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Abstract7

Computational modeling of cardiovascular function has become a critical part of8

diagnosing, treating and understanding cardiovascular disease. Most strategies9

involve constructing anatomically accurate computer models of cardiovascular10

structures, which is a multistep, time-consuming process. To improve the model11

generation process, we herein present SeqSeg (sequential segmentation): a novel12

deep learning based automatic tracing and segmentation algorithm for construct-13

ing image-based vascular models. SeqSeg leverages local U-Net-based inference to14

sequentially segment vascular structures from medical image volumes. We tested15

SeqSeg on CT and MR images of aortic and aortofemoral models and compared16

the predictions to those of benchmark 2D and 3D global nnU-Net models, which17

have previously shown excellent accuracy for medical image segmentation. We18

demonstrate that SeqSeg is able to segment more complete vasculature and is19

able to generalize to vascular structures not annotated in the training data.20

Keywords: Vascular Model Construction, Medical Image Segmentation, Blood Vessel21

Tracking, Convolutional Neural Network, Deep Learning, Cardiovascular Simulation22

1 Introduction23

Image-based vascular modeling is used for a variety of purposes including diagnosis,24

personalized treatment planning and fundamental understanding of disease progres-25

sion [1–4]. Specialized software has been developed for such modeling, including26

SimVascular [5, 6], CRIMSON [7] and VMTK [8]. This modeling paradigm uses27

medical imaging, such as computed tomography (CT) or magnetic resonance (MR)28

angiography, to construct a patient-specific anatomical model of vessels of interest.29
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This geometric model is subsequently converted into a 3D computational mesh to30

support detailed blood flow and/or tissue mechanics simulation and analysis. The con-31

struction of an anatomical model from medical image data remains largely a manual32

process [5]. Figure 1 shows a typical workflow for vascular model construction, start-33

ing with the creation of centerlines along the vessels of interest, 2D segmentation of34

the vessel lumen along the centerlines, and lofting of the 2D segmentations to gener-35

ate a unified 3D model of the vascular geometry. Alternative segmentation approaches36

exist, including region-growing or level-set methods [6]; however, these methods gener-37

ally struggle in the segmentation of highly-branched structures such as blood vessels,38

particularly in the context of limited image resolution, unclear boundaries and image39

artifacts [9]. Additionally, when the model is constructed manually, substantial user40

bias may result. Ultimately, despite the popularity and maturity of image-based cardio-41

vascular modeling over the past 20 years, the process of deriving a simulation-suitable42

anatomical model from medical image data has remained a primary bottleneck for43

large-cohort studies or translational applications where timely results are needed.44

Fig. 1 A typical vascular model construction workflow involves (a) creating vessel paths by manual
selection of point (b) sequential segmentation of the vessel lumen boundary at discrete cross-sections
along the paths and (c) lofting these segmentation rings into a unified model. This process is described
in more detail in [5].

Recently, machine learning has been applied to automate and speed up image45

segmentation. Note that while medical image segmentation is performed for a46

variety of healthcare applications, we focus here on the purpose of generating a47

simulation-suitable model that can be utilized to generate a computational domain for48

physics-based simulation. Simulation suitable models have certain criteria that must49

be met such as, being connected, sufficiently “smooth”, and able to be meshed (dis-50

cretized) with quality elements. Most learning methods focus on pixel classification,51

which often results in segmentations that are disconnected or have substantial arti-52

facts that complicate, or prevent, generation of a mesh suitable to support numerical53

simulation.54

Most progress has been made when machine learning has been applied to isolated55

anatomic vascular regions [10, 11] including for cardiac models [12, 13]. In the work56

of Maher, et al. [14, 15] segmentation of branched vascular domains was achieved by57
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assuming the existence of vessel centerlines (cf. Fig. 1a). Under such assumptions,58

these centerlines are traversed and local 2D cross-sectional segmentations of the lumen59

boundary are generated using a trained network. This framework essentially auto-60

mated step (b) shown in Fig. 1. However, for many vascular models, the generation61

of vessel centerlines is the most labor intensive step. Moreover, with this approach,62

segmentation is only performed at discrete 2D slices along the vessel, which provides63

incomplete sampling and can be problematic when the cross-section is not connected64

or the centerline is not sufficiently aligned with the vessel. And more importantly, dis-65

crete cross-sectional segmentation performs poorly at vessel bifurcations, which are66

present in almost all applications.67

Herein, we present a novel method for segmenting branched vascular geometries68

from medical image data utilizing local deep learning-based segmentation that does69

not require a priori centerline information. This approach starts from a seed point and70

generates a local 3D segmentation of the vessel(s) containing the seed point over a local71

subvolume. Based on this local segmentation, we determine the orientation of the vessel72

and any locally connected branches. We then step the subvolume along the determined73

vessel direction (and new subvolumes along the identified local branch directions) to74

generate a 3D segmentation of the neighboring segment(s). This approach is motivated75

by the following considerations: when viewed locally by a subvolume that is centered on76

a vessel and slightly larger than the vessel diameter, vessels of different sizes and from77

different regions exhibit substantial geometric similarity (Figure 2), and consequently78

learning to locally segment a portion of a vessel should be easier than learning to79

segment an entire vascular network. While cropping of medical image volumes has80

been performed previously, for example, for coronary tracking [16] [17], to the best of81

our knowledge such approach has not been used to generate 3D segmentation or for82

segmentation of general vascular geometries.83

Fig. 2 When viewed locally, vasculature of different sizes and anatomical regions exhibit substantial
geometric similarity. A) the pulmonary artery (r = 1.5mm), b) the brachiocephalic artery (r = 9mm),
c) the coronary artery (r = 1mm), d) the cerebral artery (r = 2mm) and e) the femoral artery
(r = 3mm) are presented

By processing local subvolumes, we simplify the deep learning task and introduce84

beneficial inductive bias to the machine learning model, allowing it to generalize to85

vasculature not present in training data. We test this method on a dataset of publicly-86

accessible aortic and aortofemoral models, and the results are compared to benchmark87

global 2D/3D nnU-Net neural network models that have previously shown excellent88

results for medical image segmentation. The main contribution of this work is a new89

method capable of:90
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• Tracing vasculature after initialization with a single point and vessel radius estimate.91

• Segmenting vasculature while ensuring global connectivity to maintain physiologic92

topology.93

• Detecting bifurcations, storing them and tracing them sequentially.94

• Delivering a global surface mesh of segmented vasculature.95

• Generalizing to segment parts of vasculature not annotated in training data.96

2 Method97

2.1 Algorithm98

Figure 3 shows a schematic of the algorithm. Breifly, a “seed point”, (specifying a99

location and direction) and a rough diameter “size estimate” of the vessel containing100

the seed point are supplied by the user. A local subvolume surrounding the seed101

point is extracted from the global image volume. The vessel portion contained in the102

subvolume is segmented using a neural network. The segmentation is postprocessed103

and converted to a surface mesh, after which a centerline is extracted. The resulting104

centerline is subsequently used to choose the next subvolume location and size. These105

steps are explained in further detail below.106

Fig. 3 Overview of the tracing and segmentation algorithm with inputs of the global raw image
and seed points for initialization. The algorithm takes steps, stores bifurcations in the queue during
tracing, and outputs a global segmentation map for post processing

