2086

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Learning Contextualized Action Representations in
Sequential Decision Making for Adversarial
Malware Optimization

Reza Ebrahimi

, Senior Member, IEEE, Jason Pacheco

, James Hu, Member, IEEE,

and Hsinchun Chen, Fellow, IEEE

Abstract—Deep learning (DL)-based malware detectors have
shown promise in swiftly detecting unseen malware without expen-
sive dynamic malware behavior analysis. These detectors have been
shown to be susceptible to adversarial malware variants generated
from meticulously modifying known malware to mislead detec-
tors into recognizing them as benign. Being able to automatically
generate optimized functional adversarial malware variants by
defenders is crucial to effective cyber defense and staying ahead of
the adversary. Current adversarial malware example generation
methods often assume threat models with any of the following
four restrictions: (1) requiring access to insider knowledge about
malware detectors, (2) an unlimited size of adversarial modifica-
tions, (3) an unlimited number of queries to malware detector,
and (4) relying on dynamic analysis of malware behavior in a
sandbox. Drawing on Actor-Critic Reinforcement Learning (RL),
we propose a novel closed-box binary manipulation method for
adversarial malware optimization, named Actor-Critic with Con-
textualized Action Representations (AC-CAR), to generate mal-
ware variants without these restrictions. AC-CAR leverages two
novel components, a contextualized policy and a neural language
model-based RL-augmented top-k sampling method. Unlike cur-
rent methods, AC-CAR can utilize tens of thousands of actions
to augment malware executables for evading DL-based malware
detectors. AC-CAR yields an approximately 2-fold performance
increase over the current methods on average, while decreasing
the payload size to 20 times smaller than leading methods. We
show that using the malware variants generated by AC-CAR in
an adversarial re-training procedure improves malware detector’
robustness against adversarial variants by 29.65% on average.

Index Terms—Actor-critic reinforcement learning, adversari-
al malware example generation, contextualized action representat-
ions.

Received 10 September 2023; revised 12 June 2024; accepted 5 October 2024.
Date of publication 9 October 2024; date of current version 15 May 2025. This
work was supported in part by National Science Foundation (NSF) under Grant
CNS-1936370 (SaTC CORE) and Grant DGE-1921485 (SFS). (Corresponding
author: Reza Ebrahimi.)

Reza Ebrahimi is with the School of Information Systems and Man-
agement, University of South Florida, Tampa, FL 33620 USA (e-mail:
ebrahimim @usf.edu).

Jason Pacheco is with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721 USA.

James Hu and Hsinchun Chen are with the Artifical Intelligence Lab, Univer-
sity of Arizona, Tucson, AZ 85721 USA.

This article has supplementary downloadable material available at
https://doi.org/10.1109/TDSC.2024.3477272, provided by the authors.

Digital Object Identifier 10.1109/TDSC.2024.3477272

I. INTRODUCTION

YBER attacks cost the U.S. economy $109 billion per
C year [1]. Malware attacks are the costliest type of these
cyber attacks [2]. As an example, the cost of global ransomware
damage was estimated to be $20 billion by the end of 2021 [3].
Modern malware detectors are an integral component of cy-
ber defense protecting Information Technology (IT) infrastruc-
ture [4]. Despite their usefulness, traditional malware detectors
depend on predefined signatures (often determined and vetted
by malware analysts) to match identified patterns against known
malicious files [5]. Consequently, signature-based methods can
be ineffective in detecting unseen variants of malware (e.g.,
zero-days) since they rely on manually defined rules that cannot
keep up with the rapid evolution of malware variants [6]. On the
contrary, newly emerged DL-based malware detectors are able
to process raw malware executable content without manual fea-
ture/signature engineering. These malware detectors can extract
salient features (representations) that are crucial for detection
from the raw malware content automatically. As a result, in the
past few years, successful DL-based malware detectors have
emerged [7], [8], [9]. Given their success in the early detection
of new malware variants without human involvement, leading
cybersecurity providers, including Avast, Endgame, and Syman-
tec, have started adopting DL-based malware detectors in their
antivirus products [10], [11]. Despite the success of DL-based
malware detectors, they have been shown to be vulnerable to
adversarial malware attacks. These attacks feature an adversary
that meticulously modifies a malware executable (while preserv-
ing its malicious functionality), such that the malware detector
recognizes the modified variant as a benign executable [6], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. These modified
variants are known as adversarial examples (AEs) in adversarial
machine learning literature [20]. For brevity, we refer to the task
of generating AEs in the malware analytics context as Adver-
sarial Malware example Generation (AMG). The abstract view
of the AMG process is shown in Fig. 1, in which a known (i.e.,
detectable) malware is modified such that it evades a targeted
DL-based malware detector.

When employed by defenders, AMG offers a vital mechanism
to emulate adversarial malware variants in order to train and
improve the robustness of DL-based malware detectors against
adversarial malware attacks [21]. However, current AMG

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

Original Malware Adversarial Malware

(Detectable) Example
Header Header) Malware Detector
Section 1 Sectionl
Section 2 O e X

COn v " ection

Modifications
oz o] — _.l Undetected
Section n Sectionn ;
s — 3101 - e
Overlay Overlay
Fig. 1. Abstract View of AMG. The process involves modifying a Windows

malware executable by injecting benign-looking content into its file sections
such that it evades a targeted malware detector while preserving its malicious
functionality.

methods often deploy threat models with any of these three re-
strictions. (1) They often require insider knowledge (i.e., white-
or gray-box access) about malware detectors (e.g., architecture
or parameters of the detector model). While this is often jus-
tified by the Kerckhoff’s principle, the information about the
architecture of the malware detector is often unknown to the
attacker. Thus, such threat models could lead to focusing on ad-
versarial malware variants that might be remote from real-world
adversaries [22], [23]. In real adversarial malware deployment
scenarios, outsider threats (e.g., Al-enabled adversaries) are also
of major concern for organizations. [22]. (2) Most extant works
assume an unlimited size of adversarial modifications (known
as payload) and unconstrained number of queries to the malware
detector. Allowing an unlimited size of modifications and num-
ber of queries can lead to threat models that lack stealth [11]. (3)
Some extant work require dynamic analysis of malware behavior
in a sandbox. Relying on dynamic analysis is expensive and
often requires human interpretation of the malware behavior.
Moreover, fewer methods that operationalize closed-box adver-
sarial attacks support a limited number of adversarial actions [5],
[24] making them less effective as it could lead to generating
limited adversarial variants and larger modification (payload)
sizes. Given the crucial role of AMG, our study aims to propose
a novel and practical closed-box binary manipulation AMG
framework for adversarial malware optimization that alleviates
these restrictions without requiring reverse engineering, access
to the malware source code, or dynamic behavioral analysis.
Creating adversarial malware examples entails sequential
decision-making (SDM), which involves repeatedly choosing an
action based on the current input, previously generated output,
current state, and the feedback from the malware detector [25].
Deep reinforcement learning (RL) offers breakthrough results in
solving SDM problems with large state spaces by representing
the space with deep architectures [26]. However, modern RL
problems often involve large action spaces in addition to large
state spaces [27]. For instance, in AMG, the action space could
involve all possible valid combinations of added bytes, a space
that grows exponentially (e.g., 2!%0 for injecting 100 bytes to
a malware executable). Learning representations of actions has
shown to be useful to deal with large action spaces [27]; yet
lacking in the RL-based AMG literature. Moreover, the actions
are often selected regardless of the context in which they ap-
pear [28]. As a concrete example, the occurrence of ‘MZ’ (with
the hexadecimal byte equivalent of ‘4d5a’) at the beginning of
the file indicates starting a Microsoft Windows executable, while

2087

appearing in other positions could indicate a typical string vari-
able with different semantics. Recent neural language models
can help contextualize the action space to attend to the position
of bytes. Drawing on Actor-Critic Reinforcement Learning (RL)
theory and contextualized neural language models, we propose a
novel Actor-Critic with Contextualized Action Representations
(AC-CAR) algorithm that operates in large action spaces while
attending to the context to automatically generate realistic mal-
ware variants without assuming the above four restrictions.
AC-CAR learns context-aware action representations to gen-
erate adversarial malware variants that improve the robust-
ness of DL-based malware detectors against unseen adversarial
malware variants. To achieve this, AC-CAR uses deep RL to
identify sequences of actions required to evade the malware
detector and employs neural language models to contextualize
action representations in deep RL. AC-CAR can utilize tens of
thousands of modification types (actions) to augment malware
executables for evading DL-based malware detectors. AC-CAR
yields a 2-fold increase in the evasion performance over the
state-of-the-art benchmark methods while decreasing the pay-
load size to 0.5KB (20 times smaller than the current leading
AMG methods) and limiting the average number of queries to
the malware detector to 50. To foster reproducibility, we made
AC-CAR implementation publicly available on GitHub at https:
/{ github.com/star-ailab/ac-car. To demonstrate practical utility,
we use malware variants generated by AC-CAR to improve the
robustness of malware detectors against adversarial ransomware
attacks. We discuss the practical implications of AC-CAR for
cybersecurity organizations and security practitioners.

II. RELATED WORK: ADVERSARIAL MALWARE GENERATION

DL models have been shown to be vulnerable when an ad-
versary modifies their input data through subtle perturbations.
These perturbations result in the creation of AEs that can cause
a certain DL model to produce wrong results. As a specific-
purpose DL-based model, malware detectors are also vulnerable
to AEs. AMG entails automatically generating these AEs by
the defender to identify the vulnerabilities of malware detectors
and improve their robustness [24]. Based on the amount of
information about the malware detector model that is available to
the adversary, four threat models can be envisioned for AMG [5],
[29]: white-box, gray-box, closed-box, and binary closed-box.
The white-box threat model pertains to attacks in which the
adversary has full access to the structure and parameters of
the malware detector model. In the gray-box threat model, the
parameters of the malware detector model are not available,
but the adversary has access to the features that affect the
detector’s output. closed-box (BB) threat model features an
adversary that does not have access to model’s specifications
or features; however, it can observe confidence scores [30]. The
confidence score is a real-valued feedback between 0 and 1 from
the malware detector, which indicates the probability that the
input file is malicious. Lastly, the binary closed-box (BBB) threat
model features closed-box attacks that neither assume a priori
knowledge (i.e., model parameters, architecture, or features)
of the malware detector nor require access to its confidence

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2088

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

TABLEI
SELECTED RECENT AMG RESEARCH WITH CLOSED-BOX AND BINARY CLOSED-BOX THREAT MODELS

Targeted Action SEhbe
Auth Data Attack Malgware Threat Model’s Payload No.of Sandbox Space Context
UOTS - source Method Bhtais Model Input Size Queries Use SiF;e Aware
-ness
Abusn- ’ Benign
: VirusTotal, DL-
aJlna et e feature e BB ME UNL UNL Yes - -
aslc.' [31] append
- fgz‘i't VirusTotal MAB 2L BBB ME NR 60 No 13 No
Phan- VirusTotal,
et al. VirusShare Deep RL DL-based BB ME NR 80 No 9 -
[36]
Demet- VirusTotal
rio et al. GitHub Y GA DL-based BBB ME ~300KB 30-110 No - -
[13]
Ebrahi-
mietal. VirusTotal Deep RL GBT BBB ME 10 KB 50 No 10 No
[24]
P P— Code GBT,
al [%l] VirusTotal randomiza Signature- BBB ME 10 KB 50 No - -
: -tion based
:fl“f;éi e Rbot GA ok BB API UNL UNL No : =
ooy VirusTotal RP Dgnature g g NR UNL No : No
VirusShare,
St Matware R Dibased BB ME 20KB UNL No - -
) benchmark
Fang et : 1
al. [14] VirusTota Deep RL GBT BBB EF NR 80 No 11 No
Park et Malmig,
al. [19] MMBig, DP DL-based BB ME NR UNL No - -
Rosenb-
ergetal. VirusTotal GAN DL-based BBB API NR UNL Yes - -
[37]
s Benign
Sudu _~ VinsTotal: £oie DLbased BB ME 10KB UNL No = ’
etal. [18] FireEye i
Ander Bpes
n -
son et VirusTotal Deep RL GBT BBB ME NR NR No 10 -
al. [5]
kiude 1 based API
Tan [38] Malwr RINN DL-base BB UNL UNL Yes - -

