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proteins suggests that AlphaFold2 may remember too much
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The goal of this paper is predicting the conformational distributions of ligand binding
sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic
subsampling of the multiple sequence alignment (MSA). We explored the opening of
cryptic ligand binding sites in 16 proteins, where the closed and open conformations
define the expected extreme points of the conformational variation. Due to the many
structures of these proteins in the Protein Data Bank (PDB), we were able to study
whether the distribution of X-ray structures affects the distribution of AF2 models. We
have found that AF2 generates both a cluster of open and a cluster of closed models
for proteins that have comparable numbers of open and closed structures in the PDB
and not too many other conformations. This was observed even with default MSA
parameters, thus without further subsampling. In contrast, with the exception of a
single protein, AF2 did not yield multiple clusters of conformations for proteins that
had imbalanced numbers of open and closed structures in the PDB, or had substantial
numbers of other structures. Subsampling improved the results only for a single protein,
but very shallow MSA led to incorrect structures. The ability of generating both open
and closed conformations for six out of the 16 proteins agrees with the success rates of
similar studies reported in the literature. However, we showed that this partial success
is due to AF2 “remembering” the conformational distributions in the PDB and that
the approach fails to predict rarely seen conformations.

protein structure prediction | binding hot spot | conformational change | machine learning |
protein mapping

The binding of small molecules to proteins plays important roles in various biological
functions, including enzyme catalysis, receptor activation, and drug action, and hence
understanding or designing such processes frequently involves the detection and charac-
terization of ligand binding sites (1-4). The release of the AlphaFold2 (AF2) and
RoseTTafold programs has opened the possibility that such studies can be extended to
previously uncharacterized proteins (5-8). AF2 uses a neural network architecture with
attention-based components that take advantage of the evolutionary information extracted
from multiple sequence alignments (MSAs), followed by a structural refinement module
trained on X-ray crystal structures deposited to the PDB database. The AF2 predictions
are primarily determined by the coevolutionary information contained in the MSA but
are also influenced by the distribution of protein conformations in the PDB. For example,
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it was noted that when predicting the structures of the proteins that have both ligand-bound
(holo) and ligand-free (apo) structures in the PDB, AF2 predicts the holo form in 70%
of cases (9).

The goal of this work is investigating the ability of AF2 to generate conformational
ensembles of ligand-binding sites in proteins. As revealed by the variety of X-ray structures
available for many proteins (10, 11) and by molecular dynamics simulations (12-18),
regions surrounding binding sites may exhibit a high degree of motion, characterized by
movements of structural elements on which the binding tends to rely. We selected a
benchmark set of proteins with so-called cryptic sites that have both a closed conformation,
essentially undetectable in some structures without a bound ligand, and an open confor-
mation, frequently but not necessarily with a bound ligand (10, 19, 20). In particular,
the CryproSite set includes 93 bound—unbound pairs in which each unbound structure
had a site considered cryptic due to its low pocket score, and each bound structure had a
biologically relevant ligand bound at the site (10). While the original set included only
one unbound structure in each pair, it was shown that many of the proteins also have
structures in the Protein Data Bank (PDB) with open binding sites without a bound
ligand (19). The conformational changes have been studied in some of the proteins by
molecular dynamics simulations (11, 15, 21, 22) and also by AF2 (23). Our analysis here
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compares the geometry and druggability features of the experi-
mental X-ray structures available in the PDB and the ensembles
of models generated with AF2. Specifically, we explore how closely
the diversity of these features in the models conserves the confor-
mational variation seen in X-ray structures of the same protein.

It is well understood that protein function is defined by the
existence of conformational ensembles (24-27). Generating mul-
tiple conformations of proteins by AF2 has recently received sub-
stantial attention (28-33). Heo and Feig employed active and
inactive G-protein coupled receptor (GPCR) structures as tem-
plates and were able to predict models that accurately captured
the main structural changes (28). A more general idea was intro-
duced by Meiler and coworkers, who noticed that multiple con-
formations of GPCRs can be obtained by reducing the depth of
the MSAs (34). Stochastic subsampling of the MSAs led to the
generation of conformations that spanned the range between
active and inactive structures. An alternative approach was used
by Stein and Mchaourab, who manipulated the MSA via in silico
mutagenesis (31). This idea was simplified by Kern and coworkers,
who employed only naturally occurring mutations but suggested
that clustering an MSA based on sequence similarity enables AF2
to sample alternate states (33). However, a follow-up analysis
revealed that the clustering method incorrectly predicted some of
the structures (35).

