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Abstract—Autoencoders represent a significant category of
deep learning models and are widely utilized for dimensionality
reduction. However, standard Autoencoders are complicated
architectures that normally have several layers and many hyper-
parameters that require tuning. In this paper, we introduce
a new type of autoencoder that we call dynamical system
autoencoder (DSAE). Similar to classic autoencoders, DSAEs
can effectively handle dimensionality reduction and denoising
tasks, and they demonstrate strong performance in several
benchmark tasks. However, DSAEs, in some sense, have a more
flexible architecture than standard AEs. In particular, in this
paper we study simple DSAEs that only have a single layer.
In addition, DSAEs provide several theoretical and practical
advantages arising from their implementation as iterative maps,
which have been well studied over several decades. Beyond
the inherent simplicity of DSAEs, we also demonstrate how to
use sparse matrices to reduce the number of parameters for
DSAEs without sacrificing the performance of our methods.
Our simulation studies indicate that DSAEs achieved better
performance than the classic autoencoders when the encoding
dimension or training sample size was small. Additionally, we
illustrate how to use DSAEs, and denoising autoencoders in
general, to perform supervised learning tasks.

Index Terms—autoencoder, dynamical system autoencoder,
dimensionality reduction, sparse autoencoder, denoising, stacked
autoencoder, supervised autoencoder

[. INTRODUCTION AND RELATED WORK

Autoencoders (AEs) [1] [2] [3] are an important deep
learning architecture that contains encoder and decoder parts.
The encoder transforms raw input into a lower-dimensional
representation that can be utilized for other tasks, effectively
serving as a dimensionality reduction process. The decoder
reconstructs the encoded representation back to the original
raw dimension, aiming to minimize the disparity between
the raw input and the reconstructed output. While the bulk
of the research on AEs revolves around a single AE being
applied to data, our work revolves around considering AEs as
iterative maps. Such a perspective leads to several important
advances in AE architectures, training, and effectiveness. Our
focus in this paper is on exploring iterative AEs.

While we are not the first to consider iterative AEs, we
have been inspired by the idea of stacked autoencoders [4]
and the work in [5] which suggested a close connection
between AEs and dynamical systems and demonstrated the
effectiveness of iferating AEs. Our work can be considered
as a simplification and distillation of the above ideas, in that
we consider quite simple AE architectures, in fact with only
a single trainable layer, that are designed from their inception
to be used in an iterative training framework. A dynamical
system is defined as one in which a function describes how
the system evolves over time, and dynamical systems have a
broad theoretical foundation [6]. In particular, the Dynamical
System Autoencoder (DSAE) is a new type of autoencoder
architecture that we propose. Its iterative process is a discrete

dynamical system, and this is the reason why we name it a
DSAE. DSAEs employ the same function iteratively in both
the encoding and decoding processes, which differentiates
them from classic AEs. We provide a detailed explanation of
the DSAE architecture in the Methodology section.

Our work extends the foundational work in [5] in several
important directions. In particular, the method in [5],
while quite important and interesting, iterates standard AE
architectures. Our proposed method is a discrete iterative
dynamical system from its very inception. Our goal of this
paper is to propose a new deep learning architecture, without
focusing on the theoretical framework, which we will leave
for future work. However, we do observe that connections
between deep learning and dynamical systems are gaining
attention in recent years [7], [8], [9]. Deep neural networks
can be viewed as discrete nonlinear dynamical systems, in
which a linear map followed by a nonlinear activation at
each step consist the basic dynamics [8]. [7] and [9] explored
deep neural networks through continuous dynamical systems
and investigated them from approximation theory perspective.
These research articles provide valuable insights into the
theoretical framework for understanding deep learning.

