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Gravitational solitons and complete Ricci flat
Riemannian manifolds of infinite topological type
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This paper is dedicated to Demetrios Christodoulou. The work herein is
inspired by the problem that he suggested to the third author, for his PhD
thesis, almost four decades ago

Abstract: We present several new space-periodic solutions of the
static vacuum Einstein equations in higher dimensions, both with
and without black holes, having Kasner asymptotics. These latter
solutions are referred to as gravitational solitons. Further partially
compactified solutions are also obtained by taking appropriate quo-
tients, and the topologies are computed explicitly in terms of con-
nected sums of products of spheres. In addition, it is shown that
there is a correspondence, via Wick rotation, between the spacelike
slices of the solitons and black hole solutions in one dimension less.
As a corollary, the solitons give rise to complete Ricci flat Rieman-
nian manifolds of infinite topological type and generic holonomy,
in dimensions 4 and higher.

1. Introduction

Configurations of multiple static and asymptotically flat vacuum black holes
typically exhibit conical singularities and possibly other pathologies. These
cone angles are necessary to keep the gravitational equilibrium and are there-
fore usually interpreted as repulsive forces. A detailed analysis of this phe-
nomenon in the axisymmetric setting was originally carried out by Bach and
Weyl [3] for the 4-dimensional case, proving in particular the existence of an
angle defect along any piece of the axis joining two black holes. In higher di-
mensions, a thorough investigation was initiated by Emparan and Reall [11].
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We know that in general, regular configurations of two or more black holes are
ruled out in 4 dimensions by Bunting and Masood-ul-Alam’s theorem [7]. This
result also extends to higher dimensions [12, 18], where the Schwarzschild-
Tangherlini solution realizes the only asymptotically flat static black hole in
a vacuum. Without the assumption of asymptotic flatness, however, this type
of rigidity breaks down even in dimension 4. Indeed, partly motivated by
the balancing of multiple static electro-vacuum black holes in the Majumdar-
Papapetrou spacetime, Myers [30] constructed regular 4-dimensional static
vacuum spacetimes in which an infinite number of Schwarzschild black holes
are aligned in a periodic fashion along an axis of symmetry. These same
solutions were later rediscovered by Korotkin and Nicolai in [26]. The Myers-
Korotkin-Nicolai solutions are asymptotically Kasner, and play an integral
role in an extended version of static black hole uniqueness given by Peraza
and Reiris [34]. In [30], it was conjectured that these space-periodic vacuum
configurations can be generalized to higher dimensions, perhaps with black
holes of nontrivial topology. We confirmed this to be the case in [24], by
producing a variety of examples of 5-dimensional space-periodic static vac-
uum solutions with combinations of the sphere S® and ring S x S? horizon
cross-sectional topologies.

The methods of [24] also led to the discovery of 5-dimensional vacuum
solitons. Here, a gravitational soliton refers to a nontrivial, globally static
and geodesically complete spacetime. Although such horizonless soliton solu-
tions are well-known features of supergravity theories [14], where nontrivial
topology is supported by magnetic flux supplied through Maxwell fields, an
asymptotically flat stationary vacuum spacetime which is geodesically com-
plete must be Minkowski space. This latter statement is a classical result of
Lichnerowicz [27] in dimension 4, and in general can be established as a corol-
lary of the rigidity portion of the positive mass theorem [36, 37, 39], together
with Stokes’ theorem and the Komar expression for mass. This no-soliton
result essentially holds even without the assumption of asymptotic flatness
in 4 dimensions, in the sense that solitons of this dimension are always cov-
ered by the Minkowski spacetime [1, Theorem 0.1]. In dimensions greater
than four, vacuum solitons must have constant lapse [8, 35|, and therefore
such spacetimes factor into a pure product of time with a complete Ricci flat
Riemannian manifold (a Cauchy hypersurface).

The examples constructed in [24, Theorem 2| have a time slice topology
homeomorphic to an infinite connected sum #* 52 x S2, and therefore have
infinite second Betti number. These solutions of the static vacuum equations
admit Kasner asymptotics, are bi-axisymmetric, geodesically complete, and
space-periodic. By taking quotients, we also obtain solitons on M\ (B% x T?)
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where B? and T? are the 2-ball and 2-torus respectively, and M} is either S*
or #* 52 x S? depending on whether k =0 or 1 < k < oo.

The purpose of the present work is as follows. We will extend the results of
[24] to obtain space-periodic vacuum solitons in all dimensions greater than
3, and will then confirm that the static potential for these solutions must
in fact be constant, thus the time slices yield complete Ricci flat Rieman-
nian manifolds. These manifolds are simply connected but of infinite topo-
logical type, admit Kasner asymptotics and generic holonomy, and are of
cohomogeneity-two via a torus action. It should be noted that here, as in [24],
Kasner asymptotics is taken to mean (3.4), where the role of ‘time’ in the
usual dynamical Kasner metrics, is instead played by the spatial variable p.
Moreover, these manifolds are periodic in one direction, allowing for further
solutions by taking discrete quotients; we are able to compute the topology
of such quotients in terms of connected sums of products of spheres. In addi-
tion, it will be shown that there is a correspondence, induced through Wick
rotation, between the space-periodic Ricci flat manifolds arising from the soli-
tons, and space-periodic black hole solutions in one dimension less. Previous
examples of complete Ricci flat manifolds of infinite topological type have
been constructed in 4-dimensions by Anderson-Kronheimer-LeBrun [2] us-
ing the Gibbons-Hawking ansatz, and by Goto [13] in dimensions 4m with
a T™ symmetry using the hyper-Kéhler quotient method; these were later
studied further by Hattori [16]. The approach of Goto was also generalized
by Dancer-Swann [10] to produce hypertoric manifolds of infinite topological
type, which were analyzed in more detail in [9]. All of these previous works fit
within the hyper-Kéhler context, and in particular have dimensional restric-
tions as well as special holonomy. By contrast, the Ricci flat manifolds that we
produce are derived from an entirely different source, and consequently they
exhibit distinct properties. More precisely, the construction arises naturally as
a byproduct from our study of the stationary vacuum multi-axisymmetric Ein-
stein equations in higher dimensions [22, 23, 21, 25, 24, 20]. These equations
reduce to a study of singular harmonic maps from R? into a nonpositively
curved symmetric space, although, in the static case with some additional
restrictions, solutions may be found by the superposition of Green’s func-
tions with concentration along intervals of the z-axis. The arrangement of
such intervals and the choice of Green’s functions determine the so called
‘rod structure’ of the solution, which may be used to prescribe the topology
and other aspects of the spacetime. Typically conical singularities are pro-
duced in this process, however, we show that by choosing certain periodic
arrangements of the rods these singularities are relieved.
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2. Background and setup

