
Large Language Models for Conducting Advanced Text
Analytics Information Systems Research
BENJAMIN AMPEL, Georgia State University, USA
CHI-HENG YANG, University of Arizona, USA
JAMES HU, University of Arizona, USA
HSINCHUN CHEN, University of Arizona, USA

The exponential growth of digital content has generated massive textual datasets, necessitating the use of
advanced analytical approaches. Large Language Models (LLMs) have emerged as tools that are capable of
processing and extracting insights from massive unstructured textual datasets. However, how to leverage
LLMs for text analytics Information Systems (IS) research is currently unclear. To assist the IS community
in understanding how to operationalize LLMs, we propose a Text Analytics for Information Systems Re-
search (TAISR) framework. Our proposed framework provides detailed recommendations grounded in IS
and LLM literature on how to conduct meaningful text analytics IS research for design science, behavioral,
and econometric streams. We conducted three business intelligence case studies using our TAISR framework
to demonstrate its application in several IS research contexts. We also outline the potential challenges and
limitations of adopting LLMs for IS. By offering a systematic approach and evidence of its utility, our TAISR
framework contributes to future IS research streams looking to incorporate powerful LLMs for text analytics.

CCS Concepts: • Information systems → Information systems applications; • Computing methodolo-
gies → Natural language processing.

Additional Key Words and Phrases: Large language models, information systems research, text analytics

ACM Reference Format:
BenJamin Ampel, Chi-Heng Yang, James Hu, and Hsinchun Chen. 2024. Large LanguageModels for Conducting
Advanced Text Analytics Information Systems Research. 1, 1 (July 2024), 27 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
The proliferation of digital content (social media, online reviews, blogs, etc.) has provided massive
quantities of unstructured textual data for organizations and researchers to derive new and inter-
esting insights [12]. Organizations and researchers are increasingly relying on artificial intelligence
(AI)-enabled methodologies to automatically analyze large textual datasets [13]. Deep learning
approaches are particularly well suited for large-scale text analytics tasks as they automatically
discover and engineer latent features within textual datasets [77]. Information systems (IS) re-
searchers have demonstrated the value of deep learning frameworks for a wide range of advanced
text analytics applications, including healthcare [86], cybersecurity [3], and FinTech [21]. These

Authors’ Contact Information: BenJamin Ampel, bampel@gsu.com, Georgia State University, Atlanta, Georgia, USA; Chi-
Heng Yang, chihengyang@arizona.edu, University of Arizona, Tucson, Arizona, USA; James Hu, jameshu@arizona.edu,
University of Arizona, Tucson, Arizona, USA; Hsinchun Chen, hsinchun@arizona.edu, University of Arizona, Tucson,
Arizona, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/7-ART
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-0603-0270
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-0603-0270
https://doi.org/XXXXXXX.XXXXXXX

2 Ampel et al.

deep learning frameworks have enabled fine-grained insights that were previously non-trivial to
obtain.
Although these deep learning frameworks provide tremendous value, they have several limita-

tions. Prior IS literature initially focused on long short-term memory (LSTM) models to conduct
large-scale text analytics [3, 86]. LSTMs are designed for sequential processing (i.e., processing one
token at a time). Sequential processing introduces substantial computational overhead, struggles to
efficiently capture long-term dependencies, and prevents parallelization. These limitations make
LSTMs impractical for large-scale text analytics. Large Language Models (LLMs) have emerged
as a potential solution to the limitations of sequential models in text analytics IS research. LLMs
are advanced deep learning models that are pre-trained on massive amounts of textual data and
then fine-tuned for downstream tasks [76]. More recently, IS literature has adapted LLMs for social
bot detection [7], review classification [18], cybersecurity linking [4], and resilience detection
[59]. These studies demonstrated the significant promise of LLMs for text analytics IS research.
However, these studies implemented LLMs for classification, which is not representative of the
various tasks that LLMs can perform in IS research (e.g., summarization and generation tasks). LLMs
are particularly well suited for summarization and generation tasks because of their significant
pre-training [79, 90].

To assist IS researchers in operationalizing LLMs for classification, summarization, and generation,
we propose a Text Analytics Information Systems Research (TAISR) framework. Such frameworks
are useful to the IS community when commonly accepted guidelines do not exist [12]. The proposed
TAISR framework builds upon existing recommendations for conducting AI-enabled IS research
by providing detailed information about LLMs from technical and implementation perspectives
[63, 70]. Our framework also differentiates itself from extant surveys on LLMs by being application-
driven and targeted for the field of IS [33, 51, 57]. While this study is not comprehensive of LLMs,
it provides carefully synthesized recommendations and contributions that IS researchers can build
upon. This study makes three contributions to the IS knowledge base [29]:

(1) An overview of LLMs, which acts as a guide to IS researchers unfamiliar with the low-level
technical details of these models. This overview covers several technical concepts to facilitate
the understanding and operationalization of LLMs for text analytics IS research.

(2) The TAISR framework, which builds upon extant IS frameworks to provide a clear set of
guidelines for defining the research objective, choosing an appropriate text analytics task,
collecting relevant data, implementation, and evaluating the LLM. Although many TAISR con-
cepts have been drawn from IS research frameworks [70], TAISR provides recommendations
that are applicable only to LLMs.

(3) Three targeted case studies, which demonstrated the proof-of-value and proof-of-concept
of the TAISR framework [60]. These case studies are potentially generalizable to several
domains and can be built upon by future IS researchers. As a result, these case studies can
rapidly advance IS text analytics research.

The remainder of this paper is organized as follows. First, we provide an overview of LLMs.
Second, we summarize the current seminal LLMs by closed-source and open-source. Third, we
introduce our LLM for TAISR framework. Fourth, we provide three case studies that show the
proof-of-value of our proposed TAISR framework. Fourth, we discuss the current challenges and
limitations of LLM implementation. Finally, we conclude this paper.

2 An Overview of Large Language Models
The first LLMs adapted the bidirectional LSTM architecture and pre-trained on a corpus of 30 million
sentences [65]. These recurrent-based LLMs improved over traditional embedding approaches

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 3

(e.g., Word2Vec and GloVe) by learning word contexts based on the sentence around each word.
Word contexts were learned through language modeling, which is a self-supervised approach for
predicting the next word in a sentence based on the prior and future contexts of the word. However,
researchers have noted that recurrent architectures are not scalable due to vanishing gradients
(gradients diminish exponentially during backpropagation) and sequential processing [57].

To alleviate vanishing gradients and sequential processing issues, LLM researchers maintained
the same language modeling training procedure (self-supervised next-word prediction) but replaced
the underlying recurrent-based architecture with the newer transformer architecture [80]. The
transformer operates via a self-attention mechanism that concurrently attends to each token in
the input sequence. Concurrent processing enables the model to process sequences in parallel,
rather than sequentially. Therefore, the self-attention mechanism alleviates vanishing gradient and
scalability concerns while capturing contextual dependencies between tokens.
The original transformer architecture is a sequence-to-sequence model comprising an encoder

and a decoder [80]. The encoder and decoder function as distinct deep learning models designed to
learn latent representations from input sequences. The encoder consists of a multi-head attention
block (several layered self-attention mechanisms) and a feed-forward layer. The decoder employs a
masked multi-head attention block (which limits the decoder from seeing future context) to process
inputs. This process ensures that the decoder effectively learns the latent representation mapping
input (from the encoder) to the output (from the decoder) sequences.

Similar to recurrent-based LLMs, transformer-based LLMs often use self-supervised pre-training
(i.e., language modeling) using massive textual datasets comprising web text (e.g., Wikipedia) and
books [68]. To perform pre-training, the text is parsed into individual sentences. Tokens within the
text are masked (which can be random or at the end of the sentence based on LLM architecture)
[20]. The pre-training objective aims to maximize the conditional probability of predicting masked
tokens given unmasked tokens. A pre-trained LLM can then be used (i.e., zero-shot) or adapted for
specific downstream tasks. Through the careful combination of the transformer architecture and
pre-training, LLMs have attained state-of-the-art performance in nearly every natural language
processing (NLP) task [79].

