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High-order harmonic generation in atomic gases is important for several applications in ultrafast strong-field

physics, ranging from attosecond pulse generation to ultrafast spectroscopy and imaging of different forms of

matter. In the case of the generation with focused short Gaussian pulses, recent theoretical studies indicate that

the conversion efficiency depends on the spatial phase distribution of the driving laser pulse which scales with the

Porras factor. Using theoretical analysis and the results of numerical simulations, we find that for positive Porras

factors the contribution of the Gouy phase to phase matching can be balanced and the conversion efficiency can

be significantly enhanced as compared to a standard laser setup. Specifically, our results indicate that for a Porras

factor of g0 � 1.2, the conversion efficiency as well as the cutoff of the harmonic spectra can be optimized while

the harmonic lines remain narrow, which may be interesting for spectroscopic applications.

DOI: 10.1103/PhysRevA.110.053101

I. INTRODUCTION

Developments in ultrafast laser technology have been key

innovations in the quest of imaging the dynamics of elec-

trons and nuclei in matter on ultrashort timescales as well as

performing element-specific measurements in materials with

high spatial and temporal resolution. As part of this progress,

high-order harmonic generation (HHG) is an important con-

cept and tool [1,2] since it provides the opportunity to convert

intense laser light at optical and near-infrared wavelengths

into coherent light at vacuum ultraviolet, extreme ultravio-

let, and soft-x-ray wavelengths [3]. In the highly nonlinear

process which results from the interaction of a gas (or solid)

with the electric field of an intense laser pulse, an electron

emerges from the atom, propagates in the oscillating field,

gathers energy, returns to the core, and upon recombination

with the core emits its energy in the form of an ultrashort light

pulse [4–8].

For the use of HHG sources in applications, it is ben-

eficial to obtain a high conversion efficiency of the HHG

process, a large extent of the harmonic spectrum to high

frequencies, and, for certain applications in imaging and

spectroscopy [9–14], a narrowness of the harmonic lines. To

achieve these goals, an understanding of the coherent buildup

of HHG signals from the atoms in the generating medium, i.e.,

phase matching of the signals, is an important factor [15,16].

One key aspect in the macroscopic process is the spatial phase

distribution at the focus of the driving laser pulse. For a

monochromatic Gaussian beam there is a π -phase shift across

the focus, also commonly known as the Gouy phase [17].

For phase matching in harmonic generation it is often consid-

ered, even in experiments with short broadband laser pulses,

that the Gouy phase (for a monochromatic beam) has to be

compensated by the dipole phase of the harmonics and the

dispersion in the neutral gas and by the free electrons. At low

ionization levels, the Gouy phase and the dipole phase are

known to be the dominant terms, while at higher ionization

levels the dispersion terms have an important role, lead-

ing to a more elaborate interplay of several phase-matching

components [18,19]. More broadly speaking, one may note

that the dispersion terms are time-dependent components

since the relative ratio of neutrals to free electrons changes

during the pulse, while the other terms are components which

mainly depend on the spatial location within the laser focus.

Recently, it was pointed out that in focused short Gaus-

sian pulses with a broad frequency spectrum, the carrier-

envelope phase of the laser pulses deviates from the Gouy

phase [20–23]. Specifically, the carrier-envelope phase of

these pulses also varies transversely to the propagation via an

additional focal phase term, which scales with the so-called

Porras factor g0 that is specific to the laser setup [21,24]. The

study of the impact of the focal phase distribution on strong-

field processes induced by short pulses has started recently,

for example, in the cases of electron backscattering at metal

tips [23], photoelectron spectra (or above-threshold ionization

spectra) [25], the generation of high-order harmonics [26–28],

and attosecond pulses [29]. Concerning high-order harmonic

generation, it has been shown that the focal phase of a short

Gaussian pulse is a dominant contribution in phase matching

of the harmonic yields, especially in regimes where dispersion

effects do not play an important role, e.g., at low intensities

and/or low pressures of the generating atomic gas [28]. As

a consequence, the efficiency of the harmonic generation ap-

pears to depend significantly on the Porras factor.