Let (M™*3,g), n > 1 be the domain of outer communication of a stationary
n-axisymmetric (n + 3)-dimensional spacetime, that is, it admits R x U(1)"
as a subgroup of its isometry group. Under reasonable hypotheses listed in
[17, Theorem 4], the orbit space M"3/[R x U(1)"] is homeomorphic to the
right half plane {(p,z) | p > 0}. In this setting, the vacuum Einstein equa-
tions reduce to an axisymmetric harmonic map, with domain R? \ {z — axis}
parameterized by the cylindrical coordinates (p, z,¢), and target symmet-
ric space SL(n +1,R)/SO(n + 1). The z-axis boundary of the orbit space
is decomposed into an exhaustive sequence of intervals called rods, each of
which is defined by a particular isotropy subgroup of U(1)". We will label
these intervals by {I';};e; for some index set I which may be infinite, and
will divide the set of rods into two types, namely axis rods and horizons rods.
Each axis rod I'; is defined by the vanishing of a linear combination vjd of
the generators Oy, @ = 1,...,n of the U(1)" symmetry, where the nonzero
vector v; = (vf,...,v") € Z™ consists of relatively prime integers so that
ged{v}, ..., 0"} =1, and is called the rod structure of T'j; the coordinates ¢*
on T™ have period 27. Thus, each axis rod structure defines a 1-dimensional
isotropy subgroup R/Z - v; C R"/Z" = T" for the action of T™ on points
that lie over I';. On the other hand, a horizon rod I'y is an interval of the z-
axis where no closed-orbit Killing field degenerates, that is v, = 0, but where
|0, + Q0| vanishes with 9 denoting the stationary Killing field, and with €2;,
1 =1,...,n representing the horizon angular velocities. A point in the orbit
space at Wthh two neighboring axis rods intersect is referred to as a corner,
and since two (linearly independent) rotational Killing fields vanish there, the
total space over this point is an (n —2)-torus; the intersection point of an axis
rod with a horizon rod is called a pole. In order to avoid orbifold singularities
at corner points, neighboring axis rod structures v, w are required to satisfy
[20, Section 3] the admissibility condition Dety(v, w) = £1, where the second
determinant divisor is defined by

(2.1) Dety(v, w) = ged{Q; | j = (j1,72) € Z*,1 < j1 < jo < n}

with the determinant @); arising from the 2 x 2 minor constructed from the
matrix having columns v, w by choosing the ji, jo rows. The collection of rods
and associated rod structures completely determines the topology of horizons
and the domain of outer communication, see [21, 20]. For instance, if the two
axis rods bordering a horizon rod have rod structures e;, e;, where e; is the
standard basis element of Z"™ which has a 1 in the ith slot and zeros elsewhere,
then the horizon topology is S3 x 772 for i # j and S* x S? x T"~2 for i = j.
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The stationary n-axisymmetric vacuum Einstein equations [28] reduce to
solving the following harmonic map system

(2.2) Afi; — OV [iaVifip + f VR0 Viw; = 0,
. Aw; — [V fiaViwy — fOVF fapViw; = 0,

where A is the R3-Laplacian, F' = (f;;) is an n x n symmetric matrix which is
positive definite away from the axes, f = det F', and w = (wq,...,wy)" is the
set of twist potentials associated with the U(1)" symmetry. These quantities
parameterize the symmetric space target through a (n+1) x (n+1) symmetric,
positive definite, unimodular matrix

~1 o1
(2.3) B — (_;_M 9 +ff_f‘:;iwj>, i,j=1,.,n.

