suggests that these models have
the capability to capture and describe the variability in the training data.
Additionally, the R? values for the RF and NN models are above 0.9, thus
confirming their strong predictability on training data.

To further compare the performance of these models, Fig. 6(b) and
(d) show the violin plots of the MSE and R? during the testing phases,
using the models from the training phases. As compared to the results
from the training phases, the NN model outperforms the other models.

Table 1
Hyperparameters of the RF, SVR, and NN models.
Models  Optimized hyperparameters
RF Bootstrapping was set to False. The minimum samples of leaf and the
minimum samples of split were optimized as 1 and 3, respectively. The total
number of trees was set to 10 and the maximum depth of trees was set to 20.
SVR Gaussian kernel function was used. The regularization factor, gamma, and

epsilon values were set to 30, 1, and 5, respectively.
NN The optimal number of hidden layers was 3 and the number of neurons
used in each layer was 30, 18, and 6, respectively.
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Fig. 4. Heatmaps illustrating the effect of hyperparameter combinations on R? values: (a) shows how variations in the number of trees and minimum samples per leaf
affect R? for the RF model, (b) shows the effects of regularization parameter and epsilon on R? for the SVR model, and (c) demonstrates how the total numbers of
hidden layers and neurons in the first hidden layer jointly affect R? for NN model.
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The NN model exhibits much smaller MSE and larger R? values, each
with a narrower and more concentrated distribution. This indicates that
the NN model is more consistent and accurate when dealing with
different datasets unseen during the training phases. In comparison,
other models all have wider distributions of the MSE and R? metrics,
which indicates their less effective generalization to unseen data that
might be distinct from training data. Integrating these observations from
Fig. 6, the NN model’s narrower distributions of MSE and R? across both
the training and testing phases confirm its superior performance for
morphology prediction.

The superior performance of the NN model may come from three
aspects. (i) The NN’s model structures may help improve prediction
performance. In this work, the NN’s model structure is optimized by
adjusting the number of hidden layers and the number of neurons in
individual layers. This optimization allows the NN model to effectively
extract information from data and handle the complex nonlinear re-
lationships between the morphology of ZIF-8 and synthesis conditions,
thus contributing to the model’s robustness and generalization perfor-
mance. (ii) The NN model may benefit from a more focused hyper-
parameters optimization. By concentrating on a limited set of

hyperparameters in this work, namely, the hidden layer and neurons,
the risk of overfitting can be reduced as compared to other models that
required extensive hyperparameter tuning to obtain similar perfor-
mance as the NN model. For example, the RF model has to use the grid
search method to adjust multiple parameters to obtain similar MSE re-
sults as the NN model, which include the number of decision trees,
maximum tree depth, minimum samples per node for splitting, mini-
mum samples per leaf, and bootstrapping. This complexity may lead to
overfitting, thus causing the variability in the MSE and R? distribution
during the testing phases with unseen datasets. (iii) The algorithm itself
used for developing each individual model may play a significant role in
performance. While the RF model performs well on training datasets, it
struggles with the testing datasets, which is possibly caused by the po-
tential imbalances and representative issues in datasets. Essentially, RF
model uses bagging with random subsets of training data to build mul-
tiple decision trees, which may limit its capability to interpret unseen
data from other subsets. Based on the results in Fig. 6, the NN model has
better overall performance with larger R? and smaller MSE values, as
compared to decision tree and regression-based modeling approaches.
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3.3. Explainable analysis using ML models

Computational models offer valuable insights into how different
synthesis conditions affect the morphology of ZIF-8. This work focuses
on RF, SVR, and NN models due to their distinct methodological
strengths. For example, as an ensemble method, RF integrates results
from multiple decision trees to make model prediction, which addresses
data uncertainty and improves model robustness and stability. The SVR
model is chosen for its ability to handle complex and nonlinear re-
lationships since liner models may not sufficiently describe the effects of
synthesis conditions on ZIF-8 morphology. Moreover, the NN model is
selected for analysis due to its superior flexibility in modeling compli-
cated patterns and relationships in data. Using these models, the
objective in this work is to identify the most significant conditions that
affect the size of ZIF-8 for future further studies aimed to address
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limitations in current synthesis approaches that often focus on experi-
mentally adjusting one condition at a time. Ranking significant synthesis
conditions will also set the basis to prioritize future experiments by
focusing on these most critical factors to accelerate knowledge discovery
and ZIF-8 synthesis with tunable morphology.