The most common adaptation method for LLMs is fine-tuning. During fine-tuning, the weights
of the LLM are adjusted based on a task-specific dataset [57]. For example, fine-tuning an LLM
for review sentiment classification could include updating the model parameters using a dataset
of labeled review-sentiment pairs. Fine-tuning strategies include full and partial fine-tuning. Full
fine-tuning updates all layers in an LLM and should be implemented when the target task is
significantly different from the LLM’s pre-training objective [57]. In partial fine-tuning, only
specific layers are modified (e.g., the final linear layer for a classification task) [72]. Partial fine-
tuning is preferable when the pre-trained model has already captured relevant features for the
target task in its lower layers and modifications to higher layers are sufficient for optimal task
performance. The current salient methods of partial fine-tuning are low-rank adaptation (only a
subset of important parameters is adjusted) and adapter layers (small trained layers that specialize
in a chosen task) [27].

Reinforcement learning is an increasingly popular form of fine-tuning [62]. Reinforcement learn-
ing is a class of methods that aims to align LLM outputs towards a specific goal using policy updates.
For example, research has used Proximal Policy Optimization (PPO) to guide LLM-generated text
towards specific sentiments [62]. For PPO-based reinforcement learning, the LLM generates words
or sequences based on its current state and policy, receiving rewards or scores based on how well
its actions align (e.g., generating the correct sentiment) with the desired outcomes. Another type
of reinforcement learning, known as reinforcement learning from human feedback (RLHF), aims
to align LLM outputs with human preferences. RLHF, which is implemented in ChatGPT, uses

, Vol. 1, No. 1, Article . Publication date: July 2024.

4 Ampel et al.

manually annotated rankings of model outputs to create a reward model that guides future model
generation [61, 62]. The nascent area of reinforcement learning for LLM fine-tuning should be
carefully monitored by IS researchers for future updates and potential novel contributions.

Transformer-based LLMs can be grouped into three categories: (1) encoder, (2) encoder-decoder,
and (3) decoder. We visualize each of the three categories of LLMs in Figure 1 and then detail each
in the following sections.

Fig. 1. The Three Types of LLM Architectures: (A) Encoder, (B) Encoder-Decoder, and (C) Decoder

2.1 Encoder LLMs
Encoder LLMs (e.g., BERT) (Figure 1A) are most often trained self-supervised usingmasked language
modeling [57]. In masked language modeling, 15% of the tokens in an input sentence are randomly
masked (i.e., hidden) from the encoder LLM. A softmax layer is placed at the end of the encoder
LLM to predict the masked token(s). The goal of an encoder LLM is to maximize the log-likelihood
function:

𝐿(𝑋) =
𝑛∑︁
𝑖=1

log 𝑃 ([Mask𝑖] = 𝑦𝑖 | 𝑋̃ ;Θ) (1)

where𝑋 is the corpus of tokens, [Mask𝑖] is a token that we want to predict (𝑦𝑖) given the context
tokens of 𝑋̃ , and Θ are the parameters learned by the LLM. Some encoder architectures also include
a simultaneous next-sentence prediction task [20]. In the next-sentence prediction, the training
dataset is randomly split into sentence pairs that follow each other in the corpus and pairs that do
not. The training task is a simple binary classification (does the second sentence follow the first
sentence? Yes/No). This process is illustrated in Figure 2.
Although encoder LLMs can be used for language generation tasks (e.g., summarization), they

are better suited for classification owing to their masked language modeling training procedure

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 5

Fig. 2. Encoder Next Sentence Prediction (Adapted from [20])

[57]. Fine-tuning an encoder LLM for classification tasks is the same as training any supervised
model on a task-specific dataset (i.e., the LLM is provided a set of inputs and class labels). Therefore,
the metrics used to evaluate the outputs of encoder LLMs are the same as standard classification
tasks: accuracy, precision, recall, F1-score, or area under the curve (AUC) [42].

2.2 Encoder-Decoder LLMs
Encoder-decoder LLMs (e.g., BART) (Figure 1B) employ both the encoder and decoder of the
standard transformer. Encoder-decoder LLMs are often trained using denoising autoencoding [46].
In denoising autoencoding, text is corrupted through token masking and token shuffling to train
the model on both masked and permutation language modeling objectives. The model aims to
reconstruct the original sequence from the corrupted version. Encoder-decoder LLMs often use the
following loss function:

𝐿DAE (𝑋,𝑋 ′) = − log 𝑃 (𝑋 | 𝑋 ′) (2)
where 𝐿DAE is the denoising autoencoding loss function and 𝑃 (𝑋 | 𝑋 ′) is the conditional prob-
ability of generating the original sequence 𝑋 given a corrupted sequence 𝑋 ′ [46]. This training
approach enables the encoder-decoder LLM to capture contextually rich textual representations
while excelling in tasks such as text summarization and translation [89].

An important facet of encoder-decoder (and decoder) LLMs is the choice of decoding method. A
decoding method is a post-hoc process of converting the output of an LLM’s internal representation
into a readable sequence of text [31]. There are three types of decoding: (1) deterministic, (2)
stochastic, and (3) contrastive. First, deterministic methods (e.g., greedy and beam search) select
the next token based on maximizing the probability distribution of the model [26, 45]. Greedy
search chooses the most probable token provided by the LLM [45]. Beam search calculates the
sequence log probabilities to select the most probable sequence [26]. Deterministic methods often
lead to high coherence but low diversity due to repeating high probability n-grams (known as
neural degeneration, shown in the top left of Figure 3). Deterministic methods should be used
when users want a text summary to contain high-probability tokens from a document. Second,
stochastic methods (e.g., top-k sampling and nucleus sampling) aim to address neural degeneration

, Vol. 1, No. 1, Article . Publication date: July 2024.

6 Ampel et al.

by truncating the probability distribution tail and sampling the remaining tokens (shown on the
right side of Figure 3) [31]. Top-𝑘 sampling samples 𝑘 (set by user) probable tokens and chooses
one [84]. Top-𝑘 samples the same 𝑘 for each token in a sequence, which is undesirable when the
probability distribution varies significantly from token to token. Nucleus sampling samples from
a set of tokens that add up to a cumulative probability (set by the user) [31]. Stochastic methods
often lead to diverse sentences but low semantic consistency. Stochastic methods should be used
when a user wants more variability (e.g., idea generation). The token selection process for greedy,
beam, top-𝑘 , and nucleus sampling is illustrated in Figure 3.

Fig. 3. Token Selection Process for the Four Most Popular Decoding Methods

Finally, contrastive search is a new form of decoding that can be used to achieve a balance
between coherence and diversity [75]. Contrastive search uses the contrastive objective function:

𝑥𝑡 = argmax
𝑣∈𝑉 𝑘

{
(1 − 𝛼) × 𝑝𝜃 (𝑣 | 𝑥<𝑡) − 𝛼 ×

(
max{𝑠 (ℎ𝑣, ℎ𝑥 𝑗

) : 1 ≤ 𝑗 ≤ 𝑡 − 1}
)}

(3)

where 𝑝𝜃 (𝑣 | 𝑥<𝑡) is the LLM’s probability that candidate token 𝑣 follows given the prior tokens 𝑥<𝑡
at time 𝑡 and max{𝑠 (ℎ𝑣, ℎ𝑥 𝑗

) is a degeneration penalty that measures the cosine similarity between
ℎ𝑣 and ℎ𝑥 𝑗

.
Regardless of the decoding strategy, the evaluation of encoder-decoder LLMs used for text

generation or summarization can be automated or human-annotated based on the goal of the user
[89]. Automated metrics can be reference-free (does not require ground-truth text) or reference
(requires ground-truth text). The choice of evaluation metric(s) should be based on the task and
access to ground truth data or human annotators. We provide seminal metrics (including their pros
and cons) to evaluate the natural language outputs of an LLM in Table 1.
Automated evaluation generally evaluates the textual outputs of LLMs based on statistical

properties (e.g., n-grams), closeness with a ground-truth dataset (e.g., BLEU, ROUGE), or LLM
evaluation (e.g., BARTScore). Reference metrics (BERTScore, BLEU, and ROUGE) can only be used
when a ground-truth dataset exists. However, reference-free metrics can be used to calculate the
statistical properties of text without a ground-truth dataset. Human evaluation metrics capture
subjective qualities such as the text’s human-like nature, ease of understanding, and intriguing

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 7

Table 1. A Summary of Evaluation Metrics for Generative LLMs

Evaluation Type Metric Explanation Pro(s) Con(s) Reference

Automated Reference-
free

Coherence Measures the
coherence between
generated and prefix
text using an LLM

Correlates
with human
evaluations

LLM may
suffer from
inductive bias

[75]