Recent research indicates that when AEs are
overparameterized—specifically, when they have deep and wide
layers—they can memorize training instances through saving
them as attractors in the learnt function. The attractive property
of AEs also extends to other overparameterized deep neural
networks [5]. Through iterating the trained model, the training
examples can be recovered. This finding in [5] connects
overparameterized AEs with dynamical systems. However,
it is important to note that the learnt model itself does not
constitute a dynamical system. Additionally, their discussion
primarily focused on overparameterized AEs and neural
networks. In our proposed method, the function may utilize
deep neural networks, but is not necessarily very deep. There
are also studies on stacked autoencoders and stacked denoising
autoencoders [4] in which learnt autoencoders or denoising
autoencoders are stacked into a bigger model. These types of
models can capture hierarchical representations of data and are
suitable for complex data patterns. Unlike these approaches,
our proposal does not require training a sequence of
autoencoder structures, which simplifies the training process.
There was also research using iterative deep neural network
architecture. [10] developed an iterative neural network
in which a stacked denoising autoencoder and a recovery
function was iterated. Their iteration process is similar to ours.
However, their iterated function format is more specific. In
contrast, the function format in our proposed method allows
for greater flexibility. For example, it can be a single layer per-
ceptron or multi-layer perceptron (MLP). Another difference
is the way in which we implement the encoder and decoder.
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We elaborate upon this in detail in the Methodology section.
Let us review the applications of AEs and prepare to intro-
duce how DSAEs address these applications. AEs are an ex-
ample of a technique that is commonly used for unsupervised
learning — dimensionality reduction. They can achieve nonlin-
ear dimensionality reduction, and accordingly offer advantages
over traditional dimensionality reduction methods like classic
principal component analysis (PCA) [11] that only performs
linear transformation. Another important application of AEs
is denoising. Namely, we can apply AEs to remove noise
that is in the inputs. This type of AEs are called denoising
autoencoders (DAEs) [7]. During training, the model receives
a noised version of the input. The original raw input is used
to compute the loss, which measures the difference between
the reconstructed output and the raw input. Our proposed
DSAEs can also be utilized for denoising tasks. For instance,
we can utilize DSAEs to remove noise from images. In the
Experiment section, we will demonstrate how the classic DAEs
and denoising DSAEs perform under two noise conditions.

It is less widely recognized that AEs can also be used for
supervised learning. In fact, in the sequel we will demonstrate
for DSAEs that supervised and unsupervised problems lay
on a continuum. As an illustration, a common use case is
classification problems with not many labeled instances, which
can hinder the training of effective deep learning models, as
these typically require large sample sizes. However, it can be
easier or cheaper to obtain relevant unlabeled data. We can
pre-train an autoencoder from these unlabeled data and only
take the encoder part for downstream task. As the encoded
dimension is usually small, fine-tuning on top of that may
require much smaller sample size so that supervised learning
tasks can be performed [12]. In addition to using them as
pre-trained encoders, variations of AEs can also be used for
supervised learning tasks. For example, predicting both inputs
and targets jointly [13]. Similar to classic AEs, DSAEs can
be applied to supervised learning tasks. Aside from being
used as pre-trained models, they can be trained to perform
supervised learning tasks. In the Methodology section, we
explain how to use them to do unsupervised and supervised
simultaneously as multi-task learning.

AEs feature simple architectures that are easy to implement
and often exhibit robust performance. However, they are not
without limitations. In Section III we will demonstrate that
when the encoded dimension is very low or sample size is
small, the encoder may inadequately capture the raw input,
resulting in suboptimal reconstruction by the decoder. In the
Methodology section, we will briefly review classic AEs,
then formally introduce DSAEs and explain how they can be
applied to different tasks. Sparse DSAEs are also introduced
in the Methodology section. In the Experiment section, we
compared the performances of classic AEs and DSAEs under
different tasks, and demonstrate that DSAEs outperformed
AEs in simulations, particularly when the sample size or
encoding dimension was small. Results will be presented in
the Results and Discussion section. !

II. METHODOLOGY

Before formally introducing DSAEs and their variations, we
briefly review classic AEs [1] [2] [3]. As shown in Fig. 1, AE
architecture consists of two parts—encoder and decoder. The

TAll code for producing the results in the paper are provides on the
github.com repository https:/github.com/squanhe/iterative-nn
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encoder part encodes input into a lower-dimensional encoded
representation, and the decoder transforms the encoded repre-
sentation back to the input dimension with the goal of recon-
structing the input. Accordingly, if we denote x as the input
and x as the output, AEs aim to minimize the difference be-
tween x and x. The encoder and decoder can simply be MLPs
or convolutional layers (that can also be viewed as MLP).