Furthermore, the spacetime metric on M"3 can be constructed from these
quantities and expressed in Weyl-Papapetrou coordinates by

(24) = SRR + AP+ d2) + iy (dd + Bidt) (A + B,

Note that this shows an interpretation of rod structures as vectors v; lying in
the 1-dimensional kernel of the matrix I’ at an axis rod I';. The functions «
and 3" may be obtained by quadrature [19], more precisely they can be found
by integrating the equations

(2.5) ﬁf) =pf " fIw;., Bl=—pf Wiy,
and
(2.6)
Qp = g [(Ing)i — (log f)? +trF_leF_le —tr FUFLFUF,
4 2
——(log f), + =F7! WQ—W,E } )
p( )P f ( P )
p -1 -1 2 2 1
az =7 |(log f)y(log f): +tr FTF,FF; — ;(10% f)-+ ?F Wtz |

where we have used the notation F~'w,w, := wf)F ~1w,. The integrability con-
ditions for (2.5) and (2.6) correspond to the harmonic map equations (2.2).
If ' denotes the union of all axis rods, then the relevant harmonic map
®:R3\T — SL(n +1,R)/SO(n + 1) is singular along the axes, and its
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asymptotics encode the rod structures and values of the potentials at these
points. Boundary conditions (prescribed asymptotics) are therefore imposed
on the axes in order to achieve the desired rod structures, and the potentials
w are assigned to be constants ¢; € R™ on each axis rod I';, in such a manner
to guarantee that the values of the constants agree on consecutive axis rods.
Hence, the potential constants can only change across horizon rods, and the
difference determines the horizon angular momenta. The relevant existence
theory is studied in [20].

A solution to the singular harmonic map problem gives rise to an n-
axisymmetric stationary vacuum spacetime, with prescribed rod structures
and horizon angular momenta. However, it is possible that conical singu-
larities form on the axes when assembling the spacetime metric (2.4) from
the harmonic map. The conical singularity at an interior point (0, zg) along
the axis rod I';, having rod structure v;, is quantified by the angle defect
0 € (—o0,2m) arising from the 2-dimensional cone formed by the orbits of
vl Ogi over the line z = zy in the orbit space. This value may be computed
from the expression

o ] 27 - Radius .y e p2e2e

2.7 — = lim — —.
(2.7) 2 — 60  p—0 Circumference ~ p—0 fivivi P70 fijv'vl

A conical singularity is absent if the angle defect vanishes. It is routine to
check that with the aid of a change from polar to Cartesian coordinates,
this condition is necessary and sufficient for the smooth extendibility of the
metric across the axis, assuming that analytic regularity has been established.
Moreover, analytic regularity allows for a well-defined notion of logarithmic

2m—6
defect must then be constant on each axis rod [15]. The conical singularity
on I'; is referred to as an angle deficit if b; > 0, and an angle surplus if b; < 0.

angle defect by = log ( 2m ) associated with the axis rod I';, since the angle

3. Statement of results

We will now restrict attention to static n-axisymmetric vacuum spacetimes.
This requires the vanishing of twist potentials w; = 0, ¢ = 1,...,n, and
significantly simplifies the harmonic map equations (2.2). Note, however, that
the equations are still nonlinear. In order to make contact with a linear system,
we may impose a further ansatz that restricts the metric along the torus fibers
to be given as a diagonal matrix function

(3.1) F = diag(e", ..., e").



Gravitational solitons 1901

Initial studies of this case were carried out by Emparan and Reall [11]. Observe
that with these assumption, the vacuum Einstein equations reduce to finding
n harmonic functions u; on R3 \ T', and the spacetime metric takes the form

n

n . 2
(3.2) g=—ple” it 4 e**(dp?® + d2?) + Z et (dqﬁz) .
i=1
In this setting the axes can only exhibit the rod structures e;, i = 1,...,n

from the standard basis of Z". For an axis rod I'; having the rod structure
e;, we find that the corresponding logarithmic angle defect is given by

(33) bl = ;IL% (logp + o — %UZ) on Fl.
In what follows, the functions u; will be constructed as a sum of Green’s func-
tions such that they are periodic in the z-direction. The function «, which
is obtained by quadrature from (2.6), will then be shown to also possess
the same periodicity, yielding the desired space-periodic static vacuum space-
times. More precisely, we will say that such solutions are space-periodic if
the group Z acts by isometries through translations in the z-direction of
the Weyl-Papapetrou coordinate system. The spacetimes that we discuss are
asymptotically Kasner, meaning that the metric asymptotes to the Kasner
form

n N 2
(3.4) g ~ —qodt® + qid7* + 770 d2? + Zszi (dgb’) ,
i=1

where qg, 1 > 0 are constants and the exponents satisfy the Kasner conditions

T opi = >t o p? = 1. Geometric regularity of the solutions is established by
eliminating the possibility of conical singularities along the axes. This will be
achieved by utilizing the degrees of freedom arising from addition of constants
to the u; and «.

Theorem 1. For each n > 2, there is a reqular n-azxisymmetric static vac-
uum soliton spacetime (M™3,g) which is space-periodic and asymptotically
Kasner. The rod structure is periodic with fundamental period ey, ..., e,. Fur-
thermore, these spacetimes are simply connected and of infinite topological
type, in that the codimension-three Betti number is infinite, b, (IM"3) = oo.

The staticity of the spacetimes implies that topologically M"+3 = R x
M"™+2_ where M™*? represents a constant time slice. The periodicity allows for
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the taking of quotients by subgroups of Z, to obtain further solutions with par-
tially compactified time slice topology M™t2. Since the rod structure period
of the quotients contains the fundamental basis for Z, these spaces will also
be simply connected. Moreover, M™*2 still admits an effective T™-action, and
therefore we may apply the classification results of Oh and Orlik-Raymond
[31, 32, 33] to compute the topology of these slices. Up to spatial dimension
6, within the spin category, closed simply connected manifolds admitting a
cohomogeneity-two torus action are connected sums of products of spheres.
By choosing appropriate periodic configurations of rod structures, beyond
those treated in Theorem 1, we are able to produce solitons whose topology
involves each type of spherical product appearing in the classification list.
Moreover, for dimensions greater than or equal to 6, the topology associated
with the basic rod structure sequence is also known to be a connected sum of
products of spheres, by the work of McGavran [29, Theorem 3.4] and addi-
tionally [5, Theorem 6.3], [6, Theorem 4.6.12]. In the statements below, note
that cases (7i7) and (iv) have a partial overlap.

