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ABSTRACT: Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules.
The direct allylic C—H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the
requirement for an allylic leaving group as in the classical Tsuji—Trost reaction. However, current methods suffer from limited
scope—often accompanied by selectivity issues—thus hampering further development. Herein we report a photocatalytic platform
as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other O-
nucleophiles, typically in a highly regio- and diastereoselective manner.

llylic ethers and carboxylates are valuable motifs in
organic molecules as both end products and synthetic
intermediates.” In particular, branched allylic ethers and

Scheme 1. Background and Methods for Allylic C—O Bond
Formation via Palladium Catalysis

®—————— a Allylic ethers and carboxylates represented in bioactive molecules ———@

carboxylates are frequently found in natural products, bioactive Moo AcO
molecules, and FDA-approved medicines (Scheme 1a). Thus,

various methods have been developed toward branched allylic
oxygenated molecules.” Among them, the palladium-catalyzed
Tsuji—Trost reaction represents one of the most powerful and
robust methods, offering high levels of regio- and stereocontrol
with numerous applications in synthesis (Scheme 1b, left).’
However, accessing prefunctionalized alkenes bearing a leaving

O OH
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scope of this approach. The direct intermolecular allylic C—H 0 el developed T Underdevefoped 11

functionalization of alkenes has therefore become a topic of

broad interest. In thiS regard terminal alkenes have been ®—— c This work: General and selective allylic C-H oxygenation of internal alkkenes ——e@
. )

extensively utilized over the years toward the coupling with AT
carboxylic acids, alcohols, and other O-nucleophiles such as H ROH OR
; . ; . 45 o

ketoximes, typically leading to linear products.”” However, o 7 —( ‘ml\;_ o | — o)
much less progress has been made with respect to internal “ —=/ n S

. X n ArBr Homolytic activation (0
alkenes, which are much more common and important Blue LED via aryl radical
(Scheme 1b, right). While nonfunctionalized alkenes, for

Previous methods This work

instance cyclohexene, have been routinely employed as

. . . Alkene scope
substrates, the incorporation of more complex alkenes is met

) . +/ Non-functionalized substrates +/ Non-functionalized substrates
with challenges, such az low functional group tolerance and % Styrenes  Styrenes
ey 7 . - q

product decompos]t]on, ! Bes]des’ these methods rely on an 8 Electron-deficient alkenes +/ Electron-deficient alkenes
electrophilic Pd(II) catalyst to activate the allylic C—H bond, Nucleophile scope

: . Carboxylic acid Carboxylic acid
rendering the engagement of electron-deficient substrates et M

> . . . ® Phenols +/ Phenols

much more challenging. Regarding the nucleophile coupling ® Other O-nudleophies ) @ @
partner, feedstock carboxylic acids, such as acetic acid, were Regio- & diastereoselectivity
first utilized, often in the form of a solvent in allylic C—H % Low +/ High

oxygenation. However, the requirement of harsh conditions
has prevented further development toward more complex
carboxylic acids or other nucleophile classes.’

In addition to their narrow scope, selectivity issues have also
hampered the advance of the field. Thus, substituted alkenes
often yield products with unsatisfactory regio- and diaster-
eoselectivities, which is likely a consequence of competing
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Wacker mechanism or alkene isomerization.’”® Taken
together, these drawbacks have largely restricted the chemical
space accessible through the current approaches. Herein we
report a general solution to the above-mentioned limitations
empowered by homolytic activation of alkenes via photo-
catalytically generated aryl radical (Scheme 1c). Our protocol
provides a platform for the coupling of carboxylic acids,
phenols, and other O-nucleophiles with a wide range of alkenes
with varied substitution patterns and electronic properties.
Notably, cyclic substituted alkenes can be functionalized in a
regio- and stereoselective fashion, thus offering an expedient
approach toward complex scaffolds.

Recently, we developed an intermolecular allylic C—H
amination reaction of internal alkenes® via palladium photo-
catalysis.” While this protocol proved to be efficient with
amines, it was unclear whether the less nucleophilic oxygen-
based counterparts could be employed. Besides, cyclopentene
and cyclohexene represent the only cyclic substrates studied in
our previous work.” We commenced our studies with 3-tert-
butylcyclohexene (1) usmg phenol as the nucleophile toward
allylic ether 3 (Table 1)."” This substrate was selected to probe

Table 1. Optimization Studies”