'The above methods of generating multiple protein conforma-
tions are based on the hypothesis that the MSA must encode for
protein structural heterogeneity, and hence its manipulation by
stochastic subsampling or by selecting different clusters of
sequences will enable AF2 to sample alternate conformations.
Results demonstrate that this approach works in a variety of appli-
cations, at least for some of the proteins (36). However, several
papers also reported partially negative results. We already men-
tioned the failures of the sequence clustering approach (35). Meller
et al. studied the opening of cryptic pockets in 10 proteins by AF2
with subsampled MSA and found some predicted conformations
with less than 1.2 A RMSD from the open (holo) structure in six
of the 10 cases (23). However, the center of the clusters of pre-
dicted structures satisfied this distance condition only for two of
the proteins, and hence, the authors used Markov state modeling
to further open the pockets (23). Monteiro de Silva et al. reported
generally successful predictions of relative populations of kinase
conformations but noted that populations with small occupancy
might be missed (37). Xie and Huang attempted capturing alter-
native conformational states of 16 membrane transporters but
reported successful predictions of both inward-facing and
outward-facing structures only for seven out of the 16 proteins
using stochastic subsampling and only for three by sequence clus-
tering (38).

In this paper, we focus on structures of cryptic binding sites,
and hence we have natural extreme points to measure conforma-
tional diversity, i.e., the open versus the closed conformations of
the pocket. While the opening of cryptic pockets by subsampled
AF2 has been studied previously (23), we selected proteins with
large numbers of conformations available in the PDB and generate
large sets of models. This enables us to explore how well the con-
formational distributions of the AF2 models reproduce the dis-
tributions seen in the X-ray structures. The problem we study is
further simplified by the fact that the conformational transition
in each protein is primarily caused by the movement of a small
segment, which may be a loop, a small secondary structure ele-
ment, or even a single side chain, and thus, the distance of a
particular predicted structure between the open and closed
extremes can be easily determined. In view of the studies discussed
in the previous paragraph, we try to answer why AF2 with
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subsampled MSA works for some proteins and not for others. Is
it possible that the diversity and populations of the X-ray struc-
tures available in the PDB influence the likely outcome in terms
of model diversity? In other words, how much does AlphaFold
remember, and how well can it generate alternate conformations
rarely seen in the PDB?

The second goal of our investigation is exploring the right
level of subsampling required for generating multiple conforma-
tions. The key parameters for subsampling the MSA in the
Colabfold implementation of AF2 are max_seq and max_extra_
seq. The first parameter, max_seq, defines the number of
sequences randomly selected from the master MSA (the target
sequence is always selected). The remaining sequences are then
clustered around these selected sequences using a Hamming
distance. From each cluster, the cluster center and max_extra_seq
additional sequences are used by AF2 for inference. To generate
potentially diverse but high-quality models we first use a very
conservative approach and run AF2 with the default Colabfold
parameters (max_seq = 512 and max_extra_seq = 5120). For
each protein target, we perform 100 runs with random initial
seeds, each run resulting in five different models. While this
protocol is generally used for structure prediction by selecting
the highest confidence models (39, 40), it yields substantial con-
formational diversity for 30% of the proteins in our benchmark
set. However, in the remaining 70%, the default parameters
produce a single cluster of binding site conformations, and we
explored the use of smaller values for max_seq and max_extra_
seq. Previous works have shown that a significant reduction in
these parameters may improve the diversity in the ensemble
prediction (36), but we find that for the problem studied here,
the predictions are fairly robust and substantially change only
when the MSA becomes very shallow, affecting the overall quality
of predictions. Thus, it is not clear whether there exists any
general rule for selecting the best max_seq and max_extra_seq
parameters. In view of the partial success, we try to identify the
main factors that predict whether the subsampling approach will
produce conformational diversity.