To achieve this, SHapley Additive exPlanation (SHAP) analysis were
used to rank the effect of synthesis conditions on ZIF-8 size and validate
these findings with the permutation analysis. Fig. 7 shows the SHAP
summary plots and bar plots of the permutation analysis, which quan-
titatively and visually demonstrate the impacts of synthesis conditions.
The results in Fig. 7 indicate that the amount of Hmim in reactions,
solvent properties, and temperature can affect ZIF-8 synthesis, but with
varying degrees of impacts. For example, the SHAP summary plots in
Fig. 7(a), (c), and (e) show that Hmim and polarity are consistently
identified as the most significant conditions across the RF, SVR, and NN

06
(a) RF = ® 0ss RF
. lic) 0.5
Hmim ¢ ¢ s} $¢ ssoqg v+ Ju ofu | = g
c
] L
Polarity e dq sl o 00 ) §_0'4
E
Density . S o" " 0 g 03
5
ViSCOSity . " .‘-llo ’ 20-2 0.18
& 012 (24
Temp. ey | e N
Qo
40 20 0 20 40 60 ) oL LR AT
i i o «e«:‘?@oo«;«*loe“e\ﬂ?o\a\“‘
SVR (d) 3000
C
() = SVR
7 2500 2420.75
. o, 420.7
Hmim suf s ‘ TR ) s o) o) od g 117,72
. S ]
Polarity 49 4 %' fims j il 1) ' §2°°°
£
Temp. . "’ o oo I 5 1500
®
Viscosity I 2 1000 905.83
G
Density *
— 500
g 273'12230.90
T T T T 0 2 .
- «© o g
20 0 20 40 o D S
(e) NN (f) 3500
) 3000 290263 NN
. & 5026
Hmim ¢4 i (T 11 fn ' “l 8 = 3
g 2500
£
Polarit woes uodeff 0 8 ' ' g
Y ‘ £ 2000 1776.33
Temp. I ul foss o S 1500
U
5
ViSCOSity ‘ '" l g 1000 891.20
o
Density C 500 263,50
| £ 0 :
40 20 0 20 40 o 1 % o o
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models. Additionally, the SHAP plots of Hmim exhibit spare dot distri-
butions with different colors that highlight the contribution of each
datapoint for analysis, which confirms the significant effect of Hmim on
ZIF-8 synthesis. In contrast, density as shown in these figures, particu-
larly Fig. 7(c) and (e), has more centralized dot distributions, which
suggests that density has less influence and might cause model redun-
dancy for the SVR and NN models.

Additionally, there are discrepancies in the rankings across different
models. While the SVR and NN models provide consistent rankings, the
RF model has different results. For example, all three solvent properties
have a greater impact on ZIF-8 size in the RF model as shown in Fig. 7(a),
as compared to reaction temperature. This discrepancy may arise from
several factors, which include how data from synthesis experiments are
used for RF model development and the methodological difference in
modeling methods. Both SVR and NN models can more effectively
capture the nonlinear relationships between synthesis conditions and
the size of ZIF-8 by looking into data directly [18]. In contrast, the RF
model as an ensemble decision tree-based method may prioritize syn-
thesis conditions differently based on how the algorithm splits the data
for training individual trees, which affects the final ranking of conditions
when merging the results from individual trees.

