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ABSTRACT
We give a gentle introduction to solar imaging data, focusing on the challenges and opportunities of data-
driven approaches for solar eruptions.We present various solar phenomena prediction problems thatmight
benefit from statistical methods and describe available data products and software packages. State-of-the-
art solar eruption forecastingmodels with data-driven approaches are summarized and discussed. Based on
the characteristics of thedatasets and state-of-the-art approaches,wepoint out several promisingdirections
to explore from statistical modeling and computational perspectives.
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1. Introduction

1.1. Introduction to SpaceWeather and Various Solar
Phenomena

Broadly speaking, space weather refers to variable conditions in
the solar system environment produced by the Sun’s activity on
relatively short time scales (e.g., Baker 1998; Schwenn 2006).
Long-term effects in space weather on time scales longer than
several solar rotations are referred to as space climate (e.g.,
Mursula, Usoskin, and Maris 2007). The relation between the
solar and geomagnetic activity (solar-terrestrial connections)
was noted after Schwabe (1843) discovered the 10-year sunspot
cycle, when Sabine (1852), Wolf (1852), Gautier (1852), and
Lamont (see, Reslhuber 1852) reported on sunspot cycle peri-
odicity in variations of Earth geomagnetic field. Significant vari-
ations in the magnetic field of Earth were noted concerning
the first white-light solar flare, observed by Carrington (1859)
and Hodgson (1859). This flare (and its associated coronal mass
ejection) caused one of the most extreme space weather events
on record (the so-called Carrington event). Widespread sight-
ings of aurora borealis, which lasted for about seven days, were
observed as far south as Cuba and Jamaica (see a compilation of
several observations in USA, Europe, and Asia, Silliman 1859,
1860b, 1860c). For a map of aurora sightings for this event,
see Hayakawa et al. (2019). The extended period of Aurora
activity started a few days before the Carrington flare, which
suggests thatmultiple eruptive eventsmay have occurred during
this period. The resulting geomagnetic activity had an impact
on the telegraph, a global communication infrastructure of the
time, with the variable magnetic field inducing electric currents
in the telegraph wires strong enough to make them extremely
hot or even spark fires (see a compilation of several reports,
Silliman 1860a). The appearance of strong electric currents in
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telegraph wires, in conjunction with aurora, had been noted
before by many observers (e.g., Barlow 1849; Silliman 1860b).
For a review of the early history of space weather impacts,
including radio communications, navigation, radar detection,
and artificial satellites, see Pevtsov (2017) and visualization in
Figure 1.

Modern society’s well-being critically depends on global
technological systems. This includes global transmission net-
works of electric power, gas and oil pipelines, communication
and shipping logistics systems, and the global positioning sys-
tem. Early examples of negative effects include power outages
and blackouts (Boteler, Pirjola, and Nevanlinna 1998; Love et al.
2022, the most cited is the Hydro-Quebec power grid collapse
on March 13, 1989, which resulted in the loss of electric power
to more than six million customers for 9 hr), failure of com-
munication satellites due to radiation damage by solar energetic
particles (SEPs) associated with solar flares and CMEs (e.g.,
failure of Intelsat’s Galaxy-15 spacecraft in April 2010), elec-
tric discharges associated with a satellite-solar wind interaction
originated from an elongated coronal hole (Canadian Anik-
E1 and E2 communication satellites, Lam et al. 2012), or the
enhanced atmospheric drag resulting from a major solar flare
or CME event that caused a premature reentry of 38 out of 49
Starlink satellites launched by SpaceX (Berger et al. 2023). In
August 1972, a series of solar flares and associated geomagnetic
storms led to widespread communications disturbances and
power outages. These events included a CME with the shortest
ever Sun-Earth transit time of just 14.6 hr, an average speed of
2850 km/s, and a shock speed at 1 AU > 1700 km/s (Zastenker
et al. 1978). On August 4th, the geomagnetic storm caused a
nearly instantaneous detonation of dozens of seamines installed
by the US during the Vietnam War south of Hai Phong (Knipp
et al. 2018). The August 4th flare, which occurred between the
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Figure 1. Technology and infrastructure affected by space weather events, from the NASA Scientific Visualization Studio, https://svs.gsfc.nasa.gov/31248/ .

Apollo 16 (April 16–27, 1972) and Apollo 17 (December 7–11,
1972) missions, led to a significant increase in the radiation level
in the interplanetary space. Later estimates (Townsend, Shinn,
andWilson 1991) indicated that astronauts inside the spacecraft
traveling to the Moon would have received radiation exposure
exceeding annual limits and approaching career limits for the
skin and ocular lens. The average bone marrow dose equivalent
would have exceeded the recommended annual limit. For the
astronauts outside the spacecraft (extravehicular activity, EVA,
or on themoonwalk), the radiation dose equivalents would have
been clinically significant, including nausea, vomiting, a very
high probability of cataract formation, with a slight increase in
the probability of death. Slightly smaller doses were estimated
for a flare event in October 1989. Formore details on the topic of
impact of SEP radiation on interplanetary travel, see Lockwood
and Hapgood (2007, and references therein). Finally, in 1967, a
large solar flare nearly triggered a nuclear war after it brought
down the US early warning radar system with radio noise,

causing some military commanders to suspect Soviet jamming
in preparation for a nuclear attack (Knipp et al. 2016).

Therefore, it should not be surprising that the management
of the risk of space weather has become a National priority.
The threat-assessment report by the Lloyd’s Insurance company
(Lloyd’s 2013) concluded that extreme events could cause $0.6–
2.6 trillion damage, with a recovery time of months. An earlier
report by the National Research Council (Baker et al. 2009)
arrived at similar conclusions. More recent studies suggest that,
in case of an extreme solar and geomagnetic event, daily costs to
the world economy would be several billion dollars, not count-
ing human costs. Although extreme space weather events are
rare, their damage could be catastrophic. Some studies estimate
that the “economic costs associated with these extreme events
have been heralded as being as high as $1–2 trillion in the
first year, equivalent to a so-called ‘global Hurricane Katrina’ ”
(Oughton et al. 2017). Due to the global nature of space weather,
the impact would affect a broad swath of the world economy,

https://svs.gsfc.nasa.gov/31248/
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Figure 2. Two ribbon flare and filament eruption associated with CME and X1.0 X-ray class flare as observed by GONG/CT on October 28, 2021. Black arrows mark the
approximate position of the filament before and during its eruption, bright flare ribbons, and a signature of the Moreton (blast) wave triggered by this major flare. Off-
limb, halo is due to uncorrected scattered light in the Hα filter. Bright features extending beyond the solar limb are prominences, which appear as dark features when
they are observed on the solar disk. Source: NSO FY 2021 Annual Progress Report and FY 2022 Program Plan https://nso1.b-cdn.net/wp-content/uploads/2023/03/NSO-
2022_23_Final.pdf

including power distribution, transportation, communications,
satellite infrastructure, aviation, and global positioning systems
(Eastwood et al. 2017). In addition, penetrating radiation is one
of the main obstacles to human exploration of Mars.

While the most dramatic impacts of space weather are due
to solar eruptive events, namely flares and CMEs, many other
solar phenomena may also play an important role. For example,
the coronal holes—areas of open magnetic field and fast solar
wind, could be associated with recurrent geomagnetic storms of
moderate intensity. The level of solar UV and EUV radiations,
which correlateswith solar active regions, heats the Earth’s upper
atmosphere, increasing its density and increasing atmospheric
drag on the Low Earth Orbit (LEO) satellites. Similarly, the
increase in the total electron content of the ionosphere affects the
speed of radiowave propagation and, consequently, the accuracy
of the global positioning system.

Here is a brief definition of solar phenomena, which are
important for space weather:
1. Solar flare (e.g., Bruzek and Durrant 1977) is a sudden

increase in electromagnetic radiation, typically in the range
of UV to soft X-rays, from the solar atmosphere (mostly
the chromosphere and corona). This radiation is primarily
thermal in nature, coming from regions of localized heating
caused by magnetic energy release. Acceleration of charged
particles in flaring regions can also produce nonthermal
radiation, such as hard X-rays. In the visible light (e.g., Hα

spectral line, λ 656.3 nm) the flare importance is defined by
its relative brightness (F/faint, N/normal, and B/bright) and
total area (S/subclass, 1–4 classes). In X-ray, the flares are
characterized by the maximum intensity in the 0.1–0.8 nm
wavelength band:

Class Maximum Intensity Range
A (1-9) × 10−5 erg/(cm2· s)
B (1-9) × 10−4 erg/(cm2· s)
C (1-9) × 10−3 erg/(cm2· s)
M (1-9) × 10−2 erg/(cm2· s)
X (1-9) × 10−1 erg/(cm2· s)

The A-class flares are near the background energy level.
A- and B-class flares are typically not geoeffective. C-class

flares may have some geomagnetic impact, and M- and X-
class flares are the major flares with a major space weather
impact. Major flares identified as Importance 3 and 4 in
visible light observations typically correspond to X-ray class
M and X. Hayakawa et al. (2020) find that optical flares with
an importance of 3 were associatedmainly with X-class (66%)
and M-class (30%) flares. In 4% cases, strong Hα flares with
C-class flares.