In order to further understand the role of the Porras fac-

tor in high harmonic phase matching, we concentrate on the

regime in which dispersion effects due to neutrals and free

electrons are negligible. In this way we can study the bal-

ance between spatial components due to the carrier-envelope

phase (Gouy phase and its short-pulse correction involving the

Porras factor) and the harmonic dipole phase. This analysis

is of interest for applications of HHG light in spectroscopy

and imaging which profit from high conversion efficien-

cies at low laser pulse intensities as well as from narrow

linewidths in view of the potential of element-specific mea-

surements [9–14]. We will however also argue that the results

may have an impact for HHG experiments at higher laser
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pulse intensities where dispersion terms play a role. Previ-

ously, it was predicted that for an experimental setup with a

negative Porras factor the best phase-matching conditions are

found for a position of a gas jet behind the focal area [27],

in agreement with predictions based on the Gouy phase dis-

tributions only and typical experimental findings. The impact

of the short Gaussian pulse distribution with a negative Porras

factor was found in the efficiency and the angular distributions

of the harmonic spectrum [26,27].

In the remainder of the present work we aim to show, based

on theoretical analysis supported by numerical calculations,

that by balancing the contributions to the carrier-envelope

phase for a given pulse energy, strong narrow harmonic lines

and an extension of the harmonic spectrum can be achieved

for focusing conditions and gas jet positions, which are dif-

ferent than in the conventional experimental setup for HHG.

More specifically, our results indicate that laser setups with

a positive Porras factor provide improved phase-matching

conditions for a positioning of the gas jet at the laser focus,

as compared to setups with a negative Porras factor. The

presentation of our work is organized as follows. In Sec. II we

briefly review the contributions to the carrier-envelope phase

of a Gaussian pulse and derive an estimate of the Porras factor

for an optimum macroscopic buildup of high harmonic gen-

eration. In Sec. III we compare these theoretical predictions

with the results of numerical calculations. We end with a brief

summary in Sec. IV.

II. THEORETICAL CONSIDERATIONS

In this section we first review the main contributions of the

carrier-envelope phase of a short Gaussian driving laser pulse,

namely, the widely considered Gouy phase and its correction

term for a broadband pulse. Next we use the expression for

the total focal phase to estimate the optimum Porras factor

for an efficient buildup of high harmonic generation at the

laser focus, based on the spatial components contributing to

the balance.

Assuming a driving laser propagating in the ẑ direction, for

a short broadband Gaussian distribution the carrier-envelope

phase across the focus is given by [21,24]

φpulse(z, r) = φGouy(z) + φPorras(z, r), (1)

where

φGouy(z) = − arctan

(

z

zR

)

(2)

is the Gouy phase for a monochromatic beam and

φPorras(z, r) = g0

z
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⎛
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(4)

is the so-called Porras factor. Furthermore,

zR(ω) =
ω

2c
w

2(ω) (5)

is the frequency-dependent Rayleigh range. In all expressions

above z and r =
√

x2 + y2 are the positions along and trans-

verse to the propagation of the laser and ω0 is the central

frequency of the laser, where zR ≡ zR(ω0). Finally, w(ω) is

the frequency-dependent input waist at z = 0, w0 = w(ω0) is

the central frequency beam waist at the focus, and c is the

speed of light.

In Fig. 1 we show examples of the geometric focus con-

figurations for three different Porras factors. In each panel

the beam waists for different wavelengths are plotted as a

function of the propagation distance z, where the origin z = 0

is set at the focus. As indicated in one of the panels, in this

figure (as well as in all other figures below) it is assumed that

the laser pulse propagates from the left to the right. Therefore,

negative (positive) values of z correspond to positions before

(after) the focus. The three panels correspond to the cases of a

negative Porras factor of g0 = −1 in which all colors have the

same divergence angle [Fig. 1(a)], a Porras factor of g0 = 0

(Gouy case), in which the Rayleigh length zR is independent

of the laser frequency [Fig. 1(b)], and a positive Porras factor

of g0 = +1 with a frequency-independent beam waist at the

focus [Fig. 1(c)].

A few methods have been proposed for controlling the Por-

ras factor and the carrier-envelope phase distribution [24,30–

33]. Focusing of ultrashort Gaussian pulses can be done us-

ing lenses or mirrors; however, a critical factor influencing

the carrier-envelope phase distribution is chromatic aberra-

tion in the focusing lenses or mirrors, as the Porras factor

is sensitive to changes in the Rayleigh length with fre-

quency. The conditions under which focusing via lenses and

mirrors can be achieved without distortion have been dis-

cussed [24,30–32]. An alternative way to spatial manipulation

of the carrier-envelope phase is via pulse chirping, which

introduces variations in the phase distribution that can be

leveraged to control flat phase regions of the pulse [24,33].

The standard geometry of a few-cycle laser system based

on a hollow-core fiber compressor used for high-order har-

monic generation corresponds to negative Porras factors [25].

