

pubs.acs.org/JACS Communication

General Regio- and Diastereoselective Allylic C—H Oxygenation of Internal Alkenes

Kyohei Yamada, Kelvin Pak Shing Cheung, and Vladimir Gevorgyan*

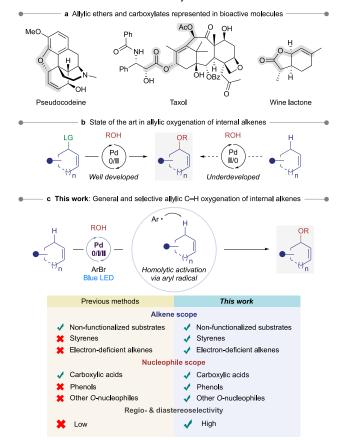
Cite This: J. Am. Chem. Soc. 2024, 146, 18218–18223

Read Online

ACCESS I

Metrics & More

Article Recommendations


Supporting Information

ABSTRACT: Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules. The direct allylic C–H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the requirement for an allylic leaving group as in the classical Tsuji—Trost reaction. However, current methods suffer from limited scope—often accompanied by selectivity issues—thus hampering further development. Herein we report a photocatalytic platform as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other *O*-nucleophiles, typically in a highly regio- and diastereoselective manner.

llylic ethers and carboxylates are valuable motifs in Aorganic molecules as both end products and synthetic intermediates. In particular, branched allylic ethers and carboxylates are frequently found in natural products, bioactive molecules, and FDA-approved medicines (Scheme 1a). Thus, various methods have been developed toward branched allylic oxygenated molecules.² Among them, the palladium-catalyzed Tsuji-Trost reaction represents one of the most powerful and robust methods, offering high levels of regio- and stereocontrol with numerous applications in synthesis (Scheme 1b, left).³ However, accessing prefunctionalized alkenes bearing a leaving group at the allylic position often requires extra synthetic effort and sometimes can be challenging, eventually limiting the scope of this approach. The direct intermolecular allylic C-H functionalization of alkenes has therefore become a topic of broad interest. In this regard, terminal alkenes have been extensively utilized over the years toward the coupling with carboxylic acids, alcohols, and other O-nucleophiles such as ketoximes, typically leading to linear products. 4,5 However, much less progress has been made with respect to internal alkenes, which are much more common and important (Scheme 1b, right). While nonfunctionalized alkenes, for instance cyclohexene, have been routinely employed as substrates, the incorporation of more complex alkenes is met with challenges, such as low functional group tolerance and product decomposition.^{6,7} Besides, these methods rely on an electrophilic Pd(II) catalyst to activate the allylic C-H bond, rendering the engagement of electron-deficient substrates much more challenging. Regarding the nucleophile coupling partner, feedstock carboxylic acids, such as acetic acid, were first utilized, often in the form of a solvent in allylic C-H oxygenation. However, the requirement of harsh conditions has prevented further development toward more complex carboxylic acids or other nucleophile classes.⁶

In addition to their narrow scope, selectivity issues have also hampered the advance of the field. Thus, substituted alkenes often yield products with unsatisfactory regio- and diastereoselectivities, which is likely a consequence of competing

Scheme 1. Background and Methods for Allylic C-O Bond Formation via Palladium Catalysis

Received: May 10, 2024 Revised: June 20, 2024 Accepted: June 24, 2024 Published: June 26, 2024

Wacker mechanism or alkene isomerization. 6c,d Taken together, these drawbacks have largely restricted the chemical space accessible through the current approaches. Herein we report a general solution to the above-mentioned limitations empowered by homolytic activation of alkenes via photocatalytically generated aryl radical (Scheme 1c). Our protocol provides a platform for the coupling of carboxylic acids, phenols, and other *O*-nucleophiles with a wide range of alkenes with varied substitution patterns and electronic properties. Notably, cyclic substituted alkenes can be functionalized in a regio- and stereoselective fashion, thus offering an expedient approach toward complex scaffolds.