2. Coronal Mass Ejection (CME, Webb and Howard 2012) is
a large structure of magnetized plasma expelled from the
Sun into the interplanetary space. These events are associated
with strong flares (C, M, and X classes) and eruptions of
chromospheric filaments (see Figure 2). Their geoeffective-
ness depends on their speed (Srivastava and Venkatakrish-
nan 2002) and the orientation of the magnetic field. Those
situated west of the solar central meridian, with high velocity
(fast) and a southward orientation of the magnetic field,
are more geoeffective, with magnetic field orientation being
the most important parameter. Some CMEs may not have a
clearly identifiable source region (so called, stealth CMEs,Ma
et al. 2010). They could be associated with the eruption of
magnetic structures of filament channels without significant
filament material in it (e.g., Pevtsov, Panasenco, and Martin
2012; Kilpua et al. 2017).

3. Chromospheric filament (prominance at the limb, Gibson
2018) is a “cloud” of cooler and denser plasma suspended
in the chromosphere and corona by the magnetic field. The
vast majority of CMEs are associated with filament channels,
and early filament rise was found to precede the CME initi-
ation (see, Berezin, Tlatov, and Pevtsov 2023, and references
therein). The orientation of the magnetic field and its hand-
edness (chirality, or sign of magnetic helicity) are found to
provide a good representation of the southward orientation
of the magnetic field in CMEs. Filaments are located along
the polarity inversion line of large-scale magnetic fields at the
photosphere, which forms the filament channel.

4. Coronal hole (CH, Cranmer 2009) can be identified in coro-
nal images as the darkest (lowest intensity) areas seen over
the solar disk, which can persist for several solar rotations.
Historically, CHs have been identified using observations in

https://nso1.b-cdn.net/wp-content/uploads/2023/03/NSO-2022_23_Final.pdf
https://nso1.b-cdn.net/wp-content/uploads/2023/03/NSO-2022_23_Final.pdf
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He I 1083.0 nm (near infrared), although their appearance is
not as evident as in extreme UV (EUV) or X-ray images. CHs
are associated with weak, mostly unipolar magnetic fields
opened to the interplanetary space. CHs are the source of fast
solar wind. Because CHs may exist for several solar rotations,
they are associated with the recurrent geomagnetic storms
occurring on Earth with the period of solar synodic rotation
(about 27.2753 days). The geomagnetic storms associated
with CHs are typically moderate in strength (Kilpua et al.
2017) while rare, stronger storms (Dst < 100) are also possible
(Richardson et al. 2006). Perhaps the largest space weather
risk from fast-speed streams originating from the coronal
holes comes from satellite charging. The resulting electro-
static discharge can damage electronics, phantomcommands,
cause loss of operations, and in some cases, total satellite loss
(Horne et al. 2018).

5. Solar Energetic Particles (SEPs, Reames 2021). SEPs are the
radiation events associated with high-energy particles origi-
nating from the Sun in the energy range from about 10 KeV
(kilo electron volts) to 10 GeV, lasting from hours to days.
Their composition is mostly electrons and protons, but heavy
elements (He through Au/Pb) have been identified as well.
SEP events are classified as impulsive or gradual. The former
originates as the result of magnetic reconnection in the solar
corona at the location of flares, while the latter is the result
of particle acceleration in the CME-driven shocks. Gradual
SEPs are also long-duration events. Some SEPs have sufficient
energy to cause localized increases in the radiation at the
Earth’s surface, so-called Ground-Level Events (or Ground-
Level Enhancements, GLEs).

1.2. State-of-Art Solar Events Forecastingwith Physics

State-of-the-art solar event forecasting has been based on physi-
cal and empirical models. Empirical solar flare prediction mod-
els primarily focus on parameterizing relationships between
the active region’s photospheric magnetic field (e.g., magnetic
topology, Lorentz force, free energy, helicity, etc.) and iden-
tifying relationships between these parameters and solar flare
activity (e.g., McIntosh 1990; Falconer, Moore, and Gary 2002a;
Leka andBarnes 2003; Schrijver 2007b; Fisher et al. 2012;Moore,
Falconer, and Sterling 2012). The state-of-the-art in physics-
based solar flare prediction involves realistic MHDmodeling of
active region evolution by driving the model’s inner boundary
with time-series magnetic field measurements, allowing for the
self-consistent modeling of the pre-flare energy build-up pro-
cess (e.g., Cheung and DeRosa 2012; Jiang et al. 2016). However,
due to the limitations in both physical realism, computational
cost, and observational data, this advanced modeling remains at
the research level. It is not yet applicable for operational solar
flare prediction.

Although CMEs and flares are both magnetically driven
events, with a correlation that grows with energy, there is no
strict one-to-one correspondence between them. To understand
the physical mechanism distinguishing flares and CMEs, sig-
nificant effort has been devoted to analyzing the structural
properties of the global coronal magnetic fields, which may
play a crucial role in determining whether an eruption evolves

into a CME or remains a confined flare (e.g., Török and Kliem
2005; DeVore and Antiochos 2008; Liu 2008; Baumgartner,
Thalmann, and Veronig 2018). The CME prediction model
uses a similar approach to the solar flare prediction model,
aiming to find relationships between CME productivity and
the features of the photospheric magnetic field (e.g., Qah-
waji et al. 2008; Bobra and Ilonidis 2016; Kontogiannis et al.
2019).

Physics-based SEP prediction models aim to numerically
incorporate the relevant physics of particle acceleration, encom-
passing the background solar corona and wind environment,
CME eruptions and their driven shocks, particle acceleration,
and transport. Each of these processes is an active research area
and not fully understood, making SEP prediction extremely
challenging. For details of current state-of-the-art SEP predic-
tion models, we refer readers to the review paper by Whitman
et al. (2022).

1.3. Promises of Data-Driven Approaches

The current space weather forecasting based on physical models
is far from reliable: the forecasting window is only minutes, and
the accuracy is low. Recently, with much more data becoming
available, data-driven approaches are gaining attention in the
space science community; see Leka and Barnes (2018) andCam-
poreale (2019) for a review.How tomake the best use of the large
amount of data available to provide reliable real-time forecasting
of space weather events is one of the major questions for scien-
tists in the field. Recent work published in the Space Weather
journal (Bobra and Couvidat 2015; Nishizuka et al. 2018; Chen
et al. 2019; Wang et al. 2020; Jiao et al. 2020; Nishizuka et al.
2021) shows that a promising approach to extend the solar flare
forecast time scale from minutes to days is to use machine
learning (ML)methods. These results are highly encouraging for
the field andprovide a benchmark for future studies. The authors
of this article have contributed to multiple papers in the past few
years, on adopting existing ML methods and developing novel
statistical methods for solar flare forecasting. More specifically,
Chen et al. (2019) and Wang et al. (2020) adopt Long Short
Term Memory (LSTM) neural networks to classify strong solar
flare events, demonstrating that constructing precursors of solar
flare events from a set of predictors is feasible. Furthermore, Jiao
et al. (2020) combine LSTM with a mixture model to propose
a mixed LSTM regression model that predicts the flaring label
and flare intensity jointly in one single optimization problem.
This approach results in improved performance in strong flare
forecasting. Sun, Manchester IV, and Chen (2021) adapt ideas
from spatial statistics and topological data analysis to construct
physically interpretable predictors of solar flare events, further
improving strong flare forecasting performances. Sun et al.
(2022b) and Aktukmak et al. (2022) explore the potential of
combining heterogeneous sources of data (data from different
instruments from two different solar cycles) for solar flare fore-
casting, thus seeking tomediate the sample size limitation in rare
events (strong solar flare) prediction. Sun et al. (2023b) propose
a new tensor regression model that combines information from
multiple sources of data, accommodating spatial, temporal, and
spectral continuity and sparsity, and propose an efficient com-
putational algorithm to solve the problem.
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Figure 3. Solar cycle progression from NOAA/SWPC, https://www.swpc.noaa.gov/products/solar-cycle-progression.

1.4. Challenges for Solar Flare Forecasting

The complexity of solar flares and the infrequent occurrence of
energetic events result in highly heterogeneous data with large
variability, making fast and accurate predictions of the time and
intensity multiple hours/days ahead an extremely challenging
task. According to NOAA (2018), during solar cycle 24 (roughly
11 years), there were > 2000 M flares and fewer than 180 X
flares. Figure 3 shows the sunspot number, which characterizes
the solar activity levels of multiple solar cycles. We can see that
the different phases of the solar cycle demonstrate significantly
different levels of solar activities. The high-quality observational
data we have available, to be described in the next section,
typically cover only one or a little more than one solar cycle.
Moreover, since A and B class flares are relatively weak and
close to background levels, many of them are not recorded, caus-
ing significant “missing data.” Off-the-shelf machine learning
algorithms cannot achieve desirable performance; thus, more
advanced modeling is required to carefully extract the maxi-
mum amount of information from these complex structured
data. What exacerbates the problem for data-driven methods,
especially complexmodeling, is the computational cost required
to process the high-resolution and high-cadence observations
over an extended period. We will detail these aspects when
introducing solar datasets in Section 2.