Results

Benchmark Set of Proteins with Cryptic Binding Sites. The 16
proteins in Table 1 have binding sites with both open and closed
conformations in the PDB (41), each conformation represented
by a reference PDB structure. We focus on the binding sites of the
ligands indicated by their three-letter codes, cocrystallized with
the protein structures shown by their bound PDB IDs. Table 1
also shows the numbers of unbound and ligand-bound structures
and identifies whether the bound structure is open or closed.
We restricted consideration to proteins that have both open and
closed reference structures without missing residues and have 15
or more structures in the PDB. The difference between the two
conformations is primarily due to a moving segment shown in
Table 1 (81 Appendix, Supplementary Methods). Each sequence,
identified with its AF PDB ID, was used for generating 500 models
using the Colabfold version of the AF2 program with each of the
following (max_seq, max_extra_seq) parameter pairs: (512, 5120),
(156, 512), (64, 128), (32, 64), and (8, 16), where (512, 5120) is
the default parameter pair. For each protein, we used the FTMove
program (SI Appendix, Supplementary Methods) to select structures
with at least 90% sequence identity to the structure labeled as
the FTMove PDB ID. These additional structures form what we
call the X-ray or PDB ensemble. The structures in this ensemble
were then classified using PyMol as bound if they had a ligand
overlapping with the ligand in the bound reference structure (42).
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Table 1. Proteins used in the study

Closed Open Closed Open Other Unbound Bound
AF PDB FTMove Ref. Ref. Bound Bound Ligand Moving structures  structures structures structures structures
Protein ID PDB ID PDBID PDB ID PDBID Struct. ID segment in PDB in PDB in PDB in PDB in PDB
Bovine p 6GE7.A  1BSQA  1BSQA  1GX8A  1GX8.A Open RTL lle84 - Asn90 42 58 1 60 51
-lactoglobulin
KRAS 4EPW.A  4EPW.A 4EPR.A 4EPV.A 4EPV.A Open 0QX Met67, Tyr71 46 154 24 165 59
MAPK 2NPQ.A 27B1.A 27B1.A 2NPQ.A 2NPQ.A Open BOG Met198 164 105 29 201 97
Pyruvate 2BUS.A  2BUSA  2BUSA  2BU2A  2BU2A  Open TF1 Phe31 21 13 6 34 6
dehydrogenase
kinase
Ribonuclease A TRHB.A 2W5K.B 1RHB.A 2W5K.B 2W5K.B Open NDP His119 189 49 51 242 47
p-secretase 31X).C 1W50.A  3IX).C 1W50.A 31X).C Closed 586 Gly66 - Glu77 178 105 18 121 180
TEM p-lactamase 1PZ0.A 1PZO.A TJWP.A 1PZO.A 1PZO.A Open CBT Ala217-Leu225 159 2 20 179 2
cAMP-dependent 2GFC.A 2GFCA  2GFCA 2JDS.A 2JDS.A Open L20 Thr51 - Arg56 19 238 43 51 249
protein kinase
Glutamate 1MY0.B  1MYO.B  1MY0.B  1NOT.D  1NOT.D Open AT1 Gly136-Ser142 237 60 3 32 268
receptor 2
AMPC 2BLS.B 2BLS.B 2BLS.B 3GQZ.A 3GQZ.A Open GF7 Asn289-Leu293 180 5 57 238 4
beta-lactamase
Thrombin 1GHY.H 1HAGE 1GHYH 1HAGE 1GHY.H  Closed 121 AKA 26 1 5 10 22
Adipocyte Lipid 1ALB.A 1LCA  1ALBA 1LICA 1LIC.A Open HDS Phe57 52 8 3 13 50
Droplet Binding
Protein (ALDBP)
Myosin Il 2AKAA  2AKAA  2AKAA  1YV3A 1YV3.A Open BIT Leu262, Tyr634 1 9 34 35 9
Ricin 1RTC.A TRTC.A 1RTC.A 1BR6.A 1BR6.A Open PT1 Tyr80 61 24 28 76 37
Androgen 2AX9.A  2AX9.A  2AX9.A  2PIQA 2PIQ.A Open RB1 Lys720, Met734 33 46 31 102 8
receptor
Hsp90 1YES.A TYES.A 2QF0.B 2WI7.A 2WI7.A Open 2KL Asn106-1le110 79 129 82 30 260

Models Generated by using AF2 with Default MSA Parameters.
The most important data in Table 1 are the numbers of structures
in the X-ray ensemble with the binding site in open or closed
conformation, or in some “other” conformational state not
overlapping with either of the two reference structures. As will
be shown, these numbers largely determine whether AF2 can
reproduce multiple conformations of the binding site, and this
result is almost independent of the level of MSA subsampling
until very small max_seq and max_extra_seq values are reached.
We divide the 16 proteins in Table 1 into three groups based on
their numbers of open and closed structures in the PDB. Group
1 is formed by the six proteins (p-lactoglobulin, KRAS, MAPK,
pyruvate dehydrogenase kinase, ribonuclease A, and p-secretase)
that have comparable numbers of open and closed structures, and
hence, we refer to these proteins as having balanced open and
closed states. In addition, all proteins in this group have only few
“other” conformations that are distant from both open and closed
states of the binding sites. Group 2 is formed by the six proteins
(TEM p-lactamase, cAMP-dependent protein kinase, glutamate
receptor 2, AmpC B-lactamase, thrombin, and adipocyte lipid
droplet binding protein) that have imbalanced numbers of open
and closed states, since either the closed or the open structures
dominate in the PDB. The proteins in this group also have
relatively few structures in “other” conformations. Finally, Group 3
consists of the remaining four proteins (myosin II, ricin, androgen
receptor, and hsp90) that have both open and closed structures but
also have comparable numbers of “other” conformations.