More specifically, for such a laser setup a Porras factor of

g0 ≈ −2 was determined in a recent experiment [23]. For

such a geometry, optimal phase-matching conditions occur

for positions of the gas jet after the laser focus, similarly to

the Gouy phase distribution (g0 = 0) [27]. However, it can

be expected and it has been shown recently [26,28] that the

efficiency of the high-order harmonic process depends on the

Porras factor. In view of our goal to determine the Porras

factor for an optimal coherent buildup of harmonic radiation,

we are aiming for a large region of slow phase variation in the

region of highest intensity, i.e., at the laser focus.

To get insight into how such a setup can be realized, we

first perform a Taylor expansion of the carrier-envelope phase

distribution φpulse [Eq. (1)] as a function of Z = z/zR and R =
r/w0, which yields

φpulse(Z, R) =
∞

∑

n=1

(−1)n

(

1

2n − 1
− g0(1 − 2nR2)

)

Z2n−1.

(6)

We note that, near the focus, i.e., for R and Z small, the first-

order term (n = 1) of the expansion dominates. We further
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FIG. 1. Three characteristic geometric focus configurations for a

short Gaussian laser pulse with (a) a negative Porras factor g0 = −1,

(b) a Porras factor of g0 = 0 (Gouy case), and (c) a positive Porras

factor g0 = 1. The curves represent the beam waist as a function

of the propagation distance given by z and the transversal distance

x =
√

1 + z2 (where x and z are scaled in units of the central-

frequency beam waist w0 and the Rayleigh length zR; see the text

for details) for three example wavelengths (400 nm, purple dashed

line; 800 nm, blue solid line; and 1600 nm, red dotted line). Note

that in this figure as well as in all other figures below the propagation

direction of the laser pulse is assumed to be from left to the right. The

origin of the propagation direction, z = 0, is set at the focus; negative

(positive) values of z correspond to positions before (after) the focus.

observe that if g0 is taken to be negative, as is the case for

a conventional high-order harmonic setup [25], the magni-

tude of the coefficient in the bracket grows as a function

of g0, leading to strong variations in φpulse and hence unfa-

vorable phase-matching conditions near the focus. This is in

agreement with common experimental knowledge, which

leads to a position of the gas jet behind the focus in such

experiments. In contrast, if g0 is positive, the two terms in

the brackets have opposite sign and therefore tend to cancel.

Thus, we expect smaller phase variations at the focus in this

case. Indeed, restricting the expansion to the first-order term

and setting R = 0, we get g0 = 1 as an estimate for the Porras

factor for optimum phase matching at the focus. As discussed

above, a Porras factor g0 = 1 corresponds to a beam with a

frequency-independent beam waist [25] [see Fig. 1(c)]. We

may note that a laser focusing configuration with a positive

Porras factor of g0 = 0.4 has been realized recently via pulse

chirping [33].

III. NUMERICAL RESULTS AND DISCUSSION

A. Numerical methods and parameters

We next compare our theoretical predictions with the re-

sults of numerical calculations. To this end, we performed

model simulations of macroscopic high-harmonic generation

without performing a full spatial-temporal pulse propagation.

The single-atom response for a hydrogen atom interacting

with an intense laser pulse was obtained by solving the respec-

tive time-dependent Schrödinger equation (TDSE). In these

calculations the electric field of the laser pulse was taken

to be linearly polarized in the ŷ direction and obtained via

Ey(t ) = − 1
c

∂
∂t

A(t ) from the vector potential

A(t ) = A0 sin2

(

πt

τ

)

sin(ωt + φ), (7)

where A0 = c
√

I
ω0

, τ = 2πN
ω0

, I is the peak intensity, φ is the

carrier-envelope phase, and N is the number of cycles in the

pulse (full width). The laser-electron interaction is represented

in the velocity gauge. To propagate the wave function in the

presence of the electric field, we follow the strategy outlined

in Refs. [34,35].