Scientifically, it is important to (a) identify the solar active
regions that have high potential to erupt in an automated fash-
ion, (b) extract features fromobserved solar images using princi-
pled statistical algorithms, (c) most importantly, provide a prob-
abilistic forecast for the eruption time, magnitude and magnetic
field configuration, and (d) facilitate new understandings of the
mechanism/physics of space weather events. To achieve these
goals, we need (i) careful statistical modeling of the spatial and
temporal patterns, thus identifying precursors that finally do
(or do not) lead to rare and extreme events, and (ii) advanced
computational techniques to handle massive and multifaceted
datasets.

2. Massive Solar Imaging Data

There is a broad spectrumof data given by various observatories,
and a multitude of information is covered about solar activities.

Figure 4 shows the Sun–Earth interactions and layers of the solar
and near-Earth environments. Figure 5 shows the NASA Helio-
physics Systems Observatory located near-Earth or near-Sun.
The features, quality, and accessibility of the data vary between
observatories. In this article, we focus on solar imaging data,
which are typically given by the Flexible Image Transport Sys-
tem (FITS), that is, as multidimensional numerical arrays. This
section introduces potentially available data sources and reviews
existing processed data that machine learning researchers have
adopted.

2.1. Overview of Available Data Sources

As shown in Figures 4 and 5, there is a broad spectrum of obser-
vatories taking measurements of the Sun and the near-Earth
environment, providing thorough information about the Sun-
Earth interactions. Here, we review three major types of solar
observations relevant to monitoring and forecasting solar activ-
ities. These observations are the ones most popularly adopted
by scientists hoping to use data-driven approaches for space-
weather monitoring. The most relevant imaging data are those
which depict solar evolution in the solar photosphere (visi-
ble “surface” of the Sun), chromosphere (the portion of solar
atmosphere above the photosphere), and corona (the outer part
of the solar atmosphere). Imaging data may originate from
spaceborne and ground-based instruments. Most imaging data
are taken at or near Earth and provide the Sun’s view from
Sun-Earth vantage (or direction). The most notable examples
include GONG, SDO, SOHO, SOLIS, STEREO (which has been
on the far side of the Sun from Earth), GOES, Hinode, and
Yohkoh (see, Table 1). The direct imaging data are used to (i)
identify and classify solar features (sunspots and active regions,
coronal holes, filaments, CMEs, etc.) and (ii) create catalogs of
events (e.g., solar flare catalog by NOAA, Yohkoh, and Hinode;
and SOHO LASCO CME catalogs, CDAW (https://cdaw.gsfc.
nasa.gov/CME_list/index.html) and Cactus (https://www.sidc.
be/cactus/). GOES X-ray flux records are used to identify the X-
ray flares and their properties.

GONG is a global network of six solar robotic telescopes
located in Australia, India, the Canary Islands (Spain), Chile,
and theUSA (California andHawai’i). GONGprovides full-disk

https://www.swpc.noaa.gov/products/solar-cycle-progression
https://cdaw.gsfc.nasa.gov/CME_list/index.html
https://cdaw.gsfc.nasa.gov/CME_list/index.html
https://www.sidc.be/cactus/
https://www.sidc.be/cactus/
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Figure 4. Illustration depicting Sun–Earth interactions that influence space weather. Source from NASA SVC: https://svs.gsfc.nasa.gov/30481/ .

Figure 5. “The NASA Heliophysics Systems Observatory works with other NASA systems observatories to give NASA a complete picture of the Sun-Earth System,” figure
and words are taken from https://science.nasa.gov/learn/heat/missions/ .

images of the solar photosphere (broadband or white light)
and chromosphere (Hα), line-of-sight (LOS) magnetograms,
and Dopplergrams (helioseismology data) in the photosphere.
Helioseismology data is used to derive the so-called farside
imaging (low-resolution maps of solar magnetic fields on the

side of the Sun opposite to one facing the Earth). The Michel-
son Doppler Imager (MDI) on board SOHO also produced
LOS magnetograms and Doppler maps similar to GONG, albeit
with a lower spatial resolution. The Extreme Ultra-violet Imag-
ing Telescope (EIT) and the Large Angle and Spectrometric

https://svs.gsfc.nasa.gov/30481/
https://science.nasa.gov/learn/heat/missions/
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Table 1. Major Heliophysics Observatories with imaging data.

Observatory Location Type of data Years Link

GONGa Ground-based LOS magnetograms, 1995–P www.gong.nso.edu
Hα images, helioseismology

SOLISb Ground-based Vector/LOS magnetograms, 2003–2017 solis.nso.edu
Hα, He 1083.0 hm images

SDOc Geocentric Vector/LOS magnetograms, 2010–P sdo.gsfc.nasa.gov
orbit EUV images, helioseismology

STEREOd 1 AU orbit EUV images, in situ 2006–P stereo.gsfc.nasa.gov
(SEPs, magnetic field)

GOESe GEO X-ray flux, EUV images, 1975–P www.swpc.noaa.gov
SEPs

SOHOf Sun-Earth LOS magnetograms, 1996–P∗ soho.nascom.nasa.gov
Lagrange L1 EUV images, coronagraph

Yohkohg LEO soft and hard X-ray 1991–2001 umbra.nascom.nasa.gov/
yohkoh/y4sdac_top.html

Hinodeh LEO vector magnetograms 2006–P science.nasa.gov/
EUV imaging, soft X-ray mission/hinode

NOTE: LEO (Low Earth Orbit): an orbit relatively close to Earth’s surface. GEO (Geostationary orbit): a circular orbit 22,236 miles above Earth’s Equator, a satellite’s orbital
period is equal to Earth’s rotation period of 23 hr and 56 min. Geocentric orbit: objects orbiting Earth, such as the Moon or artificial satellites.
aNSF’s Global Oscillation Network Group
bNSF’s Synoptic Optical Long-term Investigations of the Sun
cNASA’s Solar Dynamics Observatory
dNASA’s Solar-Terrestrial Relations Observatory
eNOAA’s Geostationary Operational Environment Satellite
fESA-NASA’s Solar and Heliospheric Observatory(∗MDI stopped observing in 2011)
gJapan’s solar observatory spacecraft
hJapan/UK/US mission

Coronagraph (LASCO) are other instruments on board the
SOHO spacecraft providing solar corona images. The Helioseis-
mic and Magnetic Imager (HMI) measures 3D magnetograms,
and the Atmospheric Imaging Assembly (AIA) photographs the
Sun’s atmosphere and the corona in multiple wavelengths.

Next, we describe H-α images by GONG and other observa-
tories in Section 2.2, GOES observations (including flare list and
X-ray flux measurements) in Section 2.3, SDO observations in
Section 2.4, SOHO and GONG magnetogram observations in
Section 2.5.

2.2. H-alpha Images: GONG and others

From the observation perspective, full disk Hα (Hydrogen–α)
images can be used to identify the chromospheric filaments,
solar flares, and their properties in the visible wavelength range.
Hα is one of the commonly used spectral lines in solar astron-
omy, and thus, there are a number of ground-based instruments
that provide such observations.

As some examples, one can mention the Chromospheric
Telescope (ChroTel, Kentischer et al. 2008; Bethge et al.
2011, years of operations 2012–2020), Hα instruments at the
Global Oscillation Network Group (GONG, Harvey et al.
1996; Hill 2018; NSO Integrated Synoptic Program 2010, 2010–
present), the Kanzelhöhe Observatory (KSO, Otruba and Pötzi
2003; Pötzi et al. 2015, 2021). For additional details of these
instruments and their application in machine learning, see, for
example, Diercke et al. (2024). ChroTel and Hα instruments at
KSO are single-site instruments, and thus, their observations
are limited to a day-night cycle, weather permitting. GONG is
a 6-site global network, which typically provides a 90% duty
cycle (90% of the 24-hr period is covered by observations). Each
GONG site takes Hα observation every 60 sec. See Figure 6 for
a snapshot of GONG H-α data updated by the NSO website on

May 3, 2024. The time of observations at the adjacent sites is
shifted by 20 sec, which allows for the achievement of a network
cadence of 20 sec. The GONG data is used by the NOAA
Space Weather Prediction Center (SWPC), the US Air Force
557th Weather Wing, and the NASA Community Coordinated
Modeling Center (CCMC) tomonitor space weather conditions.

