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Abstract

Computational modeling of cardiovascular function has become a critical part of
diagnosing, treating and understanding cardiovascular disease. Most strategies
involve constructing anatomically accurate computer models of cardiovascular
structures, which is a multistep, time-consuming process. To improve the model
generation process, we herein present SeqSeg (sequential segmentation): a novel
deep learning based automatic tracing and segmentation algorithm for construct-
ing image-based vascular models. SeqSeg leverages local U-Net-based inference to
sequentially segment vascular structures from medical image volumes. We tested
SeqSeg on CT and MR images of aortic and aortofemoral models and compared
the predictions to those of benchmark 2D and 3D global nnU-Net models, which
have previously shown excellent accuracy for medical image segmentation. We
demonstrate that SeqSeg is able to segment more complete vasculature and is
able to generalize to vascular structures not annotated in the training data.

Keywords: Vascular Model Construction, Medical Image Segmentation, Blood Vessel
Tracking, Convolutional Neural Network, Deep Learning, Cardiovascular Simulation

1 Introduction

Image-based vascular modeling is used for a variety of purposes including diagnosis,
personalized treatment planning and fundamental understanding of disease progres-
sion [1-4]. Specialized software has been developed for such modeling, including
SimVascular [5, 6], CRIMSON [7] and VMTK ([8]. This modeling paradigm uses
medical imaging, such as computed tomography (CT) or magnetic resonance (MR)
angiography, to construct a patient-specific anatomical model of vessels of interest.
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This geometric model is subsequently converted into a 3D computational mesh to
support detailed blood flow and/or tissue mechanics simulation and analysis. The con-
struction of an anatomical model from medical image data remains largely a manual
process [5]. Figure 1 shows a typical workflow for vascular model construction, start-
ing with the creation of centerlines along the vessels of interest, 2D segmentation of
the vessel lumen along the centerlines, and lofting of the 2D segmentations to gener-
ate a unified 3D model of the vascular geometry. Alternative segmentation approaches
exist, including region-growing or level-set methods [6]; however, these methods gener-
ally struggle in the segmentation of highly-branched structures such as blood vessels,
particularly in the context of limited image resolution, unclear boundaries and image
artifacts [9]. Additionally, when the model is constructed manually, substantial user
bias may result. Ultimately, despite the popularity and maturity of image-based cardio-
vascular modeling over the past 20 years, the process of deriving a simulation-suitable
anatomical model from medical image data has remained a primary bottleneck for
large-cohort studies or translational applications where timely results are needed.

Fig. 1 A typical vascular model construction workflow involves (a) creating vessel paths by manual
selection of point (b) sequential segmentation of the vessel lumen boundary at discrete cross-sections
along the paths and (c) lofting these segmentation rings into a unified model. This process is described
in more detail in [5].

Recently, machine learning has been applied to automate and speed up image
segmentation. Note that while medical image segmentation is performed for a
variety of healthcare applications, we focus here on the purpose of generating a
stmulation-suitable model that can be utilized to generate a computational domain for
physics-based simulation. Simulation suitable models have certain criteria that must
be met such as, being connected, sufficiently “smooth”, and able to be meshed (dis-
cretized) with quality elements. Most learning methods focus on pixel classification,
which often results in segmentations that are disconnected or have substantial arti-
facts that complicate, or prevent, generation of a mesh suitable to support numerical
simulation.

Most progress has been made when machine learning has been applied to isolated
anatomic vascular regions [10, 11] including for cardiac models [12, 13]. In the work
of Maher, et al. [14, 15] segmentation of branched vascular domains was achieved by
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assuming the existence of vessel centerlines (cf. Fig. 1la). Under such assumptions,
these centerlines are traversed and local 2D cross-sectional segmentations of the lumen
boundary are generated using a trained network. This framework essentially auto-
mated step (b) shown in Fig. 1. However, for many vascular models, the generation
of vessel centerlines is the most labor intensive step. Moreover, with this approach,
segmentation is only performed at discrete 2D slices along the vessel, which provides
incomplete sampling and can be problematic when the cross-section is not connected
or the centerline is not sufficiently aligned with the vessel. And more importantly, dis-
crete cross-sectional segmentation performs poorly at vessel bifurcations, which are
present in almost all applications.

Herein, we present a novel method for segmenting branched vascular geometries
from medical image data utilizing local deep learning-based segmentation that does
not require a priori centerline information. This approach starts from a seed point and
generates a local 3D segmentation of the vessel(s) containing the seed point over a local
subvolume. Based on this local segmentation, we determine the orientation of the vessel
and any locally connected branches. We then step the subvolume along the determined
vessel direction (and new subvolumes along the identified local branch directions) to
generate a 3D segmentation of the neighboring segment(s). This approach is motivated
by the following considerations: when viewed locally by a subvolume that is centered on
a vessel and slightly larger than the vessel diameter, vessels of different sizes and from
different regions exhibit substantial geometric similarity (Figure 2), and consequently
learning to locally segment a portion of a vessel should be easier than learning to
segment an entire vascular network. While cropping of medical image volumes has
been performed previously, for example, for coronary tracking [16] [17], to the best of
our knowledge such approach has not been used to generate 3D segmentation or for
segmentation of general vascular geometries.

NN

Fig. 2 When viewed locally, vasculature of different sizes and anatomical regions exhibit substantial
geometric similarity. A) the pulmonary artery (r = 1.5mm), b) the brachiocephalic artery (r = 9mm),
¢) the coronary artery (r = lmm), d) the cerebral artery (r = 2mm) and e) the femoral artery
(r = 3mm) are presented

By processing local subvolumes, we simplify the deep learning task and introduce
beneficial inductive bias to the machine learning model, allowing it to generalize to
vasculature not present in training data. We test this method on a dataset of publicly-
accessible aortic and aortofemoral models, and the results are compared to benchmark
global 2D /3D nnU-Net neural network models that have previously shown excellent
results for medical image segmentation. The main contribution of this work is a new
method capable of:
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Tracing vasculature after initialization with a single point and vessel radius estimate.
Segmenting vasculature while ensuring global connectivity to maintain physiologic
topology.

Detecting bifurcations, storing them and tracing them sequentially.

® Delivering a global surface mesh of segmented vasculature.

Generalizing to segment parts of vasculature not annotated in training data.

2 Method
2.1 Algorithm

Figure 3 shows a schematic of the algorithm. Breifly, a “seed point”, (specifying a
location and direction) and a rough diameter “size estimate” of the vessel containing
the seed point are supplied by the user. A local subvolume surrounding the seed
point is extracted from the global image volume. The vessel portion contained in the
subvolume is segmented using a neural network. The segmentation is postprocessed
and converted to a surface mesh, after which a centerline is extracted. The resulting
centerline is subsequently used to choose the next subvolume location and size. These
steps are explained in further detail below.

