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ABSTRACT

Hydrothermal liquefaction (HTL) has remarkable potential for efficient conversion of abundant, decentralized organic wastes into renewable fuels. Because waste is a
highly distributed resource with context-dependent economic viability, selection of optimal deployment sites is slowed by the need to develop detailed techno-
economic analyses (TEA) for the thousands of potential deployment locations, each with their own unique combinates of scale, proximity to infrastructure/mar-
kets, and feedstock properties. An economic modeling framework that requires only easily obtainable inputs for assessing economic performance would therefore
allow multiplexed analysis of many thousands of cases, whereas traditional TEA would not be possible for more than a handful of cases. Within such a context, the
present study uses machine learning to guide development of a TEA and modeling framework which provides accurate cost predictions using three key inputs —
feedstock cost, biocrude yield, and process scale — to estimate the minimum fuel selling price (MFSP) that an HTL process can achieve. The structure of the proposed
framework is informed and based on empirical observations of cost projections made by a detailed TEA over a wide range of feedstock costs, biocrude yields, and
process scales. A machine learning guided process was used to identify, train, and test a series of models using auto-generated data for training and independently
reported data for testing. The most accurate model consists of three terms and requires 6 adjustable parameters to predict independently published values of MFSP (N
= 28) to within an average value of + 20.4%. It is demonstrated that the reduced-order model’s predictions fall within 40% of the corresponding published values
95% of the time, and in the worst case, the associated discrepancy is 45.9%, suggesting that the accuracy of the machine learned model is indeed comparable to the
TEAs that were used to build it. Moreover, the terms in the model are physically interpretable, conferring greater reliability to the use of its predictions. The model
can be used to predict the dependence of MSFP on biocrude yield, scale, and feedstock cost; interestingly, MFSP is insensitive to biocrude yield and/or scale under
many situations of interest and identifying the critical value for a given application is crucial to optimizing economic performance. The proposed model can be also
extended to evaluate economic performance of newly developed HTL-based processes, including catalytic HTL, and the methodological framework used in this study
is deemed appropriate for the development of machine learned TEA models in cases of other similar waste-to-energy technologies.

be co-addressed by diverting organic waste from landfills and using it to
produce alternative fuels suitable as replacements for fossil fuels.
Biomass conversion technologies can be repurposed for waste conver-
sion to make use of a variety of renewable carbon sources, such as
wastewater, yard waste, and food scraps—materials traditionally
destined for landfills—as viable substitutes for conventional fossil fuels.
Processes like anaerobic digestion, fermentation, pyrolysis, and hydro-
thermal liquefaction (HTL) can all be utilized to convert wastes into
energy forms such as ethanol, biogas, or biocrude oil, all of which can be
used as fuels or fuel precursors [4].

Of the existing technologies, anaerobic digestion is the one most
often associated with waste utilization in commercial practice [5]. While
anaerobic digestion is a familiar and reliable technology option that is
appropriate for wet wastes [6,7], it is hampered by slow reaction rates
that result in incomplete conversion of organic materials and large
reactor sizes [8]. Pyrolysis is a rapid process [9] that can achieve high

1. Introduction

Collection, composting, landfilling of waste and attendant manage-
ment practices collectively constitute a major (~2%) source of green-
house gas emissions, [1] with landfilling being the most common form of
waste disposal [2]. When organic material decomposes anaerobically,
the carbon it contains is released as methane—a greenhouse gas with a
global warming potential approximately 20 times greater than that of
COo—intensifying the urgency to address these coupled issues at the
waste-climate nexus. On the other hand, the transportation sector is the
single largest contributor to greenhouse gas emissions [3]. With the
growing awareness of the risks associated with a “business as usual”
scenario, lowering the emissions intensity of our energy sources and
decarbonizing waste management strategies are both high priorities.

The parallel problems of waste management and transportation can
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Nomenclature

Abbreviation Term

HTL —  Hydrothermal Liquefaction
MEFSP Minimum Fuel Selling Price
GGE Gallons Gasoline Equivalent
UsD US Dollar

AD Anaerobic Digestion
TEA Techno-economic Analysis
FCI Fixed Capital Investment

DCFROR Discounted Cash Flow Rate of Return
TDC Total Direct Costs

NPV Net Present Value

DTPD Dry Tons per Day

HHV Higher Heating Value

AIC Akaike Information Criterion

RMSE Root Mean Squared Error

LCA Life-Cycle Assessment

WRRF  Waste Resource Reclamation Facility

conversion, [10] but it generates substantial char byproducts and re-
quires an intensive drying process that can be energy-prohibitive for
utilization of wet waste streams [11]. HTL fills the space between
anaerobic digestion and pyrolysis, as it is compatible with wet wastes,
achieves high conversion, and results in high carbon efficiency while
being a relatively rapid process requiring a small footprint [12]. Drying
is not required for most HTL feeds, [13] or the primary biocrude product
[14-16]. Furthermore, char yields obtained using HTL are generally less
than those observed for pyrolysis [17-19].

Although the aforementioned benefits present a compelling case for
the use of HTL in waste management, HTL has not yet made commercial
inroads [20]. A primary reason for industry hesitancy to adopt HTL is its
perceived front-end risk; [21] HTL is a complex, [22] capital-intensive
process due to its requirement of expensive reactors capable of
handling the intense high pressure and temperature reaction conditions
[16,23,24]. Despite numerous examples of HTL economic studies
pointing to fossil-fuel-competitive minimum fuel selling prices (MFSPs)
in the range of 2.00-4.00 US dollars (USD) per gallon gasoline equiva-
lent (GGE) [14,20,25-33 34], the initial capital risk renders HTL a less
attractive venture when compared with other more proven technologies
such as anaerobic digestion (AD) [8].

The problem of estimating costs is exacerbated given that waste is a
distributed resource, with thousands of point sources to consider [35].
Each of these locations corresponds to a unique combination of scale,
access to infrastructure and markets, as well as feedstock properties and
availability [36]. Traditional techno-economic analyses (TEAs) require
hundreds of inputs that require significant resources to accurately
measure, meaning that no tool exists that can be rapidly applied to the
thousands of cases where HTL might be economically feasible. Quanti-
fying the investment risk associated with early deployments is funda-
mental to advancing its learning curve and ultimately achieving broader
adoption [37-39]. Furthermore, models that can provide accurate cost
estimates for thousands of cases to prioritize investments can promote
the early adoption required to demonstrate technological reliability,
paving the way for more widespread commercialization [40]. Lastly,
published TEAs have been performed for different feedstocks and scales,
making inter-comparison difficult. What is needed is a unified approach
for inter-comparison and decision making.