KSO H-α instrument is part of the Global Hα Network
(Steinegger et al. 2000, GHN), which is the adhoc network of
telescopes operated by different organizations. The data pro-
duced by these instruments is nonuniform in both spatial res-
olution and spectral bands, which may lead to a difference in
the appearance of solar features. Other notable examples are the
U.S. Air Force Solar Optical Observing Network (Neidig et al.
1998, SOON), Kislovodsk High-Altitude Station of Pulkovo
Observatory (KHASPO, Russia), Huairou Solar Observing Sta-
tion (HSOS, P.R. China), Hida Observatory (Kyoto University),
National Astronomical Observatory of Japan (NAOJ), Cata-
nia Astrophysical Observatory (CAO), Solar Survey Archive
BASS2000 (SSABASS2000, France), H-α telescope at Big Bear
Solar Observatory (HBBSO, California). Early observations in
H-α were taken on the photographic film. Currently, digitized
(large) datasets include the Solar Digitization Project at New
Jersey Institute of Technology (SDP, NJIT), Kodaikanal Solar
Observatory (KSO, India), and NSO flare patrol telescope (NSO
FPT).All ground-based observations are subject to localweather
and instrument shutdown/repairs. Some digitized (scanned)
imaging data is still missing digitization of metadata (e.g., time
and date of observations), which could benefit tremendously
from the application of pattern/text recognition and machine
learning. See Table 2 for links to these data sources.

2.3. GOES: Solar Flare List and X-ray Flux

Solar flare events are recorded in the NOAA Geostationary
Operational Environmental Satellites (GOES) flare list (Garcia

www.gong.nso.edu
solis.nso.edu
sdo.gsfc.nasa.gov
stereo.gsfc.nasa.gov
www.swpc.noaa.gov
soho.nascom.nasa.gov
umbra.nascom.nasa.gov/
yohkoh/y4sdac_top.html
science.nasa.gov/
mission/hinode
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Figure 6. Summary of GONG H-α data from May 3, 2024 showing the latest observations from six network sites located at (upper panel, left to right) Learmonth Solar
Observatory, Australia; Udaipur Solar Observatory, India, Teide Observatory, Canary Islands and (lower panel) the Cerro Tololo Inter-American Observatory, Chile; Big Bear
Solar Observatory, California; and Mauna Loa Observatory, Hawai’i. The image from Udaipur is affected by a cloud, which partially covers the solar disk. Notations below
each image indicate the date and time of observations. The last line under each image shows the time since the last image was taken. For this line, the text in red is used for
sites that are not observing (due to weather or a night). The green text shows the sites currently observing, and the sites that are observing but have not returned a recent
image (e.g., due to clouds) are shown in cyan. GONG site at Mauna Loa Observatory was down since November 26, 2022 after the volcanic eruption, when the lava flows
shut down the operations. Thus, the image of the Sun from Mauna Loa is outdated and thus looks very different from the other sites. The dark elongated feature shown
in five images is a quiescent filament. The bright, compact areas on the images correspond to three active regions. Larger areas, which appear slightly brighter than the
surrounding background, correspond to themagnetic field of decaying active regions. The appearance of active regions and filaments can vary depending on the properties
of theHα filter (see image in the low-middle panelwith low-left or upper panel). This difference in appearancemay complicate the identification of solar active regions using
the ML approach. This summary page is available at https://gong2.nso.edu/products/tableView/table.php?configFile=configs/hAlphaColor.cfg. Due to the dynamic nature of
this page, images of different dates and times will be shown. All images are oriented with the solar North up and East to the left).

Table 2. Links to data sources of instruments mentioned in Section 2.2.

H-α Instrument Link to data source

Global H-α Network (GHN) http://www.bbso.njit.edu/Research/Halpha/
U.S. Air Force SOON https://www.soonar.org/
KHASPO, Russia http://en.solarstation.ru/
HSOS, China https://sun10.bao.ac.cn/
Hida Observatory https://www.hida.kyoto-u.ac.jp/SMART/
NAOJ, Japan https://solarwww.mtk.nao.ac.jp/mitaka_solar/
CAO http://ssa.oact.inaf.it/oact/ image_archive.php
SSABASS2000, France https://bass2000.obspm.fr/home.php
HBBSO, California http://www.bbso.njit.edu/Research/FDHA/
SDP, NJIT http://sfd.njit.edu/
KSO, India https://kso.iiap.res.in/new
NSO FPT https://nispdata.nso.edu/ftp/flare_patrol_h_alpha_sp/

1994). The flare list is popularly used by the space weather
community, while some recent works show that the list misses
several major flare events (Van der Sande et al. 2022). The
number of solar flare events is not massive enough to train

large-scale machine-learning models with the amount of solar
imaging data we have. For example, from May 01, 2010 to June
20, 2018, 12012 solar flares are listed with class, start, end, and
peak intensity time of each event. There are five levels of flare
events, A/B/C/M/X, ranging from the weakest to the strongest.
Table 3 gives the number of flares of the B/C/M/X class recorded
in the GOES dataset. The A/B are considered weak flares, which
do not impact the Earth much, whereas the M/X are considered
strong flare events; thus, early detection is crucial.

Figure 7 shows the 1-min GOES X-ray flux data updated in
real-time from SWPC/NOAA while tracking solar flare events.
The SWPC/NOAA definition of the start, peak, and end time
of an X-ray event is as follows. “The begin time of an X-ray
event is defined as the first minute, in a sequence of 4 min, of
steep monotonic increase in 0.1–0.8 nm flux. The X-ray event
maximum is taken as the minute of the peak X-ray flux. The end
time is when the flux level decays to a point halfway between
the maximum flux and the pre-flare background level.” In the

https://gong2.nso.edu/products/tableView/table.php?configFile=configs/hAlphaColor.cfg
http://www.bbso.njit.edu/Research/Halpha/
https://www.soonar.org/
http://en.solarstation.ru/
https://sun10.bao.ac.cn/
https://www.hida.kyoto-u.ac.jp/SMART/
https://solarwww.mtk.nao.ac.jp/mitaka_solar/
http://ssa.oact.inaf.it/oact/image_archive.php
https://bass2000.obspm.fr/home.php
http://www.bbso.njit.edu/Research/FDHA/
http://sfd.njit.edu/
https://kso.iiap.res.in/new
https://nispdata.nso.edu/ftp/flare_patrol_h_alpha_sp/
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Table 3. The number of flares of A/B/C/M/X classes recorded yearly from 2010 to 2023 in the GOES dataset.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

A 0 1 0 0 0 0 0 0 5 0 2 0 0 0
B 693 629 473 467 183 446 758 632 255 188 324 1056 22 2
C 156 996 1115 1192 1622 1274 297 230 12 32 76 215 205 287
M 23 106 124 97 194 128 15 37 0 0 0 14 21 46
X 0 8 7 12 16 2 0 4 0 0 0 2 1 1

Total 872 1740 1719 1768 2015 1850 1070 903 272 220 402 1287 249 336

Figure 7. GOES X-ray flux record, downloaded from https://www.swpc.noaa.gov/products/goes-x-ray-flux on May 3, 2024. Raw data is also available for everyone to
download.

duration of April 27, 2024–May 03, 2024 (in Figure 7), there is
one M4.4 flare occurring.

2.4. SDO: 3DMulti-Channel Solar Imaging Data

Since its launch in 2010, NASA’s Solar Dynamics Observatory
(SDO; Pesnell, Thompson, and Chamberlin 2012) has contin-
uously observed solar activity, providing an extensive array of
scientific data for heliophysics research. There are three instru-
ments onboard: The Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) captures full-disk images of the Sun in high
spatial (4096×4096, pixel size of 0.6 arcseconds) and high tem-
poral (12 sec for EUV channels 94, 131, 171, 193, 211, 304, and
335 Å, and 24 sec for UV channels 1600 and 1700 Å) resolution.
The Helioseismic and Magnetic Imager (HMI; Scherrer et al.
2012) captures visible wavelength filtergrams of the full Sun
at 4096×4096 resolution (pixel size of 0.5 arcsec). Note that
AIA has a slightly larger FOV (Field of View) (∼41 arcmin)
than HMI (∼34 arcmin), which leads to the different pixel sizes

mentioned above. These filtergrams are then processed into var-
ious data products, including photospheric Dopplergrams, line-
of-sight magnetograms, and vector magnetograms (Hoeksema
et al. 2014). The EUVVariability Experiment (EVE;Woods et al.
2012)measures the solar EUV spectral irradiance from1 to 1050
Å. Figure 8 shows an example of the HMI and AIA full disc
data. Tables 4 and 5 give more information on the coverage and
properties of the SDO data.