Note: DP=Dynamic Programming; GA= Genetic Algorithm; GAN=Generative Adversarial Network; GBT=Gradient Boosting
Trees; MAB: Multi-arm Bandit; RP= Randomized Perturbations; RL=Reinforcement Learning; RNN=Recurrent Neural Network;
SVM=Support Vector Machine; BB=Black-Box; BBB= Binary Black-Box; ME=Malware Executable; EF=Engineered Features;

UNL=Unlimited; NR=Not Reported; ‘-"=Not Applicable

scores. In the binary closed-box threat model, the detector output
signifies whether the sample has been classified as malware or
benign-ware, based on which the adversary deduces whether
or not the attack has been successful. Since the specifications
and confidence score of the malware detector model are often
unknown in practice, the binary closed-box threat model is the
most realistic adversarial attack scenario [7], [11], [31], [32].
We also note that recent progress has been made in providing
generic defenses against adversarial attacks using the control
graph flow [33], function calls [34], and system calls [35]
obtained from the source code, reverse engineering, or dynamic
analysis to provide generic defense architectures against adver-
sarial attacks. While a fruitful, this line of work is orthogonal to

adversarial malware optimization which is our focus and thus
the scope of our current work.

Consistent with our goal of proposing a more realistic threat
model, we examine selected recent studies that support closed-
box and binary closed-box AMG. While the selected studies
are not meant to be exhaustive, they serve to reflect the latest
advancements in AMG. We summarize these studies in seven
key dimensions as shown in Table I in reverse chronological
order.

These dimensions include data source, attack method, tar-
geted malware detector model, threat model (BB, or BBB),
detector model’s input type (the entire raw malware executable
(ME) versus manually engineered features (EF)), payload

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

(modification) size of adversarial malware variants in kilobytes
(KB), and the number of queries to the malware detector. We
note that the payload size and the number of queries are not
independent and positively correlate. and For RL-based AMG
methods, we additionally examine the action space size and
context-awareness (the last two columns in Table I). As shown in
Table I, studies that offer closed-box threat models do not require
knowing the specifications of the targeted malware detectors [6],
[12],[13], [18], [19], [31], [32], [38], [39]. These studies employ
a wide range of methods such as genetic algorithms [13], [35],
random perturbations [6], [12], dynamic programming [19], and
RNN [38]. These methods heavily depend on the confidence
score attained from the malware detectors. However, the confi-
dence score is oftentimes internal to the malware detector and is
not visible to the adversary in practice. As such, this could restrict
their applicability [11], [37]. As opposed to the closed-box threat
model, binary closed-box threat models do not require observing
the confidence score [5], [14], [37], [40], and thus are closer
to real attack scenarios. As observed in Table I, many binary
closed-box studies target detectors that require manual feature
engineering [12], [14], [39], [40], and hence are not the focus
of our study. Within binary closed-box methods that focus on
DL-based detectors, methods proposed in [37] and [38] both
require API call sequences attained from dynamic analysis of
the malware executable in a sandbox, which could be limiting
in practice. Another stream of binary closed-box methods train
a surrogate model locally by querying the closed-box malware
detector [37], [38]. While these methods often require many in-
teractions with the detector to construct a surrogate model, they
often require the attacker to know the complete feature space
of the detector model [5], [38]. As seen, deep RL-based AMG
methods [5], [6], [24] lead to more realistic binary closed-box
threat models that tend to offer minimal payload size (i.e., 10KB)
and fewer number of queries to the malware detector model
(50 queries per input file), even with sparse reward signals.
Although deep RL. AMG models yield promising results, they
often operate on a small set of actions (e.g., 10 actions in [24]
and 11 actions in [14]). Unfortunately, RL agents operating
in limited action spaces can lack expressive power to solve
complicated problems such as AMG [27]. Nevertheless, dealing
with high-dimensional action spaces in AMG is an open research
area in RL [5], [14]. Furthermore, as seen in Table I, current
RL-based AMG approaches often do not support action context
awareness that allows them to generate benign-looking content
that can evade malware detectors more effectively.

In sum, based on our review of the AMG literature, several
domain gaps are identified despite the latest remarkable ad-
vancements. Specifically, little work has been done on realistic
attacks with minimal insider knowledge of the attack target (i.e.,
binary closed-box AMG). Additionally, many binary closed-box
AMG studies are based on assumptions that allow an unlimited
number of queries to the detector, or allow an unlimited payload
size of adversarial modifications. While deep RL-based AMG
is promising, current deep RL-based methods do not operate in
large action spaces and are not context-sensitive, which could
lead to a lack of evasiveness. To address the identified gaps, we
pose the following research questions:

2089

Evade Detector? Evade Detector? Evade Detector?

1 L3

E T T
==]]

L @,=900 Ja;=b800 = 0000
[4dsa ... 0off } {"....00f 900 } { ... 00ff 900 bBOO }-+++-r---] 4d5a... 900 bBO0O 0000 |
Orriginal Mabsare Adversarial mahware variant
Sequence {undetectable by malware detector)
Fig. 2. Illustration of SDM process for AMG.

® How to conduct closed-box AMG with high-dimensional
action spaces to improve defending malware detectors
against adversarial malware variants?

® How can deep RL operate in context-aware large action

spaces to conduct SDM for AMG?

We expect that casting AMG into an SDM problem which
can be effectively solved through RL is a viable mechanism
for operationalizing an AMG threat model that addresses these
questions. In the remainder of this paper, we first describe the
foundation of our proposed model as well as its positioning
and contribution in Section III. We next introduce the proposed
model and elaborate its components in Section I'V. Section V
presents an overview of the testbed and evaluations. We present
the corresponding experiments’ results in Section VI. We exam-
ine the practical utility of AC-CAR by a case-study and highlight
its implications for cybersecurity in Section VII. Lastly, we
discuss significant promising future directions for our study in
Section VIIL

ITII. MODEL PRELIMINARIES

A. Sequential Decision Making (SDM) for AMG

AMG is a specific type of Sequential Decision Making (SDM)
-afield of AL in which an agent repeatedly chooses actions based
on the feedback from the environment and the previously taken
actions [25], [41]. SDM is characterized by the fact that earlier
decisions influence the later available choices. An example of
SDM for AMG is illustrated in Fig. 2. As seen, the process starts
with an original known malware executable. At each time step,
the emulated adversary generates hexadecimal byte sequences
(by taking corresponding actions ai,as, ..., ay), and injects
them into the original malware content such that at a certain
time step the generated malware variant can evade the malware
detector.

While SDM can be formulated as an optimization problem
for which the solution could be approximated by linear pro-
gramming or heuristic-based methods, RL has been shown to be
able to provide an effective framework for SDM with unknown
environment specifications [26], [41]. The RL framework for
AMG features an agent that interacts with a malware environ-
ment over discrete time steps until the agent learns a policy
m(a|s) (adistribution over actions given the current state), which
produces actions that maximize the cumulative reward. The
RL agent emulates the adversary by applying functionality-
preserving action a; (e.g., byte injections) to different parts of
a malware executable. At a high level, a malware executable
consists of a Header (encompasses a malware file’s metadata),
Sections (include executable code and data), and an Overlay
(free spaces in the file that is not executed). Malware detectors
extract features from these parts to classify the input file as

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2090

RL Agent
N e — ' . Malware Environment
' Actor Network i Policymr —
1 3 T = Executable Malware
i (Policy Improvement) | Actiona % Detector
i : Header
i Q ' Malware
i E Sections Features @
; Critic Network [~ Reward r — s
: (Policy Evaluation) ~ [—— States —] Y
Fig. 3. Abstract View of AMG with Actor-Critic Deep RL. The RL agent

includes actor and critic interacting with the malware environment to generate
adversarial malware variants.

malicious or benign. At each time step, the agent receives an
immediate reward r; and observes the malware executable state
s¢ from the environment. The state represents any combination
of bytes that forms a functional malware executable file. Once
the actions lead to a functional malware variant that can evade
the detector, the RL agent receives a positive real-valued reward.
We present the state space, action space, and rewards in detail
in Section I'V-B.

Deep RL has shown promise in solving SDM problems in
environments with large state spaces by learning a state repre-
sentation rather than operating directly on the raw states [26].
Within deep RL models, actor-critic (AC) deep RL have yielded
breakthrough results in complex environments [42], [43], [44],
[45]. Specifically, recent AC deep RL models have shown to
be capable of naturally modeling SDM for emulating the be-
havior of a variety of agents including real-life agents (e.g.,
animals) [25]. Accordingly, we next present AC deep RL as
a promising approach for modeling SDM problems.

B. Actor-Critic Deep RL and Action Representation Learning

The AC model involves two iterative learning steps: policy
improvement and policy evaluation. These steps are associated
with two collaborative learning components named actor and
critic, respectively. The abstract view of AC deep RL in the AMG
context is illustrated in Fig. 3. In the policy improvement step,
the actor finds a policy 7 that is compatible with the current state-
action value function (s, a) = E[R|s, a], where R denotes the
cumulative reward. In the policy evaluation step, critic estimates
the state-action value function consistent with the current policy
.

As shown in Fig. 3, the actor network outputs policy distribu-
tion (a|s) estimated by a neural network that accepts states and
outputs actions. The critic network outputs ((s, a) estimated
by a neural network that accepts state-action pairs. In addition
to generalizing over states by learning a state representation in
deep RL, Sharma et al. [46] and Dulac-Arnold et al. [47] have
shown that representation over actions is critical for learning in
environments with large action spaces. For instance, it is evident
that real-life agents decompose their plans into intermediate
abstractions rather than the raw low-level control needed for
movements [48]. This phenomenon is also known as primitive
elements in robotics [49]. However, the methods proposed by
Sharma et al. [46] and Dulac-Arnold et al. [47] require providing
the action representations a priori. Recently, Zahavy et al. [50]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

and Chandak et al. [27] have shown that action representations
can be learned autonomously. Zahavy et al. [5S0] propose learning
to eliminate inconsequential actions, which enables learning in
an environment with 1,000 actions. Chandak et al. [27] offer
to learn a low-dimensional representation of salient actions,
which enables learning in an environment with 4,096 actions.
Their method employs an AC framework with Representation
for Actions (AC-RA) that maps actions into a lower dimension
space. As Chandak’s method is closely related to our proposed
framework we briefly describe its underlying mechanism first.

To generalize over large action sets in robotic applications,
AC-CAR proposes to decompose the overall policy into two
components: an internal policy m; : S x £ — [0,1] that op-
erates on a low-dimensional action representation space £ C
R9 and the state space S, and a deterministic embedding-to-
action mapping function, f : £ —+ A that maps actions from
the low-dimensional action representation space to the actual
(high-dimensional) space such that the agent is able to interact
seamlessly with the environment. One important aspect of their
work is showing that there exist a parameterization of the overall
policy that is equivalent to the canonical optimal policy, 7*.
They also show that the mapping function f can be learned via
a supervised loss £(f) = —E[In(P(a¢|s¢, s:41))], where P is
an estimation of P(a|s, S¢11).

