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Abstract—The accurate detection of chemical agents promotes
many national security and public safety goals, and robust
chemical detection methods can prevent disasters and support
effective response to incidents. Mass spectrometry is an important
tool in detecting and identifying chemical agents. However, there
are high costs and logistical challenges associated with acquiring
sufficient lab-generated mass spectrometry data for training
machine learning algorithms, including skilled personnel, sample
preparation and analysis required for data generation. These

high costs of mass spectrometry data collection hinder the

development of machine learning and deep learning models to Average

detect and identify chemical agents. Weighted Cosine
Accordingly, the primary objective of our research is to create Similarity: .91

a mass spectrometry data generation model whose output (syn-
thetic mass spectrometry data) would enhance the performance
of downstream machine learning chemical classification models.
Such a synthetic data generation model would reduce the need to
generate costly real-world data, and provide additional training
data to use in combination with lab-generated mass spectrometry
data when training classifiers.

Our approach is a novel combination of autoencoder-based
synthetic data generation combined with a fixed, apriori defined
hidden layer geometry. In particular, we train pairs of encoders
and decoders with an additional loss term that enforces that the
hidden layer passed from the encoder to the decoder match the
embedding provided by an external deep learning model designed
to predict functional properties of chemicals.

‘We have verified that incorporating our synthetic spectra into a
lab-generated dataset enhances the performance of classification
algorithms compared to using only the real data. Our synthetic
spectra have been successfully matched to lab-generated spectra
for their respective chemicals using library matching software,
further demonstrating the validity of our work.

Index Terms—data generation, chemical identification, mass
spectrometry, Chemception

[. INTRODUCTION

The ability to detect chemicals in real time is important
in many real-world situations. While many machine learning,
and deep learning, methods have been created in attempts to
solve the problem of real-time chemical identification, those
algorithms often require a large corpus of training data to be
effective. However, an in many real-world problems in the
physical sciences, such training data can be difficult and costly
to obtain. Accordingly, herein we study the use of synthetic
data in the training of chemical detection algorithms.

Our research was prompted by the challenging problem of
utilizing mass spectrometry data and classification models for
the detection of new and potentially hazardous chemicals [10],
[12]. Mass spectrometry data is used to determine the structure
of a molecule from its ionization fragments stemming from its
interaction with ionizing energy. It is provided as a measure-
ment of the mass-to-charge ratio of a molecule, and can be
used to identify molecular structures [7]. However, due to the
high monetary and temporal costs associated with generating
mass spectrometry data, it is impractical to manually generate
a dataset large enough to train a classifier and detect those
chemicals in the field [2], [3]. As a result, we have turned our
attention to synthetic mass spectrometry data.

I @ &

Fig. 1. The outlined spectrum in the figure above represents a synthetic
spectrum generated by one of our models. All other spectra in the figure
represent lab-generated data for the same chemical. The synthetic spectrum’s
weighted cosine similarity to the other spectra in the plot is .91 - out of a
maximum score of 1 - indicating close resemblance between the spectra.

Studies such as McEachran et al. (2019) [13] and Wei et
al. (2019) [25] have proposed various approaches to creating
artificial mass spectrometry data. Inspired by these efforts
as well as Goh et al’s Chemception model - detailed in
Section III-A - and Moore et al.’s body of work, we aimed
to develop a method of generating synthetic mass spectra
using chemical representations generated by the Chemception
model, which have shown promise in capturing chemical
structure information effectively [6], [15]-[18].

To address our objectives we leveraged the strengths of
Chemception and explored innovative techniques for synthetic
data generation [1], [6], [24]. Our work builds upon the
foundations laid by previous researchers in the field and
seeks to provide a cost-effective and efficient solution to the
identification of chemical analytes. [13], [25].

In particular, we leverage Chemception to provide a pro-
scribed embedding h that supplies our model with information
regarding chemical structure and properties, allowing for more
accurate data generation than would otherwise be possible for
similar models not incorporating Chemception.

1946-0759/24/$31.00 ©2024 IEEE 272
DOI 10.1109/ICMLA61862.2024.00043
Authorized licensed use limited to: Gordon Library WPI. Downloaded on July 28,2025 at 17:34:51 UTC from IEEE Xplore. Restrictions apply.



II. MASS SPECTROMETRY AND DATA BACKGROUND
A. Mass Spectrometry

Our research considers synthetic data generation specifically
for mass spectrometry - an analytical technique widely used to
provide insights into a molecule’s composition and structure.
In mass spectrometry analysis, the molecules within a sample
are ionized, causing fragmentation, and the resulting ions
are separated based on their mass-to-charge ratios. A data
point generated from mass spectrometry is referred to as a
“spectrum” and is often represented graphically as a series of
peaks, as shown in Figure 2. Herein we will provide details
on the physics of a mass spectrometry sensor, and refer the
interested reader to [21] for details. However, we merely
observe that height and distribution of the peaks give insight
into the abundance of the ions in the sample. In particular,
the chemical structure shown in Figure 2 has a unique mass
spectrum is characteristic of how the various bonds in the
chemical structure are broken in the mass spectrometry sensor.