[Pd] (10 mol%)
Ligand
OH ArBr (2.0 eq.)
Q CSZCO3 (2.0eq.)
¥
Solvent (0.5 M) @ Q
t-Bu rt, 16h
Blue LED t-Bu
1,1.5eq. 2 3, cis 3, (rans
ArBr
Br
i-Pr i-Pr Br
i-Pr
Br1 Br2
ligand
entry [Pd] (mol %) ArBr solvent® yield (%), dr
1 Pd(PPhy), - Brl PhCN/SFL 35, 6:1
2:1
2 Pd(PPh;), — Br2

PhCN/SFL 66, 6:1
2:1

3" Pd(PPh;), Xantphos Br2 PhCN/SFL 71, 6:1

4) 2:1
4 Pd(PPh;), Xantphos Br3—5 PhCN/SFL <30

(4) 2:1

5 Pd(TFA), PPh, (40)  Br2 PhCN/SFL 89, 5:1
2:1

6 Pd(TFA), PPh, (40)  Br2 PhCN 73, 9:1

7°  PA(TFA), PPh, (40)  Br2 PhCN 82 (74%),

15:1

#0.1 mmol scale; yields and dr determined by GC-MS. 2.0 equiv of
1. “Reaction run at 5 °C. “Isolated yield. “SFL, sulfolane.

the efficiency as well as regio- and diastereoselecontrol of the
C—O bond formation reaction. Using Pd(PPh,), as the
catalyst and Brl as the aryl radical source, we observed the
formation of 3 in a promising yield of 35%, albeit with
moderate diastereomeric ratio (entry 1). Additional screening
revealed electron-deficient Br2 as the most eflicient hydrogen
atom transfer (HAT) agent, while introduction of an
additional ligand was found to be ineffective (entries 2—4).
Employment of another palladium precursor led to higher yield
(entry S). Finally, switching the solvent to benzonitrile (entry
6) and lowering the reaction temperature (entry 7)
substantially improved the diastereoselectivity. Notably, in all

cases, the reaction of 1 with 2 proceeded with perfect
regiocontrol.

With the optimized conditions in hand, we embarked on
investigation of the alkene scope (Scheme 2). Simple cyclic
alkenes of different ring sizes reacted efficiently to deliver the
corresponding cyclic ethers (4—6). Styrene derivatives also
underwent smooth transformation under reaction conditions
modified from our previous work (7—10).° Likewise, a
benzothiophene core could also be incorporated (11).
Notably, electron-deficient alkenes could also be chemo-
selectively functionalized at the allylic position, despite a
potential Michael addition side reaction (12). Encouraged by
these results, we moved on to probe the regioselectivity of this
process in systems possessing multiple allylic C—H sites. To
our delight, both activated and unactivated cyclic alkenes
furnished products with good to exclusive regioselectivity,
likely due to a site-selective HAT step (13—16). Likewise,
linear alkenes 17 and 18 delivered the respective allylic ethers
as single regioisomers (19, 20). Interestingly, a site-selective
HAT /regioselective etherification cascade of azacycle 21 led to
enamine derivative 22 as the sole product in good yield.
Subsequently, the ring size and substituent effects on the
diastereomeric outcome were examined. The cyclopentene
analogue of substrate 1 was equally reactive and afforded
product 23 with improved diastereoselectivity. A substrate
bearing a tertiary alcohol moiety underwent selective C—H
etherification to give 24 as a single diastereomer. However,
reactions employing phenyl- and cyclopentyl-substituted
cyclohexenes provided products with diminished selectivity,
presumably due to lower steric hindrance (25, 26). Notably,
N-based substitutents were also compatible, thereby providing
entry to various 1,4-amino ethers in a stereocontrolled manner
(27, 28). Doubly substituted alkenes were also found to be
viable reaction partners. Thus, allylic ethers derived from fused
rings (29), tertiary allylic alcohols (30—32), and a bisamide
(34) were obtained in moderate to good vyields and
diastereoselectivities. Last but not least, a highly both regio-
and diastereoselective reaction was achieved through the
sequence of site-selective HAT and diastereoselective C—O
bond formation (35). As a general observation, switching the
aryl bromlde did not affect the regioselectivity of the
reaction.'” A brief survey of phenol scope (34—41) revealed
that a high level of stereocontrol could be maintained upon
introduction of either electron-donating or -withdrawing
substituents (36—39). An example of a heterocycle was also
demonstrated (43). In cases where moderate yields were
obtained, unreacted phenols were typically observed, indicating
good mass balance. Since prolonged reaction time did not
improve phenol conversion, the moderate yields could be due
to catalyst deactivation/decomposition. It is also worth
mentioning that alkenes could undergo consecutive HAT
leading to desaturation side products.