Global Image ub-Volume Local Imay g L cal Glol :, u !emhly -:n bal M m g m bal Surface
_—
Volume xtraction m ume Segln ntation Stgm ntation 1 sh
Next Point +
Estimate

Seed Point
User Input + G
Metrics

Smoothing

Size Estimate

M. nlng

Fig. 3 Overview of the tracing and segmentation algorithm with inputs of the global raw image
and seed points for initialization. The algorithm takes steps, stores bifurcations in the queue during
tracing, and outputs a global segmentation map for post processing

2.2 Segmentation
2.2.1 Dataset, Sampling and Augmentations

To train the U-Net and test the algorithm, we utilized a dataset of 41 CT and 44
contrast enhanced MRI aortic and aortofemoral cases, which is commensurate with
the amount of data typically provided in segmentation challenges. The breakdown of
how many cases are used for training, validation and testing is specified in Table 1. The
VMR datasets used for training are accessible from the open access Vascular Model
Repository at https://vascularmodel.com. For further testing on CT images, we also
use a subset of the AVT dataset [18], specifically the dataset obtained from Dongyang
Hospital. Table 1 shows details on the datasets; modalities, purpose, training/test split,


https://vascularmodel.com

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Table 1 The datasets of patients used for model training and method testing. Abbreviation are as
follows: Datasets; VMR: Vascular Model Repository, AVT-D: Aortic Vessel Tree dataset, subset
from Dongyang Hospital. Anatomy; AO:Aorta, AF:Aortofemoral. Disease; H:Healthy,
AAA:Abdominal Aortic Aneurysm, MA: Marfan Syndrome, CA:Coarctation of Aorta,
AOD:Aortoiliac Occlusive Disease, SVD:Single Ventricle Defect. Sex; M:Male, F:Female,
U:Unknown. Sex and age information was not available for the AVT dataset.

Dataset  Modality Purpose Train/Test ~ Anatomy Disease Sex  Age(yr)
VMR CcT Train/Test 33/8 25 AO, 23 H, 23M 6 - 80
16 AF 15 AAA, 6F ave: 58
3 MA 12U
VMR MR Train/Test 37/7 38 AO, 19 H, 14 CA, 30M 0.6 -67
6 AF 5 SVD, 2 MA 14F ave: 17
4 AOD
AVT CcT Test 0/18 18 AO 18 H - -
D[18]

anatomies, diseases (if present), sex ratio and age ranges. The datasets contain a 3D
image volume and a respective “ground truth” vascular segmentation map (converted
from segmentation surface models for the VMR data) and corresponding centerlines
that served as ground truth labels for training and testing.

To generate training data for the local segmentation U-Net, the global 3D medical
image volumes in the VMR training datasets were sampled along the centerlines and
these subvolumes (i.e. “Patches”) were stored. Namely, two volumes were extracted
at each Patch: 1) the original medical image data and 2) a binary segmentation of the
subvolume based on the model representing the ground truth label.

To improve the learning process, we varied the samples in terms of centering and
size. Briefly, some samples were centered along the centerline while others were shifted
from the centerline, and the subvolume sizes varied from just capturing the lumen of
the vessel to including more surrounding tissue. More specifically, each sample volume
s; is a cube dependent on its side length and center, i.e., s;(L;, c;) where L; is its side
length and c; is the center point of sample 7. The side length and center are sampled
as follows:

Li = R1 *

c; =C; + bi*x R xw; )
a~N(ur, J?)
B ~ N(Ms, 03)

where R; is the local radius of the vessel, C; is the point on the centerline, w is a

unit vector perpendicular to the centerline and «, 8 represent the radius ratios used to

enlarge or shift the sample. w was chosen by sampling a random linear combination

of orthogonal unit vectors u, v that defined a plane perpendicular to the centerline:

i b;
w; = M7 a,b~ U[-1,1] (2)
la; « w4+ b; x v||
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where a,b are scalars sampled from a uniform distribution between [—1, 1]. We used
(pry 02) = (5,1) and (ps, 02) = (0,0.8) so that the mean sample was 5 times the size
of the radius and centered on the centerline. This stochasticity was purposefully added
to represent the variance that the tracing algorithm encounters during inference and
is intended to increase the robustness of the neural network. This process resulted in
a training dataset D consisting of N pairs of image subvolumes X; and corresponding

blood vessel segmentations Y; ;:
-D:{(Xh}/t,l)v(XQ;}/:‘,,Q)M"?(XN,K,N)} (3)

In total, we get D = 36289 patches for CT data and D = 33603 patches for MR data.
For the VMR dataset 15 patient datasets were excluded for final testing, i.e., 8 CT and
7 MR cases were not sampled for training or validation. The generation of subvolume
data for network training is shown schematically in Fig. 4.

Before training, MR image volumes were normalized via z-scoring, where each
voxel value, x, is subtracted from the image mean p and then divided by the image
standard deviation o. CT volumes were clipped and z scored according to foreground
image values where p and o are calculated only from voxels labelled as vessel in the
ground truth training data and held constant during inference [19]; see Table 2 for
details. The preferred image spacing was chosen as the median spacing across all cases
and all image volumes were resampled using a 3rd order spline. Segmentation maps
were resampled differently, using linear splines on one-hot encoded maps, and then
the argmax of the result.

'
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Fig. 4 Preprocessing involves extracting subvolumes along ground truth centerlines and data aug-
mentation prior to neural network training. Thousands of samples are acquired from only a few dozen
models. The neural network consists of an encoder £ followed by a decoder D, which outputs the
predicted segmentation map used to compute loss, L, during training

2.2.2 Neural Network Architecture and Training

The convolutional neural network (CNN) U-Net architecture was used for segmenta-
tion. The U-Net is tailored to the processing of medical images, going from the original
resolution down to a low-resolution, high-dimensional space and then back up to the
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original resolution. Herein, a 3D version of U-Net was chosen for the SeqSeg segmen-
tation step. Note, we also compare our end results to those of two benchmark U-Net
models, i.e. a 2D U-Net and a 3D U-Net, trained on the global image volumes, see
Section 2.9 for further details. The U-Net learns features primarily through two differ-
ent mechanisms. First, by downsampling the original image data the model is forced to
retain only important global information when squeezed through a lower-dimensional
space. Second, by using skip connections across the neural network the model is able
to retain features related to finer details from the higher resolution image in its final
prediction. The skip connections are concatenations of blocks of the same resolution.
The final output is a pixelwise probability map indicating the likelihood that a pixel
corresponds to a target tissue.

Our U-Net was trained for binary classification: to predict whether voxel y;
inside segmentation mask Y, € RW*HXD helongs to a blood vessel:

Y, = {yijr €10,1] [0 <i<W;0<j < H;0 <k <D}

- _J 1 if belongs to vessel (4)
Yiik =10  otherwise

where 1, j, k refers to the index of a voxel in an image of width W, height H and depth
D. In this section, lower case notation refers to individual nodes or voxels, e.g. vy,
whereas capital notation, e.g. Y, refers to a set of nodes or voxels such as composing
an image, segmentation mask or output from neural network layers.