Input Encoder Decoder Output

h: encoded
representation

Fig. 1: Autoencoder architecture. The encoder and decoder have
their only architectures. For example, they can be MLPs.

A. Dynamical System Autoencoders

Similar to classic AEs, there are both encoding and
decoding processes in DSAE architecture. The encoder
encodes input into a lower-dimensional latent space, and the
decoder reconstructs the input from the latent space. Let us
define f as a function that maps an input to output with
the same dimension as the input. f can be an MLP. For
example, in our experiments on the MNIST digit dataset, we
used a linear layer that maps input to output with the same
dimension plus a sigmoid activation function; in the fashion
MNIST dataset experiments, we use a linear layer plus a
LeakyReLu activation. Let’s assume the hidden dimension is
h, and denote x as the flattened input and O as a vector with
all zeros. Specifically, O in the left of (1) is a h—dimensional
vector and O in the right of (1) has the same dimension as
x. We do not specifically denote the dimension of Os and
assume that their dimension are properly given so that the
computation is appropriate. Then the encoding process is

()-8

where h is the encoded representation of the input. X is
an intermediate that will be zeroed as shown in (1). It is
important to note that this step is essential. The step where

0
h
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is tranformed to plays the essential

X 0
h h
role of the information bottleneck produced by the encoder
in an autoecoder.

In the decoding process, we apply the same function f
iteratively on the output of the encoder

()

where X is the reconstructed input and the dot has the same
dimension as h but the values are not needed for calculating
loss or reconstructing input. The DSAE architecture is sum-
mazried in Fig. 2. The number of iterations in the encoding
and decoding processes can be different. In our experiments,
we set them to be the same.
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Fig. 2: Dynamical System Autoencoder architecture. In the model
input, ho has the same dimension as the hidden dimension h,
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From the above definition, we can discern the differences
between typical neural networks or classic AEs and DSAEs. In
a typical deep learning model, the model is a composition of
functions for different layers, denoted as fr, o - fo o f1(x)
where L is the number of layers and f;,7 = 1,..., L are
maps between layers. Accordingly, each layer map would have
a set of parameters. In contrast, we use the same function
f for all layers (more accurately, iterations) in DSAEs. For
classic AEs, normally the encoder and decoder have different
sets of parameters. However, we use the same function in a
DSAE. Through iterations of the same function, it is also a
composition of simple functions. Secondly, different layers of
a deep learning model can have different output sizes. The only
requirement is that the output size of a layer needs to match the
input size of the next layer. In DSAEs, input and output sizes
of f are the same and obviously are the same across iterations.

B. Adding Additional Zero-ed Input Dimensions into Input
Vector

Our idea is to add some additional zero-ed input dimensions
into the input vector with the goal of constructing more
complex networks so that the new type autoencoder can
perform even better. Additionally, we aim to test if adding
additional zero-ed input dimensions into the input vector,
while simultaneously reducing the hidden dimension size,
can help to reach to a good reconstruction result. The
mathematical thinking behind adding additional dimensions
into the input is illustrated below. Let’s assume f is one-layer
perceptron, o is the activation function, and denote

X WLJL th Wi_} X
0 Wi Wy W, )lo0
Weex
= O ( thX ) (3)
szX
Then
X
0
sz th sz U(szx)
=0 (( Wha Whn Wi ) < 0 (Whax) ))
Wie Win Wi; o(Wjax)
Waz0(WaeX) +Wapo (Whex)+W,,0(W,ex)
. ( Wi (Wiax) )
ijU(Wmmx) +thU(thX) +WjjU(ijx)
“4)
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It shows from the red colored part Wp,;0(WW;x X) that the
additional dimension adds more complexity into the encoded
dimension. Let’s formally define the process.

A -G -

where h is the encoded representation of the input. Similar to
(1), we do not need to worry about X and j, as they will be ze-
roed out in the input of the decoder. For the decoding process

D)L

f(f(...f<f({ h

0

and X is the reconstructed input. The two dots in (6) are
only kept for the dimension and we do not need them for
calculating loss.