Maltotriose Spectrum

2-Dimensional
Molecular Structure

Intensity
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Fig. 2. Example of a mass spectrum with mass-to-charge Ratio along the
x-axis and Intensity on the y-axis. The insert in the top right corner is the
2-dimensional molecular structure of the same chemical.

The most intense peak in a spectrum, referred to as the “base
peak”, represents the most abundant ion fragment detected
in the sample. The base peak is assigned a relative intensity
of 100%, meaning that intensities for all other peaks in the
sample are measured relative to this base peak. Base peak
location and the intensity of other peaks relative to the base
peak are essential for chemical identification [21].

For our purposes, the mass spectrometry signature is a nois
high-dimensional vector, in our cases residing in x € R797%1,
where 797 was determined by the highest non-zero mass-to-
charge ratio observed among the spectra.

B. Data Collection and Preparation

All data used in this research was sourced from the Mass-
Bank of North America’s (MoNA) database of experimental
Gas Chromatography-Mass Spectra [14]. Each molecule in
MoNA’s database contains mass spectral peaks for the sample,
as well as metadata describing the chemical (e.g. molecular
weight) and sample preparation (e.g. type of machine used to
generate the sample).

We observed discrepancies in chemical naming conventions
between samples, likely due to the fact that samples in MoNA’s
database are collected from many different labs. To ensure
consistency and accuracy in our data organization, we opted
to organize chemicals based on the unique chemical identifier
included in each sample’s metadata rather than relying on
chemical name.

Many chemicals in the database were represented by only
a few samples. 88% of the chemicals in the database had
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3 or fewer spectra, while only 2% had more than 5 spectra
available. Machine learning prediction models depend on the
training data to learn the characteristics of each chemical or
class. Insufficient data hinders the model’s ability to capture
the true variability of each class, impeding its ability learn a
meaningful representation of each chemical. Consequently, we
chose to include only those chemicals in our dataset that had
a minimum number of spectra. To achieve a balance between
class representation and dataset size, we included chemicals
that had at least 5 spectra. The resulting dataset contained 335
total spectra split between 40 different chemicals as shown in
Figure 3.

C. Similarity Metrics

We use weighted cosine similarity in our work to evaluate
the quality of synthetic spectra. We calculate weighted cosine
similarity as:

Zk::l mg - XS,k ) Xt,/c

\/Zk;:l my - X2 \/Zk:1 my - X7,
(H

Let X, denote a synthetic spectrum and X; represent the
true, target spectrum. X and Xy correspond to the intensity
values for each spectrum at index k. The variables my serves
as a weight parameter, for which we employed the mass-to-
charge ratio (MtCR). Our choice of MtCR as a scaling factor
was informed by the fact that values at high MtCR indices
are more informative and important for chemical classification
than values at low MtCR indices. Using mass-to-charge ratio
as a weight parameter in our similarity metric provided insight
into the suitability of our synthetic spectra as potential training
data points for a classification model. Weighted cosine loss in
this paper will refer 1— Equation 1.

Weighted cosine similarity, while useful for comparison,
does not account for inherent noise in the true data due
to varying experimental conditions or differences between
samples. To account for inherent noise we applied a ratio
of predicted to overall similarity as an additional similarity
metric for evaluating synthetic spectra. The predicted to overall
similarity ratio compares the difference between target and
predicted spectra to the average pairwise difference between
all true spectra for that chemical. A ratio close to 1 would
indicate that the distance between the predicted and true
spectra was the same as the average distance between all true
spectra for that chemical.

A widely employed approach to chemical identification
using mass spectrometry data involves comparing the query
spectrum to reference spectra within a library [25]. The query
spectrum is systematically compared to each spectrum in the
library using a similarity metric such as weighted cosine
similarity, and a prediction is made based on the identity of the
spectrum that is most similar to the query [25]. In our research,
we applied reference library comparison using the Human
Metabolome Database’s (HMDB) spectrum match tool, which
facilitates comparison between a user-supplied query spectrum
and the spectra contained within the HMDB library [9].

Sim(Xs, Xy) =

III. METHODOLOGY
A. Chemception

In this paper we make extensive use of Goh et al.’s Chem-
ception model and Moore et al.’s novel ways of interacting
with it [6], [17], [18]. Chemception is a chemistry model
trained to predict the toxicity, activity, and solvation properties
of its training dataset of molecular structures represented
by 2-dimensional images. In a crucial step prior to predic-
tion, Chemception generates 512-dimensional embeddings that
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Fig. 3. Mass spectrometry data used in this research were collected from the Mass Bank of North America’s database

contained spectra for 40 chemicals and had a total of 335 spectra.

store the wealth of information the model learned about each
data point during training [6]. Moore et al. extended the utility
of these embeddings, discovering new methods to extract the
stored information and use it for applications beyond the
original prediction purpose [17], [18].