In mathematical terms, the neural network is a parameterized function fy that
transforms a raw image input X € R">*#>P into a blood vessel segmentation map:

Y, =f(X16) (®)

where 6 are the parameters of the neural network, which are optimized using training
data. The final output, Y, ranges between [0,1] and can thus be interpreted as a
probability map of whether each voxel belongs to a blood vessel. This enables the
volume to be binarized by thresholding to a particular probability value.

We utilized the nnU-Net framework for hyperparameter specification and training
[19]. The framework automatically determines parameters such as image resampling
spacing, patch size and batch size based on training data and GPU memory size. The
underlying neural network architecture used is the U-Net, with additional constraints
on specific parameters. Table 2 lists the specifications of our implemented U-Net model
architectures and training parameters. Since the SeqSeg model is trained on smaller
volumes compared to the benchmarks, its required batch size can be larger, see Table
2. The nnU-Net framework utilizes stochastic gradient descent with Nesterov momen-
tum with an initial learning rate of 0.01 accompanied by a learning rate scheduler
of (1 — epoch/epochmaz)®?, where epoch,q: = 1000 was chosen; see [19] for further
details. Training was performed using an NVIDIA Geforce RTX 2080ti GPU (11 GB
GPU memory) on the Savio High Performance Computing cluster at the University
of California, Berkeley.
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Table 2 The U-Net architecture and training specifications, for both the SeqSeg models and global
benchmark models

Parameter ‘ SegSeg CT  SeqSeg MR 3D CT 3D MR 2D CT 2D MR
Intensity 0.5/99.5% all image 0.5/99.5% all image 0.5/99.5%  all image
Normalization clip + Z-Score clip + Z-score clip + Z-Score
foreground foreground foreground
z-score z-score z-score
Image 0.200, 0.0859, 0.0800, 0.0859, 0.0488, 0.0586,
Target 0.0547, 0.0625, 0.0488, 0.0586, 0.0488 0.0586
Spacing 0.0547 0.0625 0.0488 0.0586
Patch Size ‘ [20,80,80] [40,48,48] [96,160,160]  [56, 256, 160] [512, 512] [512,384]
Batch Size | 33 57 2 2 12 16
Max Nr. 320 320 320 320 512 512
Features
Nr. Stages 5 4 6 6 8 7
Encoder
Nr. Stages 4 3 5 5 7 6
Decoder
Nr. Layers 2 2 2 2 2 2
per Stage
Nr. Pooling [2,4,4] [3,3,3] [3,5,5] [4,5,5] [7,7] (6,6]
Ops. per Axis
Conv. Kernel [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3] (3,3]
Size

2.2.3 Loss Function

The loss function was a combination of Dice score (D ) and binary cross-entropy (CE):

2. v, n Vi)
D(Y,,V;) = 1l 6
oY) = 7 T W ©)
1
CE(Y Vi) = — > (ur -logy, + (1= 1) - log (1~ 33)) (7)
yey

where Y, and Y; are respective prediction and ground truth segmentation masks,
respectively, and n is the total number of voxels. Y; is defined similarly to Y} in
Eq. (4). Binary cross entropy is a common loss function for binary classification and
we added Dice loss to regulate it for medical image segmentation. Namely, the Dice
score helps counter the class imbalance that pixelwise classification problems face in
medical image segmentation. This is critical when working with 3D images where the
number of voxels belonging to a blood vessel is a small percentage of the total voxels
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in the volume. It follows that our loss function is defined as
Ny
L= (1=D(Yp Yii) = CE(Yy Vi) (8)

for a batch size IV, where each batch is a subset of the total dataset N, < N described
in Eq. (3). The data is batched to fit into GPU memory as described in Table 2. Each
image in the batch is processed in parallel on a GPU and the loss is accumulated
before taking a gradient step to update the model parameters.

2.3 Surface, Centerline Calculations and Step Taking

As mentioned above, the output of the U-Net is a binarized image subvolume. The
marching cubes algorithm [20] can be applied to this binarized image subvolume to
generate a local surface mesh of the vessel segment. The resulting surface was cut using
the image subvolume boundary planes, which results in truncation boundaries for the
vessel(s), i.e., “inlets” or “outlets”. One of these truncation boundaries is identified
as the source (inlet) and others are identified as targets (outlets). This process was
performed automatically using information from previous steps and from the direction
of tracing. To do this, the centers of the truncation boundaries are calculated. The
truncation boundary center closest to the previous stepping point is chosen as source
and the rest as targets.

The surface mesh, with respective outlet labels, is used to automatically generate
centerline(s) and radius estimates of the local vessel segment using a levelset based
centerline extraction method. The method calculates centerline(s) as the path(s) that
follow a wave propagation starting from a seed point [21]. The wave propagation is
modeled by equation:

VT (2)|F(z) = 1 9)
where T'(z), the time it takes for wave to reach point z, is solved using a set “speed”
function F'(x). F(z) is set to have values proportional to distance from vessel boundary,
leading to higher value towards the center and lower closer to vessel walls. When
Eq. 9 is solved with T'(zp) = 0 at source point xp, we obtain a solution with wave
propagation faster in the center of vessels. Then, using that solution, we perform
gradient descent starting from target point(s), where T'(x) is high, until we reach the
source point, where T'(x) is low, and have therefore defined a centerline path(s). Since
the “speed” function had higher values towards the center then so do the values of
VT which forces the gradient descent towards the center of the vessel while tracing
back, see [21] for details. Furthermore, we estimate the radius of the vessel at each
point along the centerline by its distance to the surface.

The centerline extraction depends on well-defined outlet centers fed as seed points.
Our method defines these outlet centers automatically, as described above. In the case
of a bifurcation, a single outlet was labeled as the source based on the previous step
and the direction of tracing. The point(s) to move to along the computed centerline(s)
is chosen at 80% along each branch, see stepping point choice in Fig. 5. We found that
this allowed for smaller step size, ensuring more accurate bifurcation detection.
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2.4 Choice of Subvolume Size and Chances

The local centerlines calculated as described above contain 1D (lines) meshes in 3D
space connecting all outlets with radius information along them, see Figure 5. This
radius estimate is subsequently used to determine the size of the next subvolume to
extract. The length of the next subvolume is chosen as five times the radius estimated,
consistent with the size of the training samples as described in Section 2.2.1. Further-
more, to prevent underestimation of subvolume size, we let radius estimate carry on
from one step to the next. The subvolume sidelength L is calculatated by an average
of the current radius estimate, 7;, and the estimate from the previous step, r;_1:

L:5*(7“i+7"i_1)/2 (10)

Additionally, we use the segmentation prediction itself as an indicator of subvolume
size to vessel size ratio. If a high percentage of voxels within an image subvolume is
predicted as belonging to vessel, that may indicate a small subvolume to vessel ratio,
i.e., that the vessel occupies a large part of the volume. Utilizing this, we defined
a cutoff percentage, v*, for which if the percentage exceeds it then we enlarge the
subvolume size until it drops below, see Algorithm 1, where X is the subvolume, a
function of sidelength L.

