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Yang Chen

Department of Statistics, University of Michigan, Ann Arbor, MI

1. Introduction

It is my great pleasure to discuss “Poisson-FOCuS: An Effi-
cient Online Method for Detecting Count Bursts with Appli-
cation to Gamma Ray Burst Detection” by Ward, Dilillo, Eck-
ley, and Fearnhead (Ward et al. 2024). This article proposes
efficient computational algorithms for detecting Gamma Ray
Bursts (GRB), which are targeted for use by satellites for real-
time detection. The article extends the FOCuS (Romano et al.
2023) approach for online change detection to Poisson counts.
In this discussion, I will focus on the major merits that I learned
from this article, the challenges of the current algorithm in
practice, and potential applications of the algorithm to solar
eruption detection (after proper adaptations). These merits and
challenges are recognized on the basis of the GRB presented
by the authors, and more so in my own research experience
working with physical phenomena such as solar flares, solar
energetic particles, and geomagnetic storms.

Here, we take solar flares as a motivating example for the
following discussions. Solar flares are eruptions of energy from
the Sun that can last from minutes to hours. Predicting solar flare
events is traditionally based on physics models, but nowadays,
it is showing promise with data-driven approaches. See Chen
et al. (2024) for a review of the challenges and opportunities of
solar imaging data for statisticians. There are several features of
the solar flare data that, in my opinion, resemble those of GRBs
and thus could benefit from the FOCuS and/or Poisson-FOCuS
method.

As published by the Space Weather Prediction Center news
on Monday, July 29, 2024, 03:09 UTC (SWPC/NOAA 2024b)
(the same week this discussion was written), a significant X1.5
(R3-Strong) solar flare was observed at 29/0233 UTC from
SWPC Region 3764 (SO5W04). The immediate effect of this
event is that “users of high-frequency (HF) signals may expe-
rience temporary degradation or complete loss of signal on
much of the sunlit side of the Earth” As published by follow-up
news on Monday, July 29, by the SWPC/NOAA (SWPC/NOAA
2024c), “Geomagnetic storm watches are out for 29-31 July due
to a number of coronal mass ejections (CMEs). Solar activity
was elevated through the weekend and various events, including
solar flares and filament eruptions, were associated with CMEs”
The CMEs typically follow strong solar flares and can send

charged particles to space. If the Earth is in the path of a CME,
the charged particles can disrupt or fail satellites in orbit and
expose high-flying airplanes to radiation. The SWPC moni-
tors solar eruptions, including flares, CMEs, and geomagnetic
storms, and gives forecasts in real-time.

In Figure 1, we show the GOES X-ray flux from July 24 to
July 30, where peak times of the detected flares of M class are
labeled with blue vertical dashed lines, and the detected X class
flare on July 29 is labeled with a red vertical dashed line on the
top panel. In the bottom panel of Figure 1, we zoomed in to
July 29 and labeled the start and end times of the X class flare
with pink dashed lines and the peak time with a red solid line.
Note that X-class flares are the most powerful solar flares, which
correspond to peak flux crossing the 10™* threshold as shown
in Figure 1, and are quite rare to observe. M-class flares are 10
times less intense than X-class flares. This year, 2024, we have
observed quite a few X-class flares since the Sun is approaching
the solar maximum.

2. Merits

The paper is an impressive application and case study due to
several aspects.