2.2 Segmentation107

2.2.1 Dataset, Sampling and Augmentations108

To train the U-Net and test the algorithm, we utilized a dataset of 41 CT and 44109

contrast enhanced MRI aortic and aortofemoral cases, which is commensurate with110

the amount of data typically provided in segmentation challenges. The breakdown of111

how many cases are used for training, validation and testing is specified in Table 1. The112

VMR datasets used for training are accessible from the open access Vascular Model113

Repository at https://vascularmodel.com. For further testing on CT images, we also114

use a subset of the AVT dataset [18], specifically the dataset obtained from Dongyang115

Hospital. Table 1 shows details on the datasets; modalities, purpose, training/test split,116
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Table 1 The datasets of patients used for model training and method testing. Abbreviation are as
follows: Datasets; VMR: Vascular Model Repository, AVT-D: Aortic Vessel Tree dataset, subset
from Dongyang Hospital. Anatomy; AO:Aorta, AF:Aortofemoral. Disease; H:Healthy,
AAA:Abdominal Aortic Aneurysm, MA: Marfan Syndrome, CA:Coarctation of Aorta,
AOD:Aortoiliac Occlusive Disease, SVD:Single Ventricle Defect. Sex; M:Male, F:Female,
U:Unknown. Sex and age information was not available for the AVT dataset.

Dataset Modality Purpose Train/Test Anatomy Disease Sex Age(yr)

VMR CT Train/Test 33/8 25 AO, 23 H, 23M 6 - 80
16 AF 15 AAA, 6F ave: 58

3 MA 12U

VMR MR Train/Test 37/7 38 AO, 19 H, 14 CA, 30M 0.6 - 67
6 AF 5 SVD, 2 MA 14F ave: 17

4 AOD

AVT CT Test 0/18 18 AO 18 H - -
-D[18]

anatomies, diseases (if present), sex ratio and age ranges. The datasets contain a 3D117

image volume and a respective “ground truth” vascular segmentation map (converted118

from segmentation surface models for the VMR data) and corresponding centerlines119

that served as ground truth labels for training and testing.120

To generate training data for the local segmentation U-Net, the global 3D medical121

image volumes in the VMR training datasets were sampled along the centerlines and122

these subvolumes (i.e. “Patches”) were stored. Namely, two volumes were extracted123

at each Patch: 1) the original medical image data and 2) a binary segmentation of the124

subvolume based on the model representing the ground truth label.125

To improve the learning process, we varied the samples in terms of centering and126

size. Briefly, some samples were centered along the centerline while others were shifted127

from the centerline, and the subvolume sizes varied from just capturing the lumen of128

the vessel to including more surrounding tissue. More specifically, each sample volume129

si is a cube dependent on its side length and center, i.e., si(Li, ci) where Li is its side130

length and ci is the center point of sample i. The side length and center are sampled131

as follows:132

Li = Ri ∗ αi

ci = Ci + βi ∗Ri ∗wi

α ∼ N (µr, σ
2
r)

β ∼ N (µs, σ
2
s)

(1)

where Ri is the local radius of the vessel, Ci is the point on the centerline, w is a133

unit vector perpendicular to the centerline and α, β represent the radius ratios used to134

enlarge or shift the sample. w was chosen by sampling a random linear combination135

of orthogonal unit vectors u,v that defined a plane perpendicular to the centerline:136

wi =
ai ∗ u+ bi ∗ v
∥ai ∗ u+ bi ∗ v∥

, a, b ∼ U [−1, 1] (2)
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where a, b are scalars sampled from a uniform distribution between [−1, 1]. We used137

(µr, σ
2
r) = (5, 1) and (µs, σ

2
s) = (0, 0.8) so that the mean sample was 5 times the size138

of the radius and centered on the centerline. This stochasticity was purposefully added139

to represent the variance that the tracing algorithm encounters during inference and140

is intended to increase the robustness of the neural network. This process resulted in141

a training dataset D consisting of N pairs of image subvolumes Xi and corresponding142

blood vessel segmentations Yt,i:143

D = {(X1, Yt,1), (X2, Yt,2), ..., (XN , Yt,N )} (3)

In total, we get D = 36289 patches for CT data and D = 33603 patches for MR data.144

For the VMR dataset 15 patient datasets were excluded for final testing, i.e., 8 CT and145

7 MR cases were not sampled for training or validation. The generation of subvolume146

data for network training is shown schematically in Fig. 4.147

Before training, MR image volumes were normalized via z-scoring, where each148

voxel value, x, is subtracted from the image mean µ and then divided by the image149

standard deviation σ. CT volumes were clipped and z scored according to foreground150

image values where µ and σ are calculated only from voxels labelled as vessel in the151

ground truth training data and held constant during inference [19]; see Table 2 for152

details. The preferred image spacing was chosen as the median spacing across all cases153

and all image volumes were resampled using a 3rd order spline. Segmentation maps154

were resampled differently, using linear splines on one-hot encoded maps, and then155

the argmax of the result.156

Fig. 4 Preprocessing involves extracting subvolumes along ground truth centerlines and data aug-
mentation prior to neural network training. Thousands of samples are acquired from only a few dozen
models. The neural network consists of an encoder E followed by a decoder D, which outputs the
predicted segmentation map used to compute loss, L, during training

2.2.2 Neural Network Architecture and Training157

The convolutional neural network (CNN) U-Net architecture was used for segmenta-158

tion. The U-Net is tailored to the processing of medical images, going from the original159

resolution down to a low-resolution, high-dimensional space and then back up to the160
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original resolution. Herein, a 3D version of U-Net was chosen for the SeqSeg segmen-161

tation step. Note, we also compare our end results to those of two benchmark U-Net162

models, i.e. a 2D U-Net and a 3D U-Net, trained on the global image volumes, see163

Section 2.9 for further details. The U-Net learns features primarily through two differ-164

ent mechanisms. First, by downsampling the original image data the model is forced to165

retain only important global information when squeezed through a lower-dimensional166

space. Second, by using skip connections across the neural network the model is able167

to retain features related to finer details from the higher resolution image in its final168

prediction. The skip connections are concatenations of blocks of the same resolution.169

The final output is a pixelwise probability map indicating the likelihood that a pixel170

corresponds to a target tissue.171

Our U-Net was trained for binary classification: to predict whether voxel yi,j,k172

inside segmentation mask Yp ∈ RW×H×D belongs to a blood vessel:173

Yp = {yi,j,k ∈ [0, 1] | 0 ≤ i < W ; 0 ≤ j < H; 0 ≤ k < D}

yi,j,k =

{
1 if belongs to vessel
0 otherwise

(4)

where i, j, k refers to the index of a voxel in an image of width W , height H and depth174