As shown in Figure 4, the relative positions of Chemception
embeddings provide insights into the similarity or dissimilarity
between chemicals. Chemicals with high structural similarity
have more similar embeddings than chemicals with low struc-
tural similarity.

Chemception Embeddings PCA

Fenchol
CHy
CHy

Testosterone

Fig. 4. Chemical embeddings’ relative positions reflect similarity: distant for
dissimilar chemicals like Testosterone and Diethyl Fumarate, and closer for
similar chemicals like Fenchol and (+)-Borneol. These relationships can also
be observed by comparing the chemicals’ structural diagrams.

In our work, we leverage the 512-dimensional Chemception
embeddings as a fixed, universal hidden layer with the aim of
facilitating the “translation” of chemical data across formats.
We hypothesized that embeddings produced by the Chem-
ception model, which was trained on molecular images that
represent chemical structure and composition, would capture
a richer representation of chemical compounds compared to
embeddings generated by a model trained on our small dataset
of a few hundred spectra.

B. Autoencoders

Autoencoders [5] are a key source of inspiration in our
work. In particular, in a traditional autoencoder, we have
mappings £ (often called the encoder) and D (often called
the decoder), s.t. given data z, for example a spectra as in
Figure 2, we compute

L-Glutamine
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of GC-MS spectra. The dataset

% = D(E(x)), (@)

the encoder encoder E and decoder D are trained together and
share an objective of minimizing ||x — D(FE(x))||, the dif-
ference between the target data and the model’s output. Such
methods are widely used in many generative data problems. A
prime example is the Variational Autoencoder (VAE), which
learns a latent space based on the distribution of the data,
allowing for generation of synthetic data by sampling from
the latent space.

However, in our work we take a somewhat different ap-
proach. Namely, in a standard autoencoder the dimension of
h = F(x) has two properties. First, it is low-dimensional with
x € R", h € R™ and m << n. Second, the embedding A is
learned from the data z.

In our work be break both of these assumptions. First, in
our work m and n are much closer in size, with x € R77,
h € R5!2, In fact, in our methodology, the size of n was
determined by the highest non-zero MtCR observed among the
spectra, but the size of m is taken to be fixed and proscribed.

Second, and more importantly, for each chemical type, the
value of h is also proscribed; Herein lay the key novelty of our
approach. We take h as given when computing the maps E and
D, as opposed to being learned as part of the back-propagation
process. For many autoencoder base problems one merely has
access to the data x, but in our case we also leverage the
Chemception embedding [6] to determine h.

In particular, assuming we have a chemical ¢, we proceed
by determining the 512-dimensional Chemception embedding
for ¢, which we denote as h, € R>'2, For all spectra pertaining
to ¢, the embedding h. remains constant.

C. Loss Function for a Proscribed h

Distinguished from a standard autoencoder with a loss

function such as
Ix = D(E(x))]|,
we instead have a two part loss function, namely
Ihe — E)|| + [|Ix — D(h)]], 3)

where h = E(x) and h, is the Chemception embedding for
chemical c.
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There are several important items to note in (3). First, the
loss function is separable in that ||h. — E(x)|| can be trained
independently of the rest of the loss function, just given the
Chemception embedding h.. While not a focus of this paper,
this separability leads to an important idea in that the hidden
layer is independent of the particular sensor modality used
to create the input signal x. In particular, it is interesting to
note that the embedding h,. was computed without regard for
the Mass Spectrometry sensors that we use. It was computed
based upon a totally different principle, as we will detail in the
next section. However, h. is a rich representation of chemical
properties, making it quite advantageous for synthetic data
generation.

D. Extensions to Other Sensor Modalities

While not a focus of the current text, we observe that
the ideas described herein can extended to other additional
sensor modalities. Chemception embeddings were computed
based upon the 2-dimensional representations of molecular
structure mentioned in Figure 2 for the prediction of chemical
properties, and without regard to a chemical’s representation
by a specific sensor. As a result, Chemception embeddings
contain details including chemical structure, molecular geom-
etry, similarity or dissimilarity to other chemicals, and toxicity,
activity and solvation properties.
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Fig. 5. The modular architecture for translating chemical data between
formats using Chemception embeddings as a shared hidden layer. The red
and blue branches indicate our implemented models and the Chemception
model, respectively.

In our current architecture, as described in Figure 5, each
branch encodes to or decodes from Chemception embeddings.
We believe Chemception space is rich enough to be used
as a latent space for models constructing many different
sensor representations. Our modular design allows for the
incorporation of a wide range of new data types. Each branch
operates independently from the others, enabling the addition
of specialized models for translating between any data type
and Chemception. In Subsection VI-A we discuss our pro-
posed translation architecture.