Diversity Measures token
repetitiveness

Easy to
calculate

Not
informative
of text quality

[84]

MAUVE Measures the KL
divergence between
AI and human text

Great for
relative
comparisons

Chosen LLM
may suffer
from
inductive bias

[66]

Perplexity Likelihood the LLM
generated the text
sequence

Can
determine if
the LLM
learned the
text
distribution

Not
comparable
between
models or
datasets

[84]

Reference BERTScore Evaluates the
similarity of two
texts based on their
BERT embeddings

Prevailing
MT metric

Computationally
expensive

[91]

BLEU Evaluates text
similarity based on
n-grams

Good for MT
tasks

Rarely
correlates
with human
evaluations

[64]

ROUGE Evaluates the
similarity of texts
based on n-grams

Good for
summariza-
tion tasks

Rarely
correlates
with human
evaluations

[50]

Hybrid BARTScore Likelihood that
BART would
generate a text
based on references

Prevailing
text summa-
rization
metric

Assumes
BART is a
good
indicator of
text quality

[89]

Human N/A Human
likeness

Likelihood the
given passage is
AI-generated

Human
evaluations
are useful for
automated
comparisons

Humans are
poor at
detecting
LLM text

[15]

Fluency Measures if the text
is easy to
understand

Subjective,
costly to
obtain

[75]

Informative-
ness

Measures if the text
is interesting

Note: BLEU = Bilingual Evaluation Understudy, MAUVE = Mean Area Under the Divergence Curve Evaluation,
MT = Machine Translation, ROUGE = Recall-Oriented Understudy for Gisting Evaluation.

, Vol. 1, No. 1, Article . Publication date: July 2024.

8 Ampel et al.

content. Typically, these metrics are derived from a 5-point Likert scale [75]. These metrics are
costly to obtain but can provide tremendous insight into the quality of LLM-generated text [75].

2.3 Decoder LLMs
Decoder LLMs (e.g., GPT-2 and ChatGPT) (Figure 1C) are primarily trained through autoregressive
training. Autoregressive training is a self-supervised approach in which the model predicts the
likelihood of the next token given the preceding context [67]. The decoder LLM processes each token
in a sequence and generates subsequent token probabilities based on the preceding tokens using an
autoregressive mechanism. The goal of autoregressive training is to maximize the log-likelihood of
the entire sequence:

𝐿1 (𝑈) =
∑︁
𝑖

log 𝑃 (𝑢𝑖 | 𝑢𝑖−𝑘 , . . . , 𝑢𝑖−1;Θ) (4)

where𝑈 is the textual corpus, 𝑢𝑖 is a token that we want to predict given the prior context tokens
of 𝑢𝑖−𝑘 and 𝑢𝑖−1, and Θ are the parameters learned by the decoder LLM.
Decoder LLMs typically do not use a standard row of data for input (like many encoder and

encoder-decoder LLMs). Instead, seminal decoder LLMs often use a prompt as input [62]. Prompts
can be basic or specific (e.g., provided contexts or constraints) and will result in vastly different
outputs from the LLM. Prompt engineering allows users of an LLM to further control text generation
[51]. Users provide a prefix to their prompt specifying the task (e.g., summarize the following
passage) before providing an input (e.g., a passage). For example, chain-of-thought prompting
(a type of prompt engineering) provides a series of reasoning examples to an LLM to achieve a
target task [82]. Chain-of-thought prompting has been shown to improve model performance
in multi-step tasks (e.g., complex math problems) and output interpretability (i.e., LLMs provide
step-by-step logic to the user). As previously stated, these prompts can also be learned through a
training strategy [51].
Like encoder-decoder LLMs, decoder LLMs rely on a decoding strategy (deterministic, stochas-

tic, contrastive) to transform model probability distributions into natural language. The same
recommendations outlined in the encoder-decoder subsection for choice of decoding strategy
apply. Further, since decoder LLMs generate natural language text, the evaluation metrics and
recommendations outlined in Table 1 are also applicable.

3 Major LLM Players
To help understand how LLMs are currently constructed in organizational contexts, we reviewed the
organizational landscape by model access, company, flagship model(s), number of parameters, and
language support in Table 2. We then further detail closed- and open-source models in subsequent
sections.

Closed-source LLMs primarily come from major technology companies (e.g., OpenAI, Microsoft,
and Alphabet). These LLMs have rapidly increased their parameters to over one trillion and support
many different natural or coding languages. Open-source LLMs are often produced by major
technology companies and research universities (e.g., Stanford and Tsinghua) and have fewer
parameters than flagship closed-source LLMs. Open-source LLMs often only support one or two
languages. Open-source models often underperform closed-source models in NLP tasks but provide
significantly more access to the LLM architecture for careful control over model outputs [79].

3.1 Closed-source LLMs
Closed-source LLMs are LLMs developed by companies that choose to retain exclusive control over
LLM design, training methodologies, and data. Users typically interact with these models through

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 9

Table 2. Current Seminal Closed- and Open-source Companies

Access Company Flagship Model(s) Parameters Language Support

Closed-Source

OpenAI GPT-4o 1 trillion 50+ natural languages
Microsoft Bing, GitHub CoPilot 1 trillion 11 programming languages
Alphabet Bard, Gemini, LaMDA 137 billion 50+ natural languages
Anthropic Claude 3 52 billion English

Open-Source

Huawei PanGu- 𝛼 , PanGu-Σ 1.1 trillion ChatBot
Meta OPT, Llama3 175 billion English
Alphabet Gemma, CodeGemma 7 billion English
Stanford Alpaca 7 billion English
Baidu Ernie 3.0 Titan 260 billion English
EleutherAI GPT-Neo X 20 billion English
Tsinghua
University

GLM 10 billion English, Chinese

TII Falcon 40 billion English, Arabic
BigScience BLOOM 176 billion 46 natural languages

Table 3. A Summary of Current Seminal Closed-Source LLMs

Company Model Purpose API Uses API Input API Output Tuning?

OpenAI GPT-4o NLP and image tasks Fine-tuning Training data Task completion Yes

GitHub CoPilot Code completion Coding tasks Text/Code Code block Yes

Alphabet
Gemini Chatbot Chat, search Search Response No
PaLM NLP tasks Fine-tuning Training data Task completion Yes
Codey Code completion Coding tasks Text/Code Code block No

Anthropic Claude 3 Ethics driven chatbot Chat Prompt text Response No

Huawei PanGu-𝛼 Chinese NLP tasks Fine-tuning Training data Task completion Yes
PanGu-Σ Chinese NLP tasks Fine-tuning Training data Task completion Yes

APIs or interfaces, leveraging their functionalities in various NLP tasks. We summarize the current
closed-source LLMs by company, LLM purpose, API functions, inputs, outputs, and whether they
can be fine-tuned in Table 3.
Closed-source models offer a wide spectrum of applications, ranging from general-purpose

chatbots (ChatGPT, LaMDA) to specific tasks, such as code completion (CoPilot, Codey), smart
search engines (Bing, Bard), and ethics-driven chatbots (Claude). Inputs are often prompt text.
The outputs are responses to these prompts, including completed code blocks and textual task
completions. However, the closed-source nature of these LLMs introduces challenges related to
transparency (unclear what data was used to train LLM), interpretability (difficult to ascertain why
certain outputs were achieved), and accessibility (cannot choose decoding method) compared to
their open-source LLM counterparts. LLMs supporting fine-tuning provide users with the flexibility
to adapt and optimize performance for specific tasks or datasets. However, these LLMs may still
have significant security concerns (e.g., logging proprietary input data). This underscores the

, Vol. 1, No. 1, Article . Publication date: July 2024.