(©6)

C. Sparse Dynamical System Autoencoders

As f maps input to output with the same dimension, the
DSAEs may require a higher number of parameters than
classic AEs. This is not always the case, as we can define f
in the format of MLP so that the number of parameters are
comparable with classic AEs. We can reduce the number of
parameters used in DSAEs and employ masked linear archi-
tecture [14] to implement the DSAEs. The idea is as follows:
Assume that for normal linear layer, we have y = xAT +b
where x is the layer input, b is the bias term, A is the weight
matrix, and y is the layer output. In masked linear architecture,
A is expressed as A =U ©Q+ Wy where W is the initial
weight, U is the trainable update and €2 is the mask (a matrix
of boolean values). ® denotes the Hadamard product. When
an element of (2 is 1, the corresponding parameter in U will be
updated in each update step during training; if an element of
is zero, the corresponding parameter in U will not be updated
during training process. Through this setup, we can let the
weight matrix be sparse and control the number of trainable
parameters. For simplicity, we refer to DSAEs implemented
using the masked linear architecture as sparse DSAEs.

Specifically in our setup, W, Won,Wp, and Wy in (3)
are sparse weight matrices. Namely, we randomly chose, say
p% of the weight matrices as trainable parameters. In our
case, W, Wy, W, W;, and W, are trainable. Of course,
we can also make some of them sparse. The reason why we
set the trainable parameters this way is that we want to see if
adding additional dimensions as mentioned in (4) will help or
not. More experiments on how to set weight matrices sparse
is recommended, and we do not consider how we set them is
optimal. Similarly, when f is a MLP, we can also apply the
masked linear architecture to it.

D. Dynamical System Denoising Autoencoders

Dynamical system denoising autoencoders (DSDAEs) are
DSAEs that are used for denoising tasks. Thus, the model
architectures are the same as DSAEs. Sparse DSAEs can also
be employed to control the number of parameters. Model
output of DSDAEs are the reconstructed input that is expected
to resemble the raw input without noise. Like DAEs, during
training time, some noised version of input is given as the
model input and the raw input is used to calculate model loss
(calculating difference between model output and the raw
input without noise). At inference time, a trained DSDAE is
expected to denoise an input with noise.
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E. Dynamical System Autoencoders for Supervised Learning
Tasks

Like classic AEs, DSAEs can be utilized for supervised
learning tasks. As mentioned in the Introduction, it is common
that only a small number of labeled data is available while
much more unlabeled data exit. In this scenario, we can train
a DSAE using the unlabeled data, take the encoder part, and
add additional layers on top of that for supervised learning.
Other methods include the application of a classic machine
learning model, such as SVM [15] or Xgboost [16], and
use the encoded representation as the input for the machine
learning model. Since there would be fewer parameters in
need of training, the required sample size would be smaller.
We can also fine-tune the encoder part as needed.

Alternatively, we can add supervised learning into the AE
or DSAE architecture. Let’s assume that we need to do some
classification task. Denote y as the one-hot encoded true
label and y, as some constant vector, say a vector of 0.1s,
that has dimension K, the same dimension as y. Though
a constant vector yo is a good choice, some biased value
vector where some positions have larger values than others
can be appropriate if some prior information regarding label
is available. Assume x is the raw input. Then we can use

(xT,yOT)T as an input to DSAE. Assume the output of
the DSAE is (%,9), we would expect (or train the model
so that) X to be the reconstructed input and ¢ to be the
prediction of y. The loss would be the weighted summation
of reconstruction loss and prediction loss as following:

Loss Lreconstruction +/\Lp7‘ediction

n n K
%ZH&‘ =% 3= yikloggix (1)
=1

i=1k=1

where 7 indicates the ¢—th instance, k indicates k—th element
of encoded label or prediction, and A is the weighting
parameter. This is a classic example of multi-task learning
[17]. However, in our case the DSAE form of a deep learning
model makes such multi-task learning simple to implement.
Fig. 3 illustrates the model architecture that we explained
here. There is literature on using AEs for supervised tasks
[13], [18], [19] and we leave them for readers to read.