IV. HYPER-PARAMETER TUNING
A. Encoder Neural Network Parameters

A chemical’s Chemception embedding represents the point
in Chemception space where a theoretical noiseless sample
for that chemical would encode. Given that our training data
correspond to true samples generated in a lab, we expected a
certain amount of noise in the spectra. Our encoder’s objective
was not to map each spectrum directly to its true embedding,
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but rather to map it close to the true embedding, in a position
that represents that spectrum’s variation from the theoretical
noiseless sample.

Chemception Embeddings PCA vs. Encoder Output PCA
»” L ]

.
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trans-Cinnamyl alcohol
Methyl Propionate
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ds-Citral
Acetophenone
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Diethyl fumarate
Methyl hexanoate
(+)-Borneol
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Anthracene
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Fig. 6. The encoder accurately mapped spectra, represented by Xs, to their
respective Chemception embeddings, represented by circles in the chart above.
Each chemical’s embeddings occupy a different “region” of the Chemception
map. The star in Diethyl Fumarate’s region represents a new embedding
generated by the encoder for a noisy input spectrum.

Throughout encoder training we systematically explored
various model architecture and hyperparameters to identify an
optimal configuration. We chose hyperparameters as displayed
in Table I, with special attention given to the number of
hidden layers in the model. We found that we were able to
increase encoder performance by increasing the number of
hidden layers up to seven. Models with more than seven hidden
layers began to overfit to the training data.

TABLE I
ENCODER HYPERPARAMETERS
Size of input layer 797 x 765
Size of output layer 541 x 512
Number of hidden layers 7

765 x 733,733 x 701,701 x 669,
669 x 637,637 x 605,
605 x 573,573 x 541

Sizes of hidden layers

Learning rate 1x10~5
Training time 300 epochs
Batch size 32
Activation function Leaky ReLU

Loss criterion

Mean Square Error

Once the training spectra were encoded, as shown in Figure
6, we could visually observe the “regions” of Chemception
space occupied by each chemical’s Chemception embedding
and encoder-generated embeddings. Initially, we intended to
define formal boundaries for each chemical’s region and
generate synthetic spectra by decoding randomly selected
embeddings from within those regions.

If we assume that our training dataset is representative of the
broader population, we can infer that embeddings for spectra
not seen by our model would fall within their corresponding
chemical’s region. Furthermore, if we presume that all points
within a chemical’s region correspond to that chemical, we
should be able to decode a randomly selected embedding
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Intensity

Intensity

from within a chemical’s region to generate a new, synthetic
spectrum for that chemical.

B. Selection of Embeddings for Data Generation

To ensure that our decoder had direct points of comparison
for its output, we determined that, rather than selecting embed-
dings randomly from within chemical regions, the embeddings
selected for decoding must correspond in some capacity to
the spectra in our training dataset. Decoding the embeddings
generated by our encoder based on the training spectra would
merely reproduce the training data rather than generating new
spectra. Instead, the embeddings needed to represent spectra
that were similar, but not identical, to the original, allowing
the decoder to generate synthetic data while still being able to
accurately calculate loss based on the training spectra.

A straightforward technique for identifying such similar-
but-not-identical spectra was to create noisy versions of the
training spectra. The noisy spectra shared important features
with the original data, while still forcing the decoder to
generate new synthetic spectra.

When determining the optimal method for introducing dis-
turbances to our spectra, we were weary of adding noise
directly, as the addition of noise would have meant the addition
of peaks to the spectra. As mentioned in Subsection II-A, the
introduction of additional peaks to a spectrum represents a
significant perturbation rather than a minor addition of noise.
Instead of adding noise, we created noise in the spectra by
randomly removing a certain percentage of peaks. Perturbing
our spectra by removing peaks allowed the encoder to receive
informative signals without introducing additional peaks that
could misrepresent the spectra as belonging to different chem-
icals.

Intensity

W N N
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i
Mass to Charge Ratio

Intensity
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Fig. 7. The examples above are four different noisy spectra all based on the
same original spectrum. The original base peak is present in all but one of
the noisy spectra.

Figure 7 shows four different noisy versions of the same
input spectrum. Each noisy spectrum contains the majority of
the peaks from the original spectrum but omits some of the
original peaks. Encoding m noisy spectra for each of n original
spectra resulted in n % m embeddings, significantly increasing
the number of synthetic spectra we could generate.

Our decoder requires one embedding to generate one syn-
thetic spectrum. Had we encoded only the n original spectra in
our dataset, we would have produced n embeddings, thereby
limiting the number of synthetic spectra to the number of
original spectra. To overcome this limitation, we created
multiple noisy versions of each training spectrum.

The original decoder architecture, outlined in Table II, ap-
peared to converge and generate synthetic spectra that visually
resembled the target lab-generated spectra. When evaluated
by Human Metabolome Database’s (HMDB) spectrum match
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tool, however, the synthetic spectra were not correctly iden-
tified. While our primary objective was to generate synthetic
spectra that would improve the performance of a classifier
model - a lower threshold than correct identification by a spec-
trum match tool - we were also interested in creating realistic
spectra. Consequently, we explored alternative approaches in
an effort to address this limitation.