However, in both [27] and [50], action representations are
learned regardless of the context/position in which they ap-
pear. Not being inherently equipped with context-aware actions
can make AC-RA less effective in AMG. It is expected that
equipping AC with learning low-dimensional contextualized
action representations can result in state-of-the-art performance
in complex applications with high-dimensional action spaces
such as AMG. To this end, we propose to enhance AC-RA to
learn contextualized action representations for AMG applica-
tion domain. Neural language models could provide a viable
mechanism to enhance deep RL with contextualized action
representations.

C. Contextualized Neural Language Models

Recent neural language models feature architectures that gen-
erate sequences resembling the content of a training set by learn-
ing contextual embeddings (continuous representations) of the
discrete elements in a sequence. These embeddings are referred
to as contextual since the representation of a specific token could
vary when it appears in different contexts (i.e., surrounding
sequence elements) [51]. These neural language models fall
into two categories: masked and causal (also known as autore-
gressive) language models. Masked language models learn to
predict a masked token from its surroundings. Renowned recent
examples of masked language models include BERT [51] and
RoBERTa [52]. On the contrary, causal language models learn
to predict the next token based on the previously generated ones,
which makes them a natural fit for SDM problems ([53], [54]).
As a pioneering causal language model, Generative Pre-trained
Transformer (GPT) [55] was first proposed with 117 million
parameters, followed by GPT-2 [56] with 1.5 billion parameters,
which led to breakthrough results in sequence generation tasks

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

such as natural language processing [54]. Recently, GPT-3 with
175 billion parameters was introduced as a proprietary tool [54].
Although GPT-3’s output is available via API to researchers,
its underlying architecture is not available to the public at the
time of writing. The context-awareness in GPT and other causal
language models is achieved by attending to the position of
tokens in a sequence by self-attention [55]. Causal language
models, including GPT, operate according to the principle that
the probability distribution of a generated sequence given an
initial context WY can be decomposed into the product of the
conditional probabilities of previous elements as given in (1).

N
P(w1:N|WU) - H P(w”|w1m_1:W0) (1)
n=1

The left-hand side in (1) denotes the probability distribution
of a generated sequence given W, and P(w"|w!™ 1, W?)
denotes the conditional probabilities over each token given
previous tokens. Despite GPT’s promise in sequence generation,
two major challenges arise when utilizing GPT in SDM settings
to address AMG. First, the evasiveness of the generated sequence
depends on the choice of the initial context W°. Second, GPT is
not equipped with an internal mechanism to encourage evading
malware detectors. These two challenges inhibit the direct use
of GPT for SDM applications such as AMG. In Section IV,
we describe how our proposed model addresses these two chal-
lenges leveraging RL.. We next highlight the contribution of our
proposed model to the AMG literature and its positioning against
major recent RL methods.

D. Model Positioning and Contribution

From a methodological perspective, the current AC deep
RL methods do not support context-awareness in the action
space. While GPT could be a viable solution to endow AC with
context-awareness, it does not provide a mechanism to learn gen-
erating sequences that promote evasiveness. To address this gap,
our AC-CAR offers a novel solution to enhance causal neural
language models to accomplish detector evasion in adversarial
settings. Specifically, AC-CAR learns effective context-aware
action representations to automatically generate realistic mal-
ware variants at a large scale. These variants could be used to
improve the robustness of DL-based malware detectors against
unseen adversarial malware variants. In addition to enhancing
neural language models for AMG purposes, our AC-CAR model
contributes to the AC deep RL literature as the first AC deep
RL method designed to operate in large context-aware action
spaces. To highlight our contribution to RL, we further position
the novelty of our proposed AC-CAR among recent AC deep RL
methods in Table II. In addition to the AC family, in Section VI,
we evaluate AC-CAR’s performance against the leading non-AC
deep RL methods.

As highlighted in Table II, AC-CAR is uniquely positioned
among the most recent probabilistic variants of AC deep RL
methods that only use a generalization over state representa-
tions, including Soft Actor-Critic (SAC) [44] and Variational
Actor-Critic (VAC) [42]. AC-CAR is also distinguished from the
very recent variant of AC, Actor-Critic with Representations for

2091

TABLEII
POSITIONING OF AC-CAR AMONG STATE-OF-THE-ART AC DEEP
RL METHODS
AC Deep RL State Rep- Action Rep- Action Con-
Model resentation resentation text Aware-
Learning Learning ness

SAC [44] v X X

VAC [42] v X X
AC-RA [27] v v X
AC-CAR v v v
(Ours)

Actions (AC-RA) [27], which uses a generalized representation
over actions without accounting for context awareness. Based
on this overall positioning against recently proposed leading RL
methods, we next describe our proposed AC-CAR model and its
underlying components.

IV. PROPOSED MODEL

To address the need for generating realistic adversarial mal-
ware variants, we follow three essential steps. In accordance
with [7], [17], [40], we first characterize a threat model for
automated AMG. Second, based on the determined threat model,
we propose our novel AC deep RL algorithm, AC-CAR. Third,
we examine the functionality of the adversarial malware vari-
ants generated by AC-CAR to ensure that they maintain their
intended malicious functionality. We describe each of these steps
in the following subsections.

A. Threat Model Identification

Consistent with [17], we characterize a realistic threat model
for conducting binary closed-box adversarial malware attacks
against DL-based malware detectors by identifying three major
adversary properties, including the adversary’s goal, knowledge,
and capability.

® Adversary's Goal: The adversary aims to automati-

cally generate malware variants that are capable of evading
a DL-based malware detector via binary manipulation. To
this end, the adversary receives an initial set of known
malware binaries and modifies them to generate evasive
functionality-preserving malware variants. In addition to
functionality preservation, restrictions determined in the
adversary’s capability must be met.

® Adversary's Knowledge: The architecture and pa-

rameters of the malware detector model are not known to
the adversary. Additionally, the adversary does not have
access to any insider knowledge, including the real-valued
confidence score from the malware detector. The only
information observable by the adversary is whether the
generated malware variant evades the malware detector
(i.e., binary closed-box setting). To maximize practicality,
consistent with [31], the adversary does not need reverse
engineering, behavioral analysis in a sandbox, or access to
the malware source code.

® Adversary's Capability: The adversary can ap-

ply functionality preserving modifications on malware

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2092

binaries. To maintain stealthiness, the average number
of queries to the malware detector in order to generate
evasive malware variants cannot exceed 50 (the minimum
number of queries identified in Table I). Furthermore, the
modification size is limited to 500 bytes (20 times less
than the proposed AMG methods in [18], [30], as shown
in Table I). Following [18], [39], to ensure the functional-
ity preservation of generated malware variants, we focus
on additive modifications since they tend to not interfere
with malware functionality [30]. These modifications add
the generated content to unused segments of the original
malware files that will be not executed by the operating
system, while leaving the malicious functionality of the
original malware intact.

We next propose AC-CAR to operationalize the identified

threat model.

B. Actor-Critic With Contextualized Action Representations
(AC-CAR)

Operationalizing this threat model in an RL setting requires
characterizing the key RL elements, including state, action,
policy, reward, and environment:
® State: The state space size is the number of all possi-
ble executables (any combination of bytes that forms a
functional malware executable file) or its representation.
Consistent with [57], the state s; of the malware executable
was constructed by a holistic representation encompassing
asetof 2,350 features from the raw and parsed malware file.
These features include header metadata, section metadata
(section name, size, and characteristics), imported and ex-
ported libraries metadata, counts of human-readable strings
(such as file paths, registry keys, and URLs), byte his-
togram, and 2D byte-entropy histogram [58]. Accordingly,
the states are represented as a set of all possible features
representing a malware executable [5].

® Action: Modifications of byte sequences in a malware
executable resulted from injecting non-executable content
into an original malware binary file. Consistent with past
research [18], [39], we focus on additive rather than editing
modifications.

®* Policy: A conditional probability distribution 7(at|s¢)

that determines the next action given the current state. The
policy is denoted by a neural net that receives the the state
s; as the input and determines the next action a; as the
output.

® Reward: Under the closed-box attack model assumption,

the confidence score of the malware detector is not ac-
cessible. As such, the reward magnitude is often a fixed
positive value [5]. Thus, following [5], a fixed reward
with the magnitude of 10 was awarded when the modified
malware file could evade the malware detector and preserve
its original malicious functionality.

® Malware Environment: The environment encom-

passes the modified malware variant and the malware de-
tector. The malware environment specification is detailed
in Appendix A.1, available online.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Contextualized Policy

A}
Actor ! 1
-l H— |
(Policy Improvement) m.(els) Component 1 1
1
lmﬁrg = Compaonent 2 :
L GPT Generator with |'
Q" GPT Action ,ﬂ, Rl-augmented Top-k :
Representation ;* ap embeddng e Sampliny 1
............................... i hetlerpent 8 : ;
Actualactiona _ #
| | Critic q—st—l—s: tate s, Malware
(Policy Evaluation) b1, LR Tt Environment
Fig. 4. The abstract view of AC-CAR Architecture. Component 1 includes

the actor network operating in a low-dimensional action representation obtained
from GPT’s embedding space. This embedding is subsequently mapped to the
environment’s actions using function f. Component 2 leverages these actions
as initial context to generate evasive contents using a modified top-k sampling
procedure.

Based on the identified threat model, mimicking the patterns
of benign executables to inject into the original malware file at
each time step, as illustrated in the SDM process in Fig. 2, could
be a viable AMG approach. To this end, the injected content must
be benign-looking, evasive, and context-sensitive. Additionally,
the proposed AMG method needs to operate in a large action
space (i.e., all possible combinations of candidate bytes for
injection). Building on [27] and the core AC deep RL archi-
tecture (shown in Fig. 3), we propose AC-CAR to learn action
representations from the contextualized embeddings generated
by GPT and subsequently generate benign-looking and evasive
malware content accordingly. Fig. 4 shows the abstract view of
AC-CAR.

One key aspect of our design is that in dealing with very
large action spaces (e.g., 10,000 actions in AMG), we decom-
pose the policy into two components: a contextualized policy
me(€et|s¢) that operates on a low-dimensional action embedding
space and an embedding mapping function f, which maps the
representations back to the actual space to allow the interactions
with the environment. Accordingly, AC-CAR has two main
components. The first component encompasses the contextu-
alized policy along with the mapping function f. The second
component is RL-augmented Top-k Sampling, which operates
based on the input of function f and aims to encourage the
evasiveness of the generated bytes. Each component is described
next.