In addition to phenols, both aliphatic and aromatic
carboxylic acids were found to be competent reaction partners
(44—5S). Notably, carboxylic acids bearing other pendent
nucleophiles underwent chemoselective allylic C—H carbox-
ylation (49, 50). As in the case of phenols, regio- and/or
diastereoselective processes could be achieved (53—55).

The moderate yields could be explained by competitive
HAT from dioxane solvent, eventually leading to side product
formation via a radical—polar crossover (RPC) scenario."’ Our
preliminary results also validated the possibility of employing
other O-nucleophiles, such as aliphatic alcohols and oximes
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Scheme 2. Allylic C—H Oxygenation of Internal Alkenes
ArBr H Conditions A Conditions B Conditions C Conditions D
Br Br o Pd(TFA), (10 mol%)  Pd(PPhs), (10 mol%)  Pd(OAc); (10 mol%)  Pd(PPhs), (10 mol%)
-Pr. -Pr FsC CF3 Conditions PPh; (40 mol%) rac-BINAP (15 mol%)  P(2-Furyl); (10 mol%) Br2 (2.0 eq.)
+ ROH Br2 (2.0 eq.) Br1 (2.0 eq.) rac-BINAP (15 mol%) K»COj (2.0 eq.)
— o o
L 5°Corrt. N Cs,CO5 (2.0 eq.) Cs,CO; (2.0 eq.) Br2 (2.0 eq.) 1,4-Dioxane (0.5 M)
n 16-24 h n PhCN (0.5 M) PhH (0.5 M) Cs,CO5 (2.0 eq.)
Pr Br Br2 Blue LED PhH (0.25 M)
AT : Phenols [A]
ene classes
OPh OPh OPh tBu OMe
OPh CRINNS S N EtN__
- b XN Ph | o] o]
4,n=1,78% [A] H  7,56% [B] o
\ 5,n =2, 63% [A]° OEt 8,60% [B] S
i 6,n =3, 42% [A]° CO,Me 9,62% [B] 10, 49%, 18:1 E:Z [B]° 11, 63% [A] 12, 31% [A]
Regloselectlve etherification
t-Bu  36,39% t-Bu  37,51%, 10:1 dr
O Fs COEt
/J /Q\. N /©/ /©/
NEt, Eto2 I|300 \ o
Cy 19, 70% [B]
13,57% [A]  14,48%, 11:1 rr[C] 15, 59% [A] 16, 40% [A] 17-18 Homoallyl 20, 63% [B] 21 22, 66% [C]
Diastereoselective etherification tBu 38,41% tBu 39, 48%
OPh
OPh OPh
OPh OPh OPh F (o]
e 0 0 b &7
8 OH Ph NPhth phe N Boc
23, 70%, 18:1 dr[A] 24,44%[A]  25,62%, 10:1dr[A]  26,60%, 3:1 dr[A] 27, 60% [A] 28,51% [A] 29, 60% [C] tBu 40, 52% Bu 41, 63%
OPh OPh Regio- & diastereoselective Ph
OPh etherification /©/
Ph
‘ o e} o} N
et -
OH
d - CyoN__
n-Bu OH O s jol
30, 50% [C] 31, 60% [C] 32, 75%, 6.5:1 dr [C] 33 34, 32% [A] 35, 44% [A] t-Bu  42,64% t-Bu 43, 45%
Carboxylic acids [D]
CF3 Other O-nucleophiles [A]
i @/ " - -
P bl i
e o % )i ) )
mBu 44, 76% NBoc NHBoc 0 0 0
+Bu 45,42%
Ph 46, 34% 47, 58% 48, 45% 49, 49% 50, 54%9
t-Bu 56, 55%" 57, 53% 58, 75% 59, 44%
o o
Intramolecular variant [C]®
o o Jw /\)k []
/lk Et /lk [e] Bn Bn (0] o o o
0”7 tBu V/ —_— 0" tBu Ho,
OH R e}
Ph/\)\ Ph ph/\/K/ Et CyaN o
| 55, 33%
51, 65% [B]° 52 53, 48% [B]° tBu  54,44% [C]° o 18:1 dr [D)
60-61 62, 40% 63,43%
Natural product & drug derivatives OMe
Alkenes [A] Phenols [A] (o} Carboxylic acids [D]
o
. N " 70, 71%¢
L Z O 67, 40% Naproxen
0o N OMe
p7 'soxepac
eve 0 ;5 00
K/N\“ (0] Ph
! AT
t-Bu H
-Bu OH g
64, 49% 65, 35% 66, 42%, 3:1 dr 68, 51%%9 69, 58% 71, 41% [C]¢
Norquetiapine derivative Tryptamine derivative Estrone Taxol fragment Indomethacin t-Bu Naproxen

“Conditions: 0.2—0.4 mmol scale, 1.0—3.0 equiv of alkene. Isolated yields are reported. dr > 20:1 unless otherwise specified. “PhH instead of
PhCN. “Without rac-BINAP; Br2 instead of Brl. “1:1 dr. °K,CO; instead of Cs,CO;. FSFL as the solvent. £5.0 equiv of alkene.