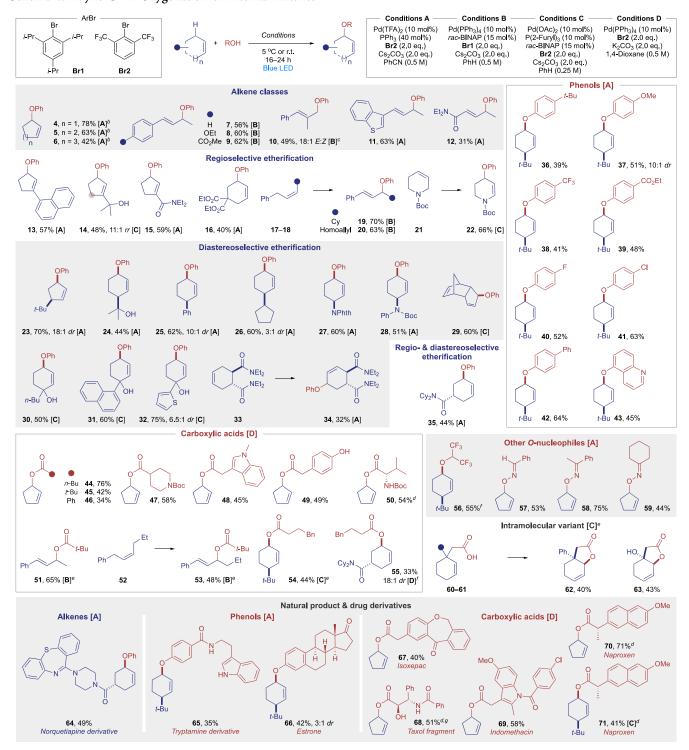
Recently, we developed an intermolecular allylic C–H amination reaction of internal alkenes⁸ via palladium photocatalysis.⁹ While this protocol proved to be efficient with amines, it was unclear whether the less nucleophilic oxygen-based counterparts could be employed. Besides, cyclopentene and cyclohexene represent the only cyclic substrates studied in our previous work.⁸ We commenced our studies with 3-tert-butylcyclohexene (1) using phenol as the nucleophile toward allylic ether 3 (Table 1).¹⁰ This substrate was selected to probe

Table 1. Optimization Studies^a

entry	[Pd]	ligand (mol %)	ArBr	solvent ^e	yield (%), dr
1 ^b	Pd(PPh ₃) ₄	_	Br1	PhCN/SFL 2:1	35, 6:1
2	Pd(PPh ₃) ₄	_	Br2	PhCN/SFL 2:1	66, 6:1
3 ^b	Pd(PPh ₃) ₄	Xantphos (4)	Br2	PhCN/SFL 2:1	71, 6:1
4 ^b	Pd(PPh ₃) ₄	Xantphos (4)	Br3-5	PhCN/SFL 2:1	<30
5	Pd(TFA) ₂	PPh ₃ (40)	Br2	PhCN/SFL 2:1	89, 5:1
6	$Pd(TFA)_2$	PPh ₃ (40)	Br2	PhCN	73, 9:1
7 ^c	Pd(TFA) ₂	PPh ₃ (40)	Br2	PhCN	82 (74 ^d), 15:1

^a0.1 mmol scale; yields and dr determined by GC-MS. ^b2.0 equiv of 1. ^cReaction run at 5 °C. ^dIsolated yield. ^eSFL, sulfolane.

the efficiency as well as regio- and diastereoselecontrol of the C-O bond formation reaction. Using Pd(PPh₃)₄ as the catalyst and **Br1** as the aryl radical source, we observed the formation of 3 in a promising yield of 35%, albeit with moderate diastereomeric ratio (entry 1). Additional screening revealed electron-deficient **Br2** as the most efficient hydrogen atom transfer (HAT) agent, while introduction of an additional ligand was found to be ineffective (entries 2–4). Employment of another palladium precursor led to higher yield (entry 5). Finally, switching the solvent to benzonitrile (entry 6) and lowering the reaction temperature (entry 7) substantially improved the diastereoselectivity. Notably, in all


cases, the reaction of 1 with 2 proceeded with perfect regiocontrol.