Final hyperparameters selected for generalized decoder are
displayed in Table II. One particularly impactful hyperparme-
ter was the percent of peaks removed from the spectra used
to generate the decoder’s input embeddings. We found that
removing 15% of peaks from the spectra used to generate
embeddings struck a balance between information retention
and simply reproducing the original spectra.

TABLE II
GENERALIZED DECODER HYPERPARAMETERS.
Size of input layer 512 x 541
Size of output layer 765 x 797
Number of hidden layers 7

541 x 573,573 x 605,605 x 637,
637 x 669,669 x 701,
701 x 733,733 x 765

Sizes of hidden layers

Learning rate 1x 1073
Training time 500 epochs
Batch size 32
Activation function Leaky ReLU
Loss criterion MSE + X Weighted Cosine Loss
% of peaks removed from 15%

embedding generation spectra

C. Per chemical Specialized Decoders

As part of our work we noted that training a generalized
decoder to generate spectra for all chemicals in our dataset
lead to sub-optimal results. While the spectra created by the
generalized decoder visually resembled their lab-generated tar-
get spectra, they were not correctly identified by the HMDB’s
spectrum match tool. As we learned more about the complex
and nuanced patterns present within mass spectra for a single
chemical, we determined that this level of complexity, scaled
across the 40 chemicals in our dataset, may pose a challenge
for a single generalized model to accurately learn and repre-
sent.

Informed by these experiments, we opted to forgo our
generalized decoder for a series of more specialized decoders,
each trained to generate spectra for a specific chemical or
group of similar chemicals. We posited that these specialized
models would capture complexities that the generalized model
was not able to.

Although the specialized models converged and generated
spectra with high weighted cosine similarities to the original
spectra, we observed an unintended behavior when we ex-
amined the generated spectra. We noticed that each model’s
output consisted of a small number of identical or near
identical spectra that did not represent the diversity of the
training data. Figure 8 shows an example of two identical
spectra generated by our model for different input spectra.
The decoders had learned to generate a limited set of generic
spectra that matched many of the training examples, thereby
limiting the loss on the training examples without capturing
the underlying patterns in the data.

This behavior, known as memorization, is a frequent issue
for models trained on small datasets [19]. A common approach
to preventing memorization in low-data scenarios is to allow
the model with limited training data to leverage features
learned by a base model trained on a similar task from a
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Fig. 8. The figure above shows two synthetic spectra and their respective
target spectra. We observe that, while the target spectra are distinct from one
another, the two synthetic spectra are identical.

domain where data is more easily obtained [20], [26]. We
applied this approach in our work by first training a general
model on the entire dataset. We then leveraged the weights
from the general model as a base that each of the specialized
models could fine-tune to incorporate the complexities of a
single chemical’s spectra.

The architecture and hyperparameters of the general decoder
can be found in Table II. The specialized decoders initial-
ized their weights using the weights learned by the general
decoder. Hyperparameters were the same across the general
and specialized models, except for those hyperparameters
specified in Table III. A notable difference between the general
and specialized models is that a subset of the specialized
decoders’ layers were frozen, preventing the model from
updating weights for those layers during training. This strategy
was implemented to prevent overfitting and preserve low-
level features learned by the base model that were potentially
applicable to any of the specialized models [8].

TABLE III
SPECIALIZED DECODER HYPERPARAMETERS THAT DIFFER FROM THE
GENERAL DECODER.

512 x 541,541 x 573,573 x 605,
605 x 637,637 x 669
669 x 701,701 x 733,
733 x 765,765 x 797
1x 102
300 epochs

Sizes of trainable hidden layers

Sizes of frozen hidden layers

Learning rate
Training time

V. NUMERICAL RESULTS
A. Accuracy of Synthetic Spectra Compared to Target Spectra

Using the training scheme outlined in Section IV, we
generated synthetic spectra with high similarity scores that
were not overfit to the training data. The outlined spectrum
in Figure 1 is an example of the synthetic spectra generated
by our specialized decoders from embeddings corresponding
to spectra reserved as test data. The quality of our generated
spectra was further validated through correct classifications
on 88% of the synthetic spectra identified by the HMDB’s
spectrum match tool.

As a benchmark for evaluating our model’s performance,
we compared the spectra generated by our model to spectra
generated by a Variational Autoencoder trained on the same
dataset. All hyperparameters except for loss criterion were
consistent between the models. The loss criterion for our
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encoder was Mean Squared Error (MSE), and our decoder
used a combined MSE and weighted cosine loss. The VAE’s
loss criterion was a combination of reconstruction loss (MSE)
and a regularization term expressed as the Kullback-Leibler
divergence [23].

TABLE IV
SIMILARITY OF SYNTHETIC SPECTRA TO
TARGET SPECTRA ACROSS MODELS.