The angular part of the wave function is expanded in 15

spherical harmonics and the radial part of the wave function

expanded in a basis of eighth-order B splines. One hundred

thirty nodes are placed such that the spacing between nodes

is quadratic near the origin and then becomes constant at a

chosen radius (here 30 a.u.) to increase the resolution near

the origin. The wave function is propagated in a box with

a maximum radial extent of 100 a.u. For the solution of the

TDSE, we use the Crank-Nicolson method to propagate the

wave function starting from the initial state with a time step

dt = 0.2 a.u. As an absorbing boundary, we use exterior com-

plex scaling [36], where the edge of the grid (10%) is rotated

into complex space by an angle η = π/16. To obtain the HHG

spectra, the dipole acceleration a(t ) is evaluated using the

Ehrenfest theorem

a(t ) =
〈

−
∂

∂y

(

−
1

ρ

)〉

(8)

and the complex harmonic response a(	) is then obtained by

taking the Fourier transform of the dipole acceleration. The

harmonic power spectra S(	) is the absolute square of a(	).

For all calculations in this work the spatial profile of the laser

is chosen to be a Gaussian beam with a beam waist of w0 =
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FIG. 2. Gaussian pulse phase for Porras factor (a) g0 = 1 and

(b) g0 = −2 and total phase distribution of harmonic 13 for Porras

factor (c) g0 = 1 and (d) g0 = −2.

30 µm (Rayleigh length zR ≈ 3500 µm),

I (r, z) = I0(1 + Z2)−1 exp

(

−
2R2

1 + Z2

)

, (9)

where all symbols are defined near Eqs. (5) and (6). Further-

more, we consider a wavelength of the driving laser of 800 nm

and a duration of 20 optical cycles. If not stated differently,

the macroscopic results shown below are obtained for a peak

intensity of 1.2 × 1014 W/cm2.

To determine the macroscopic signal at the detector, we

use the discrete dipole approximation as in Ref. [37]. In this

approach the continuous medium is approximated by the dis-

tribution of a number of individual emitters. The macroscopic

yield is then obtained as a superposition of the fields generated

by the emitters. In particular, the total field at a detector lo-

cated at Rd generated by atoms located at R j ( j = 1, 2, 3, . . . )

is given by

E(Rd , ω) =
1

c2|Rd |
e−i(ω/c)|Rd |

∑

j

a j (	)e−i(ω/c)[R j ·(R̂d −Ẑ )],

(10)

where a j (ω) is the microscopic HHG signal obtained from

solving the TDSE for the jth atom.

Single-atom responses have been evaluated via a nearest-

neighbor algorithm from a set of ab initio TDSE results

over an intensity range from 1.2 × 1012 to 2.0 × 1014 W/cm2

(with 
I = 1.488 × 1011 W/cm2). The convergence of the

results with respect to the intensity spacing has been tested.

We note that alternatively in this model macroscopic results

can also be obtained using an interpolation algorithm [26,38].

This approximation to the full Maxwell solution relies on the

dipole approximation and the assumption that the generated

radiation does not interact with the medium. While the model

does not consider the full spatiotemporal pulse propagation

through the medium, it can provide insights into the rela-

tive importance of spatial contributions in the phase-matching

process.

B. Impact of the Porras factor on efficient coherent macroscopic

high-order harmonic generation

In Fig. 2 we compare the Gaussian pulse phase φpulse

[Figs. 2(a) and 2(b)] and the phase distribution of the 13th

harmonic [Figs. 2(c) and 2(d)] for two values of the Porras

factor, namely, the estimated value g0 = 1 for optimized phase

matching at the focus [Figs. 2(a) and 2(c)] and the value

g0 = −2 for the conventional laser setup in the case of HHG

[Figs. 2(b) and 2(d)]. The effect of φpulse on the laser-induced

dipole phase �dip(	,φpulse) is approximated by [37]

�dip(	; φpulse) = �intrinsic(	) + H (	)φpulse, (11)

where �intrinsic(	) is the intrinsic phase of the single-atom

HHG response at frequency 	 and H (	) is the harmonic

number rounded to the nearest odd integer. From the com-

parison one sees that for the estimated optimum Porras factor

g0 = 1[Figs. 2(a) and 2(c)] a region with a flat phase distribu-

tion occurs in the focal region, while in the conventional setup

for g0 = −2 [Figs. 2(b) and 2(d)] a region with small phase

variations is found behind the focus. This confirms the results

of the theoretical estimate above, while for g0 = −2 it agrees

with previous results (e.g., [27]).