Techno-economic analysis (TEA) models can serve a critical function
as they aim to quantify project economic outcomes, assess the risks
associated with technological deployment under a realistic range of
market and process conditions, as well as guide resource allocation de-
cisions. Many TEAs have already been performed for a range of
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generalized scenarios where HTL apparently carries minimal risk and
promises competitive MFSPs [33,41-49]. However, developing TEA
models for actual scenarios expected during deployment is resource-
intensive, requiring significant time investment and potentially hun-
dreds of inputs, some of which have speculative or uncertain values and
many of which are case-specific to a given deployment scenario
[33,46,50]. Given their granularity and number of input parameters,
these detailed TEA models can be termed “high-dimensional” [51].

In contrast to granular TEAs, machine learned and low dimensional
TEA models can complement existing high-dimensional models for
analysis of new scenarios for which granular input data are lacking. The
challenge is to construct models that retain the accuracy of high-
dimensional models by identifying the key inputs that underly the
variability observed in actual practice. The obvious analogy is between
detailed chemical models, which may consist of many thousands of re-
actions, [52] and reduced order chemical models, which focus on key
reactions to retain accuracy while minimizing computational burden
[53]. Detailed chemical models are required, and have been used to
construct reduced order models — for example in prediction of HTL
biocrude yields [54]— and in turn the reduced order models are used for
applications such as optimizing reactor design where detailed models
are too computationally expensive to be practical [55]. In recent years,
machine learning has emerged as a tool for accurate yet computationally
efficient predictions of the complex phenomena occurring in HTL sys-
tems [56]. Unfortunately, machine learning regressions are typically
“black box” and as such are not easily interpreted by users [57]. The
solution, proposed here, is to use machine learning methods to guide
discovery of user interpretable relationships for accurate, computa-
tionally efficient TEA that can be used by the entire community, not just
by experts in TEA or machine learning.

The objective of this study is to use machine learning to develop a
user interpretable TEA and modeling framework for prediction of MFSP
in cases of HTL conversion of organic waste to fuel. An existing high-
dimensional model, published by Pacific Northwest National Labora-
tory [23], is used to identify which inputs have the greatest effect on
predicted values of MFSP. Within the context of the present study, a
family of machine learned TEA models is proposed to fit MFSP values
predicted using the high-dimensional model and a handful of fitting
parameters. The most robust machine learned model is identified by an
iterative process consisting of regression to the training data set as
predicted by the high-dimensional model followed by a comparison with
a test data set consisting of MFSP values reported in independent TEA
studies of HTL. The accuracy of the low-dimensional model is quanti-
fied, evaluated by comparison with the above test data, and its impli-
cations examined. It can be finally inferred that the resulting machine
learned TEA model used as a reliable evaluative tool that binds previous
studies; as it predicts the economic viability prospects of future projects
it has the potential to accelerate adoption of HTL as an efficient waste-
to-energy technology option.

The paper is organized as follows: Section 2 encompasses the struc-
ture of the proposed machine learning guided TEA and modeling
framework, followed by Section 3 where the presentation of the pro-
posed iterative model development, performance evaluation and the
accompanying discussion can be found. Finally, a few concluding re-
marks are provided in Section 4.

2. Methodology

The goal of this study is to use machine learning to guide develop-
ment of an accurate, computationally efficient, and user interpretable
model for estimating values of MFSP for HTL processes. The desired end
result can be termed a machine learning TEA model, since machine
learning was used as a crucial tool during model development. Fig. 1
shows that the approach consists of a series of six steps: 1) A published
high-dimensional TEA model was selected. 2) Key impactful variables/
inputs are identified through a sensitivity analysis to be retained in a
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Fig. 1. Workflow used in this study for the studied TEA, generation of data, and iterative development and scoring of models.

machine learned model. 3) The high-dimensional TEA model was used
with varying values of these key inputs over pre-determined ranges to
generate a training data set consisting of random variations of the key
inputs and the corresponding values of the MFSP. 4) A functional form
for the machine learned TEA model was selected or perturbed using the
proposed process and its empirical parameters regressed using the
training data set generated in step 3. Predictions made by the new ma-
chine learned TEA model were 5) evaluated for their “goodness of fit”
using a standard information criterion (discussed in Section 3), and then
6) compared with MFSP values reported in the literature from inde-
pendent studies of HTL, with the literature data playing the role of a test
data set in the overall model development process. Steps 4-6 were
iterated to refine the functional form of the model to obtain satisfactory
performance ( of near unity against literature data) as determined by
accuracy (+/- ~50% of the actual value in terms of mean absolute error)
and other pertinent qualitative criteria and quantitative constraints,
including a parity against literature data with passing through the
origin, and a slope equal to unity.

2.1. Selection of an existing High-Fidelity Techno-Economic analysis
(TEA) model.

Many TEA studies on HTL economic performance assessment have
been published in the literature, [16,23,41,42,58] and of these the
process economics model developed by Pacific Northwest National Lab
(PNNL) was adopted as a starting point [23]. The PNNL model is
representative of a well-developed and documented HTL process that
operates continuously, includes heat recovery, and relies on ubiquitous
natural gas infrastructure for heating. Many HTL TEAs have explored
deviations from this base process design, which confers to it a status of
community acceptance [42,59,60]. A simplified version of the process
flow diagram in Snowden-Swan et al. can be found in SI-Fig. 2. The
PNNL model has been widely accepted as a benchmark analysis of the
HTL process to quantify improvements and predictive models [23].

The selected high-fidelity TEA follows a standard methodology: a
mass and energy balance is developed following the process flow dia-
gram, where the magnitude of each material and energy flow has
monetary value attached to it to quantify variable operating costs and
are used in capital cost scaling factors for each unit operation to

calculate Fixed Capital Investment (FCI). Fixed operating costs are
comprised of labor and maintenance. These operating costs populate
annual cash flows which account for capital investment interest, taxes,
overall plant life, and investor equity which modify Fixed Capital In-
vestment (FCI) and operating cost estimates and are then embedded into
the structure of a standard Discounted Cash Flow Rate of Return
(DCFROR) modeling framework at a given discount rate (10% at base
case). The key DCFROR economic parameters are held constant at the
values used by Snowden-Swan et al. [23] and are listed in Table 1.
Additional discussion of the DCFROR formulation and detailed TEA
parameters is provided in SI-Table 1, with example calculations and
validation values for capital and operating costs in SI-Tables 2 and 3.
The sum of the annual cash flows from the DCFROR are then added to
calculate the project’s “Net Present Value” (NPV), which quantifies the
project’s value over its lifetime in present dollars. The Minimum Fuel
Selling Price (MFSP) is then iteratively calculated such that the project
NPV is equal to zero. In essence, this calculates the MFSP required to hit
the rate of return (discount rate) as set by the project parameters. [23]
The baseline model (and thus the fitted models) is reported in $USD
2016 equivalent. A constant value of 1.10 USD/GGE was added as a
correction factor to the calculated MFSP to account for the cost of
upgrading, following the recommendation of Zhu et al.[61] The cost of
biocrude can be recovered by subtracting 1.10 USD/GGE from the MFSP

Table 1
Discounted cash flow rate of return (DCFROR) economic model parameters,
as reported in [23].