Moreover, the RF model quantifies the effect of synthesis conditions
on ZIF-8’s size by measuring changes in the training objective function
across trees, thus potentially contributing to different rankings
compared to the SVR and NN models. The discrepancy in SHAP value
rankings between the RF model and the SVR and NN models can be also
introduced by how these modeling algorithms treat discrete datapoints.
Although synthesis conditions can be theoretically continuous, con-
ducting massive experiments is impractical and only limited numbers of
experiments were conducted to collect discreate data points for model
training. As compared to the SVR and NN models that can generalize
well from sampled discrete data, RF model is more sensitive due to its
decision tree-based structure, which splits data based on specific values.
This could further introduce sparse and concentrated datapoints that
may shift the ensemble results towards these dense regions of data, thus
leading to biased results. This methodological difference may affect
feature importance calculation and contribute to ranking discrepancies.

As shown in Fig. 7(b), (d), and (f), permutation analysis is also used
to validate and compare SHAP values for individual modeling methods.
For the SVR and NN models, permutation analysis confirms that Hmim
and polarity are the most significant synthesis conditions, followed by
reaction temperature, viscosity and density. However, the RF model
provides different rankings among solvent properties. Specifically, the
RF model ranks Hmim as the most significant condition, but identifies
viscosity as the second most significant factor, according to permutation
analysis, where the SHAP summary plot of the same model shows po-
larity as the second most important. This discrepancy may be caused by
the fact that SHAP accounts for the interactions among synthesis con-
ditions, while permutation analysis emphasizes the impact of individual
conditions.

Recognizing the changes in rankings among three solvent properties
for the RF model, it is important to point out that viscosity, density, and
polarity show similar permutation values in Fig. 7(b). The similarity in
permutation values indicates their comparable effects on ZIF-8 synthe-
sis, though Hmim remains the impactful factor. For example, the per-
mutation analysis shows values of 0.14 for polarity, 0.18 for viscosity,
and 0.12 for density. These values are significantly lower than the value
of 0.54 for Hmim. This suggests that while all solvent properties have
similar effects, Hmim can directly control ZIF-8 nucleation and growth,
which may lead to significant size changes in ZIF-8 with even minor
variations in the amount of Hmim.

The consistent ranking about the effect of synthesis conditions on
ZIF-8 from the SHAP summary plots and permutation analysis for both
the SVR and NN models confirms their robustness in identifying influ-
ential synthesis conditions. The agreement between the SVR and NN
models also cross validates their accuracy and suggests a reliable
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understanding of how synthesis conditions affect the morphology of ZIF-
8. In contrast, the different rankings from the RF model, particularly
among solvent properties, highlight the complex interactions and
varying impacts of these conditions. For example, viscosity affects mass
transfer during synthesis, which changes molecules movements and
bonding between zinc ions and organic ligands. On the other hand,
polarity is related to dielectric constants and dipole moments, which
affects molecular interactions in the reactions. Although mass transfer
affects how molecules interact, viscosity does not directly affect polarity.
These may highlight the inherent complex nature among different sol-
vent properties in the synthesis process.

In summary, integrating SHAP and permutation analyses with ML
models provides a thorough understanding of individual and interactive
effects of synthesis conditions. This combined approach improves model
explainability and provides implementable insights for experimental
design. Leveraging the combined analytical methods, it may become
possible to narrow down the number of conditions to test for material
synthesis optimization. The reliability of SVR and NN for synthesis
condition analysis, coupled with the unique insights from RF, also
highlights the value of using multiple models for a comprehensive
evaluation. Considering the accuracy and consistency of the NN model
compared to other models, we therefore focus on using the NN model for
predictable analysis below.

3.4. Predictable analysis using ML models

To illustrate the potential applications of the NN model, how changes
in synthesis conditions affect ZIF-8 size were visualized. However,
visualizing predictions using the NN model has its inherent challenges
due to the five-dimensional nature of the synthesis conditions (or five
model inputs). To address this, two-dimensional (2D) slices were used to
demonstrate the relationship between the size of ZIF-8 and a pair of
synthesis conditions as shown in Fig. 8. Specifically, this work focuses on
visualizing the joint effect of Hmim with other conditions since Hmim is
the dominating condition that affects ZIF-8 size based on the SHAP and
permutation analyses above.