D. In this section, lower case notation refers to individual nodes or voxels, e.g. y,175

whereas capital notation, e.g. Y , refers to a set of nodes or voxels such as composing176

an image, segmentation mask or output from neural network layers.177

In mathematical terms, the neural network is a parameterized function fθ that178

transforms a raw image input X ∈ RW×H×D into a blood vessel segmentation map:179

Yp = f(X | θ) (5)

where θ are the parameters of the neural network, which are optimized using training180

data. The final output, Yp, ranges between [0, 1] and can thus be interpreted as a181

probability map of whether each voxel belongs to a blood vessel. This enables the182

volume to be binarized by thresholding to a particular probability value.183

We utilized the nnU-Net framework for hyperparameter specification and training184

[19]. The framework automatically determines parameters such as image resampling185

spacing, patch size and batch size based on training data and GPU memory size. The186

underlying neural network architecture used is the U-Net, with additional constraints187

on specific parameters. Table 2 lists the specifications of our implemented U-Net model188

architectures and training parameters. Since the SeqSeg model is trained on smaller189

volumes compared to the benchmarks, its required batch size can be larger, see Table190

2. The nnU-Net framework utilizes stochastic gradient descent with Nesterov momen-191

tum with an initial learning rate of 0.01 accompanied by a learning rate scheduler192

of (1 − epoch/epochmax)
0.9, where epochmax = 1000 was chosen; see [19] for further193

details. Training was performed using an NVIDIA Geforce RTX 2080ti GPU (11 GB194

GPU memory) on the Savio High Performance Computing cluster at the University195

of California, Berkeley.196
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Table 2 The U-Net architecture and training specifications, for both the SeqSeg models and global
benchmark models

Parameter SegSeg CT SeqSeg MR 3D CT 3D MR 2D CT 2D MR

Intensity 0.5/99.5% all image 0.5/99.5% all image 0.5/99.5% all image
Normalization clip + z-score clip + z-score clip + z-score

foreground foreground foreground
z-score z-score z-score

Image 0.200, 0.0859, 0.0800, 0.0859, 0.0488, 0.0586,
Target 0.0547, 0.0625, 0.0488, 0.0586, 0.0488 0.0586
Spacing 0.0547 0.0625 0.0488 0.0586

Patch Size [20,80,80] [40,48,48] [96,160,160] [56, 256, 160] [512, 512] [512,384]

Batch Size 33 57 2 2 12 16

Max Nr. 320 320 320 320 512 512
Features

Nr. Stages 5 4 6 6 8 7
Encoder

Nr. Stages 4 3 5 5 7 6
Decoder

Nr. Layers 2 2 2 2 2 2
per Stage

Nr. Pooling [2,4,4] [3,3,3] [3,5,5] [4,5,5] [7,7] [6,6]
Ops. per Axis

Conv. Kernel [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3] [3,3]
Size

2.2.3 Loss Function197

The loss function was a combination of Dice score (D ) and binary cross-entropy (CE):198

D(Yp, Yt) =
2 · ∥Yp ∩ Yt∥
∥Yp∥+ ∥Yt∥

(6)

199

CE(Yp, Yt) =
1

n

∑
y∈Y

(yt · log yp + (1− yt) · log (1− yp)) (7)

where Yp and Yt are respective prediction and ground truth segmentation masks,200

respectively, and n is the total number of voxels. Yt is defined similarly to Yp in201

Eq. (4). Binary cross entropy is a common loss function for binary classification and202

we added Dice loss to regulate it for medical image segmentation. Namely, the Dice203

score helps counter the class imbalance that pixelwise classification problems face in204

medical image segmentation. This is critical when working with 3D images where the205

number of voxels belonging to a blood vessel is a small percentage of the total voxels206
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in the volume. It follows that our loss function is defined as207

L =

Nb∑
i

(1−D(Yp,i, Yt,i)− CE(Yp,i, Yt,i)) (8)

for a batch size Nb, where each batch is a subset of the total dataset Nb < N described208

in Eq. (3). The data is batched to fit into GPU memory as described in Table 2. Each209

image in the batch is processed in parallel on a GPU and the loss is accumulated210

before taking a gradient step to update the model parameters.211

2.3 Surface, Centerline Calculations and Step Taking212

As mentioned above, the output of the U-Net is a binarized image subvolume. The213

marching cubes algorithm [20] can be applied to this binarized image subvolume to214

generate a local surface mesh of the vessel segment. The resulting surface was cut using215

the image subvolume boundary planes, which results in truncation boundaries for the216

vessel(s), i.e., “inlets” or “outlets”. One of these truncation boundaries is identified217

as the source (inlet) and others are identified as targets (outlets). This process was218

performed automatically using information from previous steps and from the direction219

of tracing. To do this, the centers of the truncation boundaries are calculated. The220

truncation boundary center closest to the previous stepping point is chosen as source221

and the rest as targets.222

The surface mesh, with respective outlet labels, is used to automatically generate223

centerline(s) and radius estimates of the local vessel segment using a levelset based224

centerline extraction method. The method calculates centerline(s) as the path(s) that225

follow a wave propagation starting from a seed point [21]. The wave propagation is226

modeled by equation:227

|∇T (x)|F (x) = 1 (9)

where T (x), the time it takes for wave to reach point x, is solved using a set “speed”228

function F (x). F (x) is set to have values proportional to distance from vessel boundary,229

leading to higher value towards the center and lower closer to vessel walls. When230

Eq. 9 is solved with T (x0) = 0 at source point x0, we obtain a solution with wave231

propagation faster in the center of vessels. Then, using that solution, we perform232

gradient descent starting from target point(s), where T (x) is high, until we reach the233

source point, where T (x) is low, and have therefore defined a centerline path(s). Since234

the “speed” function had higher values towards the center then so do the values of235

∇T which forces the gradient descent towards the center of the vessel while tracing236

back, see [21] for details. Furthermore, we estimate the radius of the vessel at each237

point along the centerline by its distance to the surface.238

The centerline extraction depends on well-defined outlet centers fed as seed points.239

Our method defines these outlet centers automatically, as described above. In the case240

of a bifurcation, a single outlet was labeled as the source based on the previous step241

and the direction of tracing. The point(s) to move to along the computed centerline(s)242

is chosen at 80% along each branch, see stepping point choice in Fig. 5. We found that243

this allowed for smaller step size, ensuring more accurate bifurcation detection.244

9



2.4 Choice of Subvolume Size and Chances245

The local centerlines calculated as described above contain 1D (lines) meshes in 3D246

space connecting all outlets with radius information along them, see Figure 5. This247

radius estimate is subsequently used to determine the size of the next subvolume to248

extract. The length of the next subvolume is chosen as five times the radius estimated,249

consistent with the size of the training samples as described in Section 2.2.1. Further-250

more, to prevent underestimation of subvolume size, we let radius estimate carry on251

from one step to the next. The subvolume sidelength L is calculatated by an average252

of the current radius estimate, ri, and the estimate from the previous step, ri−1:253

L = 5 ∗ (ri + ri−1)/2 (10)

Additionally, we use the segmentation prediction itself as an indicator of subvolume254

size to vessel size ratio. If a high percentage of voxels within an image subvolume is255

predicted as belonging to vessel, that may indicate a small subvolume to vessel ratio,256

i.e., that the vessel occupies a large part of the volume. Utilizing this, we defined257

a cutoff percentage, γ∗, for which if the percentage exceeds it then we enlarge the258

subvolume size until it drops below, see Algorithm 1, where X is the subvolume, a259

function of sidelength L.260

Algorithm 1 An algorithm to enlarge the subvolume based on the percentage of
voxels predicted as vessel, γ.