It is important to note that for a DSDAE, the difference
between supervised and unsupervised learning is merely a
question of where the noise goes. As illustrated in (7), if we
ignore the prediction loss of true target y, we have standard
unsupervised learning. However, if we consider the input y, to
the DSDAE (or DSAE) as a noisy guess for the true target y,
then the reconstructed ¢ is now a supervised prediction. The
amount of noise in the input yo and the presence or absence
of a loss term for the reconstruction of true underlying target
y controls whether the problem is supervised or unsupervised.

III. EXPERIMENTS

We used the MNIST (Modified National Institute of
Standards and Technology) [20] and the fashion MNIST [21]
datasets for our experiments. The MNIST data are commonly
used for dimensionality reduction experiments and considered
as a benchmark dataset. There are 60,000 28 x 28 images
of hand written digits from O to 9 in the training set and
10,000 images of digits in the test set. The training set was
used for model training and the test set was used for model
evaluation. Before final model training, the training set was

Dimension
designed
for target.
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Fig. 3: Supervised Dynamical System Autoencoder training data
organization. In the model input, there are two parts: one for raw
or noised feature input and the other part yo is the dimension left
for target, which can be either a constant vector or scalar or some
vector value from prior information. When « is a noised version of
raw feature input, then the model is supposed to learn to perform
denoising task.

split into a temporary training (80%) and validation (20%)
sets for hyperparameter tuning. In order to show the usability
of DSAEs, we also utilized the fashion MNIST data which
is more complicated and not as popular as the MNIST data
for dimensionality reduction tasks. Similar to the MNIST
data, there are also 60,000 28 x 28 balanced labeled images
in the training set and 10,000 labeled images in the test
set. The image labels are T-shirt/top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, and ankle boot. The fashion
dataset can be used for classification tasks. In our experiment,
we used this data for the dimension reduction task.

In the following experiments, all DSAE models are of
function format, with one linear layer and a nonlinear
activation layer. For the MNIST data, sigmoid was used, and
for the fashion MNIST data, LeakyReLu was used.

For model evaluation, the test sets were used, respectively
for both datasets. To obtain distributions of the model
performance metrics, we set random seeds and accordingly
generated 100 data loaders on the training sets. We trained the
models on each of them and evaluated them on the test set of
the corresponding task. Thus, 100 model performance metrics
were obtained for each model on each task. We employed
Wilcoxon rank-sum test to compare the distributions of
performance metrics between two types of models and the
p-values from the test were also provided. Mean squared
error (MSE) loss was utilized for these experiments, except
for the classification experiment, where we used a weighted
combination of MSE loss and negative log loss.

A. Experiments on Dimensionality Reduction

As mentioned above, we are interested to see how AE
and DSAE perform when the encoded dimension is small.
We evaluated the model performances on dimensionality
reduction task using the reconstruction loss — MSE loss. In
our experiments, we specified the encoded dimension as 8
for the MNIST data and 16 for the fashion data. We trained
a few models for the MNIST data as follows:

e Model 1: An AE with encoder
[784,128,64,32,8]

e Model 2 A DSAE with hidden size as 8

¢ Model 3: A DSAE with hidden size as 8 and additional
dimension size as 32

layer sizes as
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e Model 4: A sparse DSAE with hidden size as 8 and
additional dimension size as 32 trained using masked
linear architecture and randomly sampled 10% of above
specified weights trainable

The number of parameters for each of the above models
is presented in Table I. The training curves of the models
from one training run (out of a total of one hundred runs)
for the dimensionality reduction task on the MNIST data are
displayed in Fig. 4. Some random samples from the test set
are illustrated in Fig. 5.

Similarly, we performed experiments and trained a few
models for the fashion data. The main differences between
these models and those trained on the MNIST data are the
encoding dimension and the additional dimension utilized. For
the fashion data, the hidden dimension used was 16 and the
additional dimensions used was 64. The model performance
metrics are summarized in Table II. Some random examples
from the test set are presented in Fig. 8.