SDOMachine Learning Dataset (SDOML). While SDO data is
easily accessible, pre-processing this data for scientific analysis
often requires specialized heliophysics knowledge. To facilitate
the SDOdata usage, Galvez et al. (2019) created a curated dataset
from the SDOmission in a format suitable for machine learning
research. The SDOML Dataset has been preprocessed from the
original Level 1 data by down-sampling HMI and AIA images
from 4096×4096 to 512×512 pixels, removing QUALITY �=
0 observations, correcting for instrumental degradation over
time, and applying exposure corrections. Both the AIA and

https://www.swpc.noaa.gov/products/goes-x-ray-flux
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Figure 8. An example of the HMI and AIA data from https://www.thesuntoday.org/sun/wavelengths/

HMI data are spatially colocated and have identical angular
resolutions (pixel size of ∼4.8 arcsec), and all the instruments
are chronosynchronous. The temporal resolution for AIA is 6
min. The temporal resolution for HMI vector magnetic field
observations in Bx, By, and Bz components is 12 min. The EVE
observations are in 39wavelengths fromMay 01, 2010 toMay 26,
2014. The temporal resolution is 10 sec. The dataset is perma-
nently stored at the Stanford Digital Repository in .npz format.
There is a recent update on this dataset, in which the entire
dataset has been converted to a cloud-friendly Zarr format with
complete FITS header information. Both the v1 and v2 versions
of the dataset are now available through NASA HelioCloud on
AWS (https://registry.opendata.aws/sdoml-fdl/).

Active Regions (ARs) and SHARP Parameters. Previous work
has established that solar eruptions are all associated with highly
nonpotentialmagnetic fields that store the necessary free energy.
The most energetic flares come from very localized intense
kilogauss fields of Active Regions (ARs) Forbes (2000) and
Schrijver (2009). At any time, these ARs occupy a small area
of the solar surface. The magnetic complexity of active regions
and their evolution often serve as the precursors of their flaring
potential. Many CMEs are associated with the activation and

Table 4. Suite of SDO Instruments and products.

Instrument Products Cadence Range

HMI LOS Magnetograms 720 & 45 sec 2010.05.01→
HMI LOS Dopplegrams 720 & 45 sec 2010.05.01→
HMI Continuum Intensity 720 sec 2010.05.01→
AIA Wavelengths 94,131,171,193,

211,304, and 335 Å
12 sec 2010.05.13→

AIA Wavelengths 1600 and 1700 Å 24 sec 2010.05.13→
AIA Wavelength 4500 Å 1 hr 2010.05.13→

Derived products: Vector field, SHARP, Synoptic maps, Helioseismology

subsequent eruption of the chromospheric filaments. Thus, the
current applications of machine learning in solar and helio-
spheric physics are concentrating on identifying these solar
phenomena. The full diskHMImagnetogramdata is subdivided
into much smaller AR patches, several of which often occur
simultaneously; see Figure 9 for the active region patches. There-
fore, when handling AR-only data, the number of subdivided
images that we have is another order of magnitude larger than
those of full-disk images. In contrast, the amount of total data is
significantly reduced (from 6 TB to 413 GB).

From each SHARP patch, scalar parameters (called SHARP
parameters) are calculated to capture the zeroth order structure

https://www.thesuntoday.org/sun/wavelengths/
https://registry.opendata.aws/sdoml-fdl/
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Table 5. HMI and AIA spectral bands table directly replicated from https://sdo.gsfc.nasa.gov/data/channels.php.

FWHM Primary role Region of the Typical temperature
Band (�λ, Å) ion(s) Sun’s atmosphere (as log T[K])
6173 Å 75 mÅ HMI scans Intensity, velocity, and 3.7

Fe i 6173 magnetic field of photosphere
4500 Å 500 Continuum Photosphere 3.7
1700 Å 200 Continumm Temperature minimum, photosphere 3.7
304 Å 12.7 He ii Chromosphere, transition region 4.7
1600 Å 200 C iv, continuum Transition region, upper photosphere 5.0
171 Å 4.7 Fe ix Quiet corona, upper transition region 5.8
193 Å 6.0 Fe xii, xxiv Corona and hot flare plasma 6.1, 7.3
211 Å 7.0 Fe xiv Active region corona 6.3
335 Å 16.5 Fe xvi Active region corona 6.4
94 Å 0.9 Fe xviii Flaring regions 6.8
131 Å 4.4 Fe xx, xxiii Flaring regions 7.0, 7.2

Figure 9. Solar Dynamics Observatory data used for flare prediction. Left panel: HMI active regions patches (HARPs) are highlighted in colored contours enclosed in boxes.
Center panel: HMI magnetogram data is shown on a grayscale, where intense active regions are shown as opposite magnetic polarities, appearing in black and white. Right
panel: AIA extreme ultraviolet image taken in the 171 Angstrom band. Note the approximate co-location of the intense magnetic fields and the enhanced emission.

and complexity of the magnetic field. As discussed in Leka and
Barnes (2003) and Bobra et al. (2014a), these parameters are
designed to assess the flaring potential of active regions. They
are thus strongly representative of the total free energy of the
magnetic field. These whole-active-region magnetic quantities
can be effectively used as predictors of flares and also CMEs (see
Falconer 2001; Falconer, Moore, and Gary 2002b, 2003, 2006;
Leka and Barnes 2003; Schrijver 2007a; Bobra and Couvidat
2015).

Example: Processing and Application of SDO Data. In the data
pre-processing pipeline of Chen et al. (2019), the GOES flare
list is matched to the Space-weather HMI Active Region Patch
(SHARP) vector field data patches provided by the Joint Sci-
ence Operations Center (JSOC) website. The SHARP patches
contain 2-D photospheric maps of three orthogonal magnetic
field components observed by the Helioseismic and Magnetic
Imager (HMI) on Solar Dynamics Observatory (SDO) with 1.0
arcsecond spatial resolution (4096×4096 pixel images) and time
cadence of 12 mins (Hoeksema et al. 2014; Bobra et al. 2014a).
This gives 3×120 high-resolution images per day from the three
channels, which amounted to>1million high resolution images
over the 8 year period of the study. Due to the rotation of the
Sun, an active region cannot be seen clearly (within 68 degrees
of the central meridian to avoid foreshortening) for more than
approximately 250 hr, which corresponds to 1250 time frames at
a time.

2.5. SOHO andGONG: 2D Solar Imaging Data

2D Line-of-sight (LOS) imaging data has been widely adopted
for training solar flare forecasting models in the literature, as
reflected by Table 8. The most popular LOS images come from
SOHO and GONG. The latter is supposed to be more suitable
for operational use, whereas the former has been used more
heavily by researchers for machine learning models (e.g., Ji et al.
2022; Sun et al. 2022b; Guastavino et al. 2023). Table 6 shows
the list of SoHO instruments and Figure 10 shows the GONG
magnetogram data from the NSO website, accessed on May 3,
2024.

2.6. Existing Data Products and Software

In the spaceweather literature, the data products are open-access
and available to researchers for downloading. However, prepro-
cessing of the raw data requires quite a bit of domain science and
machine learning expertise. Because of this, research has been
done on pre-processedML-ready data for solar flare predictions.
Angryk et al. (2020b) published “a comprehensive, multivariate
time series (MVTS) dataset extracted from solar photospheric
vector magnetograms in Spaceweather HMI Active Region
Patch (SHARP) series.”. The dataset covers 4098 MVTS data
collections from active regions occurring betweenMay 2010 and
December 2018, it includes 51 flare-predictive parameters, and
integrates more than 10,000 flare reports. However, this data

https://sdo.gsfc.nasa.gov/data/channels.php
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Table 6. Suite of SoHO Instruments.

Instrument Observation Observed region λ(Å) Cadence (min) Date range

MDI LOS Mag. Fld. Full Disk 6768 (Ni I) ∼96 1996.05.01–2011.04.12
EIT Intensity Full Disk 171 (Fe IX/X) ∼360 1996.01.01→
EIT Intensity Full Disk 195 (Fe XII) ∼12 1996.01.01→
EIT Intensity Full Disk 284 (Fe XV) ∼360 1996.01.01→
EIT Intensity Full Disk 304 (He II) ∼360 1996.01.01→
LASCO-C2 Intensity Corona (1.5 − 6 Rs) Visible ∼20 1995.12.08→
LASCO-C3 Intensity Corona (3.5 − 30 Rs) Visible ∼20 1995.12.08→
NOTE: LOS Mag. Fld. denotes the line-of-sight magnetic field, λ(Å) is wavelength measured in angstroms, and Rs is the Sun’s radius. LASCO C1 (1.1 − 3 Rs) is not included
in this work since it was only operational until August 9, 2000.

product is not based on raw solar imaging but on summary
statistics of solar patches, despite its nice properties of data
preprocessing.

Table 7 links to commonly used code to download, process,
and visualize the solar imaging data products described in the
subsequent paragraphs in this section.

JSOC and SunPy. Stanford University’s Joint Science Opera-
tion Center (JSOC) stores data from SoHOMDI, SDOHMI and
AIA, and various other solar instruments. The SunPy-affiliated
package DRMS enables querying these images (Glogowski et al.
2019; Barnes et al. 2020). These individual image products
from JSOC are at the same processing level and are supplied
in a Flexible Image Transport System (FITS) format contain-
ing only scalar values. The NASA Solar Data Analysis Cen-
ter’s (SDAC) Virtual Solar Observatory(Hill et al. 2009) (VSO)
tool enables data queries from a number of individual data
providers.