Algorithm 1 An algorithm to enlarge the subvolume based on the percentage of
voxels predicted as vessel, 7.
R« (7"1' +7”i_1)/2
Lo+ 5%R
Y, < f(X(Lo))
1
V< WeHsD Zyeyp 4
while v > +* do
L+5xRx1.1 > Increase sidelength by 10%
Y, « f(X(L))
1
Y WD Lyey, Y
if LLO > 1.3 then
break > Maximum increase of 30%
end if
end while

When SeqSeg encounters local subvolumes with image artifacts or unclear vessel
boundaries, the neural network model sometimes produces inaccurate segmentations.
However, in many cases, these inaccuracies are bound to those specific locations in
the image volume whereas the following downstream vasculature may be clearer and
easier to segment. To handle these situations, we implemented a “chances” feature
to SeqSeg. When SeqSeg fails to detect > 2 outlets or fails to successfully compute
a centerline, we give the step another chance and move further in the same direction
and try again. Given a point p; with a corresponding vessel tangent t; and radius R;,
the next “chance” location p;, is calculated as:

10
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Pit1 =P + Rxt; (11)
We set a maximum number of chances to three. This allows SeqSeg to better move
past difficult regions of the image.

Step Predicted Centerline Choose
Number Surface Mesh Extraction Next Point
tl) 12) t3)
t4) t5) 16)
Assembly of
Steps

2. t1-12) /
7 8) 19) y

| 7 A
t10) t1l) t12)

Fig. 5 Automatic tracing using local surface mesh predictions for 3 steps, involving 12 calculation
time steps. Centerlines are extracted and the next points are chosen to move to. These steps are
subsequently assembled together to form the global vasculature model

2.5 Bifurcations and Retracing Prevention

Bifurcations are detected by counting the branches of the centerline successfully com-
puted. When bifurcations are detected, they are stored and returned to once other
branches have been traced. Namely, the largest radius outlet was chosen for continued
tracing while the others were saved as bifurcation points and were revisited once the
current vessel had been fully traced. These bifurcation points were periodically sorted

11
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by radius to ensure prioritization of the largest vessels first, similar to how a human
would interrogate the vasculature; see Figure 6.

Take a Bifurcation Bifurcation Steps Queue
Step and —Remove—»
Continue O O O
Q : Step T c
- +
Point (x,y,z) Yes
Radius |
Tangent / Add
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Are there
> Stop —> bifurcation ~No:
steps?

/Are we \

/" within Have we \ "
— / a Process New A How many ™\ Store Potential
y L ve — ’ 2
Initialization global image S— Vessel Segment —>»{_segmented this h No—>  outlets? = EenEies

. volume area before? / \

“bounds?, A N\

T Take Step and

Continue

Fig. 6 How the algorithm takes steps and handles bifurcations, starting from an initial seed point.
The bifurcation points are stored in queue for subsequent tracing

Since the method detects outlets locally, it can sometimes detect the same bifur-
cations multiple times. This occurs especially if a small step size is used to advance
the subvolume. To save computational time, we implemented a retracing prevention
technique that periodically checks the global segmentation to determine whether the
algorithm has segmented the current region before. We added buffers to the global
assembly module to ensure that these checks only applied to segmentations involving
past branches and not the current one.

2.6 Initialization

As mentioned above, the SegSeg method requires a seed point accompanied by a size
estimate and direction for initialization. For evaluation purposes, this seed point is
chosen at the ‘start’ of each vascular model, in the largest artery closest to the heart,
similar to how a user would define it.

2.7 Stop Criteria

Since SeqSeg is an automated tracing method, stop criteria are required to terminate
step-taking. The current framework has no explicit stop criteria; however, indirectly,
it stops when either of two scenarios occur:

1. The method reaches the global image boundary, thereby requesting image data
that does not exist.

2. The requested subvolume is of low resolution (e.g., resulting from tracing a small
vessel) or is of too low quality (e.g., blurry or has image artifacts) that results in

12
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segmentation failure, or a centerline extraction failure from the resulting low-quality
segmentation.

In addition to the “forced” stop criteria mentioned above, we have implemented
optional criteria as well, that can be toggled if premature stopping is desired. The
optional stop criteria are as follows:

1. Define N,,q:, maximum number of steps taken and stop once number of steps taken
has exceeded N,,qz. We set N0 = 500.

2. Define R, minimum allowed radius, and stop tracing down a branch once radius
estimate is under R,,;,. We set R, = 0.5mm.

3. Define N B4, maximum number of branches to be traced down, and stop once
number of branches exceed N B,q4z. N Bpae can, for example, be set as 15.

2.8 Global Assembly

Sampling subvolumes may overlap a given voxel multiple times depending on the step
size used to propagate the subvolume along the identified vessel (cf. superposition of
subvolumes on the right side of Figure 5), or because of a new subvolume introduced
to trace a bifurcation. The end result is that several predictions may exist for a given
voxel. Thus, all local segmentations are gathered globally by calculating a weighted
mean prediction for each voxel. During development, we noticed that segmentations
tend to be less accurate close to the subvolume boundary, so we added Gaussian
weighting giving more weight to voxel predictions closer to subvolume centers. This is
also consistent with the benchmark nnU-Net method [19]. For each subvolume predic-
tion of sidelength L and center point ¢, we define a weight map W, where each voxel
with indices 4, j, K and point location p; ;. gets a weight w; ;x according to:

Ipij—cl2 1
Wi =€ 27 0= ZL (12)
Therefore, voxels close to ¢ get a weight close to 1 while voxels close to the borders of
the subvolume get a weight value of approximately two standard deviations from the
mean, 0.02.
Given a set S, of size Ng, of segmentations in which local volumes included voxel
Yij.k, the final global segmentation value was given by

L YW (13)
Yijk = s Wy k" Sigk
Ns ees Wik ses

where i, j, k refer to global voxel indices and wy ; ;. is the weight value for that voxel
associated with segmentation s. This was performed prior to thresholding so that the
resulting global segmentation retained voxel values ranging between [0, 1] depending
on the confidence. Finally, the segmentation was upsampled, and thresholded using a

value of t = 0.5:
_J1 if Yijk =t
Yijik = { 0 if Yi,j.k <t (14)
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where the largest connected body is retained, converted to a surface mesh using
marching cubes and smoothed to remove voxel artifacts. For mesh smoothing, we
use a windowed sinc function interpolation kernel to move mesh vertices[22]. More
specifically, we perform ten iterations with a passband value of 0.01.