Theorem 2. There exist reqular n-azisymmetric static vacuum soliton space-
times (R x M”*Q,g) which are asymptotically Kasner, and such that M™+2
admits the following topologies with associated rod structures. The spatial slice
is homeomorphic:

(i) for n = 2, to either S*\ (B? x T?) or S? x S%\ (B? x T?), with rod
structure periods e1, ey or €1, €9, €1, ey respectively;

(ii) for n = 3, to either S®\ (B% x T?3) or S? x S3\ (B? x T®), with rod
structure periods e1,es, €3 or €1, €s, €1, es respectively;

(iii) for n =4, to either S® x S3\ (B* x T*) or [(S? x SH)#2(53 x S3)] \
(B2 x T%), with rod structure periods e, ez, e3, e, or €1, ey, e,e3, €y
respectively;

(iv) forn >4, to

n—3 —92
(3.5) L#l k‘(: n 1) G2tk o Sn—k‘| \ (B2 x ),
with rod structure period ey, . .., e,.

Soliton solutions are devoid of horizons. However, the solitons exhibited in
Theorems 1 and 2 can be used to produce static vacuum black hole solutions
in one dimension less. In particular, by choosing an angular coordinate ¢', we
may Wick rotate the Riemannian spatial slice so that d4 becomes timelike.
Thus, the time slices of the solitons become black hole spacetimes in which
the e;-axis rods transform into horizon rods. It can then be shown that the
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resulting spacetimes are vacuum. The horizon topologies resulting from this
process are restricted to the product of a sphere or ring, with tori. We note
that the original space-periodic black hole solution found by Myers-Korotkin-
Nicolai [26, 30] arises from this process, applied to the soliton of Theorem 1
with n = 2.

Theorem 3. Let (M™2 g), n > 2 be a time slice of any soliton produced
in Theorems 1 or 2, and pick an angular coordinate ¢, 1 < i < n. Then
the Wick rotation ¢* — /—1t applied to the Weyl-Papapetrou form of the
metric transforms this manifold into a regular black hole solution (M"2 g)
of the (n — 1)-azisymmetric static vacuum Einstein equations, with Kasner
asymptotics.

The converse of this result also holds, in that given a space-periodic
(n — 1)-axisymmetric static vacuum solution, Wick rotation of the time co-
ordinate into an angular variable produces a periodic n-axisymmetric Ricci
flat Riemannian manifold of the same dimension, which can then serve as the
time slice of a soliton in one dimension higher. The key observation needed
to establish this statement, as well as to prove Theorem 3, is that the static
potential for the solitons produced in Theorems 1 and 2 must be constant. A
consequence of this fact is that the time slices of these solitons are complete
Ricci flat Riemannian manifolds, and thus yield new examples of Riemannian
Einstein metrics. We will say that such Riemannian manifolds are asymptot-

ically Kasner if the metric asymptotes to the time slice of the Kasner metric
in (3.4).

Theorem 4. The time slice (M™%, g) of any soliton from Theorems 1 or 2
s a complete Ricci flat Riemannian manifold, admitting a cohomogeneity-two
torus action, and with Kasner asymptotics. Furthermore, those arising from
Theorem 1 are simply connected and of infinite topological type, in that the
codimension-two Betti number is infinite, b,(M™?) = co.

Previous examples of complete Ricci flat Riemannian manifolds of infi-
nite topological type have been found within the hyper-Kéahler context, as
discussed in the introduction. By contrast, those arising from the solitons
above are of generic holonomy. This is proven, with the help of the Ambrose-
Singer Theorem, by analyzing the structure of the curvature tensor in the
asymptotic end.

Theorem 5. The complete Ricci flat Riemannian manifolds of Theorem /
are of generic holonomy.
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4. Soliton existence

In this section we establish existence of the solitons asserted in Theorems 1
and 2. The arguments follow closely those of [24]. For simplicity, we will
assume that in the rod configurations all rod lengths are equal. In a remark
at the end of the section, we will describe how this requirement may be relaxed
with some restrictions.

4.1. Theorem 1 existence

Let L > 0, and divide the z-axis of R? into segments I';, [ € Z such that each
is of length L/n. The initial step consists of constructing n axially symmetric
harmonic functions u;, i« = 1,...n on R3, which are L-periodic in z and
asymptote to 2log p near the rods I'y;14, | € Z. For completeness we present
this construction here. Consider the Green’s function for a uniform charge
distribution along an interval I = [a, b] within the z-axis, namely

(4.1) Ur =log(rq — za) — log(ry — 2p),
where

(4.2) T =\/P?+ (2 —a)?, Zo = 2 — a.

Note that this function satisfies the following properties
(4.3) Uy <0, Up~2logpnear I, Ur=(a—>b)/r+O0(r ?) asr— occ.

We may then form the potentials

. % 2 ,
(4.4) u; = lim (Z UFnHi—i—Hlogm), i=1,...,n.

m—00
l=—m

For any (p, z) with p > 0, and each large [, we have by (4.3) that Ur,,,,(p, 2) ~
%. Thus, the additional term %logm renormalizes the divergent series of
harmonic functions to produce a finite harmonic limit away from the axis.
Near each I'y;44, [ € Z the asymptotics for these functions is u; ~ 2log p, so
that according to (3.2) the rod structure of I';4; is e;. Moreover, the functions
u; are L-periodic by construction since

(45) wilp,2) = wilp, 2 = L) = Tim (Ur,ii(p2) = Ur_i(p2)) = 0.
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It can additionally be shown, as in [24, Example 1], that expanding in cylin-
drical harmonics (modified Bessel functions) yields

2
(4.6) w=—logp+c;+0(e %) as p— o0, i=1,...,n,
n

for some constants a; > 0 and c¢;.