R← (ri + ri−1)/2
L0 ← 5 ∗R
Yp ← f(X(L0))
γ ← 1

W∗H∗D
∑

y∈Yp
y

while γ ≥ γ∗ do
L← 5 ∗R ∗ 1.1 ▷ Increase sidelength by 10%
Yp ← f(X(L))
γ ← 1

W∗H∗D
∑

y∈Yp
y

if L
L0

> 1.3 then
break ▷ Maximum increase of 30%

end if
end while

When SeqSeg encounters local subvolumes with image artifacts or unclear vessel261

boundaries, the neural network model sometimes produces inaccurate segmentations.262

However, in many cases, these inaccuracies are bound to those specific locations in263

the image volume whereas the following downstream vasculature may be clearer and264

easier to segment. To handle these situations, we implemented a “chances” feature265

to SeqSeg. When SeqSeg fails to detect ≥ 2 outlets or fails to successfully compute266

a centerline, we give the step another chance and move further in the same direction267

and try again. Given a point pi with a corresponding vessel tangent ti and radius Ri,268

the next “chance” location pi+1 is calculated as:269
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pi+1 = pi +R ∗ ti (11)

We set a maximum number of chances to three. This allows SeqSeg to better move270

past difficult regions of the image.271

Fig. 5 Automatic tracing using local surface mesh predictions for 3 steps, involving 12 calculation
time steps. Centerlines are extracted and the next points are chosen to move to. These steps are
subsequently assembled together to form the global vasculature model

2.5 Bifurcations and Retracing Prevention272

Bifurcations are detected by counting the branches of the centerline successfully com-273

puted. When bifurcations are detected, they are stored and returned to once other274

branches have been traced. Namely, the largest radius outlet was chosen for continued275

tracing while the others were saved as bifurcation points and were revisited once the276

current vessel had been fully traced. These bifurcation points were periodically sorted277
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by radius to ensure prioritization of the largest vessels first, similar to how a human278

would interrogate the vasculature; see Figure 6.279

Fig. 6 How the algorithm takes steps and handles bifurcations, starting from an initial seed point.
The bifurcation points are stored in queue for subsequent tracing

Since the method detects outlets locally, it can sometimes detect the same bifur-280

cations multiple times. This occurs especially if a small step size is used to advance281

the subvolume. To save computational time, we implemented a retracing prevention282

technique that periodically checks the global segmentation to determine whether the283

algorithm has segmented the current region before. We added buffers to the global284

assembly module to ensure that these checks only applied to segmentations involving285

past branches and not the current one.286

2.6 Initialization287

As mentioned above, the SegSeg method requires a seed point accompanied by a size288

estimate and direction for initialization. For evaluation purposes, this seed point is289

chosen at the ‘start’ of each vascular model, in the largest artery closest to the heart,290

similar to how a user would define it.291

2.7 Stop Criteria292

Since SeqSeg is an automated tracing method, stop criteria are required to terminate293

step-taking. The current framework has no explicit stop criteria; however, indirectly,294

it stops when either of two scenarios occur:295

1. The method reaches the global image boundary, thereby requesting image data296

that does not exist.297

2. The requested subvolume is of low resolution (e.g., resulting from tracing a small298

vessel) or is of too low quality (e.g., blurry or has image artifacts) that results in299
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segmentation failure, or a centerline extraction failure from the resulting low-quality300

segmentation.301

In addition to the “forced” stop criteria mentioned above, we have implemented302

optional criteria as well, that can be toggled if premature stopping is desired. The303

optional stop criteria are as follows:304

1. Define Nmax, maximum number of steps taken and stop once number of steps taken305

has exceeded Nmax. We set Nmax = 500.306

2. Define Rmin, minimum allowed radius, and stop tracing down a branch once radius307

estimate is under Rmin. We set Rmin = 0.5mm.308

3. Define NBmax, maximum number of branches to be traced down, and stop once309

number of branches exceed NBmax. NBmax can, for example, be set as 15.310

2.8 Global Assembly311

Sampling subvolumes may overlap a given voxel multiple times depending on the step312

size used to propagate the subvolume along the identified vessel (cf. superposition of313

subvolumes on the right side of Figure 5), or because of a new subvolume introduced314

to trace a bifurcation. The end result is that several predictions may exist for a given315

voxel. Thus, all local segmentations are gathered globally by calculating a weighted316

mean prediction for each voxel. During development, we noticed that segmentations317

tend to be less accurate close to the subvolume boundary, so we added Gaussian318

weighting giving more weight to voxel predictions closer to subvolume centers. This is319

also consistent with the benchmark nnU-Net method [19]. For each subvolume predic-320

tion of sidelength L and center point c, we define a weight map W , where each voxel321

with indices i, j, k and point location pi,j,k gets a weight wi,j,k according to:322

wi,j,k = e−
∥pi,j,k−c∥2

2σ2 , σ =
1

4
L (12)

Therefore, voxels close to c get a weight close to 1 while voxels close to the borders of323

the subvolume get a weight value of approximately two standard deviations from the324

mean, 0.02.325

Given a set S, of size NS , of segmentations in which local volumes included voxel326

yi,j,k, the final global segmentation value was given by327

yi,j,k =
1

NS
∑

s∈S ws
i,j,k

∑
s∈S

ws
i,j,k · si,j,k (13)

where i, j, k refer to global voxel indices and ws
i,j,k is the weight value for that voxel328

associated with segmentation s. This was performed prior to thresholding so that the329

resulting global segmentation retained voxel values ranging between [0, 1] depending330

on the confidence. Finally, the segmentation was upsampled, and thresholded using a331

value of t = 0.5:332

yi,j,k =

{
1 if yi,j,k ≥ t
0 if yi,j,k < t

(14)
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where the largest connected body is retained, converted to a surface mesh using333

marching cubes and smoothed to remove voxel artifacts. For mesh smoothing, we334

use a windowed sinc function interpolation kernel to move mesh vertices[22]. More335

specifically, we perform ten iterations with a passband value of 0.01.336

2.9 Experiments, Metrics and Statistical Analysis337

We compared our results to those of two benchmark nnU-Net models, i.e. a 2D338

nnU-Net and a 3D nnU-Net, trained on the global image volumes. The 3D nnU-339

Net performs 3D convolutions whereas the 2D version performs 2D convolutions, and340

outputs 2D predictions, solely on the image z-plane, the patient’s axial plane. A 3D341

segmentation map output from the 2D nnU-Net is assembled by a z-stack of 2D seg-342

mentations. The nnU-Net is arguably the most state-of-the-art method for medical343

image segmentation and thus is chosen as a benchmark for comparison.344

The metrics for comparing SeqSeg with the global nnU-Net benchmarks were as345

follows:346

D(X,Y ) ==
2 · ∥X ∩ Y ∥
∥X∥+ ∥Y ∥

(15)
347

H(X,Y ) = max{d(X,Y ), d(Y,X)},
where d(X,Y ) = supx∈X infy∈Y d(x, y)