1) Component 1: Contextualized Policy 7.(E¢|s:) and Em-
bedding Mapping Function f.: In line with the gaps identified
in our review, Component 1 aims to 1) add contextualization
to core AC by incorporating a contextualized neural language
model and 2) alleviate the described context initialization issue
in GPT for generating evasive content while operating in a large
action space. As seen in Fig. 4, the actor network in AC-CAR op-
erates on a low-dimensional action space (embedding) obtained
from training a contextualized GPT language model on benign
executables (dashed diamond box). Unlike basic AC, in which
the actor network outputs an action per given state (i.e., m(a|s)),
the actor network in AC-CAR yields a contextualized policy
me(€e|s) that accepts state s and outputs embedding e. However,
the output embeddings need to be mapped back to actual actions
to enable interaction with the malware environment. To map

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

embeddings into actions, Chandak et al. [27] establish the fol-
lowing relationship between the action-embedding conditional
probability P(a¢|e; =) and embedding conditional probability
P(e; = els;, s¢11) using the standard Markov property assump-
tion and the total law of probability over the embedding space e
as given in (2),

P(a;|5t,83+1) — /P(adet — B)P(Bg = €|33,St+1) de,
‘ @

in which P(a¢|s¢, s¢+1) decomposes under the Markovian as-
sumption that given an embedding e;, a; is independent of
the current state s; and the next state s;; ;. It is shown that
by using supervised learning, the action-embedding conditional
P(a¢|er = €) can be approximated by a deterministic function
f(at|er = e) that receives embeddings and maps them to actual
actions responsible for the current state transition. For brevity,
we denote this deterministic estimator by f(e;). While we focus
on the implication of this approximation approach to devise a
novel AC deep RL method for the AMG application domain, fur-
ther details of this approximation and corresponding proofs can
be found in [27]. The approximated f(e;) yields the candidate
action (i.e., token) that is likely to contribute to the evasiveness
of the generated content. Having the approximated f(e;), the
GPT’s generated content probability from (1) can be expressed
in (3),
N
P (wy™N|f (er)) = [T P (wilwi™ ', f(er)), 3)
n=1
in which the deterministic function f(e;) replaces the initial
context W in (1) for causal language models. (3) is crucial in
addressing the first problem of applying GPT for AMG applica-
tions (i.e., dependency on the choice of the initial context). (3)
offers a solution to incorporate evasive actions suggested by the
AC model into GPT as the initial context for content generation.
2) Component 2: GPT Generator With RL-Augmented Top-K
Sampling: AC-CAR’s Component 2 aims to increase the eva-
siveness of GPT by incorporating the candidate actions obtained
from the AC deep RL agent into GPT. To this end, we propose
modifying the decoding mechanism of the GPT causal language
model to incorporate these candidate actions. The decoding
mechanism in causal language models is responsible for select-
ing the generated output from a set of high-probability candidate
tokens [59]. Two effective decoding mechanisms in the causal
language model literature are greedy sampling and top-k sam-
pling [59]. Greedy sampling selects the next token w™, which has
the highest probability from conditional probability distribution
w" ~ P(w|w™1). On the contrary, in top-k sampling the next
word is selected from the k& most probable tokens forming a
candidate set V. The probability mass is redistributed among the
candidates in Vy such that)~ . P(w|w""~!) encompasses a
large portion of the probability mass (e.g., 0.9). Top-k sampling
has yielded high-quality sequences in complex natural language
processing tasks such as story generation [59]. To generate
evasive content, we present an effective method to incorporate
the AC output action (obtained from mapping function f) into
GPT’s top-k sampling.

2093

Stepl
Tweve P(w|wn=1)

Step3

04
GPT Generator k=5 1
0z =
R Ewsvm.np(mwln 2
I l oL o0 t i
|- =| 0a
adSa bE0D 4d0D €500 OOM]

(Top-k Sampling)

R
&l

Bls
o Probability
L
—
izv]
[

.e
Actor Network S e, a0 5
m=
(f:e = a) -4 ‘»,
H [
[} ' .y
L) T]
€ €z

Fig.5. The 3-step Procedure in RL-augmented Top-k Sampling. Basic Top-k
sampling with k = 5 yields the most probable 5 tokens as GPT’s output in Step
1. Step 2 samples m = 2 tokens from the action distribution learned by the
actor network from component 1. In Step 3, these m samples replace the lowest
probability tokens from GPT’s output to augment the result of Top-k Sampling
in Step 1. The tokens from the actor network are denoted with diagonal stripes
in Step 3.

Fig. 5 shows the 3-step procedure of our proposed RL-
augmented Top-k Sampling in AC-CAR in each time step to
achieve this goal:
® Step 1:To obtain the k most probable candidate tokens,
conduct basic top-k sampling as proposed in [59] (e.g., with
k = 5) in the GPT generator. These tokens denote a set of
benign-looking additions, which are considered to modify
the original malware samples with.
® Step 2:Toenhance evasiveness, we need to augment the
candidate tokens from Step 1 with the tokens obtained from
the actor network. To this end, we draw m embeddings
(e.g., e; and ey for m = 2) from the actor network dis-
tribution (m < k) and compute the corresponding actions
using function f obtained from AC-CAR’s Component 1.

® Step 3: Finally, we augment the actions from top-k
sampling with m actions obtained from Step 2 such
that the probability mass of the entire set stays the
same. The @ operator ensures the probability mass
Y wevi, P(w|w'™ 1) remains the same during this aug-
mentation. As shown in Step 3 in Fig. 5, one simple but
effective way to achieve this is by replacing m actions
with the lowest probabilities from the distribution in Step
1 (i.e., ‘€900’ and ‘00 ") with the candidate actions from
actor network in Step 2 (i.e., ‘8200’ and ‘a900’), denoted
in diagonal stripes in Step 3 of Fig. 5.

As a result, the proposed GPT generator with RL-augmented
Top-k Sampling incorporates effective actions from AC deep RL
into GPT generation mechanism to enhance GPT with evasive-
ness. As such, the second challenge of using GPT in the AMG
application domain (i.e., lack of a mechanism for generating
evasive content) is addressed. During this process, the enhanced
GPT generator learns to produce benign-looking content to
inject into a malware executable such that an evasive malware
variant is constructed. The AC-CAR learning procedure, given
in Algorithm 1, outlines how the two proposed components of
AC-CAR operate to achieve both benign-looking and evasive
content.

As shown in Algorithm 1, action representations are initial-
ized with embeddings obtained from GPT. At each time step,

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2094

Algorithm 1: AC-CAR Learning Procedure.

Input: A set of benign executables, a set of initial
malware executables, a malware environment,
generated content length at each time step N,
maximum number of episodes ny, and the
length of the episode n;

Output: Learned contextualized policy network m,

Action embedding mapping function f
Initialize action representations with the embeddings
from training a causal language model (e.g., GPT) on
benign executables.
Initialize f by interacting with the malware
environment and using Equation 2.

for episode h = 0,1, ..., ny do

Initialize the malware environment with a random

sample from initial malware executables.

for time stept = 0,1,...,n, do

Sample action embedding, e, = e from the

initial contextualized policy .
Apply the mapping function f on the
embedding e; to obtain the actual action
at = f(e:)
Use action a; as the initial context in
P(w"N|f(as|e: = e)) from Equation 3.
fori=0,1,...,N do
Generate content from GPT using
RL-augmented Top-k Sampling with the
initial context (Section 4.2.2).

end

Receive the next state S;;1 and immediate
reward R;.

Update gradients of policy network 7. and critic
network.

Update gradients of f based on the supervised
loss in [27].

end
end
return 7. and f.

an action representation e; is sampled from the contextualized
policy 7., and then is mapped to the actual action space using
the mapping function f . The obtained action is used as the
initial context in (3). RL-augmented Top-k Sampling is used for
subsequent content generation based on the initial context. AC-
CAR’s methodological novelty is two-fold. Its first novelty lies
in enhancing AC-based deep RL by adding context-awareness in
high-dimensional action environments through learning contex-
tualized representations over actions. The second novelty lies in
extending causal language models by adding evasion awareness
to the generated actions in GPT. Since content generation with
AC-CAR amounts to an effective attack that is agnostic to the
architecture of the targeted malware detector, AC-CAR can
serve as a valuable tool for effective binary closed-box AMG.
Following [27], AC-CAR’s policy network was implemented
by a simple neural network with one hidden layer. The policy
network was AC-CAR is able to operate on an action space
with a size of 10,000 actions (i.e., the size of the vocabulary
in GPT embeddings). This is almost 1,000 times larger than
current action sizes found in the AMG literature [5], [14], [24].
For reproducibility, AC-CAR’s model specification, including
the architecture and (hyper) parameter settings, are given in
Appendix A.2, available online.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

C. Malware Functionality Preservation

Following Castro et al. [12], we adopted VirusTotal’s API
to assess the functionality of the malware variants generated
by AC-CAR. The API provides a holistic malware fingerprint,
including a malware behavior report obtained from static and
dynamic analysis of the malware variant. The report includes
information such as network behavior (e.g., DNS requests,
outgoing URLs) and file access patterns. Using this API, we
compared the behavior reports for evasive variants (after ad-
versarial modification) and original malware samples (before
adversarial modification). Consistent with prior work in adver-
sarial malware example generation [5], [14], [32], the payloads
generated by AC-CAR where injected to the empty sections of
the executable (e.g., file overlay and empty spaces between sec-
tions) that does not affect the logic of execution. This mechanism
ensures that the addresses in the header sections (DOS header,
PE header, and Section Table) and the rest of the executable
remain unaltered, which is necessary to preserve functionality.
Nevertheless, we verified that the key parts of the VirusTotal’s
report stayed unchanged after modification, indicating that the
generated malware samples are fully functional. All included
malware samples generated by AC-CAR in our dataset were
checked and confirmed to be functional after modification.

V. EVALUATION OVERVIEW

To systematically evaluate the performance of the proposed
model against alternative solutions as well as the state-of-the-art
AMG methods, we performed a series of benchmark evaluations
on a dataset of real malware samples based on well-established
evaluation metrics. Additionally, we conducted a case study to
demonstrate the practical value and implications for cyberse-
curity researchers. We present an overview of our testbed con-
struction, benchmark experiments, and ablation analysis before
presenting the experiment design and results.

A. Testbed Construction

Consistent with [6], [32], [60], to construct a malware testbed,
we created a repository with 31,188 (14.69 GB) recent mal-
ware and benign executable files collected from VirusTotal and
Microsoft Windows 10. Our testbed includes 5,403 (3.18 GB)
malware executables used for training AC-CAR and conduct-
ing benchmark evaluations. We also formed an evaluation set
of 2,730 (1.06 GB) unseen malware executables as seeds to
generate adversarial malware variants for measuring the im-
provement of the robustness of malware detectors in our case
study. Dividing the training and evaluation sets based on the
recency of the malware files is a common practice in malware
analysis literature [60], [61], [62], which is often preferred over
cross-validation that ignores the chronological order of malware
files. The training set encompasses two subsets of executable
files with a total volume of 8.22 GB: a malware training set
and a benign training set. The malware training set serves as the
initial seed to generate evasive malware variants. Table ITI shows
the breakdown of the malware executables in the malware train-
ing set by malware type (adware, botnet, ransomware, rootkit,
spyware, and virus).

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

2095

TABLE III
BREAKDOWN OF THE MALWARE EXECUTABLES IN THE MALWARE TRAINING SET

Malware Type Description Examples Malware Training Set
(Number of files,
size)

Adware Shows unwanted ads and forces internet eldorado, razy, gator 1,947 (1.5 GB)

traffic to websites

Botnet Establishes a network of bots connected virut, salicode, sality 526 (0.15 GB)

through the internet and IoT devices

Ransomware Encrypts data and files, restricting access vtflooder, msil, bit- 900 (0.45 GB)

and usage until decrypted by malware au- man
thors

Rootkit Grants admin privilege to remotely control ~ onjar, dqqd, shipup 731 (0.51 GB)

the victim system

Spyware Allows malware authors to steal personal mikey, qqpass, scar 640 (0.38 GB)

information covertly

Virus Corrupts files on the host system nimda, shodi, 659 (0.19 GB)

hematite

Total - - 5,403 (3.18 GB)

To obtain the malware training set, we compiled a real collec-
tion of malware samples by obtaining an academic license from
VirusTotal. This set includes 5,403 recent malware executables
collected from 2017 to 2019in six categories, including adware,
botnet, ransomware, rootkit, spyware, and virus. Consistent with
the data collection approach in [6], [9], to obtain the benign
executable dataset, we collected 13,554 benign executables from
a clean installation of Microsoft Windows 10 on a regular office
desktop computer. The benign training set has a total volume of
5.04 GB from which random subsets are utilized for training the
causal neural language model (see Section VI-A and Appendix
A.2 for details, available online). In accordance with extant
malware analytics studies, we converted the executables’ content
to hexadecimal byte format [5], [6], [9]. In this format, each byte
is represented by its hexadecimal equivalent ranging from 0 to
15. Every four hexadecimal values are grouped together to form
aword (e.g., ‘“4d5a’). Words are separated with a delimiter (e.g.,
blank space). To avoid excessively long sequences leading to
inefficient training, we limited the maximum length of a sentence
to a 2-KB sequence using the empty zero spaces in the file as a
natural delimiter.