With the harmonic functions u; in hand, we may form the spacetime
metric (3.2). In order to aid with the arguments showing that the function «
is L-periodic, it should be observed that the sum of these functions reduces
to an explicit analytic expression, namely

n

(4.7) Zu, = 2logp +c,

=1

where ¢ is the sum of ¢;. To see this, observe that > 1" ; u; —2logp —cis a
harmonic function that is uniformly bounded, L-periodic, and tends to zero
as p — oo. One can then apply a version of the maximum principle [38,
Lemma 8| on horizontal strips in the pz-plane to conclude that this function
must vanish identically. In fact, it can be shown that ¢ = —2log(2L) with
the following alternative justification of (4.7). By choosing the origin of the
z-axis appropriately we have

(4.8)
U; = lim U 2m+1 o2m+1 + 2logm
2 ( e, e,

m—0o0

= lim (U[ (27n2+1)L’ (2m2+1)L} + 2log ((2m + 1)L)) — 2log(2L)

=2logp — 2log(2L).

We will now consider the periodicity of «. Note that with (4.7), the
quadrature equations (2.6) simplify to

1

n
2 _2 - = _r .
ui,p ui,z ’ ay = 4 Ui, pUi,z -

i=1

1%
4.9 ==
( ) ap 8 - 2/)

n
1=
The second of these equations may be used to show that « is L-periodic, that
is, if we fix p then

(4.10) / a,dz =0
P
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Figure 1: Periodicity of « in the eq, e5, €1, ez soliton.

where the integration is carried out over one period. Indeed, since all the
u;’s are periodic, we can carry out the integration for each term wu; ,u;. on
a different period. Clearly, if we take the period centered at the midpoint of
I';, then wu; is even with respect to this midpoint, which implies that w; ,u; .
is odd and (4.10) follows.

Consider now the issue of conical singularities. Recall that the logarithmic
angle defect on axis rod I'; is given by

(4.11) bi—})%(logp+a—%ui>, 1=1,...,n.

Since the u; are only determined up to the addition of constants, we are free
to adjust these constants to ensure that b; = 0, ¢ = 1,...,n. By periodicity,
all axes are then free of conical singularities. Furthermore, note that in a
neighborhood of a point in the interior of I';, we have that u; = u; — 2log p is
smooth. This follows from the fact that u; is uniformly bounded and harmonic
in this neighborhood away from the axis by construction, and [38, Lemma
8] may be used to show that it can be extended smoothly across the axis.
Regularity of the spacetime metric (3.2) is then established with arguments
analogous to those of [24, Section 5.1]; regularity at the corners is treated
similarly. This completes the proof of existence for Theorem 1.

4.2. Theorem 2 existence

All of the solitons described in this theorem arise from space-periodic soli-
tons by taking a quotient. In particular, if (M™% g) is the time slice of a
space-periodic soliton with fundamental period L, consider the discrete isom-
etry group Z acting on M"*2 by z — z + L. This action is clearly properly
discontinuous, and hence the quotient M™*? is a Riemannian manifold. Con-
ical singularities will be absent from M"™*2 if they are absent from the cover
M"™+2_ Thus, it suffices to show that regular space-periodic solitons exist with
the given rod configurations.
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Case (7) of this result is given in [24, Theorem 2]. Moreover, the first set of
rod structures within case (ii) is covered by the previous theorem, and so we
now consider the second set of rod structures ey, es, e1, e3. As in Section 4.1,
the z-axis may be divided into rod intervals of equal length having an L-
periodic configuration, with a fundamental domain consisting of this sequence
of rod structures. Furthermore, L-periodic harmonic functions uq, us, ug can
be constructed that respect the given rod structure configuration. It remains
to confirm the periodicity of «, and to balance any conical singularities on
the axes. To establish periodicity of «, note that by translating, we can set
the midpoint of an axis rod corresponding to es to be z = 0. Then all three
potentials uq, ug, and ug are even with respect to the line z = 0, see Figure 1.
It then follows as before that each term w;,u;. is odd in the expression
for a,, and therefore (4.10) holds, showing that « is periodic. In order to
relieve any conical singularities, we must arrange for the logarithmic angle
defects to vanish on the four axis rods of a fundamental domain. Note that
there are three free constants arising from the potentials u;, and thus we
can immediately balance three of the axis rods in a fundamental domain, say
those associated with the e, es rods and one of the e rods. Furthermore, the
rod structure configuration in Figure 1 clearly admits an involutive symmetry
defined by reflection across the line z = 0, and this is manifest in the functions
u;, © = 1,2,3 and «. It follows that the logarithmic angle defect must also
vanish for the remaining e; rod in the fundamental domain, since it coincides
with the image of the balanced e; rod under the involution. We then have
regular L-periodic solitons devoid of conical singularities in case (ii).