10 Ampel et al.

Table 4. A Summary of Current Seminal Open-Source LLMs

Architecture Prevailing LLMs Aggregate Disk Space Estimated GPU

Encoder

BERT 2,048 MB 1.18 GB
ALBERT 1,248 MB 0.19 GB
XLM 5,200 MB 11.97 GB
RoBERTa 2,262 MB 1.47 GB
LayoutLM 1,921 MB 2.39 GB

Encoder-Decoder
BART 1,578 MB 2.50 GB
MBART 2,440 MB 10.98 GB
PEGASUS 3,370 MB 5.11 GB

Decoder

GPT2 12,101 MB 0.30 GB
GPT-NeoX 57,800 MB 2.25 GB
OPT 1,907 MB 1.98 GB
Ernie 3.0 2,234 MB 0.324 GB
BLOOM 26,800 MB 10.08 GB
GLM 26,800 MB 36 GB
Falcon 100,710 MB 18 GB
Llama 3 16,700 MB 126 GB

trade-off between closed-source LLM functionalities and their potential limitations in academic
research.

3.2 Open-source LLMs
Open-source LLMs are publicly available models that allow users to access LLM architectures,
codebases, and training data. Open-source LLMs can be downloaded and adapted to perform a task
using fine-tuning, prompt learning, or another adaptive strategy. Hugging Face is a salient Python
library for training and operationalizing open-source LLMs [85]. Hugging Face provides access
to over 163,000 LLMs, 26,000 datasets, numerous fine-tuning, prompting, and decoding strategies,
tutorials, and other tools to quickly develop cutting-edge text analytics projects. Hugging Face’s
usefulness is primarily in training from scratch or implementing an existing open-source LLM to
provide an output given an input.

Hugging Face alone does not provide sufficient tools to create powerful applications. For example,
LLMs are not proper knowledge bases (often providing incorrect information to users) [37]. To
incorporate knowledge bases, data, and other information into a fine-tuned LLM, additional tools are
required. Several tools (e.g., LangChain) allow researchers to create multi-step applications powered
by LLMs [78]. LangChain provides tools for building chatbot UIs, sequential processes (e.g., making
a Google API request and prompting an LLM based on the results of the request), evaluations (e.g.,
determining whether a response is a good answer to a question using an ensemble of LLMs), and
custom agents (e.g., an LLM can take actions based on observations). LLM architectures are often
built on a transformer encoder, encoder-decoder, or decoder [57]. We provide a list of seminal
LLMs for each architecture with the estimated disk space and computational power to train each in
Table 4.

When choosing an LLM from the table for text analytics, it is important to refer to the estimated
disk space and GPU requirements. As LLM parameters increase, so do the disk space and estimated
GPU requirements. Some models (e.g., Llama 3) are too large to be fine-tuned using consumer

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 11

hardware. However, GPU requirements can be potentially reduced using quantization (bit reduction),
batch size (number of samples per training iteration), and prompt tuning techniques [49].

4 LLMs For Text Analytics Information Systems Research (TAISR) Framework
To assist IS researchers in implementing LLMs, we present a Text Analytics Information Systems
Research (TAISR) framework (Figure 4) with five major components: (1) Research Objective, (2)
Data Collection, (3) Text Analytics Task, (4) LLM Implementation, and (5) Evaluation. Our proposed
TAISR framework provides targeted recommendations for IS researchers to implement LLMs
in various research genres. Although not all five components are necessary for every research
project, the recommendations found within each component provide generalizable insights for
incorporating LLMs into IS research.

Fig. 4. The Proposed TAISR Framework

4.1 Research Objective
The research objective provides initial guidelines that inform the rest of the LLM framework. AI
systems have been studied across each IS paradigm (design science, behavioral, econometrics)
[63, 69, 70]. Design science research often focuses on the creation of AI artifacts for specific use
cases [69]. Behavioral research often implements AI to generate variables [18] or obtain deeper
insights into user-generated text [1]. Econometric research often implements AI to understand
phenomena through feature generation or improve causal inference [63]. An LLM solution within
these three IS paradigms should still follow recommended IS practices [63, 69, 70]. Based on the
literature and real-world insights, IS researchers should aim to develop questions that address novel
and societally relevant problems [13, 29]. These questions should inform model requirements (what
domain characteristics need to be captured by the LLM?) and necessary outputs (what LLM outputs
will answer my questions?). Based on these requirements, researchers should conduct a feasibility
analysis using small-scale data and classical machine learning models to determine whether an LLM
is required. For example, advanced machine learning models (e.g., XGBoost) continue to achieve
excellent performance in text classification tasks at a fraction of training time and cost [40]. The
feasibility analysis can also include the operationalization of the kernel and design theories to
further refine the LLM design requirements [29]. The results of the feasibility analysis should be
used to iteratively update the research questions and scope as necessary.

4.2 Text Analytics Task
The text analytics task is selected based on the research objectives. Generally, LLMs are powerful
tools for classification, summarization, and generation [57]. First, text classification tasks are fre-
quently used to infer data labels. Design science research frequently aims to build classification

, Vol. 1, No. 1, Article . Publication date: July 2024.

12 Ampel et al.

models to achieve state-of-the-art inference or detection performance in various IS tasks [3, 4, 86].
Behavioral research can use text classification models to infer features (e.g., sentiment) used for
downstream regression or structural equation modeling analytics [18]. Econometric research can
use classification models for explanatory variable feature prediction [63]. Second, text summariza-
tion tasks are frequently used to extract vital information from large and unstructured textual
datasets (e.g., summarized reports from financial posts) [25]. Design science research can enhance
text summarization models for targeted use cases. Behavioral research can benefit from text sum-
marization principles for multi-lingual analysis (e.g., translating construct items from one language
to another) or key insight extraction (summarizing groups of open-ended responses in qualitative
research). Econometric research can summarize lengthy reports or articles, and then apply topic
frequency models to create new and interesting explanatory variables. Finally, text generation
tasks often aim to build or implement an artifact that can create open-ended text (e.g., chatbots and
idea creation). Design science research can consider the methodological framework surrounding
text generation models that lead to the best text for a target task. Behavioral research can consider
analyzing user behavior with LLM-enabled chatbots [71] or using text generation methods for
ontological mapping [22, 47]. Econometric research can incorporate econometric modeling results
into text generation procedures [28].
The implementation of text analytic varies significantly in terms of data labels, quantity, and

goals. IS researchers should first determine their computational resources. As shown in Table 4,
LLMs with more parameters require more computational power. Large amounts of computing
resources are not typically available in business schools. Therefore, IS researchers should consider
smaller versions of seminal LLMs (e.g., TinyBERT [38]) or implementing efficient training strategies
(e.g., low-rank adaptation [32]) depending on their computing resources.

Once the text analytics task and computing resources have been determined, researchers should
select their LLM architecture. We recommend that IS research focuses on open-source LLMs.
Closed-source LLMs are often cost-prohibitive, not interpretable, rarely allow fine-tuning, and
may retain proprietary data. In our opinion, the potential performance boost offered by these
models is not worth these limitations. As stated previously, encoder LLMs (e.g., BERT) excel at
classification, encoder-decoder LLMs (e.g., BART) excel at summarization, and decoder LLMs (e.g.,
Llama 3) excel at generation. However, the choice of LLM within these tasks is dependent on the
language (e.g., English or multi-lingual), requirements (e.g., language reasoning or simple outputs),
and GPU availability. To assist researchers in determining which LLM to select based on their task,
we provide a flowchart in Figure 5.

Within classification, researchers should first consider what language their data will be in.
Some models are multi-lingual (e.g., XLM), whereas others only process English text (e.g., BERT).
Researchers should then consider whether they want to work with individual sentences or passages
(e.g., sentiment analysis) or if they want to consider document structure as well (e.g., automated
document-to-spreadsheet conversion). Finally, researchers must consider their computational power.
LLMs for classification are generally less computationally intensive than their summarization and
generation counterparts. Within summarization, researchers should first determine whether their
research objective is generic (e.g., news articles or book summarization) or specific (industry-
specific or jargon-laden domains). Models like Pegasus generalize well to specific domains with
fine-tuning [90]. Like classification, summarization tasks have English-specific (BART) and multi-
lingual-specific (mBART) models. Finally, summarization models also have high- and low-resource
models. Within generation, researchers should first consider the type of language they would like
to generate. Researchers should then consider whether language reasoning (the ability of the model
to provide insight into why it generates a certain text) is important for their task. For example,
chatbots can significantly benefit from language reasoning ability to reduce hallucinations [37].