AIAActive Region Patches (AARP) Database. In contrast to the
SDOML that down-sampled the full-disk images in space and
time to keep the dataset size manageable, the AARP database
preserves the native spatial resolution of SDO/AIA well samples
the temporal evolution of solar active regions to match the
SDO/HMI HARP database (Dissauer, Leka, and Wagner 2023;
Leka et al. 2023). The current AARP database includes daily 7-
hr samples of 13 min of images (centered hourly on “*.48UT”
from 15:48 to 21:48 UT) from June 2010 to December 2018.
The database aims to capture both the short-term dynamics (72
sec temporal resolution in 13 min sample data) and long-term
changes (7 hr of evolution per day). The total size of the database
is ∼9 TB. This database is available through the NASA Solar
Data Analysis Center (SDAC).

A New Data Product in Pipeline for Publication. Another SDO
dataset that will be used in the studies mentioned in Section 5 is
based on a similar idea asAARPbut tailored particularly forML-
based flare prediction studies ((Jin et al. 2024), in prep). Starting
from the existingHMIHARPnumbered regions, the AIA obser-
vations (Lemen et al. 2012; Boerner et al. 2012) in 8 channels
(94, 131, 171, 193, 211, 304, 335, 1600 Å) are processed for the
same FOV (Field of View) and coordinate (i.e., CEA: cylindrical
equal area). The dataset includes all B-class, C-class, andM-class
flares from 2010 to 2024, starting 24 hr before the flare onset
until flare peak time with a temporal resolution of 12 min. In
addition, we derive the Differential Emission Measure (DEM)
maps 1 hr before each flare, which could provide additional

information for the ML model. The total size of the dataset is
∼40 TB.

In addition to these aforementioned data products, scientists
have been actively working on buildingML-ready data products
that will bemade publicly available in the future. This is exempli-
fied by theNASAcall for proposals “HeliophysicsArtificial Intel-
ligence / Machine Learning Ready Data” (NNH23ZDA001N-
HARD, ROSES-23 B.16 HARD) in 2023 and 2024.

3. CurrentWork with Solar Imaging Data

In this section, we describe the current literature on the progress
of machine learning approaches for handling solar data, includ-
ing those that use summary statistics instead of raw solar imag-
ing data. In Table 8 we provide a brief summary of the (partial)
literature on solar flare predictions, including a partial list of
representative papers published in recent years on this topic. In
solar flare predictions literature, the majority of the work adopts
standard machine learning models, as given in the table. The
predicted quantity is either the binary indicator of a strong or
weak flare or the (logarithm of) peak flux intensity of a flare
event. The predictors are either summary statistics (e.g., the
SHARP parameters) or raw solar imaging data. Cross entropy
loss and mean squared error loss are the most commonly
adopted loss functions in the solar flare prediction literature.
In binary classification, that is, strong/weak flare prediction,
because the samples are highly imbalanced (the number of
strong flares is much smaller than the number of weaker flares),
researchers have been using the HSS (Heidke skill score) and
TSS (true skill score) as the metric for performance evaluation
of prediction models (see e.g., Chen et al. 2019). It is still an
ongoing endeavor for researchers to obtain fair comparisons of
the performances of machine learning models for solar flare
forecasting. The difficulty lies primarily in the fact that different
researchers/papers process and prepare the training, validation
and testing data in their ownways, resulting in a lack of fair com-
parisons of results despite using the same metrics. For example,
splitting data randomly versus splitting by nonoverlapping years
or splitting by active regions can result in significantly different
results, as noted in previous studies, see Wang et al. (2020).
Furthermore, due to the scarcity of samples of strong solar flares,
there are also non-negligible variations among different sample
splits.

In the following few sections, we will describe in more detail
the common practices that researchers in space weather have
adopted to approach the solar flare prediction problem, focusing
mainly on our previous work on solar flare forecasting as an
example of the use of solar data for prediction models.
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Figure 10. GONGmagnetogram data downloaded from the National Solar Observatory (NSO) data. Summary of GONG LOSmagnetograms fromMay 3, 2024 showing the
latest observations from six network sites located at (upper panel, left to right) Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Teide Observatory,
Canary Islands and (middle panel) the Cerro Tololo Inter-American Observatory, Chile; Big Bear Solar Observatory, California; and Mauna Loa Observatory, Hawai’i. Lower
panels show magnetograms taken at two engineering sites in Boulder, Colorado. Notations below each image indicate the date and time of observations. The last line
under each image shows the time since the last image was taken. For this line, red text is used for sites that are not being observed (due to weather or a night). The text in
green shows the sites currently observing, and sites that are observing but have not returned a recent image (e.g., due to clouds) are shown in cyan. GONG site at Mauna
Loa Observatory was down since November 26, 2022 after the volcanic eruption, and the lava flows shut down the operations. Hence, the image of the Sun from Mauna
Loa is outdated and looks very different from the other sites. Similarly, observations from one of the engineering sites are also outdated. Magnetic fields are shown as
black/white patches, corresponding to negative/positive polarity fields. This summary page is available at https://gong2.nso.edu/products/tableView/table.php?configFile=
configs/averageMagnetogram10min.cfg. Due to the dynamic nature of this page, the images for a different date and time will be shown. All images are oriented with the
solar North up and East to the left.

3.1. Feature Engineering Prior to Forecasting

Themost popular approach that researchers have adopted when
handling solar imaging data is to perform feature engineering
(e.g., Jonas et al. 2018), based on either physics or machine
learning, prior to forecasting models. This efficiently reduces

the dimensionality of the input space, which results in less over-
fitting, cutting the data volume significantly and reducing the
computational burden for prediction model training. In Sten-
ning et al. (2013), morphological image analysis (Soille 1999)
techniques are adopted for solar images. It is shown that through

https://gong2.nso.edu/products/tableView/table.php?configFile=configs/averageMagnetogram10min.cfg
https://gong2.nso.edu/products/tableView/table.php?configFile=configs/averageMagnetogram10min.cfg
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Table 7. Links to sample code for solar data access.

Data Link

Sunpy https://www.sunpy.org/
DRMS https://docs.sunpy.org/projects/drms/en/stable/
Aiapy https://aiapy.readthedocs.io/en/stable/
SDOML https://github.com/spaceml-org/helionb-sdoml
SDAC https://hpde.io/NASA/NumericalData/SDO/AIA/NWRA/AARP/PT12S

NOTE: Sunpy is for reading and downloading general solar data. For example,
https://docs.sunpy.org/en/stable/generated/api/sunpy.net.dataretriever.
GONGClient.html provides access to the Magnetogram products of NSO-GONG
synoptic Maps. Aiapy is for reading AIA data and is now one of the affiliated
packages in Sunpy. Another sample code repository for SDOML is available at
https://gitlab.com/frontierdevelopmentlab/living-with-our-star/expanding-sdo-
capabilities.

the morphological image analysis, scientifically meaningful and
interpretable numerical features can be extracted from high-
throughput solar images for downstream classification and pre-
diction tasks. In Chen et al. (2019), an autoencoder network
is trained on HMI 3D magnetic field data, and the extracted
features from the autoencoder are used to forecast strong solar
flares. It is shown that the autoencoder can “reconstruct” the
3D magnetogram with a very small root mean squared error,
but the extracted features do not outperform the known list
of physics parameters (SHARPs (Bobra et al. 2014b)) in terms
of solar flare forecasting. A closer examination of the results
shows that the reconstructed imaging data looksmuch smoother
than the original observations. In the solar flare mechanism,
the local information around the “polarity inversion line” is
very important for flare forecasting (Schrijver 2007b). There-
fore, black-box feature engineering may not be the best option
to extract important features for strong solar eruptions from
massive solar images with only a few hundred strong solar flare
events.

Sun, Manchester IV, and Chen (2021) investigate new fea-
tures on top of the SHARP parameters for the flare classifica-
tion task. The first set of features is derived from persistence
homology in topological data analysis, following the idea in
Deshmukh et al. (2021). This extends the scope of HMI images
from just the Br component tomultiple SHARP parameter maps
when conducting the analysis, with specific attention to the
polarity inversion line region (PIL). The second set of features
comes from spatial statistics concepts. The Ripley’s K function
analyzes the spatial clustering/dispersion patterns of pixels with
high Br . The Variogram analyzes the spatial variation of the Br
flux at various distance scales. Both sets of features summarize
some information regarding the spatial distribution of SHARP
parameters, which adds additional information to the feature
set that SHARP parameters themselves cannot provide. Sun,
Manchester IV, and Chen (2021) demonstrate how the new
features can improve the skills of the prediction model and also
show that new features, especially Ripley’s K functions, have
great discriminating power. See Figure 11 for an illustration.