Proteins with Balanced Numbers of Open and Closed States.
Fig. 1 shows distributions of binding site conformations and pocket
volumes in the X-ray structures and the AF2 models of four Group
1 proteins. For each X-ray structure in the PDB ensemble and for
each model in the AF2 ensemble, we determine the RMSD of the
moving segment from both the open and the closed reference X-
ray structures shown in Table 1. The moving segment is excluded
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during the alignment to the reference structures and the RMSD
is calculated for only the moving residues. For proteins with
moving loop segment, only alpha carbons are considered in the
RMSD calculations, while for systems with side chains identified
as moving segments, all-atom RMSD is calculated. In Figs. 1-3,
the structures are represented in a 2D local coordinate system that
shows the RMSD of the moving segment from the closed reference
structure on the X axis and the RMSD of the moving segment from
the open reference structure on the Y axis (Fig. 1, 7op panels as
examples). The figures also show the location of the cluster centers
of the AF2 models. The cluster centers are color-coded according
to their druggability scores (SI Appendix, Supplementary Methods
for clustering the structures and calculating a druggability score).

We briefly describe the X-ray and AF2 ensembles and pocket
volumes for the four Group 1 proteins shown in Fig. 1. In
B-lactoglobulin, access to the ligand binding site is modulated by
the loop residues 11e84-Asn90 (87 Appendix, Fig. S1). The loop
opens upon ligand binding or when the pH of the environment
is raised from 6 to 8 (43). The PDB ensemble contains more open
than closed conformations, and most of the open structures have
a small molecule bound at the binding site and a druggable score
(Fig. 1 A, Top). The AF2 ensemble has a similar distribution pat-
tern of conformations, with clusters of open and closed models
(Fig. 1 A, Second row). The pocket volumes for bound and
unbound structures in the PDB ensemble reflect the fact that with
the open conformation, the pocket volume substantially increases
(Fig. 1 A, Third row). The models in the AF2 ensemble have sim-
ilar pocket volumes, with the same bimodal distribution, but with
several structures exhibiting volumes above the maximum volume
threshold in the PDB ensemble, demonstrating AF2’s capability
of substantially opening the binding site pocket in this protein
(Fig. 1 A, Bottom).

In KRAS, a hydrophobic pocket is located between the alpha-2
helix of switch II (residues Gly60-Thr74) and the central beta-sheet.
Binding of a small molecule within this pocket causes the alpha-2
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Fig. 1. Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 1 proteins with balanced distributions
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structures of the PDB ensemble. Bottom: Binding pocket volumes in the predicted structures of the AF2 ensemble.

helix to shift away from the beta-sheet. Concurrently, residue
Tyr-71 disrupts a hydrogen bond and residue Met-67 rotates out-
ward, thereby creating space within the cavity for an inhibitor to
bind. The moving segment is defined by these two residues. In the
majority of the bound KRAS structures in the PDB ensemble, the
two residues turn away from the beta sheet (57 Appendix, Fig. S2),
resulting in a larger cluster of open structures (Fig. 1 B, Top). The
models in the AF2 ensemble have a similar pattern (Fig. 1 B, Second
row), with more structures in open or partially open state. The
volumes in PDB structures underscore the shallow nature of the
pocket since both bound and unbound structures have similar
pocket volumes, although some unbound structures are signifi-
cantly smaller (Fig. 1 B, Third row). The AF2 set produces similar
pocket volumes, but low volumes are absent (Fig. 1 B, Bottom).
In p38 MAPK, a lipid-binding allosteric site is formed by a
local conformational change with an alpha-helix moving further
away from the protein core (44). When a ligand binds, the Met198
residue rotates 180°, exposing its side chain, which is buried in
the unbound state (S Appendix, Fig. S3). Structures in the PDB
have many open and closed conformations (Fig. 1 C, 70p). The
AF2 models tend to cluster into two main groups: one closer to
the open helix conformation and the other closer to the closed
helix (Fig. 1 C, Second row). The structures exhibit a tendency