The first set of rod structures within case (7i7) is covered by Theorem 1,
and so we now consider the second set of rod structures eq, es, €1, e3,e4. As
before, the z-axis is divided into rod intervals of equal length with this se-
quence of rod structures defining an L-periodic configuration, and four L-
periodic harmonic functions w1, ...,us are constructed that respect the rod
structures. To prove periodicity of a, we again choose the midpoint of an
axis rod corresponding to es to be z = 0, as in Figure 2. It follows that
ug(p, —z) = ua(p, z) (up to addition of constants) and us, ug are even func-
tions in z. As a consequence ¢, is odd since

u3,p(p> _Z)UB,z(107 _Z) = - U4,p(/)> Z)U4,p(/)> Z)7

(4.12) )
Ui,p(ﬂ, —Z)Ui,z(p, _Z) = ui,p(ﬂ? Z)“LP(ﬁ? Z)v i=1,2.

Thus (4.10) holds, confirming that « is periodic. In order to relieve any con-
ical singularities, observe that there are four free constants arising from the
potentials wu;, which can be used to balance four of the axis rods in a funda-
mental domain, say those associated with the es, es, e4 rods, and one of the
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z=—L/2 =0 z=1L/2

€2 €1 €3

Figure 2: Periodicity of « in the ey, es, €1, 3, e4 soliton.

€3 €2 €1 €2 €3

Figure 3: Symmetry of the fundamental domain with non-equal axis rod
lengths.

e; rods. Moreover, the rod structure arrangement in Figure 2 clearly admits
an involutive symmetry across the line z = 0, and this is transmitted to the
functions w1 and « as described above. In analogy with the previous example,
it follows that the logarithmic angle defect must also vanish for the remain-
ing e; rod in the fundamental domain, due to this symmetry. We then have
regular L-periodic solitons devoid of conical singularities in case (ii).

Remark 1. We note that the existence arguments presented above can be
extended to non-equal rod lengths and other configurations with some limi-
tations. As an example we describe here an extension with one rod having a
different length than the rest in a fundamental domain, see Figure 3. To see
that the same proof carries over, notice that if the origin of the z-axis is placed
at the center of the e; rod, then the potential functions u; and « are even
functions with respect to z. As before, this implies that « is periodic. Fur-
thermore, we may use the free constants associated with the u; to balance the
conical singularities on the axis rods within the fundamental domain which
intersect the positive z-axis. By the involutive symmetry, the remaining axis
rods in the fundamental domain will also be balanced, yielding a regular soli-
ton. This generalizes the procedure of case (ii). Similarly, the procedure of
case (7i7) also admits a generlization to the non-equal rod lengths regime. In
this situation, the involutive symmetry is more complicated in that it arises
not only from a reflection in the domain space, but also involves composition
with a map that interchanges two harmonic functions u;, u; with ¢ # j. These
latter maps may be viewed as isometries of the target space when discussing
the harmonic map formulation of this problem. Again, the symmetry allows
us to balance the second half of the axis rods in a fundamental domain, after
balancing the first half using the free constants associated with the potentials.
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€3 €9

€]

Figure 4: Time slice topology of the ey, es, e3 soliton.

€] €1

Figure 5: Time slice topology of the e, es, €1, e soliton.

5. Soliton topology and asymptotics

In this section we will establish the topological claims of Theorems 1 and 2,
as well as the Kasner asymptotics. First observe that the solitons of these
theorems are all simply connected, since the integer span of their rod struc-
tures is Z" [20, Theorem 7.1]. Below we will verify the specific topologies of
the quotient solitons, and show that the space-periodic solitons are of infinite
topological type.

5.1. Topology in Theorem 2

Within the space-periodic solitons, the fundamental domain of rod structures
is of length L, which identifies a strip —L/2 < z < L/2 in the orbit space.
After identification to obtain the partially compactified solitons, this strip
becomes a punctured disc B? \ {0} with boundary circle that is divided into
the various rod structures making up the fundamental domain. In order to
analyze the topology, we may fill-in the asymptotic end (represented by the
puncture) with B? x T™ to obtain a compact manifold M "+2 whose orbit
space is the whole disc with boundary circle dividing into rod structures. It
then suffices to describe the topology of the compactified manifold M2,
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Case (1) is treated in [24, Theorem 2], so consider case (i7). In the first ex-
ample the orbit space consists of a disc with boundary rod structures eq, es, es,
see Figure 4. The green shaded region lifts to B* x S!, a solid ring, and the yel-
low shaded region lifts to S® x B2. The two are glued along an S x S!, hence
yielding an S°. Next, consider the example with rod structures e, es, e;, es,
see Figure 5. Similarly to the previous case, each vertical line, such as the
dashed blue line, lifts to an S® x S'. The S* collapses to a point at the left
and right edges, hence yielding an S3 x S2.

We now examine case (iii) starting with the rod structure sequence ey,
es, €3, €4, as illustrated in Figure 6. Each of the vertical lines, such as the
vertical dashed red line in the figure, lifts to an S% x T2. Note that each of
the horizontal lines, such as the dashed blue line, also lifts to an S® x T2.
Thus the topology corresponding to this rod diagram is clearly a Cartesian
product. The T2, in the S® x T? vertical slice degenerates along a different
generator at the left and right edges, hence yielding an S3 x S3.

Next, we classify the topology of case (iii) having rod structures e, es,
e, e3, e4, see Figure 7. This example is different in that it is not apparent
how to obtain the topology via the methods used above. Instead, we will
appeal to classification results of [31, 32]. For convenience when comparing
with these references, rename the rod structures by

(51) e} — ez, €9 — €4, €3 — €, €4 — €g,

then the circle boundary of the orbit space has rod structure sequence es, e,
e, e3, e4. Observe that the circle action on M6 associated with the subgroup
of T* generated by the 2e; + e; — e4 generator, is free. The 5-dimensional
quotient manifold e /~ then admits an effective T% action, and has a disc
orbit space with rod structures es, ey, es, e3, 2e; + ey. Furthermore, the
proof of [32, Theorem 5.5] shows that this manifold is spin, and because it is
also simply connected and has five rods we find that A/6 [~ #2 (53 x 5?).
By employing the Whitney product formula, and using that MO /~ is spin,
it follows that M is spin. Since this manifold is simply connected and has
five rods, the classification of [31, Theorem 1.1] implies that M6 = (52 x
SH#2(S3 x S3).