Variable Value
Equity 40%
Loan Interest 8%
Loan Term (yrs) 10
Working Capital Investment (as a % of FCI) 5%
Depreciation Period (yrs) 10
Construction Period (yrs) 3

% Spent in Year 1 8%
% Spent in Year 2 60%
% Spent in Year 3 32%
Internal Rate of Return 10%
Income Tax Rate 21%
Plant Life (yrs) 30
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Table 2
Variables and bounds for Monte Carlo simulations.
Variable Lower Upper Source/
Bound Bound Justification
Higher Heating Value (HHV, 30 40 [18,23,42,63,64]
MJ/kg)
HTL Scale (DTPD Feedstock) 3 500 [15,23,50,65,66]
Feedstock Cost (USD/dry —200 200 [41,42,44,45,61]
ton)
Yield (wt%) 10% 60% [49,67-71]
Capital Cost Factor (%Total —50% 50% +/-50% TDC from
Direct Costs) [23]
Electricity Cost (USD/kWh) 3 12 [72]
Natural Gas (USD/scf) 1 10 [23,42,44,45]
Ash Content in dry solids (wt 0% 30% +/-100% from [23]
%)
Feedstock Solids loading, ash 5% 45% +/- 80% from [23]
free (Wt%)
Overhead/Maintenance 0% 180% +/-100% from [29]
Factor
Table 3
Error metrics of this study’s model against published MFSPs.
Statistical Metric Value Unit
Number of Points Considered 28 -
Parity R? 0.960 -
Mean absolute Error (MAE) 1.32 USD/GGE
Mean Squared Error (MSE) 3.04 (USD/GGE)?
Root Mean Squared Error (RMSE) 1.74 USD/GGE
Mean % Absolute Deviation 20.4% -
Std. Dev. of % Abs Dev. 12.2% -
Max % Absolute Deviation 45.9% —
Min % Absolute Deviation 1.4% -

predicted by the models presented here. More details are reported by
Snowden-Swan et al. [23].

2.2. Sensitivity analysis to identify key input parameters using generated
data

The next step (comprising of steps 2 and 3 in Fig. 1) involved a
sensitivity analysis to identify key TEA model inputs that determine the
MFSP output. A series of 100,000 probabilistic simulations was per-
formed using the PNNL model, where all key model inputs were
considered as random variables following appropriately chosen proba-
bility distributions bounded by the values summarized in Table 2. In
these simulations, the Monte Carlo method [41,42,44] was used to
sample key input values from the aforementioned distributions and over
their prescribed respective numerical ranges selected to represent the
full range of MFSPs observable — including studies published in the
pertinent literature (as shown in Table SI-3).

One of the most important inputs included in the sensitivity analysis
is process scale. Simple power-law relationships were used in Snowden-
Swan et al. to model the dependence of individual equipment capital
costs on scale, with values ranging between 0.3-0.8 used for estimating
the costs of various pieces of equipment. [23,62] In the present study
these scaling factors are unchanged from Snowden-Swan et al.’s model.
Operating costs, on the other hand, vary linearly with mass and energy
balances. Further details regarding operating cost calculations and
process parameters are detailed in the SI. The result of the Monte Carlo
simulations was 100,000 sets of model inputs with their corresponding
MFSP output values.

The input-output data set arising from sensitivity analysis was
analyzed using a Pearson (linear) correlation plot, in which a Pearson
(linear) correlation analysis was performed for each variable against
MFSP and the corresponding value of the correlation constant (rz) was
determined. The Pearson correlation coefficient measures the linearity
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between two variables [73], which this study uses to estimate the
relative contribution of a given input variable to MFSP output.
Accordingly, MFSP prediction outputs are most sensitive to inputs which
correspond to the highest r? values.

Following identification of key (most impactful on MFSP) parame-
ters, new Monte Carlo simulations were performed to generate a set of
10,000 data points involving the identified key model inputs and the
corresponding MFSP outputs. In these simulations, biocrude yield was
varied between 10% — 60%, process scale between 3 and 500 DPTD, and
feedstock between -200 — +200 USD/dry ton. Uniform probability
distributions covering the above ranges were assumed for the above key
inputs, and each input was allowed to vary independently of the others.
The effect of each variable on capital and operating expenses was
modeled as described previously for the sensitivity analysis, following
economies of scale and linear adjustments to equipment sizing and
material/energy balances respectively.

2.3. Techno-Economic analysis model development via regression

The resulting input-output data set constitutes a set of training data
derived from 10,000 input-output test cases that was then used to
regress a series of combinatorially generated models (described in Sec-
tion 3.3, representative of step 4 in Fig. 1). The construction of each of
these models was accomplished using Python’s symbolic math library,
SymPy (ver. 1.12)[74], and each model’s respective parameters were
fitted to the generated data using the curve fit optimization methods
present in the SciPy Python library (ver. 1.11.2).[75] SymPy was used to
filter mathematically equivalent models further described in Eq. (4)
while the SciPy library was used to fit generated data from the model
described in Section 2.2 to each of the hypothesized models using the
Trust Region method.

To assess the relative performance of each model, the Akaike Infor-
mation Criterion (AIC) was utilized, as described by Eq. (2) [76,77]:

AIC = N*LN(MSE) + 2k (2)

where N is the number of data points included in the regression, MSE is
the mean squared error performance of the model against the data it was
fit to (i.e. the generated data), and k is the number of fitted parameters.
AIC is used to balance model accuracy with the number of fitting pa-
rameters to reduce the natural tendency to overfitting.

2.4. Model evaluation and identification of systematic error

The accuracy of empirical models selected based on the AIC analysis
was determined by comparison with 28 literature data points published
independently of the PNNL data set (in search of systematic error — step
6 of Fig. 1), detailed in Table SI-4. These data points represent all TEA
studies published as of 2022, with the only exception being a mobile
study that was deemed to differ qualitatively from the other data due to
significantly different process operation conditions and the unique in-
clusion of fuel subsidies.[26] The literature data constituted HTL TEAs
processing a variety of wet wastes, including lignocellulosic yard wastes,
wastewater sludge, microalgae, and food waste, with broadly similar
processes but with substantive differences in reaction conditions such as
residence times and processing temperatures/pressures. Scales consid-
ered by these studies range from 1 to 2000 DTPD of feed processed, and
feedstock costs varied from — 50-1800 USD/dry ton. For studies that
perform uncertainty analyses, we include the median case and the
confidence intervals reported each as separate points in the validation.
Collectively, the studies in the test set represent multiple economic
conditions in the US and various European countries. For studies that
report MFSPs in alternative currencies, exchange rates were used at the
date of publication. A comprehensive table of considered TEAs is
included in the SI - also reported primarily in USD 2016, though Eu-
ropean studies converted to USD were left in their reported years to
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avoid over manipulation of the original values.