(16)

348

CO(Y,Ct) =

∫
Ct

Y dx∫
Ct

dx
(17)

where D is the Dice score, H is the Hausdorff distance, and CO is the centerline over-349

lap with Ct being the ground truth centerline and X,Y being segmentation maps.350

Here X represents the ground truth segmentation map and Y the predicted segmen-351

tation maps, either output from SeqSeg or the benchmark nnU-Net models. The Dice352

score measures the overlap between two segmentations and ranges between [0, 1]. The353

Dice score is common for medical image segmentation because of its ability to penal-354

ize imbalanced datasets accurately. The Hausdorff distance measures the maximum355

distance between two surfaces and has a minimum of 0 for identical surfaces. The356

centerline overlap is a score ranging between [0, 1] and represents the percentage of357

the ground truth centerline captured in the predicted segmentation. Both the H and358

CO metrics give additional insight into a method’s ability to capture bifurcations and359

specifically small blood vessels compared to the Dice score. The Dice score compares360

segmentations on a volumetric basis by comparing voxels, but since most voxels belong361

to larger blood vessels, it results in indirect bias.362

Not all blood vessels were annotated in the test datasets, or they were present but363

truncated. We thus masked the outputs from all methods with the volume surrounding364

the ground truth annotated vessels. We define this mask volume by labelling all pixels365

within a six radius distance from the ground truth centerline.366

For statistical analysis, we perform the Wilcoxon signed-rank test between the367

resulting metrics scores of SeqSeg and the benchmark. This is a non-parametric test368

similar to the paired t-test. But since the paired t-test has limitations when comparing369

machine learning model performances, we opted for the Wilcoxon test [23]. Specifically,370

we test the null hypothesis that the median of differences between the two sets of371
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sample results (metric scores) is zero. A p-value less than 0.05 was considered to372

reject the null hypothesis, and therefore indicate a statistically significant difference373

between the two sets. We both perform Wilcoxon tests between SeqSeg and 2D nnU-374

Net predictions and between SeqSeg and 3D nnU-Net predictions.375

3 Results376

We tested SeqSeg on 15 held-out VMR image volumes (test set), 8 of which were377

CT volumes and 7 of which were MR volumes, as well as additional 18 AVT CT378

image volumes. Namely, SeqSeg and the 2D and 3D nnU-Net benchmark methods379

were used to segment the vasculature from these image volumes, and those resulting380

segmentations were compared to manually-generated “ground-truth” segmentations381

from the open data Vascular Model Repository and the AVT dataset[18].382

A quantitative evaluation of the Dice score (D), Hausdorff distance (H) and center-383

line overlap (CO) for segmentations generated from the VMR test set using SeqSeg and384

the nnU-Net benchmark methods is presented in Table 3. SeqSeg, on average, obtained385

higher Dice scores than the nnU-Net benchmarks in 11 test cases, lower Hausdorff dis-386

tance scores in 11 cases, and higher centerline overlap scores in 12 cases, all out of a387

total of 15 test cases. Specifically, SeqSeg on average obtained higher scores than the388

2D and 3D nnU-Net benchmarks in terms of Dice score by 0.017 and 0.029, respectively389

for CT, and 0.036 and 0.029, respectively for MR. For the Hausdorff distance, SeqSeg390

on average obtained lower distance than the 2D and 3D nnU-Net benchmarks by 0.59391

and 0.966 pixels, respectively for CT, and 0.565 and 0.872, respectively for MR data.392

For centerline overlap, SeqSeg obtained higher scores on average than the 2D and 3D393

nnU-Net benchmarks by capturing 3% and 10.9% more vessel segments, respectively394

for CT, and 9.4% and 10.4% more segments, respectively for MR. Improvements to395

metric averages that were statistically significant (p < 0.05) are indicated by an aster-396

isk ∗ in Table 3. Beyond mean improvements, SeqSeg appeared far more robust. This397

can be observed from the the box plots in Figure A1, which demonstrates greater398

consistency in the performance of SeqSeg for all quantitative metrics.399

Since the objective of segmentation is a unified, high-quality geometric model, dis-400

tilling the comparison down to any single metric is overly simplistic (if not deceptive).401

For broader perspective, Figure 7 provides a qualitative comparison, showing the CT402

and MR segmentations for which the 2D nnU-Net benchmark yielded the best, median403

and worst Dice scores, and includes comparison of these to the segmentations gener-404

ated from SeqSeg. (Note, since the 2D nnU-Net was superior to the 3D nnU-Net, the405

2D nnU-Net was considered the de facto benchmark.) This figure demonstrates that406

SeqSeg generally captures more of the vasculature, and particularly the connections407

to smaller branch arteries. The Appendix provides a visual comparison of the segmen-408

tations generated by SeqSeg and the nnU-Net benchmarks for all CT, and MR, VMR409

test cases in Figures A2, and A3, respectively.410

For the AVT CT test set, the quantitative metric scores can be seen in Table 5411

between SeqSeg and the 2D nnU-Net benchmark. On average, SeqSeg obtained higher412

Dice scores by 0.065 and centerline overlap by 10.8%. On average, the benchmark413
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Hausdorff distance scores were lower by 0.401 pixels. In terms of statistical signifi-414

cance, both Dice and centerline overlap differences were found statistically significant415

whereas the difference in Hausdorff distance was not. Boxplots of the metric scores416

are shown in Figure 8, again showing a smaller spread (better robustness) for SeqSeg417

compared to the benchmark, particularly for Dice score and centerline overlap. For418

qualitative comparison, all resulting meshes are shown in Figure A4. As observed,419

SeqSeg captures more, and smaller, branches as compared to the benchmark, even420

branches not included in the ground truth (cf. cases 2, 4, 5, 6, 8, 9, 11, 15, 16, 17 and421