With the optimized conditions in hand, we embarked on investigation of the alkene scope (Scheme 2). Simple cyclic alkenes of different ring sizes reacted efficiently to deliver the corresponding cyclic ethers (4-6). Styrene derivatives also underwent smooth transformation under reaction conditions modified from our previous work (7-10). Likewise, a benzothiophene core could also be incorporated (11). Notably, electron-deficient alkenes could also be chemoselectively functionalized at the allylic position, despite a potential Michael addition side reaction (12). Encouraged by these results, we moved on to probe the regioselectivity of this process in systems possessing multiple allylic C-H sites. To our delight, both activated and unactivated cyclic alkenes furnished products with good to exclusive regioselectivity, likely due to a site-selective HAT step (13-16). Likewise, linear alkenes 17 and 18 delivered the respective allylic ethers as single regioisomers (19, 20). Interestingly, a site-selective HAT/regioselective etherification cascade of azacycle 21 led to enamine derivative 22 as the sole product in good yield. Subsequently, the ring size and substituent effects on the diastereomeric outcome were examined. The cyclopentene analogue of substrate 1 was equally reactive and afforded product 23 with improved diastereoselectivity. A substrate bearing a tertiary alcohol moiety underwent selective C-H etherification to give 24 as a single diastereomer. However, reactions employing phenyl- and cyclopentyl-substituted cyclohexenes provided products with diminished selectivity, presumably due to lower steric hindrance (25, 26). Notably, N-based substitutents were also compatible, thereby providing entry to various 1,4-amino ethers in a stereocontrolled manner (27, 28). Doubly substituted alkenes were also found to be viable reaction partners. Thus, allylic ethers derived from fused rings (29), tertiary allylic alcohols (30-32), and a bisamide (34) were obtained in moderate to good yields and diastereoselectivities. Last but not least, a highly both regioand diastereoselective reaction was achieved through the sequence of site-selective HAT and diastereoselective C-O bond formation (35). As a general observation, switching the aryl bromide did not affect the regioselectivity of the reaction. 10 A brief survey of phenol scope (34-41) revealed that a high level of stereocontrol could be maintained upon introduction of either electron-donating or -withdrawing substituents (36-39). An example of a heterocycle was also demonstrated (43). In cases where moderate yields were obtained, unreacted phenols were typically observed, indicating good mass balance. Since prolonged reaction time did not improve phenol conversion, the moderate yields could be due to catalyst deactivation/decomposition. It is also worth mentioning that alkenes could undergo consecutive HAT leading to desaturation side products.

In addition to phenols, both aliphatic and aromatic carboxylic acids were found to be competent reaction partners (44–55). Notably, carboxylic acids bearing other pendent nucleophiles underwent chemoselective allylic C–H carboxylation (49, 50). As in the case of phenols, regio- and/or diastereoselective processes could be achieved (53–55).

The moderate yields could be explained by competitive HAT from dioxane solvent, eventually leading to side product formation via a radical—polar crossover (RPC) scenario. 11 Our preliminary results also validated the possibility of employing other *O*-nucleophiles, such as aliphatic alcohols and oximes

Scheme 2. Allylic C-H Oxygenation of Internal Alkenes^a

^aConditions: 0.2–0.4 mmol scale, 1.0–3.0 equiv of alkene. Isolated yields are reported. $dr \ge 20:1$ unless otherwise specified. ^bPhH instead of PhCN. ^cWithout *rac*-BINAP; **Br2** instead of **Br1**. ^d1:1 dr. ^eK₂CO₃ instead of Cs₂CO₃. ^fSFL as the solvent. ^g5.0 equiv of alkene.

(56–59). Importantly, the intramolecular variant was also feasible, thus enabling access to highly functionalized bicyclic lactones (62, 63).

To verify whether the efficiency and the highly selective nature of this process could be translated to more complex settings relevant to late-stage functionalization, we tested our protocol using bioactive molecules or their derivatives. Thus, allylic ether 64 was obtained as the exclusive isomer from the corresponding complex alkene. Likewise, a tryptamine-derived phenol and estrone were allylated with high to moderate diastereocontrol (65, 66). Finally, several complex carboxylic acids proved to be reactive coupling partners (67-70) and were amenable to stereoselective transformations (71).