To compare a given model’s performance against available literature
data, the reported scale, yield, and feedstock costs were collected from
each TEA study appearing in the literature and used to predict MFSP
values. This “predicted” MFSP was then compared against the available
literature values — ideally resulting in a model predicting values as close
to the “real” literature values as possible. Literature data are solely
involved in model evaluation and deliberately isolated from model
formulation to avoid fitting a model with “knowledge” of values it will
be evaluated against. Accordingly, the approach described in Sections
2.3 and 2.4 can be considered as consisting of model training (or
regression) and model testing procedures respectively. Model perfor-
mance is examined qualitatively to guide further refinement in an iter-
ative process.

2.5. Iterative model improvement

The TEA model structure development, training, and testing/evalu-
ation steps (steps 4-6 in Fig. 1) were performed over multiple iterative
cycles. In each of these cycles, the quantitative and qualitative perfor-
mance (described in Section 2.4, and further in the discussion) of the
regression models were considered for generation of new model forms.
The new models were regressed using the training data and evaluated
using the test data. When tested, models with systematic error (i.e. low
accuracy, high precision) are evaluated and the iterative process is
continued. The iterative process was concluded when r? approximately
converged to unity and the qualitative criteria of slope equaling 1.0 and
intercept equaling 0.0 were satisfied, within reasonable bounds of
uncertainty.

3. Results and discussion

The objective of this work is to develop a machine learned yet
accessible techno-economic analysis (TEA) and modeling framework
that uses readily available inputs to predict HTL MSFP for different
options of feedstock type and process scale. The starting point was a
sensitivity analysis of a published TEA [23] to identify the inputs with
the greatest effect on overall process economics, as captured by the
predicted minimum fuel selling price (MFSP). Several different types of

Feedstock Cost (USD/Dry Ton)
HTL Scale (DTPD)
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empirical models were then developed using the inputs identified from
sensitivity analysis; this step can be considered as model training. The
accuracy of these models was then evaluated using 28 MFSP values that
have appeared in the published literature; this step can be considered
equivalent to model testing. The training-testing process resulted in a
machine learned TEA model capable of estimating MFSP with minimal
measurable inputs. The ensuing Discussion is organized in a similar
structure as shown in Section 2: 1) sensitivity analysis; 2) training and
testing of several generations of models; 3) identification and recom-
mendation of the most accurate and robust model for future use.

3.1. Sensitivity analysis

The first step was sensitivity analysis of the TEA published previously
by PNNL to determine the key variables to include in further consider-
ation in model development [23]. The Monte Carlo simulation method,
with relevant variables, distributions, and simulation parameters
described in Table 2, was used to generate a family of predicted MFSP
values for many different values of 10 key input parameters. Fig. 2
shows the results of a Pearson correlation analysis of these simulations,
indicating that feedstock cost, HTL plant scale (or feedstock dry flow
rate), and process biocrude yield have the greatest effect on MFSP.
Several published studies corroborate the finding that these three vari-
ables are the most important inputs for determining MFSP
[14,23,42,78]. Conceptually, these three inputs are orthogonal to one
another: process scale directly impacts the capital investment and ma-
terial flow rates (operating cost); feedstock cost is a key (and often
expensive) component of operating cost; and yield defines the amount of
product sold - in the context of a TEA, these are each independent de-
grees of freedom. Any accurate model will therefore require these three
inputs.

In addition to plant size, feedstock cost, and biocrude yield, the
sensitivity analysis identified overhead/maintenance, solids loading,
and ash content as the next three most important variables determining
MEFSP. Of these, overhead/maintenance might reasonably be expected to
correlate with plant size in a machine learned model, reflected in a weak
(but observable) positive correlation. Accordingly, as a first approxi-
mation and in the effort to keep the model as simple, general, and
interpretable as possible, overhead/maintenance was not considered as

Biocrude Yield (wt%)

Overhead/Maintenance Factor
Sludge solids loading (wt%)

Ash content in total solids (wt%)
Capital Cost Factor (% TDC)
HHV (MJ/kg)

Natural Gas Cost (USD/1000scf)

Electricity Cost (USD/kWh)

__
e
|

T

s L o
05 -04 -03 02 -01 00 0.1
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7L PR 170 PRI ) L |
02 03 04 05
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Fig. 2. A Pearson correlation plot detailing the linear correlation of each variable under study against MFSP. Feedstock cost, HTL Scale, and Yield have the highest

absolute correlation values, and thus the greatest expected impact on MFSP.
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an input parameter for initial model development. We revisit this de-
cision later.

Unlike overhead/maintenance, solids loading, and ash content are
nearly orthogonal to plant size, feedstock cost, and biocrude yield due to
their association with feedstock composition, which indicates that
including these variables in a machine learned model might improve
accuracy. On the other hand, the values of the correlation constants
between solids loading or ash content and MFSP are much less (< 0.1)
than those between feedstock cost, plant size, or biocrude yield and
MFSP. Accordingly, including solids loading and ash content in a ma-
chine learned model runs the risk of undesirable overfitting. Further-
more, adding more input requirements detracts from model simplicity. A
machine learned model consisting of feedstock cost, plant capacity, and
biocrude yield was deemed suitable for displaying the requisite balance
between accuracy, over fitting, and complexity. All further model
development work used these three input parameters.

3.2. Machine learned TEA models consisting of linear combinations

Having identified feedstock cost, plant capacity, and biocrude as the
three required model inputs, the next step was to develop accurate
models for estimating MFSP values. Many different functional forms are
conceivable as postulates. MFSP values resulting from the Monte Carlo
simulation runs were used to narrow down the functional form that
might best capture the relationships between input and output variables.
As a starting point, Fig. 3 plots predicted values of MFSP varying each of
the three key inputs alone, with all other input variables held constant at
their baseline values. Fig. 3 demonstrates that the relationships between
biocrude yield or plant scale and MFSP are power laws; the relationship
between MFSP and feedstock cost is satisfactorily depicted as linear. The
empirical observations from Fig. 3 were used to guide all subsequent
models.

The analysis shown in Fig. 3 encourages a simple “First-Order”” model
consisting of the following structure/terms:

MEFSP = a*scale’ + c*yield® + e*feedcost )

where a, b, ¢, d, and e are empirically fit parameters with values defined
from regression analysis in Fig. 3. Eq. (3) can be considered as a linear
combination of single-variable monomials of plant scale, biocrude yield,
and feedstock cost with degrees b, d, and 1 respectively. The predictions
of Eq. (3) were then evaluated/tested against 28 values of MFSP pub-
lished in the literature (as listed in the SI). Fig. 4 is the resulting parity
plot, which ideally should result in a linear line with slope equal to 1.0, a
correlation constant (%) approaching 1.0, and minimal outlying points.
Unfortunately, the correlation between Eq. (3) and published MFSP
values suffers from two major problems that are apparent in the best-fit
line: 1) the slope is substantially greater than 1.0 and 2) there are
numerous outlying data points. Scaling the entire response by the
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Fig. 4. The parity of the model depicted in eq. (3) (a linear combination of the
“elementary” relationships of yield, scale, and feedstock cost against litera-
ture MFSPs.

deviation in the test data shown in Fig. 4 would “fix” the first of these
problems; however, that ad hoc solution has no physical basis and would
undoubtedly result in model overfitting while not addressing the
outlying data points.[76] Accordingly, the model represented by the
linear combination of feedstock cost, biocrude yield, and plant capacity
as shown in Eq. (3) is inadequate for use as an accurate and predictive
machine learned model.