B. Experiment Setup

We identified two renowned DL-based malware detectors as
our attack target: MalConv [9] and GBDT [7]. These detectors
were selected by consulting with malware analysts in National
Cyber-Forensics and Training Alliance (NCFTA), being utilized
in renowned malware evasion competitions, accessibility (i.e.,
open-source versus proprietary), and the number of citations
they received in the cybersecurity malware analytics community.
MalConv and GBDT were featured as benchmark malware de-
tector architectures in a malware evasion competition hosted by
Endgame and Microsoft [63]. These highly cited malware detec-
tor models are made available to the cybersecurity research com-
munity through public GitHub repositories (https://github.com/
endgameinc/malware_evasion_competition) and their charac-
teristics are as follows.

® MalConv is an effective DL-based malware detectors for
identifying unseen malware variants, developed through
a collaboration between the Laboratory for Physical Sci-
ences (LPS) and NVIDIA. The model incorporates a deep
convolutional neural network architecture trained on ap-
proximately half a million malware binaries and achieves
an area under the Receiver Operating Characteristic (ROC)
curve of 98.5% on an unseen test set.

® GBDT is a machine learning-based Gradient Boosted De-

cision Tree model implemented with a tree induction al-
gorithm called Light Gradient Boosting Machine (GBM).
GBDT has been trained on Ember dataset [57], and was
used by Endgame to obtain efficient and accurate malware
detection [13].

To evaluate AC-CAR’s performance against the state-of-the-
art benchmark AMG methods, two well-established perfor-
mance metrics were used: evasion rate and cumulative reward.
Evasion rate is a widely used performance metric in the AMG
literature [5], [7]. The evasion rate of an AMG method against
a given malware detector is defined as Evasion Rate = J%L,
where F represents the set of evasive malware variants obtained
from the AMG method and N denotes the total number of
original malware samples provided as input to the AMG method.
This metric determines the effectiveness of a given method in
evading a malware detector. The cumulative reward achieved
by the RL agent is another well-established performance metric
widely used for RL-based methods [27], [42].

We designed four sets of experiments to systematically eval-
uate the proposed AC-CAR.

Experiment 1 is designed to compare AC-CAR’s performance
with the state-of-the-art benchmark methods across six different
malware types based on evasion rate and cumulative reward.
This experiment also assesses AC-CAR’s generalizability to
variable payload sizes and shows the effect of contextualization
inisolation. Experiment 2 evaluates the sensitivity of AC-CAR’s
performance to the quality of learning the embedding mapping
function f in Algorithm 1. In Experiment 3 we conduct an
ablation analysis on AC-CARs internal components (i.e., the

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2096

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

TABLE IV
BENCHMARK AMG METHODS FOR PERFORMANCE EVALUATION

Benchmark Model Description Reference (venue)
Category
Benign Feature Append Brute-force injection of part of a benign file into [18] (IEEE S&P)
(BFA) malware sample
Non-RL AMG BFA + GPT Injection of content generated by language models [30] (AAAI RSEML)
into malware sample
GAMMA A genetic algorithm (GA)-based black-box AMG [13] (IEEE TIFS)
EvadeHC A meta-heuristic approach based on hill climbing [64] (ACM SIGSAC)
that operates in black-box settings
Surrogate RNN A generative RNN model trained against a surrogate [38] (AAAI)
black-box malware detector
MAB-Malware Uses multi-arm bandit to generate adversarial mal- [32] (ASIA-CCS)
ware samples
Policy Gradient Classic Policy Gradient RL [26] (NeurIPS)
Soft Actor-Critic (SAC) AC with entropy regularization [44] (ICLR)
ACRIbdsed Variational AC (VAC) A(;lapts AC to high-dimensional states with variational [42] (NeurIPS)
AMG inference

AC with Representations

for Actions (AC-RA) neural net

Maps actions into a low-dimensional space by a 1-d

[27] (ICML)

contextualized policy and RL-augmented Top-k Sampling). Fi-
nally, Experiment 4 provides the runtime analysis of AC-CAR
in Appendix B, available online.

For benchmark evaluations, we identified ten leading AMG
methods, including six renowned non-RL and four AC RL-
based binary closed-box benchmark AMG methods. Table IV
summarizes the benchmark methods, their brief description,
and corresponding references for each method. Non-RL AMG
benchmark methods include Benign Feature Append (BFA),
BFA+GPT, GAMMA, EvadeHC, Surrogate RNN, and MAB-
Malware. BFA serves as a common baseline method that op-
erates by injecting sections from benign files to the end of a
malware sample until evasion occurs [12], [30]. BFA+GPT is a
variant of BFA inspired by the recent AMG method proposed
in [30] that achieves more effective malware variants by extend-
ing BFA with benign-looking content generated by a language
model. Genetic Adversarial Machine learning Malware Attack
(GAMMA) is a recent efficient genetic algorithm (GA)-based
approach to generate closed-box attacks [13]. EvadeHC is a
successful metaheuristic AMG approach that features a powerful
hill climbing method for closed-box AMG [64]. Surrogate RNN
offers a generative RNN that generates benign-looking malware
samples by approximating the closed-box malware detector
model [38]. MAB-Malware is an effective binary manipulation
method based on multi-arm bandit [32].

Within AC RL-based AMG benchmark methods, Policy Gra-
dient is a widely adopted model serving as the foundation
of AC RL, which leverages the classic policy gradient theo-
rem [26], [65]. Soft Actor-Critic (SAC) [44] is a renowned
probabilistic variant of AC that has yielded breakthrough per-
formance in many RL tasks by enhancing the core AC with
an entropy regularization framework. As a successor of SAC,
Variational AC (VAC) [42] features a probabilistic AC frame-
work that uses variational inference to extend the applicability
of AC to state spaces with higher dimensions. Finally, AC with
Representations for Actions (AC-RA) [27] is the closest AC deep

RL method to our proposed AC-CAR, which offers a mechanism
to map high-dimensional action spaces into low-dimensional
ones without contextualization of the action space. Follow-
ing [14], to gain insight into each specific malware type, we con-
ducted separate benchmark experiments on each malware type.
Utilizing the functionality assessment procedure mentioned in
Section IV-C, we checked the functionality of all generated
malware variants to ensure they retain their functionality after
modification.

VI. RESULTS
A. Benchmark Evaluations

We compared AC-CAR performance against the identified
state-of-the-art AMG methods across the six determined mal-
ware types against MalConv and GBDT as the attack target.
The evasion rate of each benchmark method per specific malware
type is shown in Table V. A higher evasion rate indicates a better
AMG method. The highest performance for each malware type
is shown in bold face. To ensure independence from the benign
samples used for the causal language model training, AC-CAR
experiments were repeated three times, each with a GPT trained
on different non-overlapping sets of samples selected based on a
specific random seed (shown as Seeds 1-3in Table V). shown To
encourage emulating minimal and inconspicuous malware vari-
ants, the maximum number of modifications was fixed to 0.5KB
(20 times less than white-box attack in [16]). Additionally, the
average number of queries to the malware detector model was
limited to 50 queries [11], [30]. To ensure that the performance
difference between AC-CAR and competing benchmark meth-
ods is statistically significant, we ran each experiment five times
and conducted a paired f-test between AC-CAR and benchmark
methods performances. P-values obtained from the f-test are
denoted by asterisks in Table V, and are significant at 0.05:*
and 0.01:**. For GBDT, benchmark methods with 0% evasion
rates across all malware types are not shown in the table. The last

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

2007

TABLE V
COMPARING THE EVASION RATE OF THE PROPOSED AC-CAR AGAINST IDENTIFIED AMG BENCHMARKS ACROSS SIX MALWARE TYPES
MalConv
AMG Method Adware Botnet (%) Ransomware Rootkit (%) Spyware Virus (%) Avg. (%)
(%) (%) (%)
BFA 0.92** 1.90** 1.20** 0.96** 3.28* 2.28** 1.76
BFA+GPT 0.98* 2.85* 1.40%* 109" 2.03* 45 1o 1.92
EvadeHC e 598 1:85* 8.10** 23] g.7]1% 5.25
Surrogate RNN 4.69* 4.56%* 7.48* 4.50%* 10.50** 16.25* 7.99
GAMMA 12.63* 13.27%* 14.11* Vsl 9.55%* 18.97** 12.65
Policy Gradient 2.67* h.51** 2:33*¢ 7112 2.81%¢ 3.18* 3.94
SAC 213 6.80** 5.27** 3.24* 4.16** 721 4.80
VAC 2.82* 10.27%* 9.5 4.24% 10.31** 13.66** 8.41
AC-RA 9.71* 23.90** 11..11* 9.70%* 30.62** 42.51* 21.26
MAB-Malware 12.58* 34.59** 13.33* 30.50** 33.33% 35.18* 26.59
AC-CAR (Seed 1) 14.02 48.29 18.22 5471 70.31 60.84 4439
AC-CAR (Seed 2) 14.62 50.99 20.32 56.83 71.00 61.70 4591
AC-CAR (Seed 3) 13.20 45.93 18.11 SL7 71.69 61.30 43.76
GBDT
AMG Method Adware Botnet (%) Ransomware Rootkit (%) Spyware Virus (%) Avg. (%)
(%) (%) (%)

EvadeHC 3.48%* 2,90 779 2,14 4.00*** g.65* 4,99
Surrogate RNN 3.2 4,00 4 95%** Wk 490+ 325" 522
Policy Gradient 2,70 e B ey Fo S bt DA 280 %0 e 3.13
SAC 3.67** 5.10** 5.13** 4.50* 4.40* 3.10* 432
VAC 4,05 8.70* 8.16** 6.00*** 4.54%% 10.72%* 7.03
AC-RA 8.48* 10.69* 11.20 8.20* Q.71 22.50* 11.80
MAB-Malware 9.07* 10.41* 7.68 10.43** 18.32** 16.65* 12.09
AC-CAR (Seed 1) 12.80 25.76 13.16 29.80 27.61 34.18 23.89
AC-CAR (Seed 2) 12.10 26.35 15.28 27.57 26.23 35.08 23.76
AC-CAR (Seed 3) 13.17 23.76 12.10 28.70 26.24 33.22 23.86

Note: Benchmark methods that are not shown in the table yielded 0% evasion rate across all malware types.

Asterisks denote statistical significance with P-values significant at 0.05:*, 0.01:**.

column shows the average evasion rate across all six malware
types.