Using the NN model, Fig. 8(a) shows the predicted joint effects of
Hmim and polarity on the size of ZIF-8, with other synthesis conditions
held constant at their mean values. The color bar indicates the size of
ZIF-8, and these white dotted lines represent contours that distinguish
regions with different sizes. As seen, the size of ZIF-8 increases when
polarity is lower and the concentration of Hmim is higher. This is likely
because a lower polarity increases the solubility of Hmim, thus
increasing the concentrations of the ligand in the solution. The higher
concentration of Hmim therefore can accelerate nucleation and promote
the growth of larger ZIF-8 by providing more ligands. In contrast, a
decrease in the concentration of Hmim results in a limited number of
ligands in the solution, thus leading to formation of smaller ZIF-8.

Additionally, the contours in Fig. 8(a) are curvy and nonuniformly
distributed within the 2D parameter space defined by Hmim and po-
larity. This indicates a nonlinear relationship between these two syn-
thesis conditions, which may present challenges for controlling the ZIF-8
synthesis process, thus requiring additional attention in future large-
scale manufacturing of ZIF-8. For example, at low Hmim concentra-
tions, even small changes in polarity can cause significant variations in
the size of ZIF-8, as illustrated by the narrow gap between adjacent
contours in Fig. 8(a). Understanding this nonlinear relationship is crit-
ical for precise control over ZIF-8 size. By analyzing and visualizing how
different concentrations of Hmim interact with varying polarities, it
becomes possible to tailor the synthesis conditions to achieve desired
morphology. For example, when larger ZIF-8 is preferable, optimizing
both the solvent polarity and Hmim concentration within the identified
regions can help achieve the desired results. Similarly, if smaller ZIF-8 is
required, adjusting these parameters can help refine the synthesis
process.

A similar nonlinear relationship can be also observed between Hmim



Y. Du et al

192

168

144

120

96

72

T 48
4.5

3.0 4.0
145
130

115

100

Viscosity

85

70

55

Materials Today Communications 42 (2025) 111177
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Fig. 8. Predictive analysis of the effect of synthesis conditions on ZIF-8 size: (a) predicts the joint effect of varying polarity and Hmim on ZIF-8, (b) shows the
combined effect of temperature and Hmim on ZIF-8, (c) demonstrates how viscosity and Hmim collectively affect ZIF-8, and (d) shows the effect of density and Hmim

on ZIF-8.

and temperature as shown in Fig. 8(b). As seen, temperature plays a key
role in ZIF-8 synthesis and must be carefully selected. For temperature
below 20°C, the size of ZIF-8 increases with higher Hmim concentra-
tions. Likely, this is because, at low temperatures, low concentrations of
Hmim, cannot provide sufficient ligands to facilitate ZIF-8 growth, thus
leading to the formation of small particles. In contrast, with the tem-
perature in the range between 20 °C and 30 °C, the size of ZIF-8 is larger
and increases with higher Hmim concentrations. This observation sug-
gests that this temperature range may provide sufficient kinetic energy
to improve reactant diffusion, thus creating more opportunities for
molecular interactions and ZIF-8 growth. In this case, this temperature
range can likely be the desired synthesis condition when larger ZIF-8 is
preferred for specific applications.

When the temperature is higher than 30 °C, these contours that
describe the changes in ZIF-8 size appear to follow the patterns similar to
these observed at temperature below 20 °C. The possible reason is that a
high temperature increases molecular kinetic energy to accelerate re-
action, but also reduces interaction time, as the speed of molecules in the
solution increases. The reduced reaction time and rapid movement of
Hmim at a high temperature thus limits ZIF-8 growth. However,
increasing the concentration of Hmim at high temperature can provide
more ligands, which results in larger ZIF-8.

It is also important to note that during our simulations with the NN
model, other factors related to the solvent properties were fixed by using
their mean values. This has resulted in different synthesis conditions in

our experiments that focused on only a few synthesis conditions since
the goal was to build models with a limited dataset to demonstrate the
predictivity of ML models. From these simulated changes using the NN
model, it can be inferred that maintaining an optimal reaction temper-
ature is vital for balancing ZIF-8 growth rates and obtaining the desired
ZIF-8 morphology.