The model corresponding to Eq. (3) is limited at least in part because
the linear combination of the three inputs does not allow for interactions
between them, a limitation arising from the restriction placed on Fig. 3
that only one input was allowed to vary at a time. To investigate the
effects of this restriction, results from the Monte Carlo analysis were
used to construct plots of predicted MFSP with respect to values of each
of these three key inputs while easing the restriction that the values of
the other two must be held constant at their respective baseline values.
Fig. 4 summarizes the result of this test. The dashed lines provided in
Fig. 4 are the trend lines expected from the simple analysis shown in
Fig. 3. Unlike for the simpler analysis, the power law and linear re-
lationships that are obvious for independent variation of each input
variable on its own no longer persists for the general case that allows all
three inputs to vary at the same time. Instead, MFSP only very roughly
follows the expected power law (biocrude yield or plant scale) or linear
(feedstock costs) relationships expected from predictions made when
only one input is varied at a time. Since the three key inputs are
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Fig. 3. The behavior of a) yield b) scale and c) feedstock cost on MFSP when varied independently for the generated dataset. Yield and scale follow inverse power law

behavior, while feedstock cost adjusts MFSP linearly.
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presumed to be independent of one another — and hence allowed to vary
independently - Fig. 4 establishes that any accurate model must capture
interactions that arise from variation of the three inputs with respect to
one another. Variation in each input should, in aggregate, be expected to
capture the costs accounted for in a standard TEA: the capital costs
associated with equipment, the fixed operating costs (maintenance, in-
surance, etc.) and variable operating costs (chemical/feedstock costs
incurred to make the product), each presented in marginal costs per unit
product.

3.3. Machine learned TEA models consisting of linear combinations and
interaction terms

Fig. 5 establishes that none of the three independent variables used
as inputs can predict MFSP on their own. Eq. (3) shows that accounting
for each in a linear combination does not result in an accurate model
either — which implies that each variable must interact with one another,
giving rise to cross terms with coupled interdependence. The approach
for a rational selection of cross terms for inclusion in a TEA reduced-
order model is not obvious a priori, and so the validity of mathemati-
cally equivalent permutations of each term can be examined as follows.
Within the context of the present study, the following structure-
postulate is introduced for the pertinent functional form:

3
MEFSP = f(scale, yield, feedcost) = Z f

[i}=1

where: f = [fi; fo; fa], £ = fif2fs with [i] = iy +iz +i3 and iy,iz,13 € {0,1,
2,3}, that encompasses first, second and third-degree monomials/cross
terms of the constitutive elementary functions:

fi(scale) = ay ;*scale’

f2(yld) = az;*yld™

fs(feedcost) = as;*feedcost

Therefore, to capture all possible contributions associated with first,
second and third-order cross terms (i.e., terms including the impacts of
multiple independent variables), the combinatorial method yields
multiple potential distinct models whose empirical parameters are
appropriately fitted, with details of equation forms provided in SI-
Table 5. For each model, two figures of merit were calculated — the root
mean squared error (RMSE) and the Akaike Information Criterion (AIC)
value [77]. The use of the RMSE represents a familiar criterion in the
development of empirical models. However, one drawback of the RMSE
is that minimizing this value could lead to overfitting through the
introduction of a high number of (possibly extraneous) fitting parame-
ters. Overfitting detracts from the use of empirical models in new
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situations, an outcome which should be avoided. Consequently, AIC can
be used to identify overfitting. Unlike RMSE, AIC penalizes a model for
overuse of parameters that lead to incremental accuracy benefits — as
such, AIC can be used to identify and avoid overfitting. Quantitatively,
lower values of the AIC denote models that perform better statistically
while minimizing the number of fitted parameters. As a further note, AIC
values can be used only for comparison of one model to another as their
absolute values are meaningless on their own.

AIC values are plotted in Fig. 6 as a function of the number of fitted
parameters included in the TEA model. As a general trend, AIC values
tend to decrease when the number of parameters is increased. Inter-
estingly, each value of the number of fitting parameters (i.e., 1, 2, 3, or
more fitting parameters) corresponds to a set of potential models, with
widely varying AIC values. Clearly, not all possible models are equally
useful. Accordingly, special attention is directed to the “best models”
identified by the combinatorial approach, where the best models
correspond to the ones with the lowest AIC values. Here, the AIC values
of three models stand out from the rest. Results from those three models,
which have 5, 6, and 8 fitting parameters, are highlighted in Fig. 6 as the
red, purple, and green points, respectively. Their corresponding AIC
values are roughly 600, 700, and 1300, respectively. These values are
much less than those of competing models with the same number of
fitting parameters, by as much as a factor of 50. Because of their
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Fig. 6. AIC scoring of combinatorically developed models plotted against the
number of fitted parameters for each model. The best performing models have a
low overall score.
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promising performance, these three models were examined more
closely, and all other models were excluded from further consideration.

Following the methodology of combinatorial treatment explained at
the beginning of Section 3.3, closer examination of the three best per-
forming models highlighted in Fig. 6 reveals that the six- and eight-
parameter models both converge to the best performing five param-
eter model. The forms of these models are shown in Egs. (5)-(7) (cor-
responding to the green, purple, and red points respectively in Fig. 6)
showing that combining two parameters appearing in the eight-
parameter model results in the six-parameter model; likewise,
combining three of the parameters in the eight-parameter model into a
single parameter results in the five-parameter model:

JScale”  feedstockcost o .o
MFSP = a; Yields 5 Yield= + az*scale®>yield 5)
b1
MFSP = a4 *s?ale +as theeds'tockcost + az*feedcost (6)
yield: yielde
b1
MEFSP — a, *sc.ale @ *feeds‘tockcost 7
yield yielde:

Accordingly, comparing Egs. (5)-(7) indicates that the three models
identified as the most promising by the AIC analysis are equivalent to
one another. They all reduce to the five-parameter version, which
incidentally has the lowest AIC value of any generated by the combi-
natorial method used in this study. For these reasons, the six- and eight-
parameter models were rejected from further consideration so that the
five-parameter model could be developed further.