18).422

Inference time also differed between SeqSeg and the benchmarks. If both are run423

on the same CPU, measured SeqSeg inference time ranged 20-80min, depending on424

the number of branches, whereas the nnU-Net benchmarks ranged 2-3hr.425

3.1 Comparison with nnU-Net’s largest connected region426

The ultimate goal in image-based modeling is to use a segmentation as the compu-427

tational domain for numerical simulation. Simulations require domains to be unified428

and well defined. Since the nnU-Net segmentations are often disjoint, filtering and429

keeping only the largest connected body would be necessary to use the segmentation430

for simulation purposes. Thus, for a more practical comparison, in this subsection we431

compare SeqSeg segmentations with nnU-Net segmentations that have been filtered432

to retain the largest connected region.433

We present the quantitative metric values for the largest connected region results434

in Table 4. From this table we can observe that SeqSeg on average obtained higher435

metric scores than the 2D/3D nnU-Net benchmark, respectively, as follows: the Dice436

coefficient improved by 0.062/0.032 for CT and 0.064/0.029 for MR; the Hausdorff437

distance improved by 1.812/2.002 for CT and 2.153/0.839 pixels for MR; and the438

global centerline overlap increased by 10.2/16.8% for CT and 18.7/13.8% for MR.439

Improvements to metric averages that were statistically significant (p < 0.05) are440

indicated by an asterisk ∗ in Table 4. Differences in centerline overlap scores were441

found statistically significant between SeqSeg and both benchmark methods. The box442

plots of these metrics for all cases are shown in Figure A1 and again reveal far less443

spread in the metrics for SeqSeg compared to both benchmark models, indicating444

greater robustness in segmentation results for SeqSeg.445

Figure 7 displays segmentation results for the best, median and worst case results446

for the 2D nnU-Net benchmark largest connected region, and compares to the segmen-447

tation predicted by SeqSeg. (Again, we excluded the 3D nnU-Net in this comparison448

as it generally performed worse than its 2D counterpart.) For all cases shown, SeqSeg449

generally captures a greater number of branches and greater extent of the vessels, even450

when compared to nnU-Net’s best results. This is further demonstrated in Figures A2451

and A3 in the Appendix for all test cases.452

For the AVT CT test data, Table 5 and Figure A4 show results for the benchmarks453

after largest connected component filtering, quantitatively and qualitatively respect-454

fully. We obtain statistically significant difference between SeqSeg and the benchmark455

for all metrics; Dice, Hausdorff distance and centerline overlap. As shown in Fig. A4,456

SeqSeg produces better unified vascular trees in more instances than the benchmark.457
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Table 3 Quantitative comparisons for the VMR test dataset between the two benchmark U-Net
segmentation methods (2D, 3D) and SeqSeg using the Dice score (D), Hausdorff distance (H) and
centerline overlap (CO). The case types were either aortofemoral (AF) or aortic (AO), and the
number of branches segmented is also shown (Nr. Br.). ∗ indicates statistically significant difference
(p < 0.05)

D ↑ H ↓ CO ↑
Mod. Case Type Nr.

Br. Seq- 2D 3D Seq- 2D 3D Seq- 2D 3D
Seg U-Net U-Net Seg U-Net U-Net Seg U-Net U-Net

CT 1 AF 9 0.907 0.885 0.846 1.930 2.208 3.526 0.939 0.906 0.657
2 AF 10 0.931 0.941 0.909 1.951 1.406 2.442 0.884 0.928 0.611
3 AF 10 0.885 0.860 0.855 2.339 4.452 3.973 0.959 0.864 0.791
4 AO 5 0.902 0.923 0.901 2.522 1.281 1.976 0.919 0.951 0.939
5 AO 5 0.940 0.845 0.865 0.717 1.544 1.804 1.000 0.916 0.992
6 AO 6 0.951 0.947 0.946 0.867 0.991 0.999 0.980 0.951 0.942
7 AO 5 0.955 0.951 0.938 0.725 3.237 3.216 0.994 0.911 0.864
8 AO 4 0.954 0.934 0.932 0.708 1.358 1.473 0.990 1.000 1.000

Avg. - - 0.928 0.911 0.899 1.470 2.060 2.426 0.958 0.928 0.849
p-value - - 0.547 0.078 0.742 0.148 0.547 0.109

MR 1 AF 9 0.877 0.706 0.816 1.429 3.613 3.652 0.977 0.510 0.650
2 AO 5 0.810 0.759 0.766 1.154 1.515 2.337 0.950 0.796 0.719
3 AO 5 0.836 0.824 0.822 0.657 0.807 0.924 0.844 0.816 0.711
4 AO 5 0.923 0.933 0.898 1.132 0.975 2.487 0.981 0.929 0.855
5 AO 5 0.909 0.894 0.895 1.371 2.141 2.048 1.000 0.930 0.960
6 AO 5 0.923 0.932 0.920 0.704 0.653 0.986 0.990 0.966 0.927
7 AO 4 0.945 0.925 0.904 0.780 1.474 0.895 1.000 0.929 0.983

Avg. - - 0.889 0.853 0.860 1.032 1.597 1.904 0.933 0.839 0.829
p-value - - 0.078 0.016∗ 0.109 0.016∗ 0.016∗ 0.016∗

4 Discussion458

U-Net learning models, and particularly the more recent nnU-Net, have shown excel-459

lent potential for automating image segmentation tasks. However, segmentation of460

branched vascular structures from medical image data is fraught with challenges since461

vessels typically compose relatively few pixels, vascular geometry varies considerably462

between patient and location, and maintaining connectivity of highly branched struc-463

tures by pixel classification is tricky. We herein propose a sequential segmentation464

technique (SeqSeg) that leverages U-Net learning to locally build vascular models. We465

observed that SeqSeg generally outperformed current state-of-the-art global nnU-Net466

models when tested on typical vascular images used for image-based modeling, par-467

ticularly when comparing overall extent of connected vasculature predicted. Namely,468

SeqSeg was superior in extending the segmentations into smaller branch arteries or dis-469

tal segments when compared to the global nnU-Net benchmarks (or, in fact, “ground470

truth” segmentations). In addition, SeqSeg performance was generally more robust,471

as indicated by less variance in the quantitative results.472
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Table 4 Quantitative comparison for the VMR test dataset after largest connected body filtering
between the two benchmark U-Net segmentation methods (2D, 3D) and our method, SeqSeg, using
the Dice score (D), Hausdorff distance (H) and centerline overlap (CO). The case types were either
aortofemoral (AF) or aortic (AO), and the number of branches segmented is also shown (Nr. Br.). ∗

indicates statistically significant difference (p < 0.05)

D ↑ H ↓ CO ↑
Mod. Case Type Nr.