2.1. Low Computational Cost for Real-time Application

First and most importantly, Ward et al. (2024) explicitly focuses
on the computational cost, giving a step-by-step detailed com-
parison of computational efficiency with competing approaches
that scientists currently adopt. This is one of the things that
caught my attention strongly since this is not a “standard” com-
parison that everyone does for either theoretical or applied
statistics papers. I have worked a lot on developing novel sta-
tistical methods for scientific data, especially in the field of
physical sciences in the past. Computational efficiency is one
of the most critical aspects of the method that scientists use to
pick up and adopt it. In some of my own experiences, rigorous
statistical models that take care of data distributions do not out-
perform off-the-shelf deep learning/ neural network approaches
in terms of computational efficiency (e.g., Sun et al. 2023).
However, we do gain accuracy by modeling dependency struc-
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Figure 1. A visualization of the GOEX X-ray flux data from July 24 to 30, 2024. The data is downloaded from the Space Weather Prediction Center (SWPC) of the National
Oceanic and Atmospheric Administration (NOAA, SWPC/NOAA (2024a)) on July 30, 2024. The black lines correspond to the 1-min cadence data of the GOES X-ray flux, and
the blue vertical lines correspond to the M-class flares on the top panel. On the bottom panel, the pink vertical dashed lines correspond to the start and end time of the X
class flare on July 29 (shown by the only red dashed vertical line on the top panel), which peaks at the time of the red vertical solid line.

tures (Marshall et al. 2021; Sun et al. 2022), taking care of homo-
geneity and heterogeneity structures (Chen et al. 2016; Tran-
gucci et al. 2023; Viet Do et al. 2024; Iong et al. 2024a, 2024b),
and providing uncertainty estimates of physically meaningful
parameters (Chen et al. 2019) and predicted quantities (Sun
and Chen 2024). This article hits me as a reminder to fur-
ther strengthen my work in real-time forecasting of solar erup-
tions (see, e.g., Chen et al. 2024, for a review) and geomagnetic
perturbations (Iong et al. 2022, 2024a) in terms of computational
cost and implementation efficiency, which will ultimately make
statistical prediction models more competitive in operational
settings.

2.2. Connections with and Improvements upon Window
Methods

Window methods are classical for change point detection
algorithms but face challenges in operational settings. Ward
et al. (2024) not only compares with the window methods

but also draws connections and points out improvements of
Poisson-FOCuS upon window methods. The visualizations
given in Figure 7 of Ward et al. (2024) are highly illustrative
and straightforward to understand, which represents the kind
of figures I hope to see in many papers introducing new
methodology and to incorporate in my future paper writing,
too.

2.3. Capability of Detecting both Bright and Dim GRBs
Online

The GRBs are rare and come in various intensities and durations,
which is the same for major space weather events such as solar
eruptions and geomagnetic storms. The detection of strong
and weak signals with one algorithm that trades off the false
positives and false negatives is nontrivial. In Ward et al. (2024),
the functional pruning gives the signal strength a continuous
treatment. This is through tracking the functional curves of the
test statistics as a function of signal strength 1 and updating only
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Figure 2. The solar flare peak intensities from the GOES flare list (top panel) and the sunspot numbers (bottom panel) from 1980 to 2010.

the coeflicients in a sequential manner as new data comes in.
Due to the temporal nature of observations and the sequential
nature of the algorithm, the duration of an event is thus auto-
matically taken care of. The online nature of the algorithm and
the low false positive rate make it highly practical in operational
settings. This property is highly desirable in practice, especially
considering the solar flare detection shown in Figure 1 and the
fact that solar flares come at varying magnitudes (A/B/C/M/X
classes that differ from each other by a multiplier of 10 in peak
intensities).

3. Challenges and applications
3.1. Model Assumptions on Signal Intensity

The main modeling assumption I would like to see future work
address is the constant signal intensity assumption, which does
not capture the shape of a GRB. In the typical solar flare setting,
the signal often comes suddenly but decays gradually (see the
second panel in Figure 1), with some exceptions. A paramet-
ric model for the flaring signal will make the likelihood ratio
statistic not as simple as it currently stands. Still, better capture

of the signal start and end times is definitely needed, which
currently can only be modified/estimated after post-processing.
It remains unclear at which time points the current algorithm
with the assumed constant signal strength detects/defines the
gradually increasing phase and the likely exponential decay
phase of a solar flare event. In fact, the Bayesian block algorithm
proposed in Scargle (1998) and improved in Scargle et al. (2013)
takes into account the varying signal shapes. Furthermore, the
alternative hypothesis with Poisson rate given by A where A is
the background rate means the signal strength is proportional
to the background level, which is slightly counter-intuitive in
scientific settings where signal strength is typically assumed to
be independent of the background level, which is added toward
the signal level. For example, additive background models are
assumed in image deconvolution in astronomy (Jones et al.
2015; Donath et al. 2024) and in X-ray spectra analysis (Kaastra
2017). This is an arguable assumption when detecting strong
solar flares (of M or X class). The intensities of detected solar
flares do follow the same trend as the “background level’, that
is, general solar activity level. In other words, in a highly volatile
period during which many weaker (A/B/C class) flares happen