The next step was to evaluate the performance of the best five-
parameter model using the MFSP values in the test data retrieved
from the literature (listed in Table SI-4). Recall from Fig. 1 that the
values in the model were fit using data generated using the PNNL model,
meaning that comparison with literature values is an independent test of
model accuracy. Fig. 7 compares MFSP values predicted by the best five-
parameter model with literature values as a parity plot. Overall, the
correlation constant obtained using the new five-parameter model is
comparable to the earlier version consisting of the linear combination of
the power law and linear terms. The error of the most extreme outlying
point decreases from 200% to 125% using the new model, which is a
promising trend but not entirely satisfactory. Moreover, the five-
parameter model tends to systematically underpredict MFSP for values
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Fig. 7. Parity of the five parameter model depicted in Eq. (7), identified by
combinatorial testing of potential models.
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greater than 12 USD/GGE and overpredicts at values less than 6 USD/
GGE - which are undesirable results. The value of the best-fit slope
decreases from roughly 3 for the simpler model to 2, which is promising
but not yet the ideal slope for parity, which should equal 1.0. Collec-
tively, these observations point to a source of persistent systematic error
left uncaptured by the approach thus far.

3.4. Model refinement

To this point, the analysis has been performed entirely through a
multivariate regression-based methodological approach-that is, a
traditional machine learning approach. That stated, a goal of this work
was a user interpretable model rather than as a black box, which the
machine learning guided approach has in fact achieved. To further
explore this, we present Eq. (7) from the perspective of the economic
“phenomena” that comprise it through Eq. (8). Specifically, the first
term in Eq. (8) arises from observable phenomena associated with
economies of scale. The second equality in Eq. (8) represents the five-
parameter model with each term broken into the “physical phenom-
ena” they represent. The form shown in the righthand side of Eq. (8)
shows that MFSP depends on two terms. The first term depends on
system scale divided by yield, which can be interpreted as the marginal
“capital cost” portion of the MFSP. The second term is a function of
feedstock cost divided by yield, corresponding to the “variable operating
cost,” at least for the limiting situation when feedstock cost dominates
operating costs.

scale®  feedstockcost
yield* yield®
CAPEX OPEX
=h (YIELD*scale) 2 (YIELD*scale)

MFSP =a

®

The simplified re-casting of Eq. (8) and its user interpretable form
motivates a search for a missing term that accounts for its failures.
Reconsidering Fig. 2, the variable with the next highest sensitivity after
scale, yield, and feedstock cost is maintenance/overhead. When
considering the cumulative effects of additional factors not included in
our combinatorial model, maintenance/overhead, and remaining
chemical/utility costs significantly contribute to an unaccounted term
that captures fixed operating costs and variable operating costs other
than those associated with feedstock. MFSP is only weakly responsive to
several other similar costs in terms of sensitivity — like capital dis-
counting and utilities’ contribution to costs — but in aggregate these
terms can have a notable impact on total MFSP. This impact would not
be revealed by a sensitivity analysis such as that of Fig. 2 because it is the
aggregate effect and not the isolated effect that must be considered.
Since the five-parameter model does not include fixed operating costs,
non-feedstock dependent variable operating costs, or discounting,
(which are not implicitly captured by the most sensitive variables
considered in our model), its failures become more understandable. In
this case, the desire for the simplest possible model led to the formula-
tion of a model that was too simple to explain the complexity of the
phenomenon in question. In other words, the five-parameter model
underfits, leading to its breakdown during testing by comparison with
literature data.

Fortunately, once the problem of under fitting is diagnosed, it is
easily corrected. Recalling the previous discussion of Fig. 2, a solution is
realized through the addition of a sixth parameter that accounts for the
previously neglected contributions of operating costs encompassing
labor, overhead, maintenance, and remaining variables unaccounted for
by the three variables considered in the five-parameter model. The form
of the newly proposed six-parameter model is presented as Eq. (9a),
where a3 is the “remaining operating cost” term.

b
.. scale”

0 feedstock cost
yields 2

MFSP = a; Jield

las] (9a)
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_ scale0-577 _feedstock cost
MFSP = 6,607+ s+ 0003210 roe = 2698 (9b)
T iningOPEX
marginal CAPEX marginalOPEX,,qriable

Best-fit values determined from model training are shown in Eq. (9b),
where the variables of Eq. (9) have units as follows: units of scale are in
dry tons per day (DTPD), units of yield are in weight fraction (ranging
from O to 1, corresponding to 0% and 100% yields), units of feedstock
cost are in USD/dry ton, and the final MFSP is returned in USD/GGE. As
with the five- parameter model, the six-parameter model consists of two
terms that are inversely related to yield (roughly linearly) and represent
capital costs (related to scale approximately following the economies of
scale “0.6 rule”[62]) and variable operating costs (linearly adjusted by
feedstock cost). The third term captures remaining operating costs, that
is, costs which have no dependence on feedstock and hence are inde-
pendent of scale. The AIC value calculated for the regression applied to
the six-parameter model to the training data set is

—3900, which is a notable improvement over the five-parameter
model’s score of 500. The six-parameter model shown in Eq. (9a) re-
sembles ones that have been proposed for levelized (discounted) costs of
electricity production [79], a reassuring physical similarity given the
combinatorial approach used to generate Eq. (9a).

As with the other models, the accuracy of the six-parameter model
was determined by comparison of its prediction with the test data ob-
tained from previously published TEAs. The feedstock cost, yield, and
scale associated with 28 MFSPs from 15 published HTL TEAs (SI-
Table 4) were collected and used in this study’s MFSP prediction model.
Fig. 8 is the corresponding parity plot. Qualitatively, the six-parameter
model does not systematically over- or under-predict costs at any
value of MFSP, unlike the five-parameter model. Figure SI-1 confirms
this qualitative observation as a percent deviation plot as a function of
MEFSP.

Table 3 summarizes the results derived from testing the proposed six-
parameter model. Quantitatively, the correlation constant is the most
robust observed in this study (r2 = 0.9604). The mean absolute error
(MAE) represents the average absolute distance of a predicted point
from the true study’s value — which alone implies that on average, the
model’s estimate will have an error of + 1.32 USD/GGE. The root mean
squared error (RMSE) criterion measures the modeling error with a bias
towards larger deviations from the model; it has a slightly higher value
at: +£1.74 USD/GGE. The percent absolute deviation normalizes for the
magnitude of the predicted value: on average the model predicts a +
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Fig. 8. A parity plot of the known MFSP taken from prior TEAs compared with
predictions from the six parameter model shown in Eq. (9).
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20.4% deviation with a maximum observed deviation of — 45.9%. Data
points in Fig. 8 are color coded and shape selected to represent the type
of biomass; their marker size is rated to process scale. No obvious trends
between accuracy and feed type or process scale are evident in Fig. 8, as
required of a robust correlation that is neither overfit nor underfit.