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 13

Fig. 5. The TAISR Text Analytics Task Flowchart

Finally, researchers need to consider computing power. Text generation LLMs have the highest
resource requirements. Llama 3 requires over 100GBs of virtual memory to fully fine-tune. While
there are methods to reduce memory requirements (quantization, prompt tuning), researchers
should consider if the additional performance from the high (Llama 3, Falcon) and low (Phi-3,
Gemma) resource models are worth the cost.
Although Table 4 and Figure 5 provide examples of seminal open-source models in each LLM

architecture, these recommendations will quickly become outdated. Researchers can discover new
and popular LLMs for each task on Hugging Face, following top AI outlets (e.g., NeurIPS, ICLR,
ICML, AAAI), and top AI research groups (e.g., Google, Meta) on LinkedIn.

4.3 Data Collection
Data collection requires obtaining a representative dataset that can address the research question(s)
and fulfill text analytics task requirements. The data requirements can also be determined from the
feasibility analysis. These requirements can include textual structure (e.g., news articles have a title,
author, tags, and main content) [25], user information (e.g., demographics of who is generating the
textual content) [54], ground-truth (e.g., annotated labels, part-of-speech tags) [3], metadata (e.g.,
temporal or geospatial features) [81], and availability (e.g., potential dataset size and diversity).

Unless an IS researcher has access to proprietary organizational data or a representative dataset,
they will have to collect a textual dataset. There are currently two main methods for collecting large
textual datasets within IS text analytics research: (1) open-source scraping and (2) crowdsourcing
[12, 54]. First, open-source scraping involves identifying an online collection of textual data (e.g.,
blog posts), building a crawler to collect and parse it, and storing the parsed text. Open-source
scraping has been implemented by IS research to collect blog/social media posts [12, 92], news
articles [2], hacker communities [3, 24], and health information [81]. Scraping data from online
communities is inexpensive, easy to scale, and is often how LLM creators gather pre-training

, Vol. 1, No. 1, Article . Publication date: July 2024.

14 Ampel et al.

datasets [20, 67]. However, open-source text is often observational, biased, and does not allow
fine-grained control of the data collection. Second, crowdsourcing platforms (e.g., Mechanical
Turk) are often used by the IS community to quickly mine specific opinions and behaviors [54].
Crowdsourcing platforms are more expensive to collect than open-source collections, but allow fine-
grained insights [74]. For example, crowdsourcing platforms can collect demographic information,
ask follow-up questions, and potentially detect disingenuous or biased answers [74, 83].

Once data is collected, it is important to conduct pre-processing and calculate summary statistics if
necessary. Data pre-processing steps include manual labeling (e.g., classification and summarization
tasks), cleaning (e.g., deduplication and formatting), and debiasing (e.g., positive resampling) [9, 42].
These steps depend heavily on the research objectives and should be determined by the domain of
interest. Manual feature engineering is not typical for LLMs because their self-attention mechanisms
can automatically determine salient textual features [68, 80]. After pre-processing, researchers
should calculate summary statistics. For labeled data, determining the distribution of labels assists
in determining whether class imbalances must be accounted for [6]. For unlabeled text, summary
statistics are less important. However, metrics like average document length, term frequency, and
vocabulary complexity can assist in determining an appropriate LLM [88].

4.4 LLM Implementation
LLM implementation is where the core technical contributions of an IS research project can be
made. Computational requirements will continue to increase and seminal LLMs will continue
to change. Therefore, novel frameworks built upon LLM architectures (and not specific models)
should have lasting impacts. While it is unlikely that IS will make new contributions on LLM
pre-training (due to computational constraints), there is significant potential for novel technical
contributions in building an LLM-based framework. We posit that technical novelties can be made
in four key areas. First, novel textual input representations can be created prior to being input
into an LLM. For example, Ahmad et al. [1] created a novel data representation using character,
representation, demographic, and word embeddings from user surveys for enhanced psychometric
measure analysis. While the authors input the embeddings into BiLSTM and CNN models, it would
be trivial to update the BiLSTM with a BERT encoder to enhance the output of their psychometric
analysis model. Second, the fine-tuning strategy can be updated based on task requirements and
data availability. For example, Ampel et al. [4] formulated a knowledge distillation strategy to
extract targeted information from the English-based RoBERTa model and the source code-based
CodeBERT model for hacker exploit linking. Third, decoding methods for summarization and
generation tasks are continuously updated and evaluated [45, 75]. The choice of decoding strategy
has a significant impact on the quality of the generated text [31]. Therefore, a custom decoding
strategy rooted in domain requirements can lead to significantly improved LLM output. Fourth, LLM
outputs can be used as inputs in subsequent models. Research suggests that training a classification
model with an LLM-generated synthetic dataset can significantly improve the model performance
in data-sparse domains [56]. Behavioral and econometric research can consider synthetic dataset
creation to enhance feature labeling in sparse domains (e.g., small-scale organizations or electronic
health records). While we emphasize novelty areas, IS researchers should not feel constrained as
LLMs continue to evolve rapidly.

To implement the selected LLM, researchers should use a virtual Python environment or Google
CoLab. While the free version of Google CoLab has limited GPU resources, paid tiers provide limited
access to high-end GPUs (e.g., NVIDIA A100). CoLab can be cost-effective for research projects
that require one-time labeling (e.g., sentiment analysis tasks in [18]). For research that requires
long-term LLM implementation (e.g., chatbots), IS researchers will need access to on-site GPU
computing. Most open-source LLMs are available using Python. Using the Python environment

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 15

of choice (e.g., Visual Studio, Anaconda, or Google CoLab), IS researchers can download their
chosen LLM (usually through Hugging Face or OpenAI) and load their dataset (usually as a PyTorch
dataset). The fine-tuning strategy (or lack thereof) should be based on LLM, text analytics tasks,
and data collection.
For classification tasks (e.g., sentiment analysis), typically a feed-forward classification layer

is placed at the end of the LLM and is trained the same as a standard classification model [57].
This final layer must be fine-tuned. However, LLM layers can be frozen (either all or just the lower
layers) if the training dataset is not sufficiently large (the current rule of thumb is 1,000 data points
per label), if the research team does have access to adequate computing resources, or if the new
input data is already semantically similar to the LLM training dataset [51].
For summarization tasks (e.g., financial summaries), fine-tuning often involves a set of inputs

and outputs (e.g., a news article and ground-truth summary) that are placed into the encoder and
decoder, respectively [25]. The weights of both the encoder and decoder are iteratively updated
through the training process. The choice of decoding strategy (deterministic, stochastic, contrastive)
should also be carefully experimented with during the fine-tuning phase. If ground-truth summaries
are not available, some decoder LLMs (e.g., Llama 3) can perform well in zero-shot settings (e.g., no
model weight updating) with careful prompt engineering [79].

For generation tasks (e.g., chatbots), many open-source models work well in the zero-shot setting
[49]. However, these models often produce incorrect information (known as hallucinations) if the
research domain is not similar to the LLMs training dataset [37]. Generative LLMs can often be
improved with autoregressive fine-tuning (updating LLM weights with a representative dataset),
knowledge enhancement (providing a database the LLM can reference), and prompt learning
(learning the best input prompt) [10, 33, 34].

4.5 Evaluation
Once the LLM has been adapted for the chosen text analytics task, it is vital to evaluate its
performance. In design science, this evaluation is often performed against current state-of-the-art
approaches [70]. In behavioral and econometric research, these evaluations can be as simple as the
error rate to ensure that the implemented LLM achieves its target task (e.g., feature imputation
or sentiment analysis). Our general recommendations for evaluating adapted LLMs follow the
seminal literature on technical evaluations of machine and deep learning IS research [63, 70].
Evaluation metrics should be aligned with the previously established TAISR components (i.e.,
research objectives, text analytics task, dataset, and model architecture). IS researchers should
consult recent and relevant literature to determine seminal metrics (e.g., Table 1) that are suitable
for their context. For example, behavioral research on users interacting with LLM chatbots should
consider human metrics to evaluate their LLM output quality [71, 75]. Comparing the adapted LLM
against the current state-of-the-art benchmark models can provide a comprehensive understanding
of the strengths and weaknesses of the adapted LLM. It is also recommended that IS researchers
conduct a thorough sensitivity analysis of their LLM [70]. This process includes the use of various
fine-tuning strategies, datasets, and LLM architectures to determine the technical components that
contribute the most to overall performance. IS researchers may also consider creating distilled (i.e.,
smaller and highly targeted) versions of their adapted LLM for sensitivity analysis to determine the
tradeoff between performance (in terms of metrics) and LLM size (in terms of parameters and GPU
requirements) [4]. These distilled models may have significant impacts within mobile device and
ecological IS research [22]. This framework does not provide recommendations for the situated
implementation of a trained LLM. However, non-technical evaluations of an adapted LLM in its
intended context should be conducted following IS best practices [60].