(corresponding to a higher background value in Ward et al.
(2024)), empirically, we can see that there is a higher chance
of strong flares with higher peak intensity being recorded. This
is exemplified by Figure 2, which shows that the GOES flare
list has peak flare intensities following the same trend as the
sunspot numbers (solar cycle progression). However, the weaker
flares that are not recorded in solar maximum years can provide
useful information for flare forecasting model training if they
can be detected. In summary, the assumptions are quite stringent
as they currently stand in Ward et al. (2024) and need further
validation or modification prior to being adopted for other
applications such as solar flare detection.

3.2. Background Estimation and Deduction

It is pointed out in Ward et al. (2024) that robust methods need
to be adopted for the background estimation, the underesti-
mation of which can result in false detections. An exponen-
tial smoother is applied to FERMI data. This is based on the
assumption that background is typically assumed to be much
smoother and varies at a much lower rate than the signals. In
addition, I wonder if there can be a real-time feedback loop
for signal detection and background estimation. The detected
signals can be verified in the “sanity checking” stages. If, during
a certain amount of time, we observe false detection as an
anomaly over a long period of time, then a decision can be
made on re-estimating the background rate. This refinement
step resembles a conventional procedure of iteratively updating
background and signal strength, see, for example, Zhang et al.
(2023) for a data-driven background correction application in
astronomy.

3.3. Explicit Studies on False Positive and Negative Rates

As mentioned in the Introduction of Ward et al. (2024), a
good detection system should have a very low false positive
rate. Ward et al. (2024) adopts the notion of “k-sigma event”
as a measure of Type-I error rate in sequential testing. I am
very curious about the performances under different levels of
k regarding false positive and false negative rates. The false
positives in GRB detection result in unnecessary computational
costs for more complex sanity checking, while the false negatives
in GRB detection simply mean missing an event. Neither
of these two scenarios is desired in practice; thus, it will be
valuable to know explicitly the potential “risks” of false positive
and false negative events before applying the algorithm in
operation.

3.4. Applications to Solar Flare Detection

The solar eruption detection algorithms are rather primitive,
just like in the GRB setting, and primarily are based on window
methods and thresholding. Machol, Codrescu, and Peck (2024)
describes the detailed flare detection pipeline and algorithms
adopted in detail. In the solar flare detection problem, the false
negatives and false positives need to be balanced carefully, espe-
cially in the real-time setting, since they both have undesirable
consequences. I would like to adapt the FOCus and/or Poisson-
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FOCuS ideas to develop an online flare detection algorithm with
the science-verified GOEX X-ray flux data shown in Figure 1.

3.5. Comparison with Bayesian Block Algorithms

Scargle (1998) proposes a detection algorithm that outputs the
most probable segmentation of the observation into time inter-
vals during which the photon arrival rate is perceptibly constant.
The performance is demonstrated using the BATSE y -ray burst
data. Later, Scargle et al. (2013) improves the method by finding
the optimal segmentation of the data in the observation interval.
The method can be used in either a real-time trigger mode or a
retrospective mode. They also extended the method to account
for piecewise linear and piecewise exponential signals. It will be
great to see the authors’ comments on this thread of literature
and some comparisons of results in various realistic settings.

4. Conclusion

In summary, I learned a lot from Ward et al. (2024) and got
motivated to develop computationally efficient solar eruption
detection algorithms that can be applied in real time. Again, I
want to congratulate the authors on this excellent piece of work
that sends a strong message of revolutionary statistical methods
for cutting-edge scientific problems.
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