Br. Seq- 2D 3D Seq- 2D 3D Seq- 2D 3D
Seg U-Net U-Net Seg U-Net U-Net Seg U-Net U-Net

CT 1 AF 9 0.907 0.879 0.830 1.930 2.989 6.723 0.939 0.824 0.521
2 AF 10 0.931 0.932 0.893 1.951 1.544 5.966 0.884 0.800 0.439
3 AF 10 0.885 0.858 0.846 2.339 4.810 5.060 0.959 0.831 0.733
4 AO 5 0.902 0.887 0.916 2.522 3.596 2.878 0.919 0.869 0.865
5 AO 5 0.940 0.704 0.865 0.717 8.163 1.804 1.000 0.750 0.992
6 AO 6 0.951 0.945 0.946 0.867 1.335 0.999 0.980 0.865 0.942
7 AO 5 0.955 0.952 0.939 0.725 2.464 2.875 0.994 0.907 0.831
8 AO 4 0.954 0.934 0.932 0.708 1.358 1.473 0.990 1.000 1.000

Avg. - - 0.928 0.886 0.896 1.470 3.282 3.472 0.958 0.856 0.790
p-value - - 0.109 0.109 0.109 0.039∗ 0.023∗ 0.039∗

MR 1 AF 9 0.877 0.508 0.810 1.429 13.575 3.652 0.977 0.199 0.623
2 AO 5 0.810 0.752 0.766 1.154 1.874 2.337 0.950 0.744 0.713
3 AO 5 0.836 0.832 0.822 0.657 0.807 0.924 0.844 0.816 0.711
4 AO 5 0.923 0.931 0.898 1.132 1.743 2.524 0.981 0.894 0.855
5 AO 5 0.909 0.897 0.898 1.371 1.925 1.778 1.000 0.930 0.960
6 AO 5 0.923 0.930 0.920 0.704 0.831 0.986 0.990 0.916 0.927
7 AO 4 0.945 0.928 0.904 0.780 1.540 0.895 1.000 0.929 0.983

Avg. - - 0.889 0.825 0.860 1.032 3.185 1.871 0.963 0.776 0.825
p-value - - 0.156 0.016∗ 0.016∗ 0.016∗ 0.016∗ 0.016∗

We note that when comparing the difference in the quantitative metrics across473

the VMR test cases, the superiority of SeqSeg did not necessarily reach statistical474

significance as measured by p < 0.05. This is perhaps due to the smaller number of475

test cases we had access to. In addition, the VMR ground truth used for evaluating476

these metrics were not as extensive as they could have been, which likely handicapped477

the comparison since SeqSeg generally excelled at extending the segmentations further478

down the vascular tree compared to the nnU-Net benchmarks. Namely, the ground479

truth data tended to be limited to the aorta and proximal segments of branch arteries,480

which are generally easier to segment, and both SeqSeq and the nnU-Net benchmarks481

performed on average equally well in such “less-challenging” regions. Moreover, metrics482

like Dice are inherently biased to larger vessels. While the ground truth segmentations483

could have been manually altered to extend vessels, or include missing branches, this484

can introduce potential bias; thus, we chose not to adulterate the ground truth from485

the public repository. Lastly, we note that most prior publications in this field [24–486

29] do not report whether their improvements to prior benchmarks were statistically487

significant.488
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Table 5 Quantitative comparison for the AVT dataset between the benchmark 2D U-Net
segmentation method, raw output and after largest connected body filtering (LC), and SeqSeg using
the Dice score (D), Hausdorff distance (H) and centerline overlap (CO). The number of branches
segmented is shown (Nr. Br.) and ∗ indicates statistically significant difference (p < 0.05)

D ↑ H ↓ CO ↑
Mod. Case Nr.

Br. Seq- 2D LC 2D Seq- 2D LC 2D Seq- 2D LC 2D
Seg U-Net U-Net Seg U-Net U-Net Seg U-Net U-Net

CT 1 15 0.924 0.87 0.843 67.9 51.7 172 0.782 0.506 0.301
2 14 0.951 0.901 0.881 28.2 42.6 36.9 1 0.899 0.813
3 14 0.925 0.567 0.299 60.4 56.8 132 0.929 0.568 0.338
4 10 0.912 0.857 0.858 17.4 29.9 29.9 1 0.967 0.966
5 10 0.898 0.823 0.758 27.2 30.4 96.5 0.976 0.834 0.581
6 8 0.87 0.854 0.835 38.8 29.7 44.7 0.973 0.928 0.783
7 13 0.936 0.787 0.778 26.4 39.2 42.7 0.933 0.887 0.812
8 8 0.911 0.857 0.799 25 17.7 130 0.981 0.743 0.412
9 8 0.875 0.884 0.885 26.3 23.3 22.3 0.988 0.989 0.989
10 11 0.872 0.874 0.868 99.6 52.4 96.4 0.757 0.874 0.764
11 11 0.935 0.86 0.795 19.9 19.7 120 0.98 0.705 0.459
12 8 0.892 0.846 0.846 22 29.4 29.4 0.992 0.969 0.969
13 9 0.953 0.892 0.867 12.8 23.9 72.2 0.93 0.815 0.502
14 5 0.918 0.883 0.886 23.4 26.8 26.8 1 0.992 0.992
15 7 0.916 0.902 0.899 30.1 22.5 18.8 0.995 0.978 0.894
16 8 0.914 0.866 0.858 17.3 26.4 29.3 0.995 0.966 0.966
17 11 0.904 0.863 0.792 18.6 25.6 69.2 0.983 0.796 0.572
18 6 0.941 0.897 0.867 12.9 18.8 75.5 0.998 0.837 0.632

Avg. - 0.914 0.849 0.812 31.899 31.498 69.120 0.955 0.847 0.708
p-value - 5.3e-4∗ 3.8e-5∗ 0.609 4.2e-4∗ 3.8e-5∗ 2.3e-5∗

The application of SegSeg to the AVT CT test dataset offered an interesting appli-489

cation. Whereas SegSeg and the benchmarks were trained on VRM data, with a subset490

of the VMR data held out for testing, the AVT data was a completely de novo data491

source unrelated to the training. For the application to this de novo data, SegSeg more492

convincing outperformed the nnU-Net benchmarks, achieving statistically significant493

higher accuracy in terms of all quantitative metrics. Moreover, the qualitative com-494

parisons shown in Fig. A4 demonstrate that SegSeq was able to segment far more495

aortic branch arteries, and extend arteries further distally than the benchmark, or, in496

fact, even than the ground truth. It is unknown if this superior performance extends497

to similar de novo MR data since such data was not available.498

The advantage of SeqSeg is that it focuses the segmentation task locally around a499

vascular segment. Indeed, the same neural network architecture and training strate-500

gies were used for SeqSeg and the benchmarks. The centerline overlap metric, which501

give increased weight to smaller branches and bifurcations, showed generally better502

performance for SeqSeg. In fact, after largest connected region filtering, the difference503

in centerline overlap metric was statistically significant for all test datasets. This is504
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Fig. 7 Qualitative comparison of the resulting meshes on the VRM test dataset, comparing the best,
median and worst cases of the nnU-Net benchmark to those of SeqSeg. From Table 3 these are cases
7, 4 and 5 for CT and 4, 5, and 1 for MR data, respectively

likely because the nnU-Net benchmarks may sacrifice smaller branches in order to505

accurately predict larger branches that carry more pixels. In contrast, SeqSeg deals506

with all branches, if detected, more equitably, by focusing on one segment at a time.507

Figures A2, A3, and A4 show another major advantage of assembling a vascular508

network piece-wise: ensuring connectivity of the resulting model, which is crucial for509

blood flow and tissue mechanics simulation purposes.510

Since the overall objective is to produce models capable of physics based sim-511

ulation, it is notable to mention SeqSegs superiority towards that goal. Firstly, as512

mentioned above, SeqSeg surpasses the benchmark’s’ ability to generate expansive and513

single connected body models. Secondly, since SeqSeg traces the vasculature, it main-514

tains information on branches and their connections relative to the global vascular515

organization. This can be used to place boundary conditions (inlet and outlet condi-516

tions), necessary for physics-based simulation setup. This information is not available517

for typical CNN segmentation methods since all pixels are treated equally and vas-518

culature organization is ignored. The authors note that this study does not directly519

look at the effects of these methods on actual physics-based simulation results, which520

is beyond the scope of the current study.521
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(a) (b)

(c)

Fig. 8 Quantitative metric scores for the AVT test dataset for SeqSeg and the 2D nnU-Net bench-
mark, both raw and after largest connected component filtering. (a) Dice (b) Hausdorff distance (in
pixels) (c) Centerline Overlap. See Sec. 2.9 for definition of p-values.