Achieving + 20% accuracy in a machine learned model makes it
useful in many situations. In fact, any TEA performed to estimate eco-
nomic viability of HTL is — at present — a projection, since HTL is not yet
operated at a commercial scale required for hard data. As result, the
inputs to the TEA can never be known with certainty. Uncertainty in the
inputs propagates to uncertainty in the TEA projections. Starting with
the granular TEA used here, +10% variation in the three key inputs
(scale, biocrude yield, and feedstock cost) corresponds to + 17% and —
14% uncertainty in projected values of MFSP. Accordingly, uncertainty
analysis establishes that the accuracy of the model is more than suffi-
cient given realistic uncertainty in the input parameters, and in fact
error relative to the predicted value (% absolute deviation in Table 3) is
relatively consistent regardless of the actual predicted value — as seen in
the weak correlation of error against predicted MFSP in SI-Fig. 1.

The highest deviation observed in Fig. 8 is 45.9%, which arises from
an overprediction of MFSP reported in a study by Magdeldin et al.[33]
The Magdeldin et al. study [33] includes the sale of byproduct hydrogen
and biochar that are sold alongside to supplement the revenue stream
provided by sale of the biocrude stream, offering a qualitative expla-
nation for the overpredicted MFSP [33]. There are no other notable
outliers — the points with deviation greater than ~>35% comprise
mainly of confidence intervals provided by studies performing uncer-
tainty analyses. In other words, the other outliers are already regarded
as uncertain in the original studies. Regardless of predicted error in the
developed model, the irreducible uncertainty in input parameters
equally impacts the accuracy of the machine learned model and the
granular, high dimensional version, meaning that 20% accuracy is as
good as can reasonably be expected.

The physical interpretability of Eq. (9) is particularly useful in ac-
counting for process upgrades or deviations from standard practice. For
example, and as mentioned in the Methods section, the study by
Aierzhati et al. was excluded from the analysis as it modeled economic
performance of a mobile process whereas all of the other studies
modeled fixed processes [26]. Interestingly, when the fuel cost subsidies
included in the Aierzhati et al. study are accounted for (as shown in the
SI), Eq. 9 predicts Aierzhati et al. MFSP to within 3.5% [26]. The
agreement may in part be fortuitous, but it nonetheless is an extreme
stress test of the model that builds confidence in its usage.

As an additional note on usage, the correlation between the pre-
dicted MFSP values and the test data is biased towards higher fuel costs,
which is a natural consequence of numerical regression - i.e., larger
values can result in larger errors if not properly fit, meaning that
regression will tend to overemphasize these data points. That stated, it is
important to clarify that these higher MFSP points were not involved in
fitting of the model. Indeed, HTL processes resulting in higher fuel costs
(e.g., MFSP > 10 USD/GGE) are inherently less useful than more real-
istic values in the target range of 2-5 USD/GGE (though Figure SI-1
shows that the relative error of the model is insensitive to the magnitude
of predicted MFSP) [23]. Accordingly, as more TEAs become available
for realistic values of projected MFSP, Eq. (9) can be refit for better
accuracy, especially to account for the importance of terms not explicitly
captured by the six-parameter model and that may become important
for economically viable MFSPs (see Fig. 2). Future improvements
notwithstanding, the model in its current form will be sufficiently ac-
curate for many applications.

The six-parameter model described by Eq. (9) can be considered as
the most appropriate for predictive use among those considered by this
study. While additional terms could be added to improve model accu-
racy when compared with the collected literature data, Eq. (9) has the
advantage of minimizing overfitting while using inputs that are readily
available and readily interpretable. Minimizing overfitting is important
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to the generalization of scenarios not explicitly considered during model
development. For example, adding terms that account for byproduct
yields — especially char, which might require disposal, and aqueous
phases, which require treating — might improve accuracy. However,
byproduct yields are constrained by carbon balance and hence related to
biocrude yield; as biocrude yield increases, byproduct yields must
naturally decrease. For this reason, Eq. (9) must implicitly capture the
effects of byproduct yields on MFSP, despite lacking explicit terms.
Similar arguments apply to other would-be correction factors.

A key advantage of Eq. (9) is that it relies only on inputs that are
easily obtained. Feedstock costs can be determined for different waste
streams, initially based on published surveys [80] and for greater ac-
curacy based on discussion with local waste generators. Scale is deter-
mined by the availability of waste streams. Biocrude yield can easily be
measured experimentally; machine learning models now exist that
predict biocrude yield based on feedstock composition — which is itself
easily measured and often known in advance - and operating conditions
[81,82]. Because of these features, Eq. (9) can be used for inter-
comparison of published TEAs, as summarized in Table SI-4 which
converts published values of MFSP to a common basis of a 100 dry ton/
day HTL process. Scale normalized values of MFSP shown in Table SI-4
demonstrate that studies that assume scales > 1,000 dry ton/day gain an
apparent advantage in MFSP that vanishes when brought to a common
scale. Unless a specific reason argues otherwise, results from TEAs will
be more transparent if they are performed at a common scale of 100 dry
ton/day. Stated otherwise, all that glitters is not gold.

While Eq. (9) is physically interpretable its implications are not
easily visualized. To permit visualization of key trends, Fig. 9 was con-
structed based on contour plots of Eq. (9) predictions. Fig. 9 takes
advantage of the fact that feedstock cost can be treated as a correction to
MFSP, as suggested by the form of Eq. (9a). Accordingly, Fig. 9a consists
of MFSP predictions for different values of yield and scale, in the absence
of feedstock costs. Interestingly, Fig. 9a shows that MFSP becomes
increasingly independent of yield with increasing scale; in other words,
for sufficient scale, MFSP becomes nearly insensitive to biocrude yield, a
result which can be used to guide future development efforts.

Once Fig. 9a is used to calculate MFSP without feedstock cost, Fig. 9b
can be used to determine a feedstock dependent correction factor to
calculate the expected total MFSP. The correction factor is a linear
function of feedstock cost, as anticipated by Eq. (9a). As expected,
negative feedstock costs reduce the initial estimated value of MFSP
determined from Fig. 9a and positive values increase it. Interestingly,
MFSP sensitivity to feedstock cost depends on the biocrude yield, as is
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apparent from consideration of the lines in Fig. 9b.

Fig. 9 validates many of the intuitively understood relationships
between MFSP, feedstock cost, yield, and scale. As anticipated qualita-
tively by Fig. 5, scale and yield are coupled to each other and to MFSP
via a power-law relationship — following the expected economies of scale
relationship and the direct relationship between yield and total fuel
content respectively. At a hypothetically infinite plant scale and 100%
yield, the cost of production asymptotically approaches a constant value
as the marginal capital costs decrease — representative of the feed-
independent operating costs. When combined with the power law re-
lationships the asymptotic behavior implies the existence of an “elbow
point”, or a point of diminishing returns: notably the majority of
“economies of scale” associated capital cost reductions occur at plant
sizes less than 100 dry tons per day (DPTD). Furthermore, depending on
scale, yield improvements beyond 40% result in diminishing returns,
which has particularly important implications for strategies aimed at
enhancing yield by acquiring higher value feeds, deploying catalysts, or
improving reactor design.