B. Experiments on Dimensionality Reduction Using Small
Training set

An interesting topic for us to investigate was to compare
how the models perform under a small sample size training
set. This experiment was conducted on the MNIST data. Only
6,000 randomly sampled instances from the training set were
used, and the original test set was used for model evaluation.
The same models as listed above were compared here. The
results of this experiment are presented in Table IIL

C. Experiments on Denoising Images

The MNIST data was also employed for denoising
experiments. We considered two noised image setups. Let’s
denote an normalized image as I; ;,7=1,...,28,7 =1,...,28.
For simplicity, the image index is ignored here, but by default,
there is an image index to differentiate different images.

a) Gaussian Noises: Gaussian noised image is defined as

I} ;=1 j+Axe j, where ¢; j~N(0,1).

In our experiment, we generated random noise from a
standard normal distribution and set A=0.5.

b) Random Zero Noises: Each pixel of an image is
randomly zeroed out with a certain probability.

I ;=1I; j xBernoulli(p)

In our experiments, we set p=0.5.

We compared the performances of DAEs, DSDAEs, and
sparse DSDAEs on these setups and their performances are
shown in Table IV. Model 1, 3 and 4 architectures were
utilized here.

D. Experiment on Supervised Learning

Due to time constraints, we did not conduct a thorough
experiment on the supervised learning task. We mainly aimed
to demonstrate how to do it. One classifier was trained using
the previously described approach on supervised learning tasks
under the Gaussian noise setup. The model architecture used
was similar to Model 3 but the dimension of the label was
added. Non-informative prior was used for y,. Namely, yo=
(0.1,0.1,...,0.1)T. The prediction loss weight A in (7) used
for model training was 0.008. Fig. 12 presents some random
examples from the test set, along with the predicted labels.

IV. RESULTS AND DISCUSSION

Fig. 4 illustrates the training curves for models 1 to 4 on the
dimensionality reduction experiment on the MNIST data for
one time run. We can see that the DSAE achieved the lowest
training loss. For that time run, DSAE performed the best
(test set MSE losses: classic AE loss = 0.0172, DSAE loss
= 0.0153, DSAE with additional dimensions loss = 0.0166
and sparse DSAE loss =0.0167) and all the dynamical system
models outperformed than the classic AE. Model 4 that is
the sparse DSAE has the smallest number of parameters;
however its performance (test set MSE loss = 0.0169) was
better than the classic AE (test set MSE loss = 0.0172).
However, we do not want to make conclusions based on
a single training run. As mentioned in the Methodology
section, for each model, we generated 100 training data
loaders using randomly sampled seeds, used each of them
to train the models, and evaluated them on the same test
set. As Table I shows, we did not observe an advantage
of DSAEs over classic AEs. Additionally, we did not see
that DSAE with additional added dimensions outperform
DSAE. Several potential reasons may explain this. Firstly,
maybe the dimension reduction task on the MNIST data was
relatively easy and accordingly no more added complexity
was needed. Secondly, though we performed hyperparameter
tuning, the tuning grid we used may not have been broad
enough, and consequently we might have chosen suboptimal
hyperparameters. Fig. 5 displays some random examples from
the test set and the reconstructions from models 1 to 4 using
that one time trained models mentioned above.

0.07 7 MLP Autoencoder
Dynamical Sys AE
0.06 1 Dynamical Sys AE with Add Dim
Masked Linear Dynamical Sys AE
0.05 A
3 0.04 -
3
0.03 A
0.02 A
0.01 A
T T T T T T T
0 50 100 150 200 250 300
Epochs

Fig. 4: Training curves on dimension reduction task on the MNIST
data.

TABLE I. Model Performances on Dimension Reduction Task on
the MNIST Test Set

Model Num of Parameters | (MSE Losss 5, MSE Lossg7 5)
Model 1 222,936 (0.0166, 0.018T1)
Model 2 628,056 (0.0160, 0.0185)
Model 3 679,800 (0.0166, 0.0213)
Model 4 115,222 (0.0163, 0.0185)

We also experimented on the dimensionality reduction task
with the small training sample size on the MNIST data. Only
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Fig. 5: Random examples from the MNIST test set and the
reconstructions from the models for them. The first row lists the
raw examples. The second row presents reconstructions from the
trained AE. The third row shows reconstruction from the trained
DSAE. The fourth row shows the reconstruction from DSAE with
additional dimension input. The fifth row lists the reconstruction
from the trained sparse DSAE.