2.9 Experiments, Metrics and Statistical Analysis

We compared our results to those of two benchmark nnU-Net models, i.e. a 2D
nnU-Net and a 3D nnU-Net, trained on the global image volumes. The 3D nnU-
Net performs 3D convolutions whereas the 2D version performs 2D convolutions, and
outputs 2D predictions, solely on the image z-plane, the patient’s axial plane. A 3D
segmentation map output from the 2D nnU-Net is assembled by a z-stack of 2D seg-
mentations. The nnU-Net is arguably the most state-of-the-art method for medical
image segmentation and thus is chosen as a benchmark for comparison.

The metrics for comparing SeqSeg with the global nnU-Net benchmarks were as
follows:

2. |XNY]|
DX, Y) == 22 011 15
oY) == X+ 15)
H(X,Y) = max{d(X,Y),d(Y, X))}, "
where d(X,Y) = sup,¢cxinfyeyd(z,y)
fC Ydzx
v.cy) = 26 1
cowv.cy =P (17)

where D is the Dice score, H is the Hausdorff distance, and CO is the centerline over-
lap with C; being the ground truth centerline and X,Y being segmentation maps.
Here X represents the ground truth segmentation map and Y the predicted segmen-
tation maps, either output from SeqSeg or the benchmark nnU-Net models. The Dice
score measures the overlap between two segmentations and ranges between [0, 1]. The
Dice score is common for medical image segmentation because of its ability to penal-
ize imbalanced datasets accurately. The Hausdorff distance measures the maximum
distance between two surfaces and has a minimum of 0 for identical surfaces. The
centerline overlap is a score ranging between [0, 1] and represents the percentage of
the ground truth centerline captured in the predicted segmentation. Both the H and
CO metrics give additional insight into a method’s ability to capture bifurcations and
specifically small blood vessels compared to the Dice score. The Dice score compares
segmentations on a volumetric basis by comparing voxels, but since most voxels belong
to larger blood vessels, it results in indirect bias.

Not all blood vessels were annotated in the test datasets, or they were present but
truncated. We thus masked the outputs from all methods with the volume surrounding
the ground truth annotated vessels. We define this mask volume by labelling all pixels
within a six radius distance from the ground truth centerline.

For statistical analysis, we perform the Wilcoxon signed-rank test between the
resulting metrics scores of SeqSeg and the benchmark. This is a non-parametric test
similar to the paired t-test. But since the paired t-test has limitations when comparing
machine learning model performances, we opted for the Wilcoxon test [23]. Specifically,
we test the null hypothesis that the median of differences between the two sets of
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sample results (metric scores) is zero. A p-value less than 0.05 was considered to
reject the null hypothesis, and therefore indicate a statistically significant difference
between the two sets. We both perform Wilcoxon tests between SeqSeg and 2D nnU-
Net predictions and between SeqSeg and 3D nnU-Net predictions.

3 Results

We tested SeqSeg on 15 held-out VMR image volumes (test set), 8 of which were
CT volumes and 7 of which were MR volumes, as well as additional 18 AVT CT
image volumes. Namely, SeqSeg and the 2D and 3D nnU-Net benchmark methods
were used to segment the vasculature from these image volumes, and those resulting
segmentations were compared to manually-generated “ground-truth” segmentations
from the open data Vascular Model Repository and the AVT dataset[18].

A quantitative evaluation of the Dice score (D), Hausdorff distance () and center-
line overlap (CO) for segmentations generated from the VMR test set using SeqSeg and
the nnU-Net benchmark methods is presented in Table 3. SeqSeg, on average, obtained
higher Dice scores than the nnU-Net benchmarks in 11 test cases, lower Hausdorff dis-
tance scores in 11 cases, and higher centerline overlap scores in 12 cases, all out of a
total of 15 test cases. Specifically, SeqSeg on average obtained higher scores than the
2D and 3D nnU-Net benchmarks in terms of Dice score by 0.017 and 0.029, respectively
for CT, and 0.036 and 0.029, respectively for MR. For the Hausdorff distance, SeqSeg
on average obtained lower distance than the 2D and 3D nnU-Net benchmarks by 0.59
and 0.966 pixels, respectively for CT, and 0.565 and 0.872, respectively for MR data.
For centerline overlap, SeqSeg obtained higher scores on average than the 2D and 3D
nnU-Net benchmarks by capturing 3% and 10.9% more vessel segments, respectively
for CT, and 9.4% and 10.4% more segments, respectively for MR. Improvements to
metric averages that were statistically significant (p < 0.05) are indicated by an aster-
isk * in Table 3. Beyond mean improvements, SeqSeg appeared far more robust. This
can be observed from the the box plots in Figure Al, which demonstrates greater
consistency in the performance of SeqSeg for all quantitative metrics.

Since the objective of segmentation is a unified, high-quality geometric model, dis-
tilling the comparison down to any single metric is overly simplistic (if not deceptive).
For broader perspective, Figure 7 provides a qualitative comparison, showing the CT
and MR segmentations for which the 2D nnU-Net benchmark yielded the best, median
and worst Dice scores, and includes comparison of these to the segmentations gener-
ated from SeqSeg. (Note, since the 2D nnU-Net was superior to the 3D nnU-Net, the
2D nnU-Net was considered the de facto benchmark.) This figure demonstrates that
SeqSeg generally captures more of the vasculature, and particularly the connections
to smaller branch arteries. The Appendix provides a visual comparison of the segmen-
tations generated by SeqSeg and the nnU-Net benchmarks for all CT, and MR, VMR
test cases in Figures A2, and A3, respectively.

For the AVT CT test set, the quantitative metric scores can be seen in Table 5
between SeqSeg and the 2D nnU-Net benchmark. On average, SeqSeg obtained higher
Dice scores by 0.065 and centerline overlap by 10.8%. On average, the benchmark
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Hausdorff distance scores were lower by 0.401 pixels. In terms of statistical signifi-
cance, both Dice and centerline overlap differences were found statistically significant
whereas the difference in Hausdorfl distance was not. Boxplots of the metric scores
are shown in Figure 8, again showing a smaller spread (better robustness) for SeqSeg
compared to the benchmark, particularly for Dice score and centerline overlap. For
qualitative comparison, all resulting meshes are shown in Figure A4. As observed,
SeqSeg captures more, and smaller, branches as compared to the benchmark, even
branches not included in the ground truth (cf. cases 2, 4, 5, 6, 8, 9, 11, 15, 16, 17 and
18).

Inference time also differed between SeqSeg and the benchmarks. If both are run
on the same CPU, measured SeqSeg inference time ranged 20-80min, depending on
the number of branches, whereas the nnU-Net benchmarks ranged 2-3hr.