Synthetic Spectra
Generation Model

Average Weighted
Cosine Similarity
.82
43

Average Mean
Squared Error
58
12.74

Spectra Above .9
Similarity Ratio
86%

11%

Decoders
VAE

Table IV compares the Average Weighted Cosine Similarity,
Mean Squared Error and similarity ratio between synthetic
spectra and their target spectra for both our models and
the Variational Autoencoder. Our models significantly outper-
formed the VAE in both similarity metrics.

Frequency of Similarity Ratios

3 VAE
@ Specialized Decoders

Frequency

0.0 0.5 10 15 2.0 2.5

Ratio of Predicted Similarity to Overall Similarity

3.0

Fig. 9. The figure above compares the similarity between predicted and true
spectra to the similarity between all true spectra for the same chemical for
spectra generated by decoders and the VAE. Decoder-generated spectra had
higher similarity ratios than the VAE spectra, indicating closer resemblance
between decoder spectra and target spectra than between VAE spectra and
target spectra. A similarity ratio of 1 indicates that the predicted spectrum is
as similar to the target spectrum as all of that chemical’s spectra are to each
other. The frequency of high similarity ratios for decoder-generated spectra
is liklely due to the fact that GC-MS spectra can vary significantly between
samples.

These similarity results are consistent with the hypothesis
that Chemception embeddings capture a richer representation
of chemical compounds compared to embeddings a model
learned directly from the data. Our findings suggest that this
richer representation enabled the creation of higher-quality
synthetic data than a similar model trained on our limited
dataset.

B. Impact of Synthetic Spectra on Classifier Accuracy

In the analysis of our synthetic spectra we addressed two

objectives:

1) Determine the impact of our spectra on the performance
of a chemical classifier when incorporated into its train-
ing data. Evaluating the impact of our spectra allowed us
to determine whether we had met our original research
goal of creating a mass spectrometry data generation
model whose output would enhance the performance of
a chemical classifier.

2) Evaluate the impact of our synthetic spectra relative
to synthetic spectra generated by another model. Our
analysis provided insight into the comparative strength
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TABLE V
COMPARISON OF CLASSIFIER ACCURACY DATASETS AUGMENTED BY
VAE AND SPECIALIZED DECODER-GENERATED SPECTRA.

Classification | Data Generation | Random | Real Data Synthetic Real and A Classifier
Model Model Guess Only Data Only | Synthetic Data Accuracy
Random Our Decoder 2% 57% 79% 7%
Forest VAE 259 10% 72% 0%
Neural Our Decoder - 75% 74% 84% 9%
Network VAE 9% 76% 1%

of our model’s output against existing data generation
models.

To conduct our analysis we compared the performance of
Random Forest and Neural Network classifiers on datasets
of exclusively lab-generated spectra, exclusively synthetic
spectra, and a mix of lab-generated and synthetic spectra.
We established four metrics to act as performance baselines.
Model performance on each baseline is displayed in Table V
and described below:

The first baseline metric was probability of chance identifi-
cation, or the likelihood of correctly identifying a spectrum by
random chance, estimated at 1/40 given the 40 chemicals in
our training dataset. Achieving higher than random accuracy
is particularly relevant for the models trained exclusively on
synthetic data as it indicates that the synthetic data provide
non-trivial information to the classifier. Classifier accuracy
exceeded the accuracy that could be achieved by randomly
guessing for all models and datasets tested.

Our second baseline was the test accuracy achieved by
classifiers trained exclusively on VAE-generated spectra. We
compared our second baseline against the test accuracy of
classifiers trained exclusively on decoder-generated data. We
found that both the Random Forest and Neural Network
exhibited higher test accuracy when trained exclusively on
decoder spectra compared to their counterparts trained on VAE
data, suggesting that decoder-generated spectra may capture
spectral features more effectively than VAE-generated spectra.
The difference in accuracy was particularly striking for the
Neural Network, whose test accuracy was 65% higher when
trained on decoder spectra compared to VAE spectra.

The third baseline we employed was the test accuracy of
classifiers trained only on lab-generated data. By comparing
the test accuracy of classifiers trained on decoder-augmented
datasets against this baseline, we were able to address our
first analytical objective regarding the impact of our synthetic
data on classifier performance. We found that both the Random
Forest and the Neural Network were more accurate when their
training data was augmented with decoder-generated spectra,
establishing that the output of our mass spectrometry data
generation model enhances the performance of a chemical
classifier.

As our fourth, and arguably most important, metric, we
employed the test accuracy achieved by classifiers trained on
a VAE-augmented dataset. Comparing classifier performance
on a VAE-augmented datasets and decoder-augmented datasets
allowed us to evaluate the impact of our decoder spectra
against the impact of synthetic spectra generated by another
model. The classifiers trained on decoder-augmented datasets
exhibited higher test accuracy than the classifiers trained
on VAE-augmented datasets. The difference in test accuracy
between the two training datasets was 7% for the Random
Forest and 8% for the Neural Network. Here we address
our second analytical objective to determine that the accuracy
impact of augmenting with decoder spectra was greater than
the impact of augmenting with spectra generated by another
model.
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Fig. 10. Confusion matrices for the Random Forest classifier when trained us-
ing synthetic data from the VAE vs. synthetic data from specialized decoders.
The models trained on specialized decoder-generated spectra demonstrated
higher accuracy scores compared to models trained on VAE-generated spectra.