One might assume an advantage of SegSeq is that because it uses local patches522

of the image volume, the number of inputs for training is higher than for the global523

nnUnets. However, during training nnUnet partitions the image volume into patches524

and uses extensive augmentations, which greatly increases the “samples” for training.525

The results from the benchmark 2D and 3D nnU-Nets show the limitations of 3D526

convolutional neural networks for global vasculature segmentation–the problems of527

class-imbalance and image size. Because global image volumes surpass GPU memory,528

methods are forced to either downsample or split the image into patches to fit on a529

GPU. Our method excels within the constraints of GPU memory because it processes530

smaller subvolumes at each time, which rarely exceeds the GPU memory limit, see531

Table 2 for larger possible batch sizes for example. Furthermore, in a global image532

volume, the vascular pixels represent only a fraction of the total pixels, making training533

difficult. Our method focuses on the pixels around the vasculature, which, by definition,534

alleviates class imbalance.535

On the other hand, the results also indicate that the source of better segmentation536

is not simply locality. The benchmark models were trained on small patches that537
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do not undergo downsampling. By training locally and incorporating prior learned538

information, i.e. the location and size of the vessel, SeqSeg is generally able to segment539

with greater detail and accuracy, particularly in smaller vessels.540

Another limitation that impacts global segmentation learning is that ground truth541

segmentation, being human-generated, in most cases did not contain segmentation of542

all branches or portions. This implies that some training data had certain arteries,543

e.g., the renal arteries, segmented while others did not, which can result in poor544

segmentation of test data. Since SeqSeg can utilize training patches around vessels,545

the training mostly encounters positive examples of arteries, e.g. the renal arteries546

only if they are present, and will not encounter negative (wrong) examples from less547

segmented images, e.g. where the renal arteries were not segmented. Thus, SeqSeg can548

be more efficient with training data, which is beneficial since annotated data collection549

is costly and time-consuming. This could also help explain the ability of SeqSeg to550

segment a greater number of smaller branches, even those not present in all training551

examples.552

Additionally, SeqSeg may have been able to generalize to regions not present in553

the training data because vessels share similar image features when viewed locally. For554

example, Figures A2 and A3 show how SeqSeg managed to trace and segment small555

bifurcations not included in the ground truth as well as elongate already segmented556

vessels. Inspection confirmed that these vessels were present in the image data. In557

fact, the authors further confirmed this qualitatively by training a model solely on one558

branch per case (the aorta), and SeqSeg was able to generalize to other branches on559

test data. Furthermore, SeqSeg manages to detect and handle bifurcations, which has560

been an challenge for blood vessel tracking and tracing methods [16, 30–33]. Unlike561

other works, SeqSeg does not depend on explicit bifurcation detection, but instead562

handles them implicitly through surface representations expressing them. This makes563

handling complex junctions with multiple branches more tractable.564

For further comparison to previous works, SegSeg achieved better global Dice scores565

than Maher et al. who trained neural networks for 2D lumen segmentation on similar566

datasets [15]. Furthermore, the method of Maher et al. depended on previously user-567

generated centerlines, whereas our method automatically generates the centerlines568

while simultaneously segmenting the vasculature. This is significant since centerline569

generation is often the most time-consuming step of image-based model construction.570

SegSeg used a 3D U-Net neural network architecture for local segmentation predic-571

tions, however, other architectures, such as vision transformers [29], transfer learning572

models such as 3D MedNet [28] or V-Net [27], with residual connections, could573

possibly be used to perform this task. Similarly, future developments could include574

learning methods to determine step size or other parameters that are derived from575

deterministic procedures in our presented model. For example, deep learning can be576

applied to directly predict subsequent points [34], local centerline segments or surfaces577

using template-based approaches similar to what has been done for cardiac model578

construction [13]. Additionally, the SeqSeg method can be trained and tested for gen-579

eralization to other vascular anatomies such as coronary arteries, pulmonary arteries580

and cerebrovascular models. Since the training and testing occur locally, new data581

from different anatomies can be readily incorporated into the existing framework.582
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Limitations of the presented method include the dependence on voxel-based583

segmentation, the dependence on capturing bifurcation roots, and the possible com-584

putational cost. Voxel-based segmentation inevitably leads to staircase artifacts on585

the final surface, as shown in Figures A2 and A3. Since our stepwise approach relies586

on accurately capturing bifurcation roots, there is the possibility of missing whole587

branches if the root is difficult to segment, e.g. because of image artifacts. The method588

also requires neural network inference at each step, which has the potential to scale589

poorly for extensive vascular networks.590

5 Conclusion591

Despite its growing importance, reconstructing vascular models from medical image592

data in an accurate and rapid manner remains an open area of research. In this work593

we present SeqSeg; a novel image-based vascular model construction method based594

on building the vascular network in a stepwise manner to facilitate learning. SeqSeg595

is capable of automatically tracing and assembling a global segmentation and surface,596

depending only on a single seed point. We tested the method on CT and MR images597

of aortic and aortofemoral models and compared to state-of-the-art benchmark 2D598

and 3D U-Net segmentation methods, SegSeg had similar or better accuracy in terms599

of Dice score, Hausdorff distance, and centerline overlap, but more notably was more600

robust and able to connect a greater extent of the vasculature. Our future work includes601

training and testing using other vascular anatomies as well as further optimizing local602

segmentation and bifurcation detection.603
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Appendix A767
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(a) (b)

(c) (d)

(e) (f)

Fig. A1 Quantitative metrics for VMR test data; (a) CT Dice (b) MR Dice (c) CT Hausdorff
(in pixels) (d) MR Hausdorff (in pixels) (e) CT Centerline Overlap (f) MR Centerline Overlap. See
Sec. 2.9 for definition of p-values.
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Fig. A2 Resulting meshes from complete VMR CT test dataset. Each row represents a different
vascular model, labelled consistently with Tables 3, 4
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Fig. A3 Resulting meshes from complete VMR MR test dataset. Each row represents a different
vascular model, labelled consistently with Tables 3, 4
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Fig. A4 Resulting meshes from complete AVT CT test dataset. Each row represents a different
vascular model, labelled consistently with Table 5
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