The relationship between feedstock cost and biocrude yield in Fig. 9b
deserves its own discussion. As a rule, biocrude yield of a given feed
depends most strongly on lipid content [67,69]. Inasmuch as high lipid
content feeds are more valuable than low lipid content versions — for
example, as frequently is the case with microalgae [44,45]- the benefits
of selecting a high yield, yet expensive feed compared to a low yield, yet
inexpensive one can be quantified using Fig. 9. Waste feeds, which may
be zero cost or even negative cost, are a different case. As an example,
Fig. 10 consists of MFSP predictions for three fixed values of feedstock
cost — a value representing the average landfill tipping fee in the USA
(which is negative), zero cost, and the absolute value of the USA
aggregate tipping fee (i.e., a positive feedstock cost equal in magnitude
to the tipping fee) [80]. A moisture content of 25% is assumed for
landfill waste. [83] Fig. 10 shows that MFSP is extremely sensitive to
feedstock cost; in contrast, and as deduced from Fig. 9, the sensitivity of
MEFSP to scale and yield is correlated with one another and MFSP be-
comes nearly insensitive to these variables once they reach critical
values. This is further shown in the reduced sensitivity to scale outlined
in Figure SI-3.

In addition to the predictions shown in Figs. 9 and 10, Eq. (9) can be
extended for many applications, several of which are proposed here. One
obvious application is comparison of two or more different scenarios, for
example for processing different feedstocks, to one another. Investment
benefits from identifying the most promising option; however, selecting
the most promising option can be difficult without a common basis, such
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HTL plant diverting waste at the rate of the average landfill tipping fee in the USA, b) a feedstock cost of 0 USD/dry ton, and c) a feedstock cost of 57.63 USD/dry ton.

as a fixed feed or fixed scale. As a concrete example, a decision may be
required to select between investing in HTL for conversion of algae
grown for wastewater treatment, waste biomass or green waste, and
animal manure. Biocrude yield alone cannot be used to differentiate
between these three potential scenarios, since other factors — namely
scale or feedstock cost — may also vary. Therefore, Eq. (9) can be used to
guide investments in these cases, provided that scale and feedstock cost
are known ahead of time.

Another application of the new model is for consideration of hun-
dreds or even thousands of potential investments for a single feed, or for
a feed with only modest site-to-site variation. The estimated 15,000
Waste Resource Reclamation Facilities (WRRFs) located in the U.S. are
an illustrative example [36]. While all of these WRRFs produce a sewage
sludge stream amenable to HTL, they differ in scale and local tipping
fees that directly impact feedstock cost. Eq. (9) can be used as a first-
order method to rank potential WRRF sites based on projected costs;
from that point, resources can be invested to examine in detail only a
small subset of potentially viable sites, conserving resources by
removing non-viable sites from consideration. In both cases, Eq. (9),
when used judiciously as a decision-making guide, can greatly reduce
uncertainty and improve resource allocation for HTL deployment before
significant resources are dedicated toward case-specific economic
modeling.

Other, perhaps less obvious, applications of the new model are
possible. For example, many different variations of HTL have been
published in the past several years, with specific emphasis on the use of
catalysts to improve yields. [84] Eq. (9) can be modified for modeling
costs associated with catalytic HTL by using measured data for the
catalytic biocrude yield — obtained experimentally — and adding a term
associated with lifetime catalyst costs. Lifetime catalyst costs require
knowledge of the upfront cost and the usable catalyst lifetime, as
described by LeClerc et al. in their study on the use of hydroxyapatite for
catalytic HTL [85]. The end result of modifying the HTL cost model
would be quantification of the benefits of different catalysts, rather than
a less sophisticated ranking that considers only biocrude yield — which
could be applied in a manner similar to the earlier discussion on ac-
counting for biofuel subsidies in Aierzhati et al. [26] The result will be
rational allocation of available resources to catalysts and processes that
offer the greatest economic benefits.

The methodology presented here is easily generalized to other waste-
to-energy technologies, such as pyrolysis or anaerobic digestion, and
potentially to kindred analyses including life-cycle assessments (LCA).
The required inputs are: 1) a detailed model that can be used to identify
the most sensitive variables for determining costs and 2) published
studies that report process costs and are independent of the aforemen-
tioned detailed model. After the detailed model is used to identify the
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most sensitive variables, Monte Carlo simulations of the detailed model
over reasonable ranges of these variables are used to generate the
training data. These training data are then used to regress parameters in
one or more economic models. The form presented in Eq. (9) can be used
as a starting point for regression analysis, or the entire process described
here can be followed to discover a new form appropriate for the process
under consideration. The final step is comparison of the results of the
trained model to the independently reported data points to estimate the
accuracy of the reduced-order model; if the accuracy is not satisfactory,
additional terms can be added to the regression model to improve ac-
curacy. The resulting models can then be used for estimating costs and
subsequently allocating resources in diverse waste-to-energy applica-
tions where cost is a major driver.

4. Conclusions

In this work, we use machine learning to discover a TEA and
modeling framework capable of predicting HTL fuel cost outcomes.
Machine learning was used to identify the three most impactful and
readily accessible process variables: feedstock cost, biocrude yield, and
process scale. The relationship and interaction between these variables
in determining MFSP were elucidated and developed into a single
generalized equation to model MFSP outcomes for a given HTL
deployment. The result is an easily interpretable, analytic equation
requiring only the feedstock cost, biocrude yield, and scale of an HTL
venture to estimate MFSP. When the accuracy of this model was
compared against 28 published MFSP values, the model had an MAE of
4 1.32 USD/GGE, and a mean % deviation of &+ 20.4%. The new model
can be used to bind or constrain by converting them to a common basis
for inter-comparison.

The machine learned model can be used to understand the interde-
pendence of key variables. MFSP is sensitive to feedstock cost at all
relevant values; in contrast, MFSP becomes nearly insensitive to feed-
stock cost and scale once they reach critical values. Identifying these
critical values is imperative to optimal process design. Investing in
increasing yield is not profitable when yield already exceeds its critical
value. Similarly, investing in greater feedstock aggregation to boost
process scale faces diminishing returns when scale exceeds its critical
value.

The low dimensional model proposed here can be used for first-pass
deployment decision-making with orders of magnitude less time and
information resources compared with granular TEAs, thereby permitting
simultaneous comparison of many deployment options to identify the
most promising investments. The model can easily be modified to ac-
count for technology improvements by use of additional terms; for
example, the effect of a catalyst that improves yields can be modeled by
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manually adjusting the yield input to the predictive model and addition
of a term to account for catalyst costs. The method used here to develop
the predictive model can easily be generalized to other systems in which
technological performance and economic outcomes need to be evalu-
ated with sparse data.
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