10% of the training data was used, which is a harder problem
than using the original training set. As shown in Table II,
both the DSAE and sparse DASE outperformed the classic
AE (p-values = 1.262¢73* and 1.340e~34, respectively).
Fig. 6 illustrates the distributions of MSE losses from the
classic AE and sparse DASE models using the small training
set, which demonstrates a statistically significant difference.

TABLE II: Model Performances on Dimension Reduction Task on
the MNIST Data Test Set Using Small Training set

Model Num of Parameters | (MSE Lossz 5, MSE Lossg7 5)
Model T 222,936 (0.0378, 0.0458)
Model 2 628,056 (0.0285, 0.0355)
Model 3 679,800 (0.0318, 0.0491)
Model 4 115,222 (0.0271, 0.0359)

AE

12 4 Masked Linear DSAE

10 1

T T T T T T T T
0.0275 0.0300 0.0325 0.0350 0.0375 0.0400 0.0425 0.0450
MSE loss

Fig. 6: Histograms of MSE losses of the classic AE and sparse
DSAE models on the MNIST test set from 100 training runs using
6,000 training instances.

The dimension reduction experiment was also performed
on the fashion data that have more detailed features in the
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images. This may represent a more challenging dimension
reduction task than using the original MNIST data. As shown
in Table III, all the dynamical system autoencoders performed
significantly better than the classic AE (p-values =1.262¢ 34
for AE vs DSAE, 1.262¢~3* for AE vs DSAE with additional
dimensions, and 1.262¢73* for AE vs sparse DSAE,
respectively). As an illustration, Fig. 7 shows the histograms
of MSE losses from classic AE and sparse DSAE from the
100 training runs. There was no significant difference in MSE
losses between the DSAE and the DSAE with additional
dimension input (p-value =0.439), which is different from our
expectation. We showed that mathematically adding additional
dimensions into the model incorporates more complexity into
the model while keeping the same encoding dimension so
accordingly may improve the model performance. However,
empirically, we did not observe that. Fig. 8 displays random
instances from the fashion test set and the reconstructions
from the trained models 1 to 4 from one training run.

TABLE III: Model Performances on Dimension Reduction Task on
the Fashion Data Test Set

Model Num of Parameters | (MSE Lossz 5, MSE Lossg7 5)
Model T 223,456 (0.0131 0.0144)
Model 2 640,800 (0.0100 0.0106)
Model 3 747,360 (0.0099 0.0110)
Model 4 171,280 (0.0112 0.0118)
17.5 A AE .
Masked Linear DSAE
15.0 A
12.5
10.0 A
7.5 4
5.0 1
2.5
0.0 - T T T T T T T T
0.0110 0.0115 0.0120 0.0125 0.0130 0.0135 0.0140 0.0145 0.0150

MSE loss

Fig. 7: Histograms of MSE losses of the classic AE and sparse
DSAE models on the fashion test set from 100 training runs.

Table IV presents the performances of DAE, DSDAE, and
sparse DSDAE in the denoising experiment on the MNIST
data. Two types of noise are considered. DSDAE performed
significantly better than DAE on both of the setups (p-value
= 1.601e=2! under the Gaussian noise setup and p-value
= 2.039¢73* under the random zero noise setup). Fig. 9
shows the distributions of MSE losses from those two types
of models under the two noise setups. Here we admit that
the two DSDAE models trained for those two setups had
more parameters than the corresponding DAEs. Thus, a fairer
comparison would involve assessing the performance of DAEs
against a sparse version of DSDAEs. Due to time constraints,
we were unable to conduct extensive hyper-parameter tuning
on DSDAEs or adjust the architecture. In this experiment,
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Fig. 8: Random examples from the fashion MNIST test set and the
reconstructions from the models for them. The first row lists the
raw examples. The second row presents reconstructions from the
trained AE. The third row shows reconstruction from the trained
DSAE. The fourth row shows the reconstruction from DSAE with
additional dimension input. The fifth row lists the reconstruction
from the trained sparse DSAE.

sparse DSDAEs did not show better performance than DAEs.
Our primary objective was to introduce and explain of
DSAE architecture. Fig. 10 and Fig. 11 display some random
examples from the test set, the corresponding noised images,
and the denoised images from one time training models.