https://doi.org/10.1073/pnas.2412719121

toward partially open states. Of these structures, three cluster
centers displayed high druggability scores. The volume analysis
shows that in the bound X-ray structures pocket volume increases
and some unbound structures have a very small pocket (Fig. 1 C,
Third row). The AF2 structures display a similar pattern but do
not reach the same extremes as the PDB set (Fig. 1 C, Botrom).
Binding of ligands to pyruvate dehydrogenase kinase (PDHK)
causes a hinge motion in helix a2, leading to a shift in the
alpha-carbon position of Phe31 (8] Appendix, Fig. S4). This opens
an induced pocket as the side chain of Phe31 changes from a lid
position to an open conformation. Although there are relatively
few structures of PDHK in the PDB, the RMSD:s of the existing
ones show that there is indeed a conformational shift in the position
of Phe31 (Fig. 1 D, Top). The AF2 ensemble has an approximately
even split between a cluster of structures with Phe31 residue closing
the site and one with more open structures (Fig. 1 D, Second row).
Due to low number of bound structures, it is challenging to deter-
mine whether the pocket volume increases with the residue shift.
However, a few structures have high pocket volumes (Fig. 1 D, Third
row). The pocket volumes of the AF2 models exhibit a narrower
distribution (Fig. 1 D, Bottom). Placing the remaining two proteins,
ribonuclease A and fB-secretase, in Group 1 is less certain. For rib-
onuclease A, ST Appendix, Fig. S5 shows that the side chain of

pnas.org
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Fig. 2. Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 2 proteins with imbalanced distributions
of open and closed states. (A) TEM B-lactamase. (B) cAMP-dependent protein kinase. (C) Glutamate receptor 2. (D) AMPc  -Lactamase. Each column includes

the same four subpanels as in Fig. 1.

His119 moves out of the pocket upon ligand binding. With 189
open and only 49 closed X-ray structures, it is not clear whether
these numbers are balanced enough for ribonuclease A to be in
Group 1. In fact, AF2 yields only a single cluster of open structures
(SI Appendix, Fig. S17). However, as will be discussed further in
the paper, at reduced MSA depth AF2 yields both open and closed
clusters (87 Appendix, Fig. S21D), thus at that point, ribonuclease
A behaves as the other Group 1 proteins. In f-secretase, the pocket
opens due to the motion of the B-hairpin loop of residues Gly66—
Glu77 that form a mobile flap over the active site (S/ Appendix,
Fig. S6). This results in a fairly continuous distribution of X-ray
structures between the open and closed reference states (SI Appendix,
Fig. S18), in contrast to the other proteins in Group 1 that have
fairly distinct clusters around the two states. Although based on
our definition (8] Appendix, Supplementary Methods), p-secretase
belongs to Group 1, it has many intermediate structures that are
neither open nor closed, and hence could be placed in Group 3.
Accordingly, all AF2 generated models form a single diffuse cluster
around the closed structure (S Appendix, Fig. S18). The PDB and
AF2 structures have similar volumes, with a narrower distribution
for the latter.

Proteins with Imbalanced Numbers of Open and Closed
States. In contrast to the proteins in Group 1 with fairly similar
numbers of open and closed structures in the PDB, the six

PNAS 2024 Vol. 121 No.48 2412719121

proteins in Group 2 have dissimilar numbers of structures in
open and closed states, in most cases with very limited number
of structures available in one of the conformations. As shown in
Fig. 2, for these proteins, the AF2 models resemble only one of
the conformational states, usually the one with the higher number
of X-ray structures in the PDB. We briefly describe the results for
four Group 2 proteins shown in Fig. 2. Most PDB structures of
TEM p-lactamase are very similar to the closed reference structure
(SI Appendix, Fig. S7) and there are only two open structures (45),
cocrystallized with small ligands that force two helices apart to
form an allosteric site (Fig. 2 A, Top). AF2 is unable to open this
cryptic site without the presence of ligands, producing a single
cluster of closed models (Fig. 2 A, Second row). The Thr51-
Arg56 loop in cAMP-dependent protein kinase is flexible and
has a variety of positions (S Appendix, Fig. S8), but the open
conformations dominate both in the PDB (Fig. 2 B, 70p) and in
the AF2 ensemble (Fig. 2 B, Second row). Glutamate receptor 2
has some open structures in the PDB, but much higher number
of closed ones (Fig. 2 C, 76p), determined by the conformations of
loop Gly136-Ser142 (SI Appendix, Fig. S9). AF2 places the loop
between the two reference structures, and the models form a single
cluster somewhat closer to the closed state (Fig. 2 C, Second row),
with volumes that follow a narrow distribution (Fig. 2 C, Botzom).
For AMPC f lactamase, the closed structures dominate both in
the X-ray and AF2 ensembles (Fig. 2 D, 7op and Second rows).
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Fig. 3. Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 3 proteins with many conformations distant
from open and closed states. (A) Myosin Il. (B) Ricin. (C) Androgen receptor. (D) Hsp90. Each column includes the same four subpanels as in Fig. 1.