Additionally, unlike the relationship between Hmim and polarity in
Fig. 8(a), the relationship between Hmim and temperature appears to
have multiple directional trends. This may be due to the limitations of
the experimental design as this work mainly focused on three temper-
atures with a relatively large gap between the median and highest
temperatures. This suggests a critical need for further extensive exper-
imental validation, which is planned for future. However, considering
the predictability of the NN model, it now becomes possible to visualize
and study the changes in ZIF-8 size, while adjusting multiple synthesis
conditions simultaneously.

A nonlinear relationship between viscosity and the concentration of
Hmim is also observed in Fig. 8(c). High viscosity can slow the diffusion
of reactants, but the high concentration of Hmim can still promote faster
ZIF-8 growth. Thus, the top right corner of Fig. 8(c) shows that this
combination can lead to a larger ZIF-8. In contrast, low viscosity facil-
itates diffusion, but low Hmim concentration results in limited ligand
availability. This typically leads to slower growth and smaller ZIF-8, as
shown in the bottom left corner of Fig. 8(c).

Compared to the relationship between Hmim and temperature or
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viscosity, the relationship between Hmim and density appears to be
linear as shown in Fig. 8(d). The size of ZIF-8 increases as the concen-
tration of Hmim increases as expected. This is because density affects the
overall mass and volume of the solution, but it doesn’t directly deter-
mine the molecular interactions or diffusion rates in the same way as
viscosity and polarity. Although density changes can indirectly affect
reaction conditions, such as by affecting how reactants are mixed, its
role in reaction is less significant, as compared to the direct effects of
viscosity and polarity. This aligns well with the SHAP summary plots
and permutation analysis, as the SHAP values of density are close to zero
for both the SVR and NN models as shown in Fig. 7(c) and (e), thus
confirming that density is not crucial for the models’ predictions.

3.5. Prospect of ML assisted analysis

This work demonstrates that integrating ML models with ZIF-8
synthesis can provide computational tools to improve the efficiency
and address the limitations of conventional trial-and-error approaches.
This study focused on several synthesis conditions, which generated
training data to computationally evaluate the collective effects of these
conditions on ZIF-8 size. The combination of modeling and experimental
data shows the potential of ML to extract meaningful insights from
limited datasets, even when the dimension of the synthesis condition
space is high due to the complex relationships among different factors.
This illustrates how ML can effectively guide experimental design and
optimize synthesis conditions, even considering the constraints of small
dataset and their correlations.

This work also exemplifies the synergy between ML models and
experimental methodologies, which will set the basis for precise control
over the morphology of ZIF-8 by adjusting reaction conditions, while
facilitating rapid experimentation. It is expected that, in ongoing
studies, automating the adjustment of key synthesis conditions, such as
the amount of Hmim, can reduce the number of required experiments
and further improve efficiency. These analyses and observations here,
such as the 2D visualizations of synthesis conditions, highlight the
capability of the ML-based approaches to uncover complex interactions
that may be undetectable via conventional techniques. Despite technical
difficulties, like the extensive validation of results from ML models, the
integration of ML with advanced experimental setups holds promise for
revolutionizing ZIF-8 synthesis. Such an experimental and computa-
tional integrated strategy will build a paradigm for future
manufacturing, expedite ZIF-8 synthesis, and accelerate the adoption of
this material for various applications.

4. Conclusions

This work experimentally investigated how synthesis conditions
affect the morphology of ZIF-8 and built three ML models to predict the
effect of these conditions on ZIF-8 size. The predictive accuracy of the
RF, SVR, and NN models were compared using MSE and R? metrics,
which highlight the superior performance of NN model for explainable
modeling. The findings from this work build the foundation for future
experimental validations to identify critical synthesis conditions and
better understand the complex relationship between synthesis condi-
tions and ZIF-8 size. These computational tools to assist ZIF-8 synthesis
also offer an efficient strategy for optimizing experimental conditions
and advancing manufacturing capabilities.
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