3.1 Comparison with nnU-Net’s largest connected region

The ultimate goal in image-based modeling is to use a segmentation as the compu-
tational domain for numerical simulation. Simulations require domains to be unified
and well defined. Since the nnU-Net segmentations are often disjoint, filtering and
keeping only the largest connected body would be necessary to use the segmentation
for simulation purposes. Thus, for a more practical comparison, in this subsection we
compare SeqSeg segmentations with nnU-Net segmentations that have been filtered
to retain the largest connected region.

We present the quantitative metric values for the largest connected region results
in Table 4. From this table we can observe that SeqSeg on average obtained higher
metric scores than the 2D/3D nnU-Net benchmark, respectively, as follows: the Dice
coefficient improved by 0.062/0.032 for CT and 0.064/0.029 for MR; the Hausdorff
distance improved by 1.812/2.002 for CT and 2.153/0.839 pixels for MR; and the
global centerline overlap increased by 10.2/16.8% for CT and 18.7/13.8% for MR.
Improvements to metric averages that were statistically significant (p < 0.05) are
indicated by an asterisk * in Table 4. Differences in centerline overlap scores were
found statistically significant between SeqSeg and both benchmark methods. The box
plots of these metrics for all cases are shown in Figure Al and again reveal far less
spread in the metrics for SeqSeg compared to both benchmark models, indicating
greater robustness in segmentation results for SeqSeg.

Figure 7 displays segmentation results for the best, median and worst case results
for the 2D nnU-Net benchmark largest connected region, and compares to the segmen-
tation predicted by SeqSeg. (Again, we excluded the 3D nnU-Net in this comparison
as it generally performed worse than its 2D counterpart.) For all cases shown, SeqSeg
generally captures a greater number of branches and greater extent of the vessels, even
when compared to nnU-Net’s best results. This is further demonstrated in Figures A2
and A3 in the Appendix for all test cases.

For the AVT CT test data, Table 5 and Figure A4 show results for the benchmarks
after largest connected component filtering, quantitatively and qualitatively respect-
fully. We obtain statistically significant difference between SeqSeg and the benchmark
for all metrics; Dice, Hausdorff distance and centerline overlap. As shown in Fig. A4,
SeqSeg produces better unified vascular trees in more instances than the benchmark.
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Table 3 Quantitative comparisons for the VMR test dataset between the two benchmark U-Net
segmentation methods (2D, 3D) and SeqSeg using the Dice score (D), Hausdorff distance (#) and
centerline overlap (CO). The case types were either aortofemoral (AF) or aortic (AO), and the
number of branches segmented is also shown (Nr. Br.). * indicates statistically significant difference

(p < 0.05)
D1 H CO7T
Mod. Case Type Nr.

Br. | Seg- 2D 3D Seq- 2D 3D Seq- 2D 3D
Seg  U-Net U-Net Seg  U-Net U-Net Seg  U-Net U-Net

CcT 1 AF 9 |0.907 088 0.846 | 1.930 2.208 3.526 | 0.939 0.906 0.657
2 AF 10 | 0.931 0.941 0.909 | 1.951 1.406 2442 | 0.884 0.928 0.611

3 AF 10 | 0.885 0.860 0.855 | 2.339 4.452 3973 | 0.959 0.864 0.791

4 AO 5 0.902 0.923 0.901 | 2522 1.281 1.976 | 0.919 0.951 0.939

5 AO 5 10940 0.845 0.865 | 0.717 1.544 1.804 | 1.000 0.916 0.992

6 AO 6 | 0.951 0.947 0.946 | 0.867 0.991 0.999 | 0.980 0.951 0.942

7 AO 5 10.955 0951 0938 | 0.725 3.237 3.216 | 0.994 0.911 0.864
8 AO 4 10954 0934 0932 | 0.708 1.358 1473 | 0.990 1.000 1.000

Avg. - - 10928 0911 0.899 | 1.470 2.060 2.426 | 0.958 0.928  0.849

p-value - - 0.547 0.078 0.742 0.148 0.547 0.109

MR 1 AF 9 | 0877 0.706 0.816 | 1.429 3.613 3.652 | 0.977 0.510  0.650
2 AO 5 | 0.810 0.759 0.766 | 1.154 1.515 2.337 | 0.950 0.796 0.719

3 AO 5 | 0.836 0.824 0.822 | 0.657 0.807 0.924 | 0.844 0.816 0.711

4 AO 5 0.923 0.933 0.898 | 1.132 0.975 2.487 | 0.981 0.929 0.855

5 AO 5 10909 0.894 0.895 | 1.371 2.141 2.048 | 1.000 0.930 0.960

6 AO 5 0.923 0.932 0.920 | 0.704 0.653 0.98 | 0.990 0.966 0.927

7 AO 4 10945 0925 0904 | 0.780 1.474 0.895 | 1.000 0.929  0.983

Avg. - - | 0.889 0.853 0.860 | 1.032 1.597 1.904 | 0.933 0.839  0.829

p-value - - 0.078  0.016* 0.109 0.016* 0.016*  0.016*

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

4 Discussion

U-Net learning models, and particularly the more recent nnU-Net, have shown excel-
lent potential for automating image segmentation tasks. However, segmentation of
branched vascular structures from medical image data is fraught with challenges since
vessels typically compose relatively few pixels, vascular geometry varies considerably
between patient and location, and maintaining connectivity of highly branched struc-
tures by pixel classification is tricky. We herein propose a sequential segmentation
technique (SeqSeg) that leverages U-Net learning to locally build vascular models. We
observed that SeqSeg generally outperformed current state-of-the-art global nnU-Net
models when tested on typical vascular images used for image-based modeling, par-
ticularly when comparing overall extent of connected vasculature predicted. Namely,
SeqSeg was superior in extending the segmentations into smaller branch arteries or dis-
tal segments when compared to the global nnU-Net benchmarks (or, in fact, “ground
truth” segmentations). In addition, SeqSeg performance was generally more robust,
as indicated by less variance in the quantitative results.
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Table 4 Quantitative comparison for the VMR test dataset after largest connected body filtering
between the two benchmark U-Net segmentation methods (2D, 3D) and our method, SeqSeg, using
the Dice score (D), Hausdorff distance (H) and centerline overlap (CO). The case types were either
aortofemoral (AF) or aortic (AO), and the number of branches segmented is also shown (Nr. Br.). *
indicates statistically significant difference (p < 0.05)