Several experiments were performed to elucidate the mechanism of this transformation. Thus, the role of aryl bromide as a quencher was confirmed by Stern-Volmer

studies. 10 Interestingly, Br2 was a significantly better quencher of photoexcited Pd(0) compared to Br1, clearly indicating that the reactivity of the aryl bromide could be tuned by varying the steric and electronic parameters. The subsequent aryl radical formation from Br2 was supported by a radical probe experiment using vinylcyclopropane 72, which underwent radical ring opening to give 73 upon aryl radical addition (Scheme 3a). Furthermore, HAT to aryl radical was

Scheme 3. Mechanistic Studies

established by a deuterium labeling experiment (Br2 \rightarrow d-74) using THF- d_8 as the solvent (Scheme 3b). Additionally, the formation of TEMPO-trapped adduct 75 provided further support for involvement of radical intermediates (Scheme 3c).

Based on the preliminary mechanistic studies and literature precedents, we propose the following mechanism for this allylic C–H oxygenation reaction (Scheme 4). First, the photoexcited

Scheme 4. Proposed Reaction Mechanism

Pd(0) catalyst engages the aryl bromide in a single electron transfer (SET) event to generate hybrid aryl Pd(I) radical A,8,12 which is capable of HAT from the alkene substrate to produce more stable allyl radical species B. 8,12,13 A subsequent RPC event leads to the formation of classical, closed-shell π allyl Pd(II) complex C, ¹⁴ which upon allylic substitution with an O-nucleophile furnishes the desired product, meanwhile regenerating the Pd(0) catalyst.³

In conclusion, we have developed a versatile platform for the allylic C-H oxygenation of internal alkenes. Through switching from the conventional electrophilic mode to a photoinduced homolytic activation mode, the alkene scope was substantially expanded with respect to both substitution

patterns and electronic properties. It also allows for the employment of O-nucleophiles beyond carboxylic acids, such as phenols and derivatives, which remains unprecedented to date. The high variability in both coupling partners enables the assembly of a broad range of differently substituted allylic ethers and carboxylates, typically in highly regio- and diastereoselective fashion.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c06421.

Additional experimental data, experimental procedures, and compound characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

Vladimir Gevorgyan - Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States; o orcid.org/0000-0002-7836-7596; Email: vlad@utdallas.edu

Authors

Kyohei Yamada – Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States

Kelvin Pak Shing Cheung - Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c06421

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Institutes of Health (GM120281) for financial support of this work. We also thank the National Science Foundation (CHE-2246075) and the Welch Foundation (Chair, AT-0041) for supporting initial experiments and the UTSA Mass Spectrometry & Protemoics Core Facility for HRMS data acquisition.

REFERENCES

(1) (a) Roughley, S. D.; Jordan, A. M. The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 54, 3451-3479. (b) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chem. Rev. 2003, 103, 2921-2944. (c) Trost, B. M. Metal Catalyzed Allylic Alkylation: Its Development in the Trost Laboratories. Tetrahedron 2015, 71, 5708-5733. (d) Feng, J.; Kasun, Z. A.; Krische, M. J. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J. Am. Chem. Soc. 2016, 138, 5467-5478.

(2) (a) Roggen, M.; Carreira, E. M. Enantioselective Allylic Etherification: Selective Coupling of Two Unactivated Alcohols. Angew. Chem., Int. Ed. 2011, 50, 5568-5571. (b) Koschker, P.; Breit, B. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allene. Acc. Chem. Res. 2016, 49, 1524-1536. (c) Andrus, M. B.; Lashley, J. C. Copper Catalyzed Allylic Oxidation with Peresters. Tetrahedron 2002, 58, 845-866. (d) Nakamura, A.; Nakada, M. Allylic Oxidations in Natural Product Synthesis. Synthesis 2013, 45, 1421-1451. (e) Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S.

Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. *Chem. Rev.* **2018**, *118*, 2636–2679.