As shown in Table V, the proposed AC-CAR attained the high-
est evasion rate across all six malware types and with an average
evasion rate of 45.91% for MalConv and 23.89% for GBDT.
Learning contextualized action representations by the proposed
AC-CAR yields an approximately 2-fold performance increase
over the best-performing method, MAB-Malware [32] as well
as the highest-performing RL counterpart, AC-RA, which does
not support contextualized action representations (26.59% for
Mab-Malware and 21.26% for AC-RA versus 45.91% for AC-
CAR against MalConv). Same performance improvement is
observed in the GBDT detector, in which AC-CAR outperforms
both MAB-Malware and AC-RA (12.09% for MAB-Malware
and 11.80% for AC-CAR versus 23.89% for AC-CAR). It is
also observed that learning action representations with AC-RA
yields an approximately 2-fold performance increase on average
over VAC, which does not use action representations (21.26%
for AC-RA versus 8.41% for VAC on MalConv, and 11.80%
versus 7.03% on GBDT in Table V). This indicates the positive
effect of learning a low-dimensional action representation. Also,
as shown in Table V, merely using a causal language model
(GPT) to generate benign-looking content does not yield high
evasion rates (only 1.92% average evasion rate for BFA+GPT on
MalConv and 0% on GBDT). Overall, AC-CAR outperforms all
benchmark methods on average across all malware categories

for both MalConv and GBDT. The considerable performance
gain in our AC-CAR demonstrates that AC-CAR is effective
in generating realistic adversarial malware variants. Also, the
results show that all different malware samples selected for train-
ing AC-CAR’s causal language model (shown with Seed 1, 2,
and 3in Table I'V) lead to significantly outperforming competing
benchmark methods (including MAB-Malware). This suggests
that AC-CAR is not drastically sensitive to the selection of
malware samples for contextualization.

It is also observed from Table V that spyware and virus have
the highest evasion rates of 71.69% and 61.70%, respectively.
The high evasion rate for these malware types suggests that
malware detector models could be more susceptible to AMG
modifications of spyware and virus. This could be attributed
to the characteristics of both spyware and virus which often
contain small-sized malicious executables that are embedded
in benign programs to camouflage as benign executables. As
such, their content may ostensibly look like non-malicious
content, increasing the chance of evading DL-based malware
detectors. Conversely, the evasion rate on adware and ran-
somware (14.62% and 20.32%, respectively) are lower than
other malware types. Specifically, ransomware executables have
sections dedicated to data encryption routines, which could be
uniquely distinguished with DL-based classifiers. These dis-
tinctive characteristics can render adversarial modifications less
evasive.

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2098

204

Evasion Rate

10 4

—8— AC-CAR

1.
-j - MAB

« @ AC-RA

200 500 1000 1500 2000 2500
Payload Size (Bytes)

Fig. 6. Comparison of the Evasion Rate for Varied Payload Sizes.
10000 10000 10000
—| 1000 e 1000 .
S - ==
S| e Adware 10 ~ Botnet
;
3 N
@
= 10000
=
= -
£] e
3 &
i

T Spyware

o =m0y —Topod| L0 spod 10900 |

Number of Episodes —— Ac.caR === AC-RA

Fig.7. Comparison of Cumulative Rewards of AC-RA and the Proposed AC-
CAR Across all Six Malware Types.

1) Generalizability to Variable Payload Sizes: To further as-
sess the generalizability of AC-CAR with respect to the payload
size, we compare its performance with both the second and third
best-performing counterparts from Table V, MAB-Malware and
AC-RA. Fig. 6 shows the evasion rates when the payload size
increases from 200 bytes to 2,800 bytes (equivalent to approxi-
mately 0.2% to 5% with respect to the average size of original
malware executables) for ransomware.

As shown in Fig. 6, while the evasion rates for all methods
increases as the payloadsize increases, AC-CAR clearly outper-
forms both MAB-Malware and AC-RA across all payload sizes,
indicating that the effectiveness of AC-CAR in comparison with
its counterparts is independent of the payload size. Further, it is
observed that not only AC-CAR outperforms in small payload
sizes, but also the performance gap between AC-CAR and
MA-Malware grows larger as the payload size increases showing
that AC-CAR gains more advantage with higher payload sizes
compared to MAB-Malware and AC-CAR.

While this experiment is carried out to clearly show that AC-
CAR performance is generalizable to variable payload sizes, we
also note that in the AMG literature (e.g., [16], [32]), to maintain
the stealthiness of the the adversarial variant, lower but effective
payload sizes are often preferred.

2) Isolating the Effect of Contextualization on Rewards: To
examine the effect of contextualized action representations,
following the evaluations conducted in [27], [42], we compared
the accumulated rewards of AC-CAR and its non-contextual
counterpart, AC-RA (which does not learn contextualized ac-
tion representations), during 10,000 episodes. Fig. 7 shows the
results for each malware type. The vertical axis shows the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Adware
Botnet
Ransomware
Rootkit

—-— Spyware
—— \irus

0.78 4 Yo

o 50 100 150 200 250 300
Epochs

Fig. 8. Convergence of the Supervised Learning of the Mapping Function f
in Algorithm 1.

cumulative reward in a logarithmic scale. The horizontal axis
denotes the episode’s number.

Achieving a higher cumulative reward indicates more evasive
malware variants generated. As shown in Fig. 7, the proposed
AC-CAR accumulates a significantly higher reward than AC-
RA for all malware types. Specifically, the proposed AC-CAR
increases the accumulated rewards by almost an order of magni-
tude in Rootkit and Spyware. Overall, the AC-CAR’s results con-
firm its effectiveness in generating realistic evasive adversarial
malware variants against DL-based malware detectors without
requiring prior knowledge of the attacked malware detector, with
limited payload size, and with a limited number of queries to the
detector.

B. Generalizability of the Embedding Mapping Function f

As noted in Section IV-B1, the embedding mapping function
f maps the low-dimensional action representations back to the
actual space to allow interactions with the environment (See
(2)). Following [27], we characterize this function by a simple
neural network and show that supervised learning can be used to
approximate it. The network consists of an input layer with a size
of low-dimensional actions and one optional hidden layer. Here
we show how the losses of this supervised learning approach
in Algorithm 1 converges and stabilizes for different malware
categories using the same method in [27]. Consistent with their
work, we empirically determine convergence if the changes in
loss is less than an infinitesimally small € = 1e—9. Fig. 8 shows
the results of the widely-used cross-entropy loss during learning
in Algorithm 1 for each malware category.

As shown in Fig. 8, for all malware types the supervised
learning loss for the initial mapping function f stabilizes in at
most 300 epochs ranging from approximately 0.8 to 0.74 (for
Botnet) and to 0.71 (for rootkit). Convergence in less than 300
epochs (5 seconds across each malware category on average)
with a simple neural network suggests that this component of
AC-CAR could be generalizable to different malware types.

C. Ablation Analysis of AC-CAR

To gauge the performance contribution of AC-CAR’s com-
ponents, including the contextualization of the action space
and the proposed RL-augmented Top-k Sampling, AC-CAR’s

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING 2099
TABLE VI
ABLATION ANALYSIS OF THE ISOLATED EFFECT OF OTHER SAMPLING ALTERNATIVES, TOP-k SAMPLING, AND OUR PROPOSED RL-AUGMENTED TOP-k SAMPLING
N AC-CAR
Malware Type
Method Adware Botnet Ransomware Rootkit Spyware (%) Virus (%) Average
(%) (%) (%) (%) (%)
GloVe 1.23* 3.04** DDk 3.42x* 2.5 3.03** 257
Embeddings
Greedy 5. 70 837 8.88* 5.48% 14.69** 22.91% 11.01
Sampling
Top-k Sampling (k=2) 7.70%¢ 15.97* 12.33* 7.25% 25.31* 32.32% 16.81
Top-k Sampling (k=4) 6.93** 17.49* 1520 7.95% 25.93** 41.42* 0.00
Top-k Sampling (k=5) 6.57%* 17.68* 13.89* 7.25% 28 .44%* 36.87* 18.45
Top-k Sampling (k=10) 6.06** 10.65* 11.334* 6.02** 19.69** 35.50** 14.88
Top-k Sampling (k=16) 5.96** 9,32+ 744 6.29** 20.16™* 37.33* 1442
Top-k Sampling (k=40) 5.81** 18.06* 8.67%* 10.94** 15.16%* 38.84* 16.25
AC-CAR (Ours) 14.62 50.99 20.32 56.83 71.00 61.70 4591

Note: Asterisks denote statistical significance with P-values significant at 0.05:*, 0.01:**.

performance was compared against alternative models. To
measure the contribution of the contextualization of the ac-
tion space, we replaced the GPT embeddings with a widely-
used non-contextualized embedding known as Global Vectors
(GloVe) [66]. To measure the contribution of the RI.-augmented
Top-k Sampling, we replaced the proposed sampling with two
alternative encoding mechanisms: greedy sampling and top-
k sampling (with k € {2,4,5,10,16,40}). We selected these
values of k based on the best-performing values reported for
GPT’s top-k sampling in [59], [67], [68], [69]. We report the
evasion rate of each of these alternative designs for each malware
type against MalConv in Table VI. The statistical significance
of the performance of AC-CAR was compared against other
alternatives (P-values that are denoted by asterisks in Table VI
are significant at 0.05:* and 0.01:%**).

Comparing the performance of Glove with the proposed
AC-CAR in Table VI suggests that the proposed contextualized
representations are essential for generating evasive and benign-
looking content. Additionally, it is observed that both Greedy
and top-k sampling procedures lag behind the proposed RL-
augmented Top-K Sampling method. As expected, incorporating
RL in the GPT decoding process is crucial in generating evasive
content. We next show the practical benefit of these results and
the applicability of the adversarial malware variants generated
by AC-CAR in improving the robustness of DL-based malware
detectors in our case study.

VII. CASE STUDY: PRACTICAL UTILITY AND IMPLICATIONS

As a proof-of-value in improving the malware detector’s
robustness against unseen adversarial malware variants, we
demonstrate that the malware variants generated by AC-CAR
are useful in reducing the evasion rate of MalConv across all
identified malware types through a case study. To this end, we
conducted the most common defense mechanism against adver-
sarial malware variants, known as adversarial re-training [70].
Adversarial re-training in the malware context begins with gen-
erating evasive malware variants by an AMG method such as
AC-CAR. Subsequently, these generated adversarial malware
variants are used to augment the original training set of a

specific malware detector. Next, the malware detector model
is re-trained on the augmented training set. In classic re-training
methods, the re-trained model is tested against adversarial mal-
ware variants that could not be detected originally to verify the
performance improvement in detecting previously undetected
malware executables [37]. To help assess the generalizability of
our robustification, we considered a more challenging setting in
which we computed the robustness of the new malware detector
against another effective attack, VAC, a variant of the attack
proposed in [5].

Following [37], [70] and according to the described adversar-
ial re-training process, we generated 455 malware variants by
our proposed AC-CAR and re-trained MalConv in the presence
of these adversarial variants. We then measured the malware
detection performance of the re-trained MalConv on an evalu-
ation set of 2,730 malware variants (455 malware samples for
each of the six malware types) generated by the attack method
proposed in [5]. Consistent with [5], the performance of the
re-trained malware detector model against adversarial malware
variants is compared to its original performance using the eva-
sion rate. A lower evasion rate indicates a higher robustness
against adversarially generated malware variants. To ensure that
the adversarial re-training reduces the evasion rate (i.e., false
negatives) without increasing false positives, we vary the number
of generated malware files used in adversarial re-training while
monitoring true negatives at each stage. Fig. 9 shows the results
for the ransomware type.