The findings of a strong correlation between the Br spatial
distribution and the flare productivity in Sun, Manchester IV,
and Chen (2021) shows an inherent connection between the
free energy buildup and release in solar flares that is related
to the clustering and proximity of flux to the PIL, which has
been established earlier by Falconer, Moore, and Gary (2003)
and Schrijver et al. (2005), Schrijver (2007a) who respectively

found the gradient and proximity of the magnetic flux (line-
of-sight component) with respect to the PIL to be strongly
correlated with flares and coronal mass ejections. This study
shows the success of combining physics knowledge and classical
statistics methodology (spatial statistics and topological data
analysis) when constructing features for solar flare forecasting.
The authors envision future work of this type can also benefit
more and more data-driven approaches for space weather fore-
casting problems beyond solar flare forecasting.

3.2. PredictionModel withMulti-Channel Segmented
Solar Images

The structured information of the high dimensional multi-way
tensor data makes the analysis an intriguing but challenging
topic for statisticians and practitioners, especially in the context
of physical sciences. In the solar flares prediction problem, the
observations come as a time series of the 3-way tensor of active
regions (see Section 2.4) of the Sun that produces flares: 3-
D magnetosphere maps from the Helioseismic and Magnetic
Imager and multi-channel temperature maps from the Atmo-
spheric Imaging Assembly (Bobra et al. 2014b). Figure 12 shows
eight AIA channels, one HMI channel, and one Polarity Inver-
sion Line (PIL) for an active region on the Sun that produced
an M-class (strong) flare. The data size is 377 × 744 × 10 for
this one-time point, and we have data from 2010 till now every
12 min.

In a recent paper in ICML, Sun et al. (2023b) expand the
Tensor-GP model by integrating a dimensionality reduction
technique, called tensor contraction, with a Tensor-GP for a
scalar-on-tensor regression task with multi-channel imaging
data. The authors first estimate a latent, reduced-size tensor for
each data tensor and then apply amulti-linear Tensor-GP on the
latent tensor data for prediction. They introduce an anisotropic
total-variation regularization when conducting the tensor con-
traction to obtain a sparse and smooth latent tensor. They then
propose an alternating proximal gradient descent algorithm for
estimation. They validate the approach via extensive simula-
tion studies and apply it to the solar flare forecasting problem.
More precisely, they consider a multi-channel imaging dataset
{Xi, yi}Ni=1, where the multichannel solar images Xi ∈ R

H×W×C

with H,W,C as the height, width and number of channels,
respectively; and the logarithmic peak flare intensity yi ∈ R.
They use X(c)

i ∈ R
H×W , c ∈ [C] to denote the cth channel of

X . The model is specified as

yi = f (g(Xi)) + εi, f (·) ∼ GP (m(·), k(·, ·)) , (1)

with εi ∼ N
(
0, σ 2) being the idiosyncratic noise and g(Xi) =

Xi ×1 A ×2 B ×3 IC with A ∈ R
h×H ,B ∈ R

w×W , and A and B
reduce the dimension of each channel ofXi fromH×W to h×w.
All channels share the same tensor contracting factors A and B,
which preserves the spatial consistency of different channels of
the reduced-sized tensor Z for easier interpretation.

3.3. PredictionModel with Full Disc Solar Images

Despite the fact that it is known based on heliophysics knowl-
edge, that energetic solar flares are localized in small patches of

https://www.sunpy.org/
https://docs.sunpy.org/projects/drms/en/stable/
https://aiapy.readthedocs.io/en/stable/
https://github.com/spaceml-org/helionb-sdoml
https://hpde.io/NASA/NumericalData/SDO/AIA/NWRA/AARP/PT12S
https://docs.sunpy.org/en/stable/generated/api/sunpy.net.dataretriever.GONGClient.html
https://docs.sunpy.org/en/stable/generated/api/sunpy.net.dataretriever.GONGClient.html
https://gitlab.com/frontierdevelopmentlab/living-with-our-star/expanding-sdo-capabilities
https://gitlab.com/frontierdevelopmentlab/living-with-our-star/expanding-sdo-capabilities
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Table 8. A list of representative papers published in recent years on solar flare predictions withmachine learning approaches, together with the adoptedmethod and data
used.

Method Data or purpose Paper(s)

Deep Neural Network Time series of features Nishizuka et al. (2018, 2021)
AlexNet, GoogLeNet, DenseNet Full-disk magnetograms Park et al. (2018)
LSTM X-ray flux GOES Yi et al. (2020)
Linear models HMI + GOES Anastasiadis et al. (2017)
LSTM HMI + GOES Chen et al. (2019); Wang et al. (2020)
LSTM SHARP Liu et al. (2019)
Mixed LSTM HMI + GOES Jiao et al. (2020)
MLP, SVM, RF NRT SHARP Florios et al. (2018)
FLARECAST (multiple) R2O: SHARP+GOES Georgoulis et al. (2021)
Florios et al. (2018) Angryk et al. (2020b) Ji, Aydin, Georgoulis, and Angryk (2020)
Discriminant Analysis DAFFS, operational Leka, Barnes, and Wagner (2018)
Review paper Operational flare forecasting Leka et al. (2019)
LASSO+Fuzzy C-Means SWPC Data Benvenuto et al. (2018)
CNN, DNN, bi-LSTM Magnetogram+SHARP Tang et al. (2021)
Deep learning LOS Magnetograms Huang et al. (2018); Li et al. (2022)
SVM SHARP Bobra and Couvidat (2015)
Random forest SWAN-SF Hostetter et al. (2019)
Linear classifier HMI+AIA 2010-2014 Jonas et al. (2018)
Multiple SWAN-SF Ji et al. (2022)
Tree-based methods DSD + SRS Cinto et al. (2020b,a)
Video DNN LOS images Guastavino et al. (2023)
Regression HMI LOS + GOES X-ray Muranushi et al. (2015)
Tensor-GPST HMI+AIA images Sun et al. (2023b)
CNN LOS of HMI Zheng, Li, and Wang (2019)
CNN Full-disc LOS Pandey, Angryk, and Aydin (2023a)
AlexNet, VGG16, and ResNet34 Near-limb flares Pandey, Angryk, and Aydin (2023b)

Acronyms: CNN (convolutional neural network), MLP (multi-layer perception), SVM (support vector machine), RF (random forest), DNN (deep neural network), LSTM (long
short term memory), NRT (near real-time), R2O (research-to-operation), DAFFS (Discriminant Analysis Flare Forecasting System), SRS (Sunspot Region Summary), DSD
(Daily SolarData, NOAA/SWPC), NOAA (NationalOceanic andAtmospheric Administration), SWPC (spaceweather prediction center), TensorGPST (TensorGaussianProcess
with Spatial Transformation), SWAN-SF (Space-Weather ANalytics for Solar Flares (Angryk et al. 2020a)).

the Sun, named active regions (ARs, see Section 2.4 for details
and references), there are continuous efforts among machine
learning and heliophysics communities on constructing pre-
diction models with full disc solar images, with the hope that
the machine can figure out the active regions in an automated
fashion. The pros of this approach are that it is not restricted to
established knowledge and thus has the potential of identifying
solar flares that are not localized in active regions if there exist
any. The cons of this approach is that it needs to rely on the
limited number of strong solar flares to construct very sparse
features from very high-dimensional imaging data, which can
result in over-fitting when training machine learning models.
However, if adopted properly, the authors believe that the large
volume of raw solar imaging data for both quiet time and flaring
time can potentially be used to train a large black-box machine
learning model with competitive performances. Whether or not
this model will outperform those models informed by physics
knowledge or supplemented by laws of plasma physics remains
unknown.

Pandey, Angryk, and Aydin (2023a) uses CNN for “hourly
full-disk line-of-sight magnetogram images and employs a
binary prediction mode to forecast ≥M-class flares that may
occur within the following 24-h period.” The study shows that
the full-disc analysis is aligned with precursors that occur in
active regions. It is claimed that the trained model can learn
shape and texture-based characteristics, even if in near-the-limb
regions, where the majority of the previous literature does not
consider (e.g., Chen et al. 2019). Furthermore, in a follow-up
work by the same group, Pandey, Angryk, and Aydin (2023b),
focuses on the near-the-limb regions and explores multiple net-
works for strong flare forecasting.

4. Looking into the Future: Gaps and Opportunities

In summary, an extensive set of machine learning algorithms
has been tried out to show promising results of data-driven
solar flare forecasting. Other solar eruptions, such as the more
severe solar energetic particles, have also been tested with data-
driven approaches (Kasapis et al. 2022; Whitman et al. 2022;
Kasapis et al. 2024). However, the majority of the works directly
convert/prepare the solar data into a classical binary classifica-
tion problem, ignoring various levels of complications of the
solar imaging data and solar flaring properties. We list a few
of the major features of the solar imaging and flaring data
here, thus pointing out challenges and opportunities for devel-
opments in statistical theory, methodology, and computational
algorithms.