During testing we determined that augmenting with increas-
ing amounts of synthetic data generated increases in classifier
accuracy until the number of synthetic spectra in the training
dataset equaled the number of lab-generated spectra. After that
point we observed no further improvement in accuracy.

Table V shows a comparison of classifier accuracy across
each of the 10 models trained. For both the Random Forest
and the Neural Network, the highest performing model was
the model trained on an augmented dataset of lab-generated
and specialized decoder-generated spectra. Figure 10 visually
demonstrates the increased accuracy of the Random Forest
model when trained on decoder-generated spectra compared
to VAE-generated spectra.

It is important to clarify that we do not contend that incor-
poration of our synthetic spectra leads to greater improvements
in classifier accuracy than incorporation of additional lab-
generated spectra. Our central claim is that, in scenarios where
additional lab-generated data is not available, supplementing
with our synthetic spectra can effectively bridge this gap and
bolster classifier performance.

VI. CONCLUSION

The outcomes of this research suggest that using a pre-
determined embedding in an autoencoder-like framework, can
lead to effective generative algorithms for real-world problems,
such as mass spectrometry spectra generation. In particular,
our numerical results lead us to believe that our model is useful
in improving real world outcomes for using mass spectrometry
data to identify hazardous chemicals using machine learning
algorithms. In fact, the flexibility supplied to autoencoders by a
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predetermined hidden layer provide several benefits, including
separability in training and superior generative performance.
However, there is a additional important benefit for future
work, namely the ability to map multiple data sets to single
representation.

A. Future Work

Chemical classification models are typically trained on data
from a single sensor type (e.g. mass spectrometry, polymer
sensor, etc.). As a result, data collected on other types of
sensors would not be accessible to the classifier. Our larger
goal, beyond data generation, was to design a data generation
method that could also be used to translate data between
sensor formats, making data from multiple formats accessible
to the same classifier. We theorized that taking advantage of
the information stored within the Chemception embeddings
might assist us in creating such a data generation and format
translation method.

Molecular
Structure

I
! N

[ = [ Chemception

Mass Spectrum IRaman Spectrum)| Polymer Sensor|

[l Our Models

!

Mass Spectrum

Molecular
Structure

Raman Spectrum| Polymer Sensor

Fig. 11. The above figure shows the proposed modular architecture for
translating chemical data between chemical sensor formats using Chemception
embeddings as a shared hidden layer. The red, blue and gray branches
indicate our implemented models, the Chemception model and proposed future
extensions, respectively.

Figure 11 depicts the conceptual design of our translator,
where each of the upper branches represents an encoder E
mapping data to 512 dimensional Chemception embeddings.
Each of the bottom branches represents a decoder D mapping
from a 512 dimensional Chemception embedding to its respec-
tive data type. The branch highlighted in blue corresponds to
the Chemception model, which maps stick and ball data to
the shared hidden layer. The red branches indicate our imple-
mented and validated models, which map mass spectrometry
data to and from Chemception embeddings. The remaining
gray branches represent proposed future extensions to the
architecture.

Further areas for exploration include the classification accu-
racy impact of varying ratios of real to synthetic data within
the classifier’s training dataset. In addition, we are interested
to examine what effect augmenting our fixed hidden layer with
sensor-specific embeddings might have on data generation.

VII. ACKNOWLEDGEMENTS

This manuscript has been authored under partnership with
DEVCOM SC funded by the Defense Threat Reduction
Agency (DTRA). The publisher acknowledges that the US
Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government
purposes. Approved for public release. Distribution unlimited.

REFERENCES
[1] G. Andrew, R. Arora, and J. Bilmes, “Deep canonical correlation

analysis,” in International Conference on Machine Learning, PMLR,
2013.

279

[11]

[12]

[13]

[14] MO

[15]

[16]

[17]

[18]

(23]

[24]

[25]

[26]

T. Annesley, “Mass Spectrometry in the Clinical Laboratory: How Have
We Done, and Where Do We Need to Be?,” Clinical Chemistry, vol.
55, no. 6, pp. 1236-1239, 2009. DOI: 10.1373/clinchem.2009.127522.
R. Babbar and B. Scholkopf, “Data Scarcity, Robustness and Extreme
Multi-label Classification,” Machine Learning, vol. 108, pp. 1329-1351,
2019. DOI: 10.1007/s10994-019-05791-5.
Defense Threat Reduction Agency, “Defense Threat Reduction Agency,”
https://www.dtra.mil/.
B. M. Dillon et al., “Better Latent Spaces for Better Autoencoders,”
SciPost Physics, vol. 11, no. 3, p. 061, 2021.
G. B. Goh, C. Slegel A. Vlshnu N. O. Hodas, and N. Baker, “Chem-
ception: A Deep Neural Network with Minimal Chemistry Knowledge
Matches the Performance of Expert-Developed QSAR/QSPR Models,”
aerv preprint, arXiv:1706.06689, 2017.