- (3) Pàmies, O.; Margalef, J.; Cañellas, S.; James, J.; Judge, E.; Guiry, P. J.; Moberg, C.; Bäckvall, J.-E.; Pfaltz, A.; Pericàs, M. A.; Diéguez, M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. *Chem. Rev.* **2021**, *121*, 4373–4505.
- (4) (a) Chen, M. S.; White, M. C. A Sulfoxide-Promoted, Catalytic Method for the Regioselective Synthesis of Allylic Acetates from Monosubstituted Olefins via C-H Oxidation. J. Am. Chem. Soc. 2004, 126, 1346-1347. (b) Covell, D. J.; Vermeulen, N. A.; Labenz, N. A.; White, M. C. Polyol Synthesis through Hydrocarbon Oxidation: De Novo Synthesis of L-Galactose. Angew. Chem., Int. Ed. 2006, 45, 8217-8220. (c) Vermeulen, N. A.; Delcamp, J. H.; White, M. C. Synthesis of Complex Allylic Esters via C-H Oxidation vs C-C Bond Formation. J. Am. Chem. Soc. 2010, 132, 11323-11328. (d) Sharma, A.; Hartwig, J. F. Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification. J. Am. Chem. Soc. 2013, 135, 17983-17989. (e) Xing, X.; O'Connor, N. R.; Stoltz, B. M. Palladium(II)-Catalyzed Allylic C-H Oxidation of Hindered Substrates Featuring Tunable Selectivity Over Extent of Oxidation. Angew. Chem., Int. Ed. 2015, 54, 11186-11190. (f) Litman, Z. C.; Sharma, A.; Hartwig, J. F. Oxidation of Hindered Allylic C-H Bonds with Applications to the Functionalization of Complex Molecules. ACS Catal. 2017, 7, 1998-2001. (g) Jaworski, J. N.; Kozack, C. V.; Tereniak, S. J.; Knapp, S. M. M.; Landis, C. R.; Miller, J. T.; Stahl, S. S. Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C-H Acetoxylation Catalyzed by Pd-(OAc)₂/4,5-Diazafluoren-9-one. J. Am. Chem. Soc. 2019, 141, 10462-10474. (h) Kozack, C. V.; Tereniak, S. J.; Jaworski, J. N.; Li, B.; Bruns, D. L.; Knapp, S. M. M.; Landis, C. R.; Stahl, S. S. Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)2-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. ACS Catal. 2021, 11, 6363-6370. (i) Li, C.; Li, M.; Li, J.; Liao, J.; Wu, W.; Jiang, H. Palladium-Catalyzed Aerobic Oxygenation of Allylarenes. J. Org. Chem. 2017, 82, 10912-10919. (j) Fernandes, R. A.; Gangani, A. J.; Panja, A. Synthesis of 5-Vinyl-2-isoxazolines by Palladium-Catalyzed Intramolecular O-Allylation of Ketoximes. Org. Lett. 2021, 23, 6227-6231.
- (5) For examples of branched-selective allyic C-H oxygenation, see: (a) Chen, M. S.; Narayanasamy, P.; Labenz, N. A.; White, M. C. Serial Ligand Catalysis: A Highly Selective Allylic C-H Oxidation. J. Am. Chem. Soc. 2005, 127, 6970-6971. (b) Fraunhoffer, K. J.; Narayanasamy, P.; Sirois, L. E.; White, M. C. Macrolactonization via Hydrocarbon Oxidation. J. Am. Chem. Soc. 2006, 128, 9032-9033. (c) Stang, E. M.; White, M. C. Total Synthesis and Study of 6-Deoxyerythronolide B by Late-Stage C-H Oxidation. Nat. Chem. 2009, 1, 547-551. (d) Gormisky, P. E.; White, M. C. Synthetic Versatility in C-H Oxidation: A Rapid Approach to Differentiated Diols and Pyrans from Simple Olefins. J. Am. Chem. Soc. 2011, 133, 12584-12589. (e) Osberger, T. J.; White, M. C. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C-H Oxidation. J. Am. Chem. Soc. 2014, 136, 11176-11181. (f) Ammann, S. E.; Rice, G. T.; White, M. C. Terminal Olefins to Chromans, Isochromans, and Pyrans via Allylic C-H Oxidation. J. Am. Chem. Soc. 2014, 136, 10834-10837. (g) Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L.-Z. Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans. J. Am. Chem. Soc. 2015, 137, 12732-12735. (h) Ammann, S. E.; Liu, W.; White, M. C. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis. Angew. Chem., Int. Ed. 2016, 55, 9571-9575.
- (6) (a) Heumann, A.; Åkermark, B. Oxidation with Palladium Salts: Catalytic Preparation of Allyl Acetates from Monoolefins Using a Three-Component Oxidation System. *Angew. Chem., Int. Ed.* 1984, 23, 453–454. (b) McMurry, J. E.; Kočotovsky, P. A Method for the Palladium-Catalyzed Allylic Oxidation of Olefins. *Tetrahedron Lett.* 1984, 25, 4187–4190. (c) Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. Preparation of Allylic Acetates from Simple Alkenes by