As shown inFig. 9, the original MalConv cannot detect 9.15%
of the adversarial malware variants generated by VAC (i.e.,
9.15% evasion rate). As the number of adversarial ransomware
variants generated by AC-CAR increases in the training pro-
cess, the evasion rate decreases. However, once the number
of generated adversarial variants passes 347, the false positive
rate starts increasing, indicating that excessive adversarial re-
training damages the detector model’s accuracy and utility. The
corresponding points are shown with a cross sign in Fig. 9.
Stopping the robustification is necessary to ensure that increas-
ing the adversarial robustness does not undermine the practical
utility of the malware detector by a high false alarm rate [7].
Thus, we stopped robustification after re-training with 75% of

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

2100

6.0 {OriginalMalConvis ~10% N a8
vulnerabletoadversanal X
4.0 |ransomwarevariants. Improved MalConvis
~30%lessvulnerable
to ransormware
variants.

Evasion Rate

2.0

0.0
117 (25%) 228(50%) 347(75%) 480(100%)

Number of Generated Ransomware Variants Used in
Adversarial Training

Fig.9. Changes in the Evasion Rate During Adversarial Re-training with AC-
CAR. A lower evasion rate indicates a higher robustness against adversarially
generated malware variants.

14.0%

12.0% 26:72%

30.96% ?zs 1% .30 07%
|
6.0% u
4.0% I 129.25%
s 32 52%
0.0%

Adware

5]

E

————
j==mtm=nt

Evasion Rate

Botnet Ransomware Rootkit Spyware Virus

[[] Before Adversarial Re-training .Afmr Adversarial Re-training

Fig. 10. Evasion Rate Before (Strip Pattern) and After (Solid Pattern) Ad-
versarial Re-training with Adversarially Generated Malware Variants Obtained
from AC-CAR.

adversarial variants (shown with a check mark in Fig. 9). As a
result, ransomware variants generated by AC-CAR contribute
to a 30% reduction in ransomware evasion rate (9.15% versus
6.56%) without damaging the model’s accuracy. Fig. 10 depicts
the results of conducting the described adversarial re-training
process to reduce the evasion rate across all six malware types
using the adversarial variants generated by AC-CAR.

As shown in Fig. 10, the evasion rate decreases after the
adversarial re-training of the malware detector. As a result, the
re-trained detector model is more resistant against the adversar-
ial malware variants generated by the AMG method proposed
in [5]. On average, MalConv’s robustness was increased by
29.65% across all malware types. Specifically, ransomware was
associated with a 28.31% reduction of evasion rate as shown in
Fig. 10. Given that the global cost of ransomware damage was
estimated to be $20 billion (USD) in 2021 [3], reducing the unde-
tected adversarial ransomware attacks could be an effective step
towards automated cyber defense, which potentially translates
to preventing a sizable loss in the cybersecurity industry.

A. Discussion

While our work focused on binary manipulations on malware
executable without reverse engineering and requiring access to
the malware source code, we acknowledge that, when possible,
it is also beneficial to consider other types of sophisticated
actions that modify the control flow of the execution in a way
that preserves functionality. Promising work in this direction

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

is presented in [35], where simple basic blocks are added to
the original control flow without affecting functionality, or the
adversarial source code attack presented in [34]. While devising
functionality-preserving actions that can drastically modify the
control flow is still a challenging and open problem, we note
that the AC-CAR’s action set can be augmented to incorporate
such actions in order to build adversaries that utilize the malware
source code or function calls achieved from reverse engineering.

Finally, as a corollary to our case study results, we note
that while common defense mechanisms such as adversarial
re-training are crucial to improving adversarial robustness, they
cannot fully eliminate the vulnerability to adversarial malware
variants. Thus, significant future research is needed on novel
generic defense architectures against these attacks. Promis-
ing studies have started to investigate this important direc-
tion through processing control flow graph and function calls
[33], [34].

VIII. CoNCLUSION AND FUTURE DIRECTIONS

Automated adversarial malware optimization is crucial for
constantly and rapidly improving the robustness of DL-based
malware detectors. Extant approaches to this end rely on as-
sumptions, including access to insider knowledge about the
malware detector, unlimited size of adversarial modifications,
and unlimited queries to the malware detector. In this study, we
presented a novel closed-box binary manipulation method that
enables generating adversarial malware variants to improve the
robustness of DL-based malware detectors without relying on
these assumptions.

Apart from contributing to the AMG literature, to our knowl-
edge, the proposed AC-CAR algorithm features the first method
that enables learning contextualized action representations in
the deep RL literature. AC-CAR also advances causal language
modeling by offering a way to incorporate evasiveness for ad-
versarial applications.

Through rigorous evaluations, we showed that AC-CAR gen-
erates evasive and benign-looking byte sequences that lead to
the state-of-the-art performance in the AMG literature. In our
experiments and case study, we investigated the generalizability
of AC-CAR to different malware detectors, payload sizes, and
to new malware samples for both MalConv and GBDT. Further-
more, our case study demonstrated AC-CAR’s practical value
in enhancing robustness against adversarial malware variants.

Further research is needed to enhance the adversarial modi-
fications to support editing actions that can rewrite parts of the
malware executable while preserving its functionality. Applying
these modifications is challenging since they tend to affect the se-
mantics of the executable and yield corrupt (i.e., non-executable)
malware variants. Recent advances in de-compilation tools and
reverse engineering methods contribute to this stream of research
for achieving more powerful AMG methods. Another promising
future direction is designing explainable attack methods that
may slightly sacrifice performance to gain more practical utility.

ACKNOWLEDGMENT

The authors thank VirusTotal for providing the academic
license to access the malware dataset and APIs for malware

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMI et al.: LEARNING CONTEXTUALIZED ACTION REPRESENTATIONS IN SEQUENTIAL DECISION MAKING

functionality assessment. We would also like to thank Na-
tional Cyber-Forensics and Training Alliance (NCFTA) for their
constructive feedback. We are grateful to Yash Chandak from
the University of Massachusetts for the helpful discussion and
sharing the implementation of their work.

(11

[21

[31

[4]

(51

(6]

(71

(81

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17

[18]

[19]

[20]

[21]

REFERENCES

Executive Office of the President, “The cost of malicious cyber activity
to the U.S. economy,” The Council of Economic Advisers, Tech. Rep.,
Feb. 2018. [Online]. Available: https://www.hsdl.org/?view&did=808776
K. Bissell, R. M. LaSalle, and P. D. Cin, “Ninth annual cost of cybercrime
study: Unlocking the value of improved cybersecurity protection,” Accen-
ture and Ponemon, Mar. 2019. [Online]. Available: https://iapp.org/media/
pdf/resource_center/accenture_cost_of _cybercrime_study_2019.pdf

S. Morgan, “Global ransomware damage costs,” Cybercrime Mag.,
2019. [Online]. Awvailable: https://cybersecurityventures.com/global-
ransomware-damage- costs- predicted-to-reach-20-billion-usd-by-2021/

W. Tounsi and H. Rais, “A survey on technical threat intelligence in the
age of sophisticated cyber attacks,” Comput. Secur., vol. 72, pp. 212-233,
2018.

H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static PE machine learning malware models via reinforcement
learning,” 2018, arXiv: 1801.08917.

B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial examples for
CNN-Based malware detectors,” JEEE Access, vol. 7, pp. 5436054371,
2019.

W. Fleshman, E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Non-
negative netwqus against adversarial attacks,” Stat, vol. 1050, p. 15, 2018.
M. Kréil, O. Svec, M. Bilek, and O. Jadek, “Deep Convolutional Mal-
ware Classifiers Can Learn from Raw Executables and Lables,” in Proc.
Int. Conf. Learn. Representations, Vancouver, Canada, 2018. [Online].
Available: https://openreview.net/forum?id=HkHrmM 1P

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas,
“Malware detection by eating a whole EXE,” in Proc. Workshops 32nd
AAAI Conf. Artif. Intell., Jun. 2018.

Bloomberg, “Symantec unveils industry’s first neural network to
protect critical infrastructure from cyber warfare,” 2018. [Online].
Available: https://www.bloomberg.com/press-releases/2018-12-
05/symantec-unveils-industry-s-first-neural- network-to- protect-critical-
infrastructure-from-cyber-warfare

W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “Automatic
generation of adversarial examples for interpreting malware classifiers,”
2020, arXiv: 2003.03100.

R. Castro, C. Schmitt, and G. D. Rodosek, “ARMED: How automatic
malware modifications can evade static detection?,” in Proc. Int. Conf. Inf.
Manage., 2019, pp. 20-27.

L. Demetrio, B. Biggio, G. Lagorio, F Roli, and A. Armando,
“Functionality-preserving black-box optimization of adversarial windows
malware,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3469-3478,
2021.

Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading anti-
malware engines with deep reinforcement learning,” IEEE Access, vol. 7,
pp. 4886748879, 2019.

D. Han et al., “Practical traffic-space adversarial attacks on learning-based
NIDSs,” 2020, arXiv:2005.07519.

B. Kolosnjaji et al., “Adversarial malware binaries: Evading deep learning
for malware detection in executables,” in Proc. 26th Eur. Signal Process.
Conf., 2018, pp. 533-537.

M. Sharif, K. Lucas, L. Bauer, M. K. Reiter, and S. Shintre, “Optimization-
guided binary diversification to mislead neural networks for malware
detection,” 2019, arXiv. 1912.09064.

O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in Proc. IEEE Secur. Privacy Workshops, 2019,
pp- 8-14.

D. Park, H. Khan, and B. Yener, “Creating adversarial malware examples
using code insertion,” 2019, arXiv: 1904.04802. [Online]. Available: http:
/larxiv.org/abs/1904.04802

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” in Proc. Int.
Conf. Learn. Representations, 2018. [Online]. Available: https://iclr.cc/
Conferences/2018/Schedule?showEvent=67

L. Goodfellow, P. McDaniel, and N. Papernot, “Making machine learning
robust against adversarial inputs,” Commun. ACM, vol. 61, no. 7, pp. 56—
66, 2018.