Lastly, consider case (iv) in which n > 4, and the orbit space for M2 g
determined by the basic sequence of rod structures ey, . . ., e,. In [29, Theorem
3.4], it is shown that a closed simply connected (n + 2)-dimensional manifold
having an effective T™ action, with exactly n rods on the orbit space boundary,
must be the connected sum of products of spheres in (3.5). By changing
coordinates in the torus fibers (see [20, Lemma 3.3]), such a sequence of rod
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€3 — — — — — — - (3]

Figure 6: Time slice topology of the e, es, e3, €4 soliton.

Figure 7: Time slice topology of the ey, es, €1, e3, 4 soliton.

structures may be transformed into the basic sequence. Thus, we conclude
that M™*2 has the topology arising from (3.5) by filling in the asymptotic end.
We note that although McGavran’s paper [29] contains an error in Theorem
3.6, as pointed out by Oh [32], Theorem 3.4 of [29] is not affected and has
been generalized in [5, Theorem 6.3] (see also [6, Theorem 4.6.12]).

5.2. Infinite topological type

Here we show that the codimension-two Betti number b, (M""?) is infinite, for
the time slices of solitons produced in Theorem 1. Since we are only concerned
with topology in this subsection, a new metric may be introduced on M"*+?2
which is not necessarily free of conical singularities, namely

n
N\ 2
(5.2) go = dp? + d=* + Z et (d(ﬁ’)
i=1
where u;, ¢ = 1,...,n are as in Section 4.1. Let I',;4; be a rod on the z-

axis with associated Green’s function Ur,,,,. This function is harmonic on
R3 \ 4 with respect to the flat metric. However, we may also view Ur , i

as an n-axisymmetric function on M"*? which is harmonic with respect to
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go, in light of (4.7). Therefore the n-form on M™*2 given by

dz Nd@2 A ---ddi - A dp™
dp/\d<b2/\---d&§i---/\dq§”)

(5'3) by * dUr - 66/2p (8PUFnl+i

—0,Ur

nl+i

nl+i

is closed by Cartan’s formula, where % is the go-Hodge star and ¢,, denotes
interior product with 7; = 0. Moreover, the asymptotics at the axis (4.3)
show that this form is smooth on M"*2. Next, note that the axis rod I,
lifts to an embedded n-cycle ¥, = S x T"3 in M™*2 for n > 3, with
Yigi = S? when n = 2. Furthermore

(5.4)

by % AU, = 2(27)" e 2D oya] # 0, /E by kU, = 0, j # nl+i,
J

Enl+i

where |T'),;44] is the length of the rod. It follows that each [X,,;4;] represents a
distinct generator of the homology group H, (M™"*2;Z), yielding the desired
conclusion.

5.3. Asymptotics

We will now confirm the asymptotics of the solitons constructed in Theorems 1
and 2. Recall that the Kasner metric on R**1! takes the form

(5.5) gr = —dt* + > 1% (dg:i)2 ,
1=0

and that this metric satisfies the vacuum Einstein equations exactly when the
Kasner conditions hold:

(5.6) Zpi =1, ZPZQ =1

The solitons that we produce have metrics of the form (3.2), where the asymp-
totics of the coefficients as p — oo are determined by

(5.7) u; ~ A;log p, a~ Clogp,

with A; > 0 and

1, 1
(5.8) C = gi;Ai -3
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It follows that
n N\ 2
(5.9) g ~ —4L%dE + p*C (dp* + d2?) + Y pt (dw) ,
i=1

where we have used (4.7). Since g solves the vacuum Einstein equations, the
powers of p in the above expression satisfy the Kasner conditions. To see this
more explicitly, set 7 = p©*1 and observe that C' 4+ 1 > 0 as well as

(5.10) g~—4L2dt2+4dr a2+ S roh dé'
e > (aa)”

We can then verify, using > ; A; = 2 from (4.6), that the Kasner condi-
tions (5.6) hold for any values of A;, so long as C' is given by (5.8). More
precisely

(5.11)

¢ Zn Ai c " A2 420+
:1 _

Cvi1'&aCTn (C+1> +;4 Cr12 (Cr12

Therefore, the solutions of Theorems 1 and 2 are asymptotically Kasner, with
the role of ‘time’ being played by the spatial variable p when the metric is
considered in the Kasner context.

6. Wick rotation, Riemannian Einstein metrics, and
holonomy

In this section we will establish Theorems 3, 4, and 5. Let (M™% g), n > 2
denote the time slice of a space-periodic soliton arising from Theorem 1 or 2;
recall that the solutions of Theorem 2 derive from quotients of space-periodic
solitons. Choose an angular coordinate ¢° on the torus, and perform the Wick
rotation ¢ — \/—1t which transforms the spacelike part of the metric (3.2)
into

g = — e“idt® + e**(dp? + d2*) + Z e (d¢j>2
J#i

, N2
=—ple 25U g2 4 e (dp* 4 dz*) + Z evi (dW) ,
J#i

(6.1)

where we have used u; = 2log p—>_,; uj+c from (4.7), and have rescaled the
time coordinate to £ = e“/?t. Therefore, from the soliton time slice (M2, g)
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we have obtained a vacuum spacetime (M™% g) which is static, (n — 1)-
axisymmetric, and with Kasner asymptotics. Furthermore, o has already been
shown (Section 4) to be L-periodic in the z-direction. Thus, these solutions
are space-periodic. Moreover, since e** — 0 on [',;4;, these intervals on the
z-axis become horizon rods for the Wick rotated metric. The horizon cross-
sectional topologies are S3 x T3 or St x S? x T3 for n > 3 depending on
whether the neighboring rod structures are distinct or the same, respectively,
and for n = 2 the topology is S2. Lastly, the conical singularities remain
balanced on the axes as the u; and o have not changed. This completes the
proof of Theorem 3.