, Vol. 1, No. 1, Article . Publication date: July 2024.

16 Ampel et al.

5 Case Studies
As a proof-of-value for our TAISR framework, we present three brief case studies in business
intelligence that follow our recommendations for using LLMs (classification, summarization, and
generation) and are relevant to current organizational goals and IS research: (1) Sentiment Analysis
for Organizations, (2) Automated Reporting of Competitor Actions, and (3) Social Media Content
Generation for Organizations. The case studies apply the principles of our TAISR framework
to show how IS researchers can design future textual research streams for advanced business
intelligence using LLMs. While our case studies focused on general organizational contexts, we also
foresee several domain-specific uses. For example, healthcare could benefit from electronic health
record synthesis and cybersecurity professionals could benefit from proactive threat intelligence
generation [24, 41].

5.1 Case Study 1: Sentiment Analysis for Organizations
Organizations are increasingly interested in measuring public opinion in real time. Recent IS
research has identified sentiment analysis of open-source data (e.g., financial reports, social media,
product reviews) as a powerful tool for assisting organizations in the automated analysis of public
opinion [21, 92]. Therefore, our first case study examined how LLMs can be used in the context of
organizational sentiment analysis.

5.1.1 Research Objective. Public organizational opinions often come in the form of financial news,
social media, and product reviews [12, 21, 92]. However, collecting a large amount of labeled public
sentiment from three separate platforms can be cost-prohibitive. This cost necessitates a model that
can automatically determine public sentiment about an organization given limited data. Therefore,
our research question is:

• How can we develop a framework that can accurately determine public sentiment about an
organization across financial news, social media, and online product reviews when provided
minimal data?

In a small-scale feasibility analysis, we found that classical machine learning and deep learning
models struggled to classify public sentiments across these three platforms. However, LLMs may be
a suitable solution for classifying sentiments across different platforms with appropriate fine-tuning
and guidance [51].

5.1.2 Text Analytics Task. Given our goal of predicting public sentiment and our access to ground-
truth labels, we chose a classification approach. For this case study, we used a low-resource machine
with one 16GBNVIDIA 4080 GPU. Therefore, our approach required a method that can be fine-tuned
with minimal data. Following the task analytics flow chart, we chose the encoder LLM FinBERT
because of its state-of-the-art classification results in organizational tasks [36]. This LLM is an
adapted version of BERT, fine-tuned on financial analysis reports.

5.1.3 Data Collection. To analyze an organization’s public sentiment, we required a ground-truth
dataset from each platform (financial news, social media, and online product reviews). For financial
news, we collected 4,840 labeled news articles about organizations manually annotated as positive,
neutral, or negative sentiments by financial experts [55]. For social media, we collected 10,000
labeled posts (positive or negative) about organizations from X (formerly Twitter). For online
product reviews, we collected 25,000 Amazon reviews and their associated ratings (i.e., 1, 2, 3, 4, or
5). Our overall ground-truth dataset is shown in Table 5.
From Table 5, we noted that the financial news dataset is imbalanced, favoring neutral and

positive sentiments over negative ones. However, we did not believe that the imbalance in the

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 17

Table 5. Sentiment Analysis Data Collection Summary

Dataset Size Label Summary Statistics

Financial News 4,840
Positive: 59.4%, 1,363 records
Neutral: 28.10%, 2,879 records
Negative: 12.60%, 604 records

Social Media 10,000 Positive: 50%, 5,000 records
Negative: 50%, 5,000 records

Product Reviews 25,000 5,000 records for each rating (1, 2, 3, 4, and 5)

dataset necessitated special training measures. Our social media and product review datasets were
evenly split across each label.

5.1.4 LLM Implementation. A fine-tuning method is required to adapt the FinBERT model to our
sentiment analysis task. As previously stated, partial fine-tuning or prompt learning is preferable
when the pre-trained model has already captured relevant features for the target task in its lower
layers (i.e., FinBERT is already adapted for financial analysis). We adopted the Low-Rank Adaptation
learning strategy because we had a small amount of labeled data [32]. We used an Anaconda virtual
environment with Hugging Face installed to download and load FinBERT. We loaded our collected
dataset and used Hugging Face’s built-in Low-Rank Adaptation method. We used a low learning
rate of 0.01 to ensure that our LLM weights did not significantly shift. We updated the LLM for
three epochs, as this was when the performance stopped changing.

5.1.5 Evaluation. We compared our tuned-FinBERT (FinBERT adapted on our datasets) against
seminal machine (Decision Tree, KNN, SVM, Logistic Regression) and deep learning (CNN, LSTM,
BiLSTM, BiLSTM with attention) sentiment classification models [5, 21, 92]. We also compared our
tuned-FinBERT against TinyBERT (a small and distilled version of BERT) and BERT [38]. Each
model was trained (or fine-tuned using Low-Rank Adaptation) using the respective datasets. The
results were evaluated using F1-score (commonly used to evaluate imbalanced sentiment analysis)
[5]. The results for each model are shown in Table 6.
The results of our experiment showed that tuned-FinBERT led to state-of-the-art results for

sentiment analysis of financial news (91.34%) and product reviews (54.40%), while achieving the
third best results for social media (78.60%). FinBERT performing well for financial news is consistent
with literature [36]. Tuned-FinBERT underperforming BERT for the social media dataset (78.60%
vs. 81.10%) is also consistent, as social media text is often more jargon-laden than news articles
for which FinBERT has been specially tuned. F1-scores for product reviews were generally low
for all models. These results are most likely due to the five-class classification setting and biased
data (i.e., a person may say something nice and give a two-star review, and vice versa). However,
tuned-FinBERT was still able to discover latent patterns and outperformed all other benchmark
models. It was disappointing that TinyBERT (distilled BERT) performed poorly in all settings.
However, TinyBERT is a distilled model that we then fine-tuned. It would be interesting in future
research to determine whether the results hold if the order of operations is reversed (i.e., fine-tune
and then distill to create TinyFinBERT).

, Vol. 1, No. 1, Article . Publication date: July 2024.

18 Ampel et al.

Table 6. Results for Case Study 1: Sentiment Analysis for Organiza-
tions

Model Type Model Dataset
FN SM PR

Classical
Machine
Learning

Decision Tree 55.69% 60.03% 28.80%
KNN 61.24% 62.16% 31.09%
SVM 73.79% 77.06% 48.46%
Logistic Regression 78.13% 78.46% 43.09%

Deep
Learning

CNN 83.95% 77.94% 46.01%
LSTM 75.72% 78.29% 49.87%
BiLSTM 73.86% 78.21% 50.93%
BiLSTM w/ Attention 83.42% 79.08% 51.67%

LLMs
TinyBERT 70.72% 74.00% 44.12%
BERT 85.15% 81.10% 52.92%
Tuned-FinBERT 91.34% 78.60% 54.40%

Note: BiLSTM=Bidirectional LSTM, CNN=Convolutional Neural Network,
FN = Financial News, KNN = K-Nearest Neighbors, LSTM = Long Short-
Term Memory, PR = Product Reviews, SM = Social Media, SVM = Support
Vector Machine.

5.2 Case Study 2: Automated Reporting of Competitor Actions
For organizations to maintain a competitive advantage, it is vital that they generate business
intelligence through careful analysis of open-source internet data [12]. Open-source data can contain
consumer opinions and information about an organization and its competitors. Understanding
competitor actions is vital to the health and success of an organization [16]. Therefore, automatically
generating reports of external competitor actions is of great interest to several types of organizations.
Our second case study examined how LLMs can be used in the context of automated report
generation.

5.2.1 Research Objective. To assist organizations in quickly understanding competitor actions, we
aim to automate the generation of reports by summarizing recent and relevant news articles about
competitors. However, summarizing news articles in a manner that is relevant to organizations is
currently unclear. Therefore, our research question is:

• How can we develop a framework that summarizes news articles about competitor actions
in a business intelligence report?