Authonzed licensed use limited to: University of Arizona. Downloaded on July

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

34

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

2101

F. Ahmed, P. Vaishnavi, K. Eykholt, and A. Rahmati, “Ares: A system-
oriented wargame framework for adversarial ML,” in Proc. IEEE Secur.
Privacy Workshops, 2022, pp. 73-79.
G. Apruzzese, H. S. Anderson, S. Dambra, D. Freeman, F. Pierazzi, and
K. Roundy, ““Real attackers don’t compute gradients™: Bridging the gap
between adversarial ML research and practice.” in Proc. IEEE Conf. Secure
Trustworthy Mach. Learn., 2023, pp. 339-364.
M. Ebrahimi, J. Pacheco, W. Li, J. L. Hu, and H. Chen, “Binary black-box
attacks against static malware detectors with reinforcement learning in
discrete action spaces,” in Proc. IEEE Secur. Privacy Workshops, 2021,
pp. 85-91.
S. Shuvaev, S. Starosta, D. Kvitsiani, A. Kepecs, and A. Koulakov, “R-
learning in actor-critic model offers a biologically relevant mechanism for
sequential decision-making,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2020, pp. 18872—18882.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.
Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. Thomas, “Learn-
ing action representations for reinforcement learing,” Proc. Mach. Learn.
Res., Long Beach, California, USA, PMLR, Jun. 2019, pp. 941-950.
Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy, “Deep rein-
forcement learning for sequence-to-sequence models,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 31, no. 7, pp. 2469-2489, Jul. 2020.
S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence
adversarial attack and defense technologies,” Appl. Sci., vol. 9, no. 5,
pp. 909-938, 2019.
M. Ebrahimi, N. Zhang, J. Hu, M. T. Raza, and H. Chen, “Binary black-box
evasion attacks against deep learning-based static malware detectors with
adversarial byte-level language model.” in Proc. AAAI Workshop Robust,
Secure, Efficient Mach. Learn., 2021.
A. Abusnaina, Y. Wang, S. Arora, K. Wang, M. Christodorescu, and D.
Mohaisen, “Burning the adversarial bridges: Robust windows malware
detection against binary-level mutations,” 2023, arXiv:2310.03285.
W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “MAB-
malware: A reinforcement learning framework for blackbox generation of
adversarial malware,” in Proc. ACM Asia Conf. Comput. Commun. Secur.,
2022, pp. 990-1003.
A. Abusnaina et al., “DL-FHMC: Deep learning-based fine-grained hi-
erarchical learning approach for robust malware classification,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 5, pp. 3432-3447,
Sep./Oct. 2022.
O. Kargarnovin, A. M. Sadeghzadeh, and R. Jalili, “MAL2GCN: A robust
malware detection approach using deep graph convolutional networks with
non-negative weights,” J. Comput. Virol. Hacking Techn., vol. 20, no. 1,
pp. 95-111, 2024.
Y. Kucuk and G. Yan, “Deceiving portable executable malware classifiers
into targeted misclassification with practical adversarial examples,” in
Proc. 10th ACM Conf. Data Appl. Secur. Privacy, 2020, pp. 341-352.
T. D. Phan et al., “Leveraging reinforcement learning and generative ad-
versarial networks to craft mutants of windows malware against black-box
malware detectors,” in Proc. 11th Int. Symp. Inf. Commun. Technol., 2022,
. 31-38.
EpRosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-box
end-to-end attack against state of the art API call-based malware clas-
sifiers,” in Proc. Int. Symp. Res. Attacks, Intrusions, Defenses, Springer,
2019, pp. 490-510.
W. Hu and Y. Tan, “Black-box attacks against RNN based malware detec-
tion algorithms,” in Proc. AAAI Conf. Artif. Intell., Palo Alto, CA,USA,
2018, pp. 245-255.
Y. Li, Y. Wang, Y. Wang, L. Ke, and Y.-A. Tan, “A feature-vector gener-
ative adversarial network for evading PDF malware classifiers,” Inf. Sci.,
vol. 523, pp. 3848, 2020.
S. Dey, A. Kumar, M. Sawarkar, P. K. Singh, and S. Nandi, “EvadePDF:
Towards evading machine learning based PDF malware classifiers,” in
Proc. Int. Conf. Secur. Privacy, Springer, 2019, pp. 140-150.
M. L. Littman, “Algorithms for sequential decision making,” PhD Thesis,
Dept. Comput. Sci., Brown Univ., Providence, RI, 1996.
M. Fellows, A. Mahajan, T. G. Rudner, and S. Whiteson, “VIREL: A
variational inference framework for reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 7120-7134.
S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function ap-
proximation error in actor-critic methods,” in Proc. 35th Int. Conf.
Mach. Learn., Stockholmsmissan, Stockholm Sweden, PMLR, 2018,
pp. 1587-1596.
T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor,” in Proc. Int. Conf. Mach. Learn., 2018,

1856186
fﬁ? 2025 at 19: 19 56 UTC from IEEE Xplore. Restrictions apply.

2102

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

541

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 3, MAY/JUNE 2025

Z. Wang et al., “Sample efficient actor-critic with experience replay.” in
Proc. Int. Conf. Learn. Representations, 2017. [Online]. Available: https:
/lopenreview.net/forum?id=HyM25Mgel

S. Sharma, A. Suresh, R. Ramesh, and B. Ravindran, “Learning to factor
policies and action-value functions: Factored action space representations
for deep reinforcement learning,” 2017, arXiv:1705.07269.

G. Dulac-Arnold et al., “Deep reinforcement learning in large discrete
action spaces,” 2016, arXiv:1512.07679.

J. Jing, E. C. Cropper, I. Hurwitz, and K. R. Weiss, “The construction of
movement with behavior-specific and behavior-independent modules,” J.
Neurosci., vol. 24, no. 28, pp. 6315-6325, 2004.

J. Merel et al., “Neural probabilistic motor primitives for humanoid con-
trol,” in Proc. Int. Conf. Learn. Representations, 2018.

T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor, “Learn
what not to learn: Action elimination with deep reinforcement learning,” in
Proc. Neural Inf. Process. Syst., Montreal, Canada, 2018, pp. 3566-3577.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” 2018, arXiv:
1810.04805.

Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining ap-
proach,” 2019, arXiv:1907.11692.

Z. Yang et al., “XLNet: Generalized autoregressive pretraining for
language understanding.” in Proc. Adv. Neural Inf. Process. Syst.,
Curran Associates, Inc., 2019, pp. 5753-5763. [Online]. Available: https:
//proceedings.neurips.cc/paper/2019/file/dc6a7e655d 7e5840e66733e9ee
67cc69-Paper.pdf

T. B. Brown et al., “Language models are few-shot learners,” 2020, arXiv:
2005.14165.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018. [Online]. Avail-
able: https://openai.com/blog/language-unsupervised

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and L
Sutskever, “Language models are unsupervised multitask learners,” 2019.
[Online]. Available: https://openai.com/blog/better-language-models

H. S. Anderson and P. Roth, “EMBER: An open dataset for training static
PE malware machine learning models,” 2018, arXiv: 1804.04637.

J. Saxe and K. Berlin, “Deep neural network based malware detection using
two dimensional binary program features,” in /0th Int. Conf. Malicious
Unwanted Softw. (MALWARE), 1EEE, 2015, pp. 11-20.

A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,”
in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, Melbourne,
Australia, 2018, pp. 889-898. [Online]. Available: https://www.aclweb.
org/anthology/P18-1082

A. Kyadige, E. M. Rudd, and K. Berlin, “Learning from con-
text: A multi-view deep learning architecture for malware detection,”
in Proc. IEEE Secur. Privacy Workshop, 2020, pp. 1-7. [Online].
Available: https://ai.sophos.com/presentations/learning-from-context-a-
multi-view-deep-learning-architecture-for-malware-detection/

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
*“{TESSERACT }: Eliminating experimental bias in malware classifica-
tion across space and time,” in Proc. 28th {USENIX} Secur. Symp., 2019,
pp- 729-746.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Are your training
datasets yet relevant?,” in Proc. Eng. Secure Softw. Syst., Cham, Springer
International Publishing, 2015, pp. 51-67.

H. Anderson, “Malware evasion competition,” 2019. [Online].
Available: https://www.elastic.co/blog/machine-leamning-static-evasion-
competition

H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by morphing in
the dark.” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 119-133,

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proc. Adv. Neural Inf. Process. Syst., MIT Press, 1999, pp. 1057-1063.
[Online]. Available: https://proceedings.neurips.cc/paper/1999/file/464d
828b85b0bed98e80ade0a5c43b0f-Paper.pdf

J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for
word representation,” in Proc. Empirical Methods Natural Lang. Process.,
2015, pp. 1532-1543.

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt
order sensitivity,” 2021, arXiv:2104.08786.

T. Huang, J. Chu, and F. Wei, “Unsupervised prompt learning for vision-
language models,” 2022, arXiv:2204.03649.

Z. Wang, A. W. Yu, O. Firat, and Y. Cao, “Towards zero-label language
learning,” 2021, arXiv:2109.09193.

[70] N. Papernot and P. D. McDaniel, “Extending defensive distillation,”
2017, arXiv: 1705.05264. [Online]. Available: http://arxiv.org/abs/1705.
05264

Reza Ebrahimi (Senior Member, IEEE) received the
master’s degree in computer science from Concordia
University, Canada, in 2016, and the PhD degree
from the University of Arizona. He is an assistant
professor and the founder of Star-AI Lab with the
School of Information Systems and Management at
the University of South Florida. He was a research
associate with the Artificial Intelligence (AI) Lab,
in 2021. His dissertation on Al-enabled cybersecu-
rity analytics won the ACM SIGMIS best doctoral
dissertation award, in 2021. His research focuses on
adversarial machine learning for Al-enabled secure and trustworthy cyberspace.
Reza has published more than 30 articles in peer reviewed security venues
including NeurIPS, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on Dependable and Secure Computing, IEEE S&PW,
Applied Artificial Intelligence, AAAIW, IEEE ICDMW, Digital Forensics, and
IEEE Intelligence and Security Informatics. He has been serving as a program
chair and program committee member in IEEE ICDM Workshop on Machine
Learning for Cybersecurity (MLC) and IEEE S&P Workshop on Deep Learning
and Security (DLS).

Jason Pacheco received the PhD degree in computer
science from Brown University with Erik Sudderth.
He is an assistant professor with the Department of
Computer Science, University of Arizona in Tucson
Arizona. He received the Air Force Office of Scien-
tific Research (AFOSR) Young Investigator Program
(YIP) award for Robust Maximum Entropy Planning,
Learning, and Control in Uncertain Environments.
He also held a postdoc position with MIT CSAIL
with John Fisher III. His work has been published in
top tier venues such as IEEE/CVF CVPR, NeurlIPS,
ICML, IEEE S&PW and AISTAT. His research interest lies in statistical machine
learning, sequential decision making, and probabilistic graphical models to
be used in a variety of domains including computer vision, cybersecurity,
computational biology, and computational neuroscience.

James Hu (Member, IEEE) received the BS degree
in management information systems from the Uni-
versity of Arizona. He is currently working toward
the PhD degree with the Artificial Intelligence (AI)
Lab, University of Arizona. His research interests are
in the application of adversarial machine learning
to cybersecurity domains including static malware
analysis, adversarial malware generation, safety of
foundation AI models, and attacking and jailbreaking
of large language models (e.g., ChatGPT). His work
on adversarial malware generation has been published
in IEEE ISI and IEEE ICDM Workshops.

Hsinchun Chen (Fellow, IEEE) received the BS de-
gree from the National Chiao-Tung University, Tai-
wan, the MBA degree from the State University of
New York at Buffalo, and the PhD degree in infor-
mation systems from New York University. He is a
regents professor with the University of Arizona. He
is also a fellow of ACM, AAAS, and AIS. He received
the IEEE Computer Society Technical Achievement
Award, in 2006, the IEEE Big Data Security Pioneer
Award, and the Extraordinary Faculty Award, in 2022.
He founded the Artificial Intelligence (AI) Lab at The
University of Arizona, in 1989, which has received $60M+ research funding
from NSF, NIH, NLM, DOD, DOJ, CIA, DHS, and other agencies (100+ grants,
50+ from NSF, as PI). He has served as editor-in-chief, senior editor or associate
editor of [IEEE/ACM journals (JEEE Information Systems, IEEE Transactions on
Systems, Man, and Cybernetics, ACM Transactions on Management Information
Systems, ACM Transactions on Information Systems). His COPLINK system,
which has been quoted as a national model for public safety information
sharing and analysis, has been adopted in more than 550 law enforcement
and intelligence agencies in 20 states. He is the director of the UA AZSecure
Cybersecurity Program, which has been supported by NSF SFS, SaTC, and CICI
programs and has received CAE-CD/CAE-R cybersecurity designations from
NSA/DHS.

Authonzed licensed use limited to: University of Arizona. Downloaded on July 29,2025 at 19:19:56 UTC from IEEE Xplore. Restrictions apply.