- Palladium(II)-Catalyzed Acetoxylation. J. Org. Chem. 1990, 55, 975–984. (d) Aakermark, B.; Larsson, E. M.; Oslob, J. D. Allylic Carboxylations and Lactonization Using Benzoquinone and Hydrogen Peroxide or tert-Butyl Hydroperoxide as Oxidants. J. Org. Chem. 1994, 59, 5729–5733.
- (7) For an example of Rh-catalyzed allylic C-H etherification using styrene derivatives, see: Nelson, T. A. F.; Blakey, S. B. *Angew. Chem., Int. Ed.* **2018**, *57*, 14911–14915.
- (8) Cheung, K. P. S.; Fang, J.; Mukherjee, K.; Mihranyan, A.; Gevorgyan, V. Asymmetric Intermolecular Allylic C–H Amination of Alkenes with Aliphatic Amines. *Science* **2022**, *378*, 1207–1213.
- (9) (a) Parasram, M.; Gevorgyan, V. Visible Light-Induced Transition Metal-Catalyzed Transformations: Beyond Conventional Photosensitizers. Chem. Soc. Rev. 2017, 46, 6227-6240. (b) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Catalysis by Visible Light Photoexcited Palladium Complexes. Angew. Chem., Int. Ed. 2019, 58, 11586-11598. (c) Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible Light-Induced Excited-State Transition-Metal Catalysis. Trends Chem. 2019, 1, 510-523. (d) Zhou, W. J.; Cao, G. M.; Zhang, Z. P.; Yu, D. G. Visible Light-Induced Palladium-Catalysis in Organic Synthesis. Chem. Lett. 2019, 48, 181-191. (e) Cheng, W. M.; Shang, R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS. Catal 2020, 10, 9170-9196. (f) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Visible Light-Induced Transition Metal Catalysis. Chem. Rev. 2022, 122, 1543-1625. (g) Jardim, G. A. M.; Dantas, J. A.; Barboza, A. A.; Paixão, M. W.; Ferreira, M. A. B. Light-Driven Palladium-Radical Hybrid Species: Mechanistic Aspects and Recent Examples. Synthesis 2022, 54, 4629-4645. (h) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew. Chem., Int. Ed. 2024, 63, No. e202311972.
- (10) See the Supporting Information for details.
- (11) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Heck Reaction of Electronically Diverse Tertiary Alkyl Halides. *Org. Lett.* **2018**, *20*, 357–360.
- (12) (a) Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers. *J. Am. Chem. Soc.* **2016**, *138*, 6340–6343. (b) Chuentragool, P.; Parasram, M.; Shi, Y.; Gevorgyan, V. General, Mild, and Selective Method for Desaturation of Aliphatic Amines. *J. Am. Chem. Soc.* **2018**, *140*, 2465–2468. (c) Torres, G. M.; Liu, Y.; Arndtsen, B. A. A Dual Light-Driven Palladium Catalyst: Breaking the Barriers in Carbonylation Reactions. *Science* **2020**, *368*, 318–323.
- (13) (a) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. *Eur. J. Org. Chem.* **2017**, 2017, 2056–2071. (b) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Remote C–H Functionalization via Selective Hydrogen Atom Transfer. *Synthesis* **2018**, 50, 1569–1586. (c) Chu, J. C. K.; Rovis, T. Complementary Strategies for Directed C(sp³)–H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. *Angew. Chem., Int. Ed.* **2018**, 57, 62–101. (d) Sarkar, S.; Cheung, K. P. S.; Gevorgyan, V. C–H Functionalization Reactions Enabled by Hydrogen Atom Transfer to Carbon-Centered Radicals. *Chem. Sci.* **2020**, 11, 12974–12993.
- (14) (a) Huang, H.-M.; Koy, M.; Serrano, E.; Pflüger, P. M.; Schwarz, J. L.; Glorius, F. Catalytic Radical Generation of π-Allylpalladium Complexes. *Nat. Catal.* **2020**, *3*, 393–400. (b) Cheung, K. P. S.; Kurandina, D.; Yata, T.; Gevorgyan, V. Photoinduced Palladium-Catalyzed Carbofunctionalization of Conjugated Dienes Proceeding via Radical-Polar Crossover Scenario: 1,2-Aminoalkylation and Beyond. *J. Am. Chem. Soc.* **2020**, *142*, 9932–9937. (c) Huang, H.-M.; Bellotti, P.; Pflüger, P. M.; Schwarz, J. L.; Heidrich, B.; Glorius, F. Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides. *J. Am. Chem. Soc.* **2020**, *142*, 10173–10183. (d) Bellotti, P.; Koy, M.; Gutheil, C.; Heuvel, S.; Glorius, F. Three-Component