arg E, Zubair M. Mass Spectrometer. [Updated 2023 Jan 21]. In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024
Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK589702/
K. Goutam, S. Balasubramanian, D. Gera, and R.R. Sarma, (2020).
Layerout: Freezmg layers in deep neural networks. SN Computer
Science, 1(5), 295.
Human Metabolome Database, “Human Metabolome Database (HMDB)
i(l)\dgogiarCh’” https://hmdb.ca/spectra/c_ms/search, Accessed: 2024-05-
M. Ljoncheva et al., “Machine Learning for Identification of Silylated
Derivatives from Mass Spectra,” Journal of Cheminformatics, vol. 14,
no. 1, p. 62, 2022.
M. G. Madden and T. Howley, “A Machine Learning Application for
Classification of Chemical Spectra,” in Applications and Innovations in
Intelligent Systems XVI. SGAI 2008.
B. P. Mayer et al., “Toward Machine Learning-Driven Mass Spec-
trometric Identification of Trichothecenes in the Absence of Standard
Reference Materials,” Analytical Chemistry, vol. 95, no. 35, pp. 13064—
13072, 2023.
A.D. McEachran, I. Balabin, T. Cathey, et al., “Linking in silico MS/MS
spectra with chemistry data to improve identification of unknowns,”
Scientific Data, vol. 6, p. 141, 2019. DOI: 10.1038/s41597-019-0145-z
NA - Fiehn Lab. Retrieved from https://mona.fiehnlab.ucdavis.edu/
downloads
Accessed: 2024-06-13.
A. Moore, R. Paffenroth, K. Ngo, and J. Uzarski, “ACGANs Improve
Chemical Sensors for Challenging Distributions,” in /[EEE International
Conference on Machine Learning and Applications (ICMLA), 2022.
A. Moore, R. Paffenroth, K. Ngo, and J. Uzarski, “Cycles Improve
Conditional Generators: Synthesis and Augmentation for Data Mining,”
in Advanced Data Mining and Applications (ADMA), 2022.
A. Moore, R. Paffenroth, K. Ngo, and J. Uzarski, “ChemTime: Semantic
Sequences Outperform Multivariate Time Series Classifiers for Chemical
Sensing,” arXiv preprint, arXiv:2312.09871, 2023
A. M. Moore et al., “ChemVise: Maximizing Out-of-Distribution Chem-
ical Detection with a Novel Application of Transfer Learning,” in
2023 International Conference on Machine Learning and Applications
(ICMLA), 1IEEE, 2023.
Radhakrishnan, A., Yang, K., Belkin, M., and Uhler, C. (2018).
Memorization in overparameterlzed autoencoders.  arXiv preprint
arXiv:1810.10333.
A. S. B. Reddy and D. S. Juliet, "Transfer Learning with ResNet-50 for
Malaria Cell-Image Classification,” 2019 International Conference on
Communication and Signal Processing (ICCSP), Chennai, India, 2019,
pp. 0945-0949, doi: 10.1109/ICCSP.2019.8697909.
W. Reusch, “Mass Spectrometry,” https://www2.chemistry.msu.edu/
faculty/reusch/virttxtjml/spectrpy/massspec/masspec1.htm.
University of Hawaii at Manoa. ”Compare, Contrast, Connect: Chemical
Structures - Visualizing the Invisible.” Exploring Our Fluid Earth. Ac-
cessed June 30, 2024. https://manoa.hawaii.edu/exploringourfluidearth/
chemical/chemistry-and-seawater/covalent-compounds/
compare-contrast-connect-chemical-structures- visualizing-invisible.
Van Erven, T., & Harremoes, P. (2014). Rényi divergence and Kullback-
Lelbler dlvergence IEEE Transactions on Information Theory, 60(7),
3797-
Z. Wan Y Zhdng, and H. He, “Variational Autoencoder Based Synthetic
Data Generation for Imbalanced Learning,” in 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), IEEE, 2017.
J. N. Wei, D. Belanger, R. P. Adams, and D. Sculley, “Rapid Prediction
of Electron—Ionization Mass Spectrometry Using Neural Networks,”
ACS Central Science, vol. 5, no. 4, pp. 700708, 2019. DOI: 10.1021/ac-
scentsci.9b00085.
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer
learning. Journal of Big data, 3, 1-40.

Authorized licensed use limited to: Gordon Library WPI. Downloaded on July 28,2025 at 17:34:51 UTC from IEEE Xplore. Restrictions apply.