Consider now a static solutions from either Theorem 1 or 2. The lapse or
static potential is given by

1 n
(6.2) pe 2 i — e 2,

where we have used (4.7). Since this is constant, it follows that the time slice
(M™% g) is Ricci flat. The remaining properties stating that this Riemannian
manifold is complete, simply connected, admits a cohomogeneity-two torus
action, and has Kasner asymptotics have been established above. Moreover,
in the space-periodic case we have shown in Section 5.2 that the codimension-
two Betti number is infinite. This completes the proof of Theorem 4. Lastly,
we will establish Theorem 5.

6.1. Holonomy

To show that the Ricci flat Riemannian manifolds (M™2, g) of Theorem 4
have generic holonomy, we will make use the Ambrose-Singer Theorem [4],
which may be interpreted as stating that the Lie algebra hol, of the holonomy
group at p € M™*? is generated by the curvature endomorphisms

(6.3) R(X,Y): T,M"™"? — T,M"*?

where X and Y run through 7,M"*? and ¢ runs through M"™*2. Thus, in
order to establish that the holonomy is generic, it suffices to choose a suitable
p and show that the curvature endomorphisms at p generate so(n + 2). Note
that the holonomy algrbra determines the holonomy group, as the manifolds
discussed here are simply connected.

We begin by computing the curvature. A straightforward although tedious
computation shows that the non-zero components of the Riemann curvature
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tensor are given by

(6.4)
Ry.p. = —e2 Ny, Ryigigipi = G(us,ug), 1<i<j<mn,
Rp¢ip¢i = ./'.“1 (uz), Rp¢z‘z¢i = fg(ui), Rz¢iz¢i = fg(uz‘), 1= 1, NN

where Ay = 92 + 92 and

et 9

Fi(u;) = (2ui,pap — 22U 20 — 22U pp — uw) \
Uq

e .

Folu;) =— (2w pouy + 2 z00p — 205 o — Uj pU; ) t=1,...,n,
(6.5) )
Fs(u;) = 1 <2ui,zaz — 2u; p0ty — 2, — u”) ,
eui+“j_204
Glui, uj) = — ——— (wiptjp + wizuyz),  1<i<jsn.

It follows that the curvature endomorphisms may be represented in Weyl-
Papapetrou coordinates as the matrices

0 —e**Asav 0 ... 0
PRaANTe 0 0 ... 0
(6.6) R(9,,0,) = 0 0 ,
: : 0
0 0
0 0 O 0
0O 0 0 ... O
(6.7) R(95:,05) = [V 0 :
Lo G(iL))
0 0
0 0 Fu(u;) 0
0 0 Folus) 0

(6.8) R(0,, 01) = _fi(ui) —]:2:(%‘) |
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0 0 .7:2(’&1) ... 0
0 0 .Fg(’ul) ... 0

(6.9) R(0.,04) =

where the Fj(u;) (respectively —Fj(u;)) entries of R(0,,04) and R(0., 0y)
appear in the (i + 2)th column (respectively (i + 2)th row), and the only non-
zero entries of the n x n matrix G(i,7) are G(u;,u;) and —G(u;, u;) which
occur in its ij and ji entries respectively, 1 < i < j < n. Therefore, if we find
a point p € M™*+2 at which

AQCK 7é 0, fl(ul)fg(uz) — fz(ui)Q 7é 0, 1= 1, ooy,

6.10
(010 Glui,uj) #0, 1<i<j<n,

then these (n + 2)(n + 1)/2 matrices span so(n + 2) at that point, and the
holonomy group will be generic.

An appropriate choice of the point p is sufficiently far out in the asymp-
totic end. To see this, recall the asymptotics for u; and use (4.9) to obtain

1—n

2
(6.11) u; ~ — log p, a~ log p.
n

Furthermore, expanding in cylindrical harmonics as in (4.6) produces
(6.12)

2 1—n .
Uip~ —, Qp~ , Ui, and o, decay exponentially as p — 00.
np 2np
Hence
(6.13)
Fi(ui) Fa(ug) — Fo(u;)?
2u¢
e 2
E— 16 [(2ui7paz + 2u; 0 — 2U4 p, — ui,pui’z)
— (2uiyzaz — 2u; p0p — U4, — ufz) <2ui,pap = 2U 0, — 2U4pp — U?,p”
2u;
6 1
~ T g UieQp (2Ui,pap — 2 pp — uiﬁ)
(n—1)% a_
~ pn 4



Gravitational solitons 1917

We conclude that for p large enough, (6.13) is non-zero as n > 2. Next,
observe that
(6.14)

L ng1

Aga = —3 ; Vg |* + ST e G(ui,uj) ~ ——5—

where the first equation is obtained from (4.9) together with the harmonicity
of u;. Once again, for p sufficiently large these expressions are non-zero. This
completes the proof of Theorem 5.
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