Next we investigate the properties of the generated high

harmonic signals. To this end, we consider several aspects and

respective measures to quantify the results and conclusions:

(i) the strength of the harmonic signal which we measure by

integrating the generated radiation around a harmonic order

	 = Nω [27],

M (N )
g0

=
∫ (N+δ)ω0

(N−δ)ω0

S(	)d	, (12)

where S(	) is the macroscopic radiation signal and we have

chosen δ = 0.25 in our analysis; (ii) the extent of the harmonic

spectrum, i.e., the cutoff which we analyze by comparing

harmonic spectra; and (iii) the narrowness of the harmonic

lines which we analyze via a sideband measure given by [27]

S
(N )
g0

=

∫ (N+δ)ω0

(N−δ)ω0
S(	)d	

∫ (N+1)ω0

(N−1)ω0
S(	)d	 −

∫ (N+δ)ω0

(N−δ)ω0
S(	)d	

. (13)

We note that as the value of S (N )
g0

increases, more radiation

is concentrated at the N th harmonic line. To perform the

analysis we fix the peak intensity and pulse duration, i.e., the

pulse energy, and assume gas jets with a Gaussian density

distribution along z, centered about zoff , with a width of σz =
800 µm ≈ 0.23zR, and constant density along x (the radial

direction):

ρ(x, y, z) = ρ0 exp

(

−
(z − zoff )2 + y2

2σ 2
z

)

. (14)

Furthermore, we consider a low gas density of ρ0 =
1018 cm−3, which corresponds to 40.4 mbar using an ideal

gas law at 20 ◦C.

We first consider an important quantity in harmonic gen-

eration, namely, the efficiency of the generation. To this end,

we compare in Fig. 3 the relative strength of three different

harmonics, a below-threshold harmonic N = 7 [Fig. 3(a)]

and two plateau harmonics N = 13 [Fig. 3(b)] and N = 19

[Fig. 3(c)], as a function of the offset position of the gas

jet zoff (horizontal axis) and the Porras factor g0 (vertical

axis). The comparison reveals that overall the strongest har-

monics are generated for g0 � 1 and positioning of the gas

jet in the focal region of high intensity. Furthermore, other
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[Eq. (12)] for three har-

monics, (a) the 7th harmonic, (b) the 13th harmonic, and (c) the

19th harmonic, as a function of the Porras factor and the position

of the gas jet. The parameters of the driving laser are a wavelength

of 800 nm, a duration of 20 optical cycles, and a peak intensity of

1.2 × 1014 W/cm2.

general trends, discussed earlier, are also confirmed. For pos-

itive Porras factors phase-matching conditions are in general

most favorable near the focus. In contrast, for negative Porras

factors (including the standard setup with g0 = −2) the im-

pact of the Porras factor leads to unfavorable phase matching

at the focus. The best conditions and the strongest harmonics

for negative Porras factors are found for a gas jet location after

the focus.

From the results we see that the optimal Porras factor for

phase matching at z = 0 is g0 ≈ 1.2, which is slightly larger

than the value of g0 = 1 which we estimated via a Taylor

approximation for optimal phase matching at the central point

(z = 0, r = 0). This is evidence of the circumstance that the

coherent buildup occurs not just at one point but in volume

around the focal point. Restricting the expansion in Eq. (6) to

the first-order term, we note that for g0 = 1.2 the term is equal

to zero at R = r/w0 ≈ ±0.29, which corresponds to 17% of

the full width at half maximum of the Gaussian intensity

distribution at the focus (z = 0). This is an indication of the

size of the coherent focal volume.

It can be expected that a favorable phase matching in the

region of highest intensities also leads to an extension of

the plateau of the harmonic spectrum since it is known that

the cutoff scales with the intensity (e.g., [6]). We exemplify
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FIG. 4. Comparison of high-order harmonic spectra for the opti-

mum Porras factor g0 = 1.2 (blue solid line) and the Porras factor

for the standard laser setup g0 = −2 (red dashed line) for peak

intensity (a) I = 8 × 1013 W/cm2, (b) I = 1.2 × 1013 W/cm2, and

(c) I = 2 × 1013 W/cm2. In each case the gas jet position for opti-

mum conversion efficiency has been chosen.

this in Fig. 4, where we compare the harmonic spectra for

g0 = 1.2 and −2 for three different peak intensities, namely,

8.0 × 1013 W/cm2 [Fig. 4(a)], 1.2 × 1014 W/cm2 [Fig. 4(b)],

and 2.0 × 1014 W/cm2 [Fig. 4(c)]. In all cases we have

chosen gas jet positions for optimum phase matching, i.e.,

zoff = 0 for g0 = 1.2 and zoff = 0.9 zR for g0 = −2. The

comparison confirms the enhancement of the harmonic sig-

nals throughout the spectrum as well as the extension of the

plateau by a few harmonics in the case of the optimum Porras

factor.