Three-Bond Forming Cascade via Palladium Photoredox Catalysis. Chem. Sci. 2021, 12, 1810-1817. (e) Liu, Z.-L.; Ye, Z.-P.; Chen, Y.-X.; Zheng, Y.; Xie, Z.-Z.; Guan, J.-P.; Xiao, J.-A.; Chen, K.; Xiang, H.-Y.; Yang, H. Visible-Light-Induced, Palladium-Catalyzed 1,4-Difunctionalization of 1,3-Dienes with Bromodifluoroacetamides. Org. Lett. 2022, 24, 924-928. (f) Zheng, Y.; Lu, W.; Xie, Z.; Chen, K.; Xiang, H.; Yang, H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org. Lett. 2022, 24, 5407-5411. (g) Yu, H.; Zhang, Q.; Zi, W. Enantioselective Three-Component Photochemical 1,4-Bisalkylation of 1,3-Butadiene with Pd/Cu Catalysis. Angew. Chem., Int. Ed. 2022, 61, No. e202208411. (h) Zhang, Z.; Gevorgyan, V. Escape from Hydrofunctionalization: Palladium Hydride-Enabled Difunctionalization of Conjugated Dienes and Enynes. Angew. Chem., Int. Ed. 2023, 62, No. e202311848. (i) Cai, Y.; Gaurav, G.; Ritter, T. 1,4-Aminoarylation of Butadienes via Photoinduced Palladium Catalysis. Angew. Chem., Int. Ed. 2024, 63, No. e202311250. (j) Ruan, X.-Y.; Wu, D.-X.; Li, W.-A.; Lin, Z.; Sayed, M.; Han, Z.-Y.; Gong, L.-Z. Photoinduced Pd-Catalyzed Enantioselective Carboamination of Dienes via Aliphatic C-H Bond Elaboration. J. Am. Chem. Soc. 2024, 146, 12053-12062. (k) Zhan, X.; Nie, Z.; Li, N.; Zhou, A.; Lv, H.; Liang, M.; Wu, K.; Cheng, G.; Yin, Q. Catalytic Asymmetric Cascade Dearomatization of Indoles via a Photoinduced Pd-Catalyzed 1,2-Bisfunctionalization of Butadienes. Angew. Chem., Int. Ed. 2024, 63, No. e202404388.