D1 H cCO1
Mod. Case Type Nr.
Br. | Seg- 2D 3D Seq- 2D 3D Seq- 2D 3D
Seg  U-Net U-Net Seg U-Net U-Net Seg  U-Net U-Net
CT 1 AF 9 10907 0879 0.830 | 1.930 2989 6.723 | 0.939 0.824 0.521
2 AF 10 | 0.931 0.932 0.893 | 1.951 1.544 5.966 | 0.884 0.800 0.439
3 AF 10 | 0.885 0.858 0.846 | 2.339 4.810 5.060 | 0.959 0.831 0.733
4 AO 5 10902 0.887 0916 | 2.522 3.596 2.878 | 0.919 0.869 0.865
5 AO 5 10940 0.704 0.865 | 0.717 8.163 1.804 | 1.000 0.750 0.992
6 AO 6 | 0.951 0.945 0.946 | 0.867 1.335 0.999 | 0.980 0.865 0.942
7 AO 5 0.955 0.952 0.939 | 0.725 2.464 2.875 | 0.994 0.907 0.831
8 AO 4 10954 0934 0932 | 0.708 1.358 1.473 | 0.990 1.000 1.000
Avg. - - 10928 0.88 0.896 | 1.470 3.282 3.472 | 0.958 0.856  0.790
p-value - - 0.109 0.109 0.109 0.039* 0.023*  0.039*
MR 1 AF 9 | 0.877 0.508 0.810 | 1.429 13.575 3.652 | 0.977 0.199  0.623
2 AO 5 | 0.810 0.752 0.766 | 1.154 1.874 2337 | 0.950 0.744 0.713
3 AO 5 | 0.836 0.832 0.822 | 0.657 0.807 0.924 | 0.844 0.816 0.711
4 AO 5 0.923 0.931 0.898 | 1.132 1.743 2.524 | 0.981 0.894 0.855
5 AO 5 10909 0.897 0.898 | 1.371 1.925 1.778 | 1.000 0.930  0.960
6 AO 5 0.923 0.930 0.920 | 0.704 0.831 0.986 | 0.990 0.916 0.927
7 AO 4 10945 0928 0.904 | 0.780 1.540  0.895 | 1.000 0.929  0.983
Avg. - - | 0.889 0.825 0.860 | 1.032 3.185 1.871 | 0.963 0.776  0.825
p-value - - 0.156  0.016* 0.016*  0.016* 0.016*  0.016*
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We note that when comparing the difference in the quantitative metrics across
the VMR test cases, the superiority of SeqSeg did not necessarily reach statistical
significance as measured by p < 0.05. This is perhaps due to the smaller number of
test cases we had access to. In addition, the VMR ground truth used for evaluating
these metrics were not as extensive as they could have been, which likely handicapped
the comparison since SeqSeg generally excelled at extending the segmentations further
down the vascular tree compared to the nnU-Net benchmarks. Namely, the ground
truth data tended to be limited to the aorta and proximal segments of branch arteries,
which are generally easier to segment, and both SeqSeq and the nnU-Net benchmarks
performed on average equally well in such “less-challenging” regions. Moreover, metrics
like Dice are inherently biased to larger vessels. While the ground truth segmentations
could have been manually altered to extend vessels, or include missing branches, this
can introduce potential bias; thus, we chose not to adulterate the ground truth from
the public repository. Lastly, we note that most prior publications in this field [24—
29] do not report whether their improvements to prior benchmarks were statistically
significant.
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Table 5 Quantitative comparison for the AVT dataset between the benchmark 2D U-Net
segmentation method, raw output and after largest connected body filtering (LC), and SeqSeg using
the Dice score (D), Hausdorff distance (H) and centerline overlap (CO). The number of branches
segmented is shown (Nr. Br.) and * indicates statistically significant difference (p < 0.05)

D1 H CO7T
Mod. Case Nr.

Br. | Seg- 2D LC 2D Seq- 2D LC 2D | Seg- 2D LC 2D
Seg  U-Net U-Net Seg U-Net  U-Net Seg  U-Net U-Net
CT 1 15 | 0.924  0.87 0.843 67.9 51.7 172 0.782 0.506  0.301
2 14 | 0.951 0.901 0.881 28.2 42.6 36.9 1 0.899  0.813
3 14 | 0.925 0.567  0.299 60.4 56.8 132 0.929 0.568  0.338
4 10 | 0.912 0.857  0.858 17.4 29.9 29.9 1 0.967  0.966
5 10 | 0.898 0.823  0.758 27.2 304 96.5 0.976 0.834  0.581
6 8 0.87 0.854 0.835 38.8 29.7 44.7 0.973 0.928 0.783
7 13 | 0.936 0.787  0.778 26.4 39.2 42.7 0.933 0.887 0.812
8 8 |0.911 0.857 0.799 25 17.7 130 0.981 0.743 0412
9 8 0.875 0.884 0.885 26.3 23.3 22.3 0.988 0.989 0.989
10 11 | 0.872 0.874 0.868 99.6 52.4 96.4 0.757 0.874 0.764
11 11 | 0.935 0.86 0.795 19.9 19.7 120 0.98 0.706  0.459
12 8 | 0.892 0.846  0.846 22 29.4 29.4 0.992 0.969  0.969
13 9 |10.953 0.892 0.867 12.8 23.9 72.2 0.93 0.815  0.502
14 5 | 0.918 0.883 0.886 23.4 26.8 26.8 1 0.992  0.992
15 7 | 0916 0.902 0.899 30.1 22.5 18.8 | 0.995 0978  0.894
16 8 | 0914 0.866  0.858 17.3 26.4 29.3 0.995 0.966  0.966
17 11 | 0.904 0.863  0.792 18.6 25.6 69.2 0.983 0.796  0.572
18 6 | 0941 0.897 0.867 12.9 18.8 75.5 0.998 0.837 0.632
Avg. - 0.914 0.849 0.812 | 31.899 31.498 69.120 | 0.955 0.847  0.708
p-value - 5.3e-4" 3.8e-5" 0.609 4.2e-4" 3.8e-5" 2.3e-5"
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The application of SegSeg to the AVT CT test dataset offered an interesting appli-
cation. Whereas SegSeg and the benchmarks were trained on VRM data, with a subset
of the VMR data held out for testing, the AVT data was a completely de novo data
source unrelated to the training. For the application to this de novo data, SegSeg more
convincing outperformed the nnU-Net benchmarks, achieving statistically significant
higher accuracy in terms of all quantitative metrics. Moreover, the qualitative com-
parisons shown in Fig. A4 demonstrate that SegSeq was able to segment far more
aortic branch arteries, and extend arteries further distally than the benchmark, or, in
fact, even than the ground truth. It is unknown if this superior performance extends
to similar de novo MR data since such data was not available.

The advantage of SeqSeg is that it focuses the segmentation task locally around a
vascular segment. Indeed, the same neural network architecture and training strate-
gies were used for SeqSeg and the benchmarks. The centerline overlap metric, which
give increased weight to smaller branches and bifurcations, showed generally better
performance for SeqSeg. In fact, after largest connected region filtering, the difference
in centerline overlap metric was statistically significant for all test datasets. This is
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likely because the nnU-Net benchmarks may sacrifice smaller branches in order to
accurately predict larger branches that carry more pixels. In contrast, SeqSeg deals
with all branches, if detected, more equitably, by focusing on one segment at a time.
Figures A2, A3, and A4 show another major advantage of assembling a vascular
network piece-wise: ensuring connectivity of the resulting model, which is crucial for
blood flow and tissue mechanics simulation purposes.