To further validate and quantify the enhancement of the

conversion efficiency, we present in Fig. 5 the ratio of the

signal strengths for the two Porras factors at the optimum gas

101
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FIG. 5. Ratio of the signal strength R(	, I ) [Eq. (15)] at g0 = 1.2

as compared to g0 = −2 for three harmonics, the 7th harmonic (cir-

cles), the 13th harmonic (squares), and the 19th harmonic (triangles),

as a function of the peak intensity. In all cases the gas jet is positioned

at the optimal position, i.e., z = 0 and z = 0.9zR, respectively.
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[Eq. (13)] for three harmonics,

(a) the 7th harmonic, (b) the 13th harmonic, and (c) the 19th har-

monic, as a function of the Porras factor and the position of the gas

jet.

jet positions, i.e.,

R(	, I ) =
M

(N )
g0=1.2(	)

M
(N )
g0=−2(	)

, (15)

at three harmonics 	 = 7ω0 (circles), 	 = 13ω0 (squares),

and 	 = 19ω0 (triangles) as a function of the peak intensity.

The enhancement of two to four orders of magnitude may be

interesting for spectroscopic applications of harmonics [9–14]

in regimes in which diffraction effects by neutrals and free

electrons do not play a role.

It is interesting to note that another aspect, namely, the nar-

rowness of the harmonic lines, which is important concerning

the application of such light for certain studies in imaging

and spectroscopy [9–14], remains intact for the generation of

high-order harmonics with an experimental setup represented

by a positive Porras factor. The comparison in Fig. 4 shows

that in the case of g0 = 1.2 the harmonic lines are narrow

and have a good contrast of harmonic signal to off-harmonic

yield; indeed, these aspects are rather similar to the standard

laser setup for high-order harmonic generation (g0 = −2).

To further confirm this observation, we present in Fig. 6 the

sideband measure (13) as a function of the position of the

gas jet zoff and the Porras factor g0. As for the harmonic

signal strengths, we indeed observe that near the focus for

Porras factors of g0 � 1.2 the sideband measure is large. This

indicates a concentration of the radiation at the harmonic and

hence a high contrast ratio between the harmonic line and

the off-harmonic radiation, which is a favorable aspect for

spectroscopic applications [9–14].

IV. CONCLUSION

In summary, via results of theoretical analysis and nu-

merical calculations, we have shown that the phase-mismatch

contribution by the Gouy phase can be balanced by a correc-

tion term to the carrier-envelope phase for short broadband

Gaussian laser pulses, which scales with the Porras factor. In

regimes in which these terms, as well as the harmonic dipole

phase, are dominant for phase matching, the generation of

high-order harmonic signals in atomic gases can be optimized

by varying the Porras factor. As compared to the standard laser

setup used for harmonic generation, which corresponds to a

negative Porras factor g0 = −2, the efficiency of the yields

and the extension of the harmonic spectrum can be signifi-

cantly enhanced for positive Porras factors, with an optimum

value of about g0 � 1.2. In a different context, a focusing

configuration with a positive Porras factor g0 = 0.4 has been

realized recently via pulse chirping [33].

Since the theoretical analysis and the computations in the

present study were obtained without taking dispersion effects

during the high harmonic process into account, the results are

in particular relevant in the regime of low laser pulse inten-

sities and/or low gas densities. Therefore, the results should

be most interesting for certain recent applications of high

harmonic generation in imaging and spectroscopy [9–14].

Such applications would likely profit from the combination

of a significant increase in conversion efficiency while re-

taining narrow linewidths. However, one may argue that the

present results also provide some alternative ideas for efficient

high-order harmonic generation at higher laser intensities,

including the generation of attosecond pulses. The terms con-

sidered in the present study are spatial contributions in the

phase-matching process and the results indicate that a balance

of these components can be achieved near the focus for a

laser setup with a positive Porras factor. On the other hand,

the dispersion terms, which are not considered, depend on the

relative number of neutrals and charged particles, which do

change over the course of the laser pulse. Thus, a balance of

the dispersion terms may be achieved transiently in some time

window during the pulse, independent of the optimum spatial

location. Of course, these thoughts consider the elaborate

phase-matching process in a simplified way only; however, the

results may still indicate that an exploration of an alternative

route for efficient high harmonic generation even at high in-

tensities could be of interest. A confirmation of such thoughts

would require either an experimental observation or a nu-

merical study taking the full spatiotemporal phase-matching

process into account, which is beyond the scope of the present

work.
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