4.1. Solar Cycle

The Sun’s activity follows approximately 11-year cycles, which
is shown in Figure 3, represented by the sunspot numbers.
During the peak of a solar cycle, called solarmax, energetic solar
eruptions are far more frequent than during the valley of a solar
cycle, called solar minimum. Qahwaji and Colak (2007) uses the
sunspot groups and solar cycle data to forecast strong solar flares.
Wang et al. (2020) examine the solar cycle dependency of solar
flare forecasting with the LSTM method, showing statistically
significant variation when different years of data are chosen
for training and testing. This leads to issues when comparing
different models in the literature. Furthermore, the high-quality
observations, for example, the SDO data, only cover one solar
cycle. This makes it hard to learn repeating patterns for solar
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Figure 11. Four flare examples (columns 1–4): B6.1 from HARP 5692 peaked at 04:36, June 26, 2015; B5.3 from HARP 1638 peaked at 02:23, May 09, 2012; M1.0 from HARP
3311 peaked at 19:53, October 26, 2013; M1.0 from HARP 7115 peaked at 03:51, September 05, 2017. The four rows correspond to their Br values, PIL masks, point clouds
with Br > 2000 G within each PIL region, and Ripley’s K functions, respectively. The K function differs, in terms of level and shape, between two M flares and two B flares.
The main reason is that there are only scattered small clusters of high-Br regions for the B flares. On the contrary, M flares have a sub-region full of high-Br pixels.

Figure 12. M-class Flare Example for Active Region (AR) No.11158, recorded at 16:36:00 (UT) of February 13, 2021. The flare intensity is 6.6 × 10−5W/m2 and peaked at
17:38:00 (UT) of the same day.



STATISTICS AND DATA SCIENCE IN IMAGING 17

Figure 13. Themaximum F10.7 cm radio flux (typically three are recorded each day) against the proportion of minutely GOES X-ray fluxes at or above the C-class threshold
of 10−6W/m2.

eruptions from purely data-driven approaches. Statistical mod-
els, especially Bayesian statistical methods, will turn out to be
efficient in incorporating such information, especially consider-
ing operational settings. Furthermore, it is important to know
that the solar cycle is not a deterministic quantity (periodicity).
It is shown in Figure 3 that we are currently experiencing a
much stronger solar cycle than projected (predicted by NASA).
Therefore, accounting for the uncertainty in solar cycle fore-
casting, within the solar eruption forecasting, is also of vital
importance. Figure 13 shows the maximum F10.7 cm radio flux
(typically three are recorded each day) against the proportion of
minutely GOES X-ray fluxes at or above the C-class threshold of
10−6W/m2. The data ranges from October 28, 2004 to January
25, 2024.

4.2. Heterogeneity

The heterogeneity of properties of active regions and flaring
mechanisms, on top of the solar cycle dependence, contribute
to the difficulties of predicting strong solar flare events. The dif-
ferent active regions have very different “lifetimes,” very different
sizes, and can erupt drastically different numbers of solar flares.
The determination of the lifetime of active regions is also biased
by the fact that direct observations are limited to the time when
the region is located in the solar hemisphere facing Earth, and
thus, the regions could emerge and/or disappear during the time
they are located on “farside” of the Sun.

Figure 14 shows histograms of active region lifetime and
pixelsizes for active regions from May 01, 2010 till February 24,

2024. Furthermore, Table 9 shows the number of active regions
(ARs) corresponding to the specified number (1, 2, 3, 4, 5, and
>5) of weak (B) and strong (M/X) flare events for each active
region recorded in the GOES dataset fromMay 01, 2010 till June
20, 2018. The active region information (i.e., size) is typically
used as a predictor in flare forecasting. However, in the majority
of the works in literature, “personalized” forecasting for each
active region as it emerges and fades has not been thoroughly
investigated. In an earlier paper, Wheatland (2004) proposed
a Bayesian method that uses the flaring record of an active
region to refine an initial prediction for the occurrence of a big
flare during a subsequent period of time. This shows the initial
success of solar flare forecasting when taking into account active
region evolution.

4.3. Noisy andMissing Data

The missing data problem is rarely discussed in the solar erup-
tions literature and has been handled straightforwardly, for
example using linear interpolation or removing missing seg-
ments. However, proper handling of missing data is important
statistically, in general. There are several types of missing data
in solar observations. Some can be ignored or simply interpo-
lated (such as those due to instrument failure or clouds passing
by), and some cannot be ignored. There are missing patches
of full solar images at certain time points, missing pixels for
a continuous time range, and missing labels for solar images.
Furthermore, the GOES solar flare list is also shown to miss
major events (Van der Sande et al. 2022). Imputing missing data
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Figure 14. HARP lifetime and pixel sizes.

Table 9. Number of active regions (ARs) corresponding to the specified number (1,
2, 3, 4, 5, and >5) of weak (B) and strong (M/X) flare events for each active region
recorded in the GOES dataset fromMay 01, 2010 till June 20, 2018.

Number of M/X Flares 1 2 3 4 5 >5

Number of ARs 60 31 13 10 7 29
Number of B Flares 1 2 3 4 5 >5
Number of ARs 321 148 51 19 2 0

properly requires a thorough understanding of the missing data
mechanism, for example, missing at random, not-missing-at-
random, and systematic missingness (Little and Rubin 2019).

4.4. Sample Sparsity

Solar flare samples are very sparse, especially considering the
strong flares (≥M-class). Other solar eruptions, such as the solar
energetic particles, are even sparser. What complicates the issue
further is that, in solar minimum, we have even sparser samples
of solar eruptions, whereas, in solar maximum, consecutive
strong solar eruptions might be highly correlated with each
other. Training black-box machine learning algorithms, espe-
cially complicated neural network structures, relies on having
enough samples available. In the machine learning literature,
there has been work on using “data augmentation” (Shorten
and Khoshgoftaar 2019) to create synthetic samples for training
machine learningmodels, which has been applied in the context
of solar flare forecasting (Ji et al. 2022). Furthermore, denoising
diffusion models are becoming more and more popular nowa-
days for creating samples (e.g., Ho, Jain, and Abbeel 2020; Song
et al. 2023) that represent the training data. These techniques
must be scrutinized within the context of the operational solar
eruptions section by the joint work of machine learning experts
and operational scientists.

4.5. Computational Efficiency

Despite the sample sparsity problem, the raw (most likely multi-
channel) imaging data that is observed every few seconds or
minutes spanning over the range of a decade or two can be
large in volume (e.g., tens of terabytes). The computational
efficiency of statistical and machine learning methods plays an

important role in the successful implementations of the algo-
rithms on solar imaging data. As it currently stands in the liter-
ature, to make model fitting computationally feasible, data with
reduced temporal and/or spatial resolution (or even summary
statistics, such as the SHARP parameters or extracted features,
instead of raw multichannel solar imaging data) are adopted
for training/validating/testing purposes in machine learning
models. Lai, Hannig, and Lee (2021) propose a divide-and-
conquer method (with generalized fiducial inference) capable
of handling massive datasets and providing uncertainty of the
estimates. They analyzed the solar flare brightness with the
proposed approach using the SDO/AIA data from Schuh et al.
(2013).

4.6. Uncertainty Quantification

Properly quantifying the uncertainty for space weather moni-
toring and forecasting is essential for risk assessment and deci-
sion making (Licata and Mehta 2022). Probabilistic prediction
of solar eruptions should not only provide the probability of
observing a major eruption in a future time, as given in the
majority of the papers in the literature, but also quantify the
uncertainty of the estimated probability. Given amajor eruption,
the uncertainty estimate of the intensity of a solar eruption is
also of importance. For example, the peak X-ray flux intensity
of a strong solar flare can be an important predictor for a solar
proton event (Kasapis et al. 2022).

4.7. Research-to-Operation (R2O)

From SWPC/NASA, it is defined that “Research-to-Operations-
to-Research (R2O2R) refers to the cyclical process by which
basic research endeavors (R), having been identified as having
the potential for improving forecasting capabilities, arematured,
in a targeted way, toward a formal operational implementation
(O) and, once operationalized, subsequent needs for refinements
are conveyed back to the research community (R).” Data-drive
solar eruption forecasting is motivated by and will finally serve
operational use. The research-to-operation takes far more vali-
dation and testing than “a successfully trained model.” We need
to handle real-time forecasting updates and model evolution
over time before being able to put data-driven models into
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operation. This current solar cycle demonstrates quite intense
Sun activities and thus can serve as an excellent test-bed for
operational forecasting models.

4.8. Other SpaceWeather Phenomena

Finally, we want to mention that many other relevant space
weather phenomena can benefit from data-driven approaches,
such as the geomagnetic index prediction (Ren et al. 2020; Iong
et al. 2022, 2024) and the total electron content map recon-
struction (Sun et al. 2022a, 2023a) and prediction (Wang et al.
2023; Sun, Shang, and Chen 2024). Camporeale (2019) gives an
excellent review ofmachine learning challenges in spaceweather
from nowcasting and forecasting perspectives.

5. Summary

The authors hope this short introduction to solar imaging
data can generate more interest in the statistical community
to develop theory, methods, and computational algorithms to
tackle the thorny data-analytic challenges presented by solar
imaging data and, more broadly, space weather observations.
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