(56—59). Importantly, the intramolecular variant was also
feasible, thus enabling access to highly functionalized bicyclic
lactones (62, 63).

To verify whether the efficiency and the highly selective
nature of this process could be translated to more complex
settings relevant to late-stage functionalization, we tested our
protocol using bioactive molecules or their derivatives. Thus,
allylic ether 64 was obtained as the exclusive isomer from the
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corresponding complex alkene. Likewise, a tryptamine-derived
phenol and estrone were allylated with high to moderate
diastereocontrol (65, 66). Finally, several complex carboxylic
acids proved to be reactive coupling partners (67—70) and
were amenable to stereoselective transformations (71).
Several experiments were performed to elucidate the
mechanism of this transformation. Thus, the role of aryl
bromide as a quencher was confirmed by Stern—Volmer

https://doi.org/10.1021/jacs.4c06421
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studies.'” Interestingly, Br2 was a significantly better quencher
of photoexcited Pd(0) compared to Brl, clearly indicating that
the reactivity of the aryl bromide could be tuned by varying the
steric and electronic parameters. The subsequent aryl radical
formation from Br2 was supported by a radical probe
experiment using vinylcyclopropane 72, which underwent
radical ring opening to give 73 upon aryl radical addition
(Scheme 3a). Furthermore, HAT to aryl radical was

Scheme 3. Mechanistic Studies

a Radical probe experiment

Pd(PPhs)s (10 mol%
052003 (2.0eq.)

CO,Et

@fNCOZEt
CF3; 73,33%

d-74,>95% D

o

75, 63%

CO,Et

COEt +

Br2
PhH (0.5 M),
16 h, Blue LED

72 2.0 eq.

b Deuterium labeling experiment

Pd(PPha), (10 mol%

C82CO3 (2.0eq.)

FsC CF3

THF- d8 (0.5 M),
16 h, Blue LED

Br2 ~60% conv.

c Radical trap experiment

O -y HE

5.0 eq. TEMPO

Pd(PPhg), (10 mol%)
Br2 (2.0 eq.)

C52C03 (2.0eq.)

PhH (0.5 M),
16 h, Blue LED

established by a deuterium labeling experiment (Br2 — d-
74) using THF-dg as the solvent (Scheme 3b). Additionally,
the formation of TEMPO-trapped adduct 75 provided further
support for involvement of radical intermediates (Scheme 3c).

Based on the preliminary mechanistic studies and literature
precedents, we propose the following mechanism for this allylic
C—H oxygenation reaction (Scheme 4). First, the photoexcited

Scheme 4. Proposed Reaction Mechanism

5]

ho
L,Pd® —

n L pdo ArBr

allylic \( +/ Stern-Volmer studies
ROH substitution SET 4 +/ Radical probe experiment

/\ Pd'L,X Pd 0/l \
o )/ cycle LnF'd‘X Ar+ H
nC
\ %
I HAT
RPC L"Pd% « "
o~ .T w / Deuterium labeling

n Ar—H
B

+/ Radical trap experiment

Pd(0) catalyst engages the aryl bromide in a single electron
transfer (SET) event to generate hybrid aryl Pd(I) radical
A,”"? which is capable of HAT from the alkene substrate to
produce more stable allyl radical species B.*'>"* A subsequent
RPC event leads to the formation of classical, closed-shell 7-
allyl Pd(II) complex C,"* which upon allylic substitution with
an O-nucleophile furnishes the desired product, meanwhile
regenerating the Pd(0) catalyst.”

In conclusion, we have developed a versatile platform for the
allylic C—H oxygenation of internal alkenes. Through
switching from the conventional electrophilic mode to a
photoinduced homolytic activation mode, the alkene scope
was substantially expanded with respect to both substitution

18221

patterns and electronic properties. It also allows for the
employment of O-nucleophiles beyond carboxylic acids, such
as phenols and derivatives, which remains unprecedented to
date. The high variability in both coupling partners enables the
assembly of a broad range of differently substituted allylic
ethers and carboxylates, typically in highly regio- and
diastereoselective fashion.
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