TABLE IV: Model Performances on Denoising Task on the MNIST
Data Test Set

Model Noise Type | (MSE Losss 5, MSE Lossog7.5)
DAE Gaussian (0.0201, 0.0212)
DSDAE Gaussian (0.0178, 0.0264)
sparse DSDAE Gaussian (0.022, 0.0236)
DAE Random 0s (0.0175, 0.0675)
DSDAE Random Os (0.0155, 0.0174)
sparse DSDAE | Random 0s (0.0191 0.0202)

In the Methodology section, we also explained how to
utilize DSAE models to perform supervised learning tasks.
One model was trained on that under the Gaussian noise
setup. The negative log loss of predicting the labels from the
trained classifier on the test set was 1.499. More tuning can
be performed on this experiment to improve the performance.
We present only some initial results on the classification task
to demonstrate how to do supervised learning tasks using
DSAEs. Fig. 12 lists some random examples from the test
set, their noised images, and the model output as the denoised
images and the predicted labels.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new deep learning architecture, dynamical
system autoencoder, which is capable of performing both
unsupervised and supervised learning tasks, including
dimensionality reduction, denoising, and target prediction.
Our findings demonstrate that iterations of a simple function
through both the encoder and decoder can perform the same
tasks as what classic AEs can do. Through our experiments,
we have shown that our proposed method may outperform
classic AEs when the sample size or encoding dimension is
small. Furthermore, we mathematically illustrated that adding
additional dimensions into the input can increase the model’s
complexity without necessitating an increase in the encoding

Gaussian noises

14 1 DAE
DSDAE
12

10 A

0

0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350
MSE loss
Random zero noises

16 DAE

DSDAE
14 1
12 A

10 A

T T T T T
0.02 0.03 0.04 0.05 0.06 0.07
MSE loss

Fig. 9: Histograms of MSE losses of the denoising AE and DSDAE
models on the MNIST test set.

765407490

Fig. 10: Random examples from the MNIST test set, Gaussian noised
images and the reconstructions from the denoising models. The first
row lists the raw examples. The second row lists the Gaussian noised
images. The third row shows denoised images from the denoising
AE. The fourth row shows denoised images from the DSDAE. The
fifth row shows denoised images from the sparse DSDAE.
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Fig. 11: Random examples from the MNIST test set, random zeroed
images and the reconstructions from the denoising models. The first
row lists the raw examples. The second row lists the zero noised
images. The third row shows denoised images from the DAE. The
fourth row shows denoised images from the DSDAE. The fifth row
shows the denoised images from the sparse DSDAE.
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Fig. 12: Random examples from the MNIST test set, random
Gaussian noised images and the reconstructions and predictions from
the denoising DSAE. The first row lists the raw examples. The second
row lists the Gaussian noised images. The third row shows denoised
images from the DSDAE with the predicted labels denoted as P:*.

dimension. This may enhance the mode performance. There
is considerable flexibility in function f used in DSAEs. For
example, it can be an MLP or other structures, so long as
the input and output of f are of equal size. For models
with a large number of parameters, sparse, specifically
masked linear, architecture can be employed to reduce the
number of trainable parameters in a model. Well designed
sparse architectures may also improve model performance as
demonstrated in [14]. In summary, DSAEs represent a useful
and innovative deep learning architecture.

Our experimental results indicate that DSAEs, implemented
using iterations of a simple function f as a single-layer
perceptron, can outperform classic AEs. Additionally, our
findings suggest that sparse DSAEs, which utilize significantly
fewer parameters, can achieve performance that is comparable
to or even better than that of classic AEs. In future work,
we aim to investigate on this simple DSAE architecture
computationally and mathematically to understand the
mechanisms behind its effectiveness.
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