The other proteins in Group 2 with results in S/ Appendix are
thrombin and adipocyte lipid droplet binding protein (ALDBP).
For thrombin, the impact of the moving Gly216 - Tyr225 loop is
shown in ST Appendix, Fig. S11. Most X-ray structures are closed,
and AF2 yields a single closed cluster (S Appendix, Fig. S19).
For ALDBP, the moving segment is the side chain of Phe57
(SI Appendix, Fig. S12), and the results disagree with the behavior
of the other proteins in Group 2. In fact, while it has substantially
more closed X-ray structures than open ones, AF2 generates a
larger cluster of open states and a small cluster of closed ones

(81 Appendix, Fig. S20).

Proteins with Many Structures in Neither Open and nor Closed
States. The last four proteins in Table 1 have many structures in the
PDB that are not close either to the closed or to the open reference
states. AF2 is unable to generate both open and closed models,
and in most cases, the majority of models mimic the binding
site in the X-ray structures (Fig. 3). Myosin 2 has a single closed
structure, nine open structures, and 28 structures that are equally
distant from both reference structures (Fig. 3 A, 7op). AF2 creates
a single diffuse cluster that is closer to the closed state (Fig. 3 A4,
Second row). In the PDB ensemble the pocket volumes are broadly
distributed (Fig. 3 A, 7hird row), and the distribution becomes
more focused in the AF2 models (Fig. 3 A, Bottom). Ricin is a
powerful cytotoxin widely used in the development of therapeutic
agents (46). Ligand binding to the active site of Ricin requires the

https://doi.org/10.1073/pnas.2412719121

Tyr80 side chain to rotate by approximately 45° (SI Appendix,
Fig. S14). The PDB structures of ricin form well-defined clusters
near both the open and the closed reference structures and a
third cluster of “other” structures far from both reference states
(Fig. 3 B, Top). The AF2 models form an intermediate cluster
located between closed and open states and a larger cluster close
to the location of the “other” structures in the PDB ensemble
(Fig. 3 B, Second row). The side chain conformation of Tyr80
seen in the intermediate cluster of AF2 models is not present in
the PDB set. AF2 shows an increase in pocket volumes when the
Tyr side chain moves outward (Fig. 3 B, Bottom). Although the
AF2 ensemble lacks a fully open conformation, pocket volumes
are similar to those in the PDB set.

The PDB structures of the androgen receptor have a cluster of
conformations that are partially closed and a diffuse cluster that
is about the same distance from both reference structures (Fig. 3 C,
Top). AF2 reproduces only this diffuse cluster (Fig. 3 C, Second
row). The AF2 models have narrower volume distribution than
the PDB structures (Fig. 3 C, Bottom). In the heat shock protein
90 (hsp90), the 35 amino acid region of the geldanamycin binding
domain can exist in open and closed conformations, altering the
size of the binding pocket (S8 Appendix, Fig. S16). In the PDB
ensemble, the Asn106-Ile110 segment is observed to have three
distinct conformations. The open conformations dominate
(Fig. 3 D, 7op), but there are also large clusters of closed and
“other” structures. The AF2 models form only a cluster of such

pnas.org
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“other” structures (Fig. 3 D, Second row). AF2 yields a much nar-
rower distribution of pocket volumes than in the PDB ensemble
(Fig. 3 D, Third and Fourth rows).