In a small-scale feasibility analysis, we found that seminal machine and deep learning models are
currently not well prepared to generate high-quality summaries for specific contexts (i.e., they only
perform well in general and high-data settings) [89]. LLMs have recently achieved state-of-the-art
performance in many text summarization tasks, justifying them for our problem domain context
[25].

5.2.2 Text Analytics Task. Given our goal of generating business intelligence from news articles,
our text analytics task is a summarization approach. Summarization can be extractive (extracting
keywords or sentences) or abstractive (generating summarized content) [25]. Extractive summa-
rization is useful in the absence of ground-truth summaries. However, extractive summarization is
often incoherent [48]. Abstractive summarization often creates the most coherent summaries if a

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 19

Table 7. Example News Article and it’s Ground-truth Summary

News Article Paragraph Ground-truth Summary

South Korean electronics giant Samsung has made significant progress
since its foray into the automotive device market in 2015. Recent
launches of various automotive ICs showcased Samsung’s effort to
diversify business lines from the volatile consumer memory market and
to create valid growth opportunities for its semiconductor foundry
business. It aims to become the world’s leading automotive memory
company by 2025, surpassing Micron, the current champion with a 45%
global market share.

Samsung has recently
launched initiatives to
become the world’s
leading automotive
memory company,
shifting focus away from
consumer products.

representative ground-truth dataset is available for fine-tuning [46, 90]. Like Case Study 1, we used
a machine with a 16GB NVIDIA 4080 GPU. Given our reporting generation goal, we followed the
task analytics task flowchart and determined that Pegasus was appropriate for our summarization
task, as it was pre-trained specifically for abstractive summarization [90].

5.2.3 Data Collection. Our business intelligence summarization task required two data features.
First, we require news articles on competitors’ actions. Second, we require ground-truth summaries
of these news articles to help fine-tune an LLM. For this case study, we assumed the position of
a researcher for a Fortune 500 consumer electronics company. Using open-source scraping, we
collected 150 news articles about competing companies. We then manually crafted brief ground-
truth summaries of each news article regarding the actions that we thought would be interesting
to our company. In our dataset, each row corresponds to a paragraph in a news article and it’s
manually crafted summary. An example row of the dataset is shown in Table 7.

5.2.4 LLM Implementation. Given our ground-truth dataset and Pegasus’ low GPU requirements,
we conducted a full fine-tuning procedure. Like Case Study 1, we used an Anaconda virtual
environment with Hugging Face installed to download and load Pegasus. We loaded our ground-
truth news articles and associated summaries and fine-tuned Pegasus using Hugging Face’s built-in
modules. We used a low learning rate of 0.01 and updated the model for five epochs, as this is when
the LLM performance stopped changing.

5.2.5 Evaluation. We compared our tuned-Pegasus against seminal deep learning (CNN, RNN,
LSTM) and LLMs (BERT, BART) for summarization [43, 46, 52, 90]. Classical machine learning
models are not often used for summarization due to the encoder-decoder requirement. The sum-
marization results were evaluated using ROUGE-1 (measuring overlapping unigrams), ROUGE-2
(measuring overlapping bigrams), and ROUGE-L (measuring longest common subsequence) scores,
which are common metrics in reference-based summarization tasks [90]. Each metric was measured
between 0 and 1, with scores closer to 1 being better. The results for each model are shown in
Table 8.

The results of our experiment show that, among the deep learning models, the recurrent-based
LSTM achieved the best ROUGE-1 and ROUGE-L scores. This result suggests that the sequential
and long-term memory features of the LSTM are well equipped for summarization tasks. Among
the LLMs, BERT performed the worst in all three metrics (and was outperformed by the LSTM
model). These results are consistent with our literature review showing that encoder LLMs (i.e.,
BERT) are not appropriate for text generation or summarization tasks [57]. BART and Pegasus
outperformed the LSTM and BERT in all three metrics. These results suggest that their denoising

, Vol. 1, No. 1, Article . Publication date: July 2024.

20 Ampel et al.

Table 8. Results for Case Study 2: Automated Reporting of Competitor
Actions

Model Type Model ROUGE-1 ROUGE-2 ROUGE-L

Deep Learning
CNN 0.398 0.152 0.319
RNN 0.372 0.174 0.375
LSTM 0.401 0.171 0.394

LLM

BERT 0.384 0.164 0.366
BART 0.427 0.208 0.409
Pegasus 0.430 0.217 0.411
Tuned- Pegasus 0.443 0.229 0.423

Note: BART = Bidirectional and Auto-Regressive Transformers, BERT = Bidi-
rectional Encoder Representations from Transformers, CNN = Convolutional
Neural Network, LSTM = Long Short-Term Memory, PEGASUS = Pre-training
with Extracted Gap-sentences for Abstractive Summarization, RNN = Recurrent
Neural Network.

autoencoder pre-training leads to significant improvements in text summarization. However, BART
is not specifically conditioned for abstractive summarization, potentially explaining why Pegasus
outperformed BART. Finally, fine-tuning Pegasus on our small ground-truth dataset led to state-
of-the-art results in ROUGE-1 (0.443), ROUGE-2 (0.229), and ROUGE-L (0.423). It is important to
note that ROUGE only assesses content selection based on potentially subjective ground-truth
summaries. Therefore, IS researchers should also consider post-hoc human evaluations to gauge
the fluency, coherence, and value of the generated business intelligence reports.

5.3 Case Study 3: Social Media Content Generation for Organizations
Social media interactions have become vital for the dissemination of organizational news, collecting
opinions, increasing brand awareness, and building sustained relationships with customers [2, 17,
92]. However, the scale of social media makes it difficult to monitor and create content continuously.
Therefore, our final case study examined how LLMs can automatically generate textual content for
social media platforms.

5.3.1 Research Objective. The goal of Case Study 3 was to automate the generation of social
media content based on a prompt. These social media posts must match the writing style of the
organization to maintain brand coherence. Therefore, our research question is:

• How can we automatically generate social media content that matches the writing style of
an organization based on existing social media interactions?

Like text summarization, machine learning models are not well equipped to generate free-form
text due to their low number of parameters and forgetting over long sequences [57]. Autoregressive
LLMs currently provide state-of-the-art results in text generation, and should be investigated to
answer our research question [61].

5.3.2 Text Analytics Task. Given our goal of generating open-ended social media posts, our text
analytics task was a generation approach. Text generation is highly variable and depends on fine-
tuning, prompting, and decoding [51, 57]. Similar to prior case studies, we used a machine with a
16GB NVIDIA 4080 GPU. We followed the text analytics task flowchart and determined that the

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 21

task did not require language reasoning. Therefore, we chose the GPT-NeoX model as our LLM to
implement [8].

5.3.3 Data Collection. To generate novel social media content, a representative dataset of real social
media posts is required. For this case study, we chose the fast-food company Wendy’s. Wendy’s
social media posts have recently become popular, frequently injecting humor and weirdness into
their textual content as a strategy for increasing brand awareness [17]. Using open-source scraping,
we collected 500 of Wendy’s most recent replies to consumers on X (formerly Twitter). We also
collected the posts that Wendy’s was replying to. This allows us to use those posts as input prompts
(i.e., “Generate a response to this post: [post content here]”). This dataset provides a representative
sample of the type of textual content Wendy’s is likely to post in response to consumer mentions
of them.

5.3.4 LLM Implementation. Based on other text generation tasks, GPT-NeoX is the best-performing
autoregressive LLM that we can reasonably fine-tune on our hardware (i.e., Llama 3 requires
significantly more computational resources to fine-tune or various tricks to load into memory).
Given our ground-truth dataset, we conducted an autoregressive fine-tuning procedure. We used
an Anaconda virtual environment with Hugging Face installed to download and load GPT-NeoX
and our Wendy’s X dataset. We fine-tuned the parameters of GPT-NeoX using an autoregressive
strategy (GPT-NeoX predicts the likelihood of the next token given the preceding Wendy’s post
context). We used a low learning rate of 0.01 and updated the model for three epochs (as this is
when LLM performance stopped changing).