Since the overall objective is to produce models capable of physics based sim-
ulation, it is notable to mention SeqSegs superiority towards that goal. Firstly, as
mentioned above, SeqSeg surpasses the benchmark’s’ ability to generate expansive and
single connected body models. Secondly, since SeqSeg traces the vasculature, it main-
tains information on branches and their connections relative to the global vascular
organization. This can be used to place boundary conditions (inlet and outlet condi-
tions), necessary for physics-based simulation setup. This information is not available
for typical CNN segmentation methods since all pixels are treated equally and vas-
culature organization is ignored. The authors note that this study does not directly
look at the effects of these methods on actual physics-based simulation results, which
is beyond the scope of the current study.
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Fig. 8 Quantitative metric scores for the AVT test dataset for SeqSeg and the 2D nnU-Net bench-
mark, both raw and after largest connected component filtering. (a) Dice (b) Hausdorff distance (in
pixels) (c) Centerline Overlap. See Sec. 2.9 for definition of p-values.

One might assume an advantage of SegSeq is that because it uses local patches
of the image volume, the number of inputs for training is higher than for the global
nnUnets. However, during training nnUnet partitions the image volume into patches
and uses extensive augmentations, which greatly increases the “samples” for training.

The results from the benchmark 2D and 3D nnU-Nets show the limitations of 3D
convolutional neural networks for global vasculature segmentation—the problems of
class-imbalance and image size. Because global image volumes surpass GPU memory,
methods are forced to either downsample or split the image into patches to fit on a
GPU. Our method excels within the constraints of GPU memory because it processes
smaller subvolumes at each time, which rarely exceeds the GPU memory limit, see
Table 2 for larger possible batch sizes for example. Furthermore, in a global image
volume, the vascular pixels represent only a fraction of the total pixels, making training
difficult. Our method focuses on the pixels around the vasculature, which, by definition,
alleviates class imbalance.

On the other hand, the results also indicate that the source of better segmentation
is not simply locality. The benchmark models were trained on small patches that
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do not undergo downsampling. By training locally and incorporating prior learned
information, i.e. the location and size of the vessel, SeqSeg is generally able to segment
with greater detail and accuracy, particularly in smaller vessels.

Another limitation that impacts global segmentation learning is that ground truth
segmentation, being human-generated, in most cases did not contain segmentation of
all branches or portions. This implies that some training data had certain arteries,
e.g., the renal arteries, segmented while others did not, which can result in poor
segmentation of test data. Since SeqSeg can utilize training patches around vessels,
the training mostly encounters positive examples of arteries, e.g. the renal arteries
only if they are present, and will not encounter negative (wrong) examples from less
segmented images, e.g. where the renal arteries were not segmented. Thus, SeqSeg can
be more efficient with training data, which is beneficial since annotated data collection
is costly and time-consuming. This could also help explain the ability of SeqSeg to
segment a greater number of smaller branches, even those not present in all training
examples.

Additionally, SeqSeg may have been able to generalize to regions not present in
the training data because vessels share similar image features when viewed locally. For
example, Figures A2 and A3 show how SeqSeg managed to trace and segment small
bifurcations not included in the ground truth as well as elongate already segmented
vessels. Inspection confirmed that these vessels were present in the image data. In
fact, the authors further confirmed this qualitatively by training a model solely on one
branch per case (the aorta), and SeqSeg was able to generalize to other branches on
test data. Furthermore, SeqSeg manages to detect and handle bifurcations, which has
been an challenge for blood vessel tracking and tracing methods [16, 30-33]. Unlike
other works, SeqSeg does not depend on explicit bifurcation detection, but instead
handles them implicitly through surface representations expressing them. This makes
handling complex junctions with multiple branches more tractable.

For further comparison to previous works, SegSeg achieved better global Dice scores
than Maher et al. who trained neural networks for 2D lumen segmentation on similar
datasets [15]. Furthermore, the method of Maher et al. depended on previously user-
generated centerlines, whereas our method automatically generates the centerlines
while simultaneously segmenting the vasculature. This is significant since centerline
generation is often the most time-consuming step of image-based model construction.

SegSeg used a 3D U-Net neural network architecture for local segmentation predic-
tions, however, other architectures, such as vision transformers [29], transfer learning
models such as 3D MedNet [28] or V-Net [27], with residual connections, could
possibly be used to perform this task. Similarly, future developments could include
learning methods to determine step size or other parameters that are derived from
deterministic procedures in our presented model. For example, deep learning can be
applied to directly predict subsequent points [34], local centerline segments or surfaces
using template-based approaches similar to what has been done for cardiac model
construction [13]. Additionally, the SeqSeg method can be trained and tested for gen-
eralization to other vascular anatomies such as coronary arteries, pulmonary arteries
and cerebrovascular models. Since the training and testing occur locally, new data
from different anatomies can be readily incorporated into the existing framework.
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Limitations of the presented method include the dependence on voxel-based
segmentation, the dependence on capturing bifurcation roots, and the possible com-
putational cost. Voxel-based segmentation inevitably leads to staircase artifacts on
the final surface, as shown in Figures A2 and A3. Since our stepwise approach relies
on accurately capturing bifurcation roots, there is the possibility of missing whole
branches if the root is difficult to segment, e.g. because of image artifacts. The method
also requires neural network inference at each step, which has the potential to scale
poorly for extensive vascular networks.

5 Conclusion

Despite its growing importance, reconstructing vascular models from medical image
data in an accurate and rapid manner remains an open area of research. In this work
we present SeqSeg; a novel image-based vascular model construction method based
on building the vascular network in a stepwise manner to facilitate learning. SeqSeg
is capable of automatically tracing and assembling a global segmentation and surface,
depending only on a single seed point. We tested the method on CT and MR images
of aortic and aortofemoral models and compared to state-of-the-art benchmark 2D
and 3D U-Net segmentation methods, SegSeg had similar or better accuracy in terms
of Dice score, Hausdorff distance, and centerline overlap, but more notably was more
robust and able to connect a greater extent of the vasculature. Our future work includes
training and testing using other vascular anatomies as well as further optimizing local
segmentation and bifurcation detection.
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Fig. A1 Quantitative metrics for VMR test data; (a) CT Dice (b) MR Dice (c¢) CT Hausdorff
(in pixels) (d) MR Hausdorff (in pixels) (¢) CT Centerline Overlap (f) MR Centerline Overlap. See
Sec. 2.9 for definition of p-values.
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Fig. A2 Resulting meshes from complete VMR CT test dataset. Each row represents a different
vascular model, labelled consistently with Tables 3, 4
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Fig. A3 Resulting meshes from complete VMR MR test dataset. Each row represents a different
vascular model, labelled consistently with Tables 3, 4
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Fig. A4 Resulting meshes from complete AVT CT test dataset. Each row represents a different
vascular model, labelled consistently with Table 5
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