Models Generated by Using AF2 with Subsampled MSA. As
discussed above, we were able to generate models with multiple
conformations of the ligand binding sites only for four Group
1 proteins that have well-defined clusters of similar sizes near
both the open and closed reference states, and not too many
conformations anywhere else, plus for adipocyte lipid droplet
binding protein (ALDBP). Since ALDBP has substantially fewer
open than closed PDB structures, it is classified as a Group 2
protein, but interestingly, AF2 generates clusters of both open
and closed models. However, these results are based on using AF2
with the default parameters used for predicting protein structures,
whereas the literature describes successful generation of multiple
conformations with some level of subsampling. Therefore, the
logical next step of our study has been repeating model generation
using increasingly subsampled MSAs by reducing the max_seq and
max_extra_seq parameters. Based on the relevant reports, for each
of the 16 proteins, we generated 500 models each in a series of
four AF2 calculations using the following (max_seq, extra_seq)
pairs: (156, 512), (64, 128), (32, 64) and (8, 16), in addition to
the default values of (512, 5120). To our surprise, as described
below, we have found the conformational distributions remarkably
stable in spite of the major subsampling.

Fig. 4 shows, from left to right, RMSDs of the moving segment
to open and closed reference structures for one example from
cach of the three protein groups. Results for the remaining 13
proteins are shown in S/ Appendix. For bovine p lactoglobulin,
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representing Group 1 with balanced open and closed states, AF2
with the default parameters produces clusters of both open and
closed conformations with more models in the open state.
Reducing max_seq leaves this result essentially unchanged. The
distinction between open and closed clusters becomes less defined,
and a number of models diverge from the open and closed clusters
at max_seq = 8 (Fig. 44). Fig. 4B shows the distributions of AF2
models with reduced MSA for TEM B-lactamase, representing
Group 2 with very different numbers of open and closed X-ray
structures. As discussed, TEM f-lactamase seems to open only
in the presence of ligands, and with the default parameters AF2
produces a single cluster of closed structures (Fig. 2 A, Second
from 7op) and also with max_seq = 156 (Fig. 4 B, Leff). Reducing
the max_seq and max_extra_seq parameters makes this single
cluster more diffuse. At max_seq = 8, the cluster includes some
partially open structures closer to the ligand-bound state (about
2 ARMSD instead of the 4.3 A RMSD obtained with the default
parameters), but this is due to some unfolding of the helices rather
than their movement seen in the bound structures. From Group
3, we show results for myosin II (Fig. 4C). For Myosin 11, AF2
with the default MSA yields a diffuse cluster of largely closed
structures (Fig. 3 A, Second row). Reducing MSA results in fur-
ther widening of the cluster, and with max_seq = 8 yields many
conformations equally far from the open and closed states, essen-
tially the misfolding of the protein (Fig. 4 C, Right). In fact, the
average global RMSD reaches 7.5 A from the bound reference
structure (Fig. 5 C, Middle).

Fig. 5 is a summary of features of AF2 models obtained with
the series of (max_seq, max_extra_seq) pairs. Results are shown
for each of the three groups of proteins separately. The left panels
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show the normalized diversity distance as a function of the max_seq
parameter. The concept of normalized diversity distance (NDD)
was introduced to measure the maximum conformational diversity
of models. To obtain NDD, we calculate the maximum RMSD of
the moving segment between the most closed and most open struc-
tures in the AF2 ensemble and normalize this value with the max-
imum RMSD of the moving segment between the open and closed
reference X-ray structures. For most Group 1 proteins, NDD
exceeds 0.7, demonstrating that the models reproduce conforma-
tional diversity fairly well. The only exception is pyruvate dehy-
drogenase kinase, for which NDD increases with the decreasing
max_seq, but then drops at max_seq = 8. At that point, the open
and closed clusters of AF2 models merge (S Appendix, Fig. S21 C,
Right panel). At max_seq = 8, the same happens for KRAS and
MAPK (S Appendix, Fig. S21 A and B, Right panels). In fact, at
max_seq = 8 most Group 1 protein models cease to form two
well-defined clusters, although the global RMSD of the structures
does not exceed 2.5 A (Fig. 5 A, Middle panel). The only exception
is Ribonuclease A. While ribonuclease A is an apparent exception
in Group] as it has a single AF2 cluster at default parameters, at
max_seq = 8, AF2 actually yields clusters of open and closed con-
formations, demonstrating the behavior we had expected for all
proteins (SI Appendix, Fig. S21 D, Right panel).