5.3.5 Evaluation. We comparedGPT-NeoX against seminal text generationmodels (GPT-2, BLOOM,
OPT, GPT-NeoX) [8, 44, 67]. Each benchmark model was fine-tuned in the same manner as that
for GPT-NeoX. Among the decoding methods, we predicted that contrastive search would lead
to the most natural-looking social media posts because it attempts to balance both diversity and
coherence of text [75]. However, we also measured the performance of the top deterministic (greedy,
beam) and stochastic (top-𝑘 , nucleus) decoding methods to further explore the effect of decoding
strategy on text generation. We fine-tuned each LLM and prompted it to generate a response to
the consumer posts in our Wendy’s dataset. We calculated the perplexity, diversity, and coherence
of the generated social media posts, as these are often used metrics in open-ended generation
[31, 45, 75]. We also calculated these metrics on the real Wendy’s responses. Our goal was not to
find the lowest perplexity or highest diversity/coherence. Rather, the goal was to minimize the
delta (Δ) between the metrics of the real Wendy’s replies and the LLM-generated replies to ensure
that our responses are statistically representative of Wendy’s style. The results for each model,
decoding strategy, and method are listed in Table 9.
The results of our experiment show that GPT-NeoX outperforms other benchmark models in

terms of perplexity and diversity. GPT-2 is an older autoregressive LLM with fewer parameters
than modern LLMs, potentially limiting its ability to generate coherent and diverse text. BLOOM is
a newer LLM trained on a massive corpus of multi-lingual data. Although BLOOM achieved the
lowest difference in coherence when using greedy search (Δ 0.001), it struggled to develop diverse
social media posts across all decoding methods. OPT, trained on a large corpus of internet content
(e.g., Reddit posts, blogs), performs better than GPT-2 and BLOOM in diversity but struggles to
generate coherent posts. Finally, GPT-NeoX (trained with similar internet content as OPT) achieved
the lowest perplexity (Δ 8.67) and coherence (Δ 0.0802) difference when using contrastive search.
Our evaluation also suggests that contrastive search outperforms deterministic and stochastic
strategies in generating human-like X posts. However, human evaluations can further confirm the
results of our analysis.

, Vol. 1, No. 1, Article . Publication date: July 2024.

22 Ampel et al.

Table 9. Results for Case Study 3: Social Media Content Generation for Organizations

Model Decode Strategy Decode Method Perplexity Diversity Coherence

Wendy’s Replies N/A N/A 81.63 0.8614 0.6055

GPT-2

Deterministic Greedy 159.1 (77.47) 0.3962 (0.4652) 0.5507 (0.0548)
Beam 152.9 (71.27) 0.4026 (0.4588) 0.5567 (0.048)

Stochastic Top-k 157.0 (75.37) 0.6780 (0.1834) 0.5150 (0.0905)
Nucleus 116.5 (34.87) 0.6566 (0.2048) 0.5334 (0.072)

Contrastive Search 110.6 (28.97) 0.7479 (0.1135) 0.6010 (0.004)

BLOOM

Deterministic Greedy 262.4 (180.77) 0.4930 (0.3684) 0.6045 (0.001)
Beam 236.0 (154.37) 0.4766 (0.3848) 0.6192 (0.013)

Stochastic Top-k 234.4 (152.77) 0.7252 (0.1362) 0.6041 (0.0014)
Nucleus 251.3 (169.67) 0.7088 (0.1526) 0.5926 (0.0129)

Contrastive Search 227.6 (145.97) 0.6883 (0.1731) 0.5912 (0.014)

OPT

Deterministic Greedy 298.9 (217.27) 0.4739 (0.3875) 0.5482 (0.0573)
Beam 228.6 (146.97) 0.4498 (0.4116) 0.5612 (0.0443)

Stochastic Top-k 212.3 (130.67) 0.7338 (0.1276) 0.5932 (0.012)
Nucleus 179.4 (97.77) 0.7806 (0.170) 0.6014 (0.004)

Contrastive Search 117.6 (35.97) 0.7551 (0.1063) 0.5358 (0.0697)

GPT-NeoX

Deterministic Greedy 266.0 (184.37) 0.449 (0.4124) 0.5945 (0.011)
Beam 216.0 (134.37) 0.4822 (0.3792) 0.5637 (0.041)

Stochastic Top-k 177.0 (95.37) 0.7253 (0.1361) 0.6112 (0.005)
Nucleus 104.4 (22.77) 0.7378 (0.1236) 0.5324 (0.073)

Contrastive Search 90.3 (8.67) 0.7812 (0.0802) 0.5585 (0.047)

Note: BLOOM = BigScience Large Open-science Open-access Multi-lingual Language Model, GPT = Generative Pre-
trained Transformer, OPT = Open-source Pre-trained Transformer.

6 LLM Challenges and Limitations
Despite the potential usefulness of LLMs in conducting TAISR, they have several notable limitations
that should be carefully considered before implementation in an organizational context [22]. We
discuss some noteworthy limitations and potential mitigation strategies below.

6.1 Hallucinations
Hallucinations occur when LLMs provide falsified facts, code, references, or other information to a
user [37]. Hallucination generally stems from LLMs that are trained on internet data that has not
been cleaned or verified (e.g., social media posts) [23]. There are two types of LLM hallucinations:
(1) intrinsic and (2) extrinsic [37]. First, intrinsic hallucinations are non-factual statements within
LLM-generated texts. Intrinsic hallucinations can be mitigated by referencing external knowledge
bases or by negative sampling. Second, extrinsic hallucinations are LLM-generated text that is
not contextually relevant to the input prompt. RLHF has been shown to significantly improve
open-ended LLM generation and reduce extrinsic hallucinations [62, 79].

6.2 Sensitive Information Disclosure
Sensitive information (e.g., personally identifiable information) is often learned by LLMs because it is
trained on massive quantities of internet text [30]. This problem can be exacerbated by closed-access

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 23

models (e.g., ChatGPT), which save user chat logs for future training instances. Sensitive information
can be extracted from LLMs through targeted sampling of high-perplexity text sequences (which are
often memorized training data) to reconstruct original training sentences [11]. Open-source LLMs
also suffer from sensitive information disclosure owing to the severe vulnerabilities introduced
by poor open-source coding practices [39]. To mitigate sensitive information disclosure, LLMs
should be fine-tuned with differential privacy techniques or pre-trained with data that is scrubbed
of sensitive information [53].

6.3 Detecting LLM-generated Text
LLM-generated text is a rising concern because it can be used for academic dishonesty, fraud,
and misinformation [73]. Organizations have focused on developing detectors to automatically
detect LLM-generated texts. Generally, there are three types of LLM detectors: (1) perturbation, (2)
adversarial, and (3) classifier. First, the suspected LLM-generated text can be randomly perturbed
and an LLM is asked to regenerate the text. Log probabilities are then calculated to determine the
similarity between texts [87]. Second, a binary classifier can be jointly trained with an adversarial
paraphraser to detect LLM-generated texts [35]. Third, a machine or deep learning model for binary
classification (real or LLM-generated) can be trained [14]. Although these models can work within
specific settings, they are highly sensitive to human paraphrasing, non-English text, and stochastic
decoding methods [58]. Therefore, researchers should be wary of implementing LLM-generated
text detection systems, and several potential research streams remain for improving detection
methods.

6.4 Adversarial Prompts
Many LLMs have implemented security measures to prevent model misuse (e.g., sensitive informa-
tion disclosure attacks) [61]. However, LLM security measures can be bypassed using adversarial
prompts [19]. Adversarial prompts attempt to induce model misuse through the careful manipula-
tion of an input prompt using competing objectives or mismatched generalization [93]. Competing
objectives surround a malicious goal (e.g., write a phishing email) with benign text (e.g., generate
a fairy tale story). This may cause misclassification by LLM security measures, leading to the
generation of both benign and malicious objectives. In mismatched generalization, an LLM is pre-
sented with input data unknown to the LLM security measure (e.g., random characters, a different
language). It is recommended to include input sanitization procedures and place an adversarial
prompt classifier between the input and downstream LLM to help protect against adversarial
prompting [19].

7 Conclusion
LLMs are rapidly becoming ubiquitous in text analytics research. However, there is not currently a
framework to guide IS research in implementing LLMs for organizational contexts. Therefore, we
proposed a TAISR framework comprising five components. We also provided three case studies
to demonstrate the proof-of-value of our proposed framework. IS researchers can expand their
research toolbox to include state-of-the-art LLMs by following our TAISR framework. While the
TAISR framework is not comprehensive for all scenarios or LLM implementation methods, it
provides a starting block for building interesting new research streams. We believe that these new
LLM-enabled research streams will lead