We recall that for proteins in Group 2, AF2 with max_seq =
512 yields single clusters of conformations with the exception of

ALDBP, which has two model clusters at all MSA depths
(81 Appendix, Fig. S22E). ALDBP also has a fairly large normalized
diversity distance close to 0.8, and this property is conserved at
reduced values of max_seq (Fig. 5 B, Lef?). For the other proteins
in Group 2, the normalized diversity distance, initially small,
increases as we reduce max_seq. Additionally, for the other Group
2 proteins AF2 with max_seq = 8 generates conformations that
are equally distant from the open and closed reference structures
(81 Appendiix, Fig. S22). In fact, glutamate receptor 2 and AMPC
fB-lactamase tend to partially unfold in the shallow MSA runs
(SI Appendix, Fig. S22 B and C), resulting in large global RMSD
from the bound reference structure (Fig. 5 B, Middle). For the
proteins in Group 3, reducing max_seq also yields single clusters
(81 Appendix, Fig. $23) and increases the NDD values (Fig. 5).
However, this is in most cases misleading, since the generated
structures, while diverse with large NDD values, may be equally
distant from the open and closed states as shown in S Appendix,
Fig. $27. No open and closed clusters are produced with reduced
MSA for any of the Group 3 proteins (S Appendix, Fig. $23).
Reducing the MSAs generally results in higher proportion of incor-
rectly folded proteins. The average pLDDT is a good predictor of
the average global RMSD (87 Appendix, Figs. S24-S26). The
pIDDT values of the moving segments have substantial variation
(SI Appendix, Table S2), with little impact on the overall RMSD
of the models.
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Fig. 5. Properties of AF2 models obtained using reduced MSAs for the three groups of proteins considered in this study. (A) Group 1 proteins with balanced
numbers of open and closed states. (B) Group 2 proteins with imbalanced numbers of open and closed states. (C) Group 3 proteins with many structures in
neither open and nor closed states. Left panels show the normalized diversity distances as a functions of the max_seq parameter. Middle panels show the average
global RMSD values to the ligand-bound reference state, also as functions of max_seq. Right panels show average pIDDT values as functions of the global RMSD.
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Discussion

It has been reported in recent papers that running AF2 with sub-
sampled MSA can produce multiple conformations, but only for
some of the proteins studied (23, 35, 37, 38). Thus, it is an open
question what properties of a protein predict success. We set out to
explore the opening of cryptic ligand binding sites in 16 proteins,
where the closed and open conformations define the expected
extreme points of the conformational variation. Due to the many
structures in the PDB, we were able to study whether the distribution
of X-ray structures between closed and open states affect the distri-
bution of AF2 models. We have found AF2 generates multiple clus-
ters of models for proteins that have comparable numbers of closed
and open structures in the PDB and not too many other conforma-
tions. Surprisingly, this property was observed both without and with
subsampling of the MSA. The multiple conformations in the models
cease to exist at very shallow MSA as the proteins start to misfold.
The exceptions to this rule are ribonuclease A, which has a single
AF2 generated cluster at default MSA (87 Appendix, Fig. S17), but
clusters of open and closed structures at (max_seq, max_extra_seq)
= (8, 16) (8] Appendix, Fig. S21D); thus, it behaves the way we had
expected all proteins to in this study. As we mentioned, p-secretase
has a continuum of conformations in the X-ray ensemble between
open and closed states rather than two distinct clusters as the other
Group 1 proteins, which may be the reason why its models form a
single cluster at all parameters (S/ Appendix, Fig. S21E)

In contrast to the Group 1 proteins shown in Fig. 1, AF2 gen-
erally does not yield multiple clusters of conformations for the
proteins that have imbalanced numbers of open and closed struc-
tures in the PDB (Fig. 2) or have substantial numbers of structures
distant from these states (Fig. 3). Thus, we conclude that AF2
seems to have a strong “memory” and fails to generate rarely seen
conformations (37). Among the 16 proteins studied, we have
found only one, adipocyte lipid droplet binding protein (ALDBP)
that does not fully comply with this observation. In fact, ALDBP
has many closed X-ray structures and only a few open ones, and
yet, AF2 generates a larger cluster of open and a smaller cluster of
closed models (S7 Appendix, Fig. S20).

Following the substantial body of published work, we assumed
that the right level of subsampling promotes generating multiple
conformations. However, we obtained multiple conformations
only for the proteins that also have multiple conformations in the
PDB, and that this property was independent of the level of sub-
sampling, except for using a very shallow MSA that may misfold
the protein. In contrast, subsampling did not help for proteins
that did not have models in multiple conformations using the
default MSA. The only exception among the 16 proteins was the
already-mentioned ribonuclease A. Since AF2 with subsampled
MSA provided multiple conformations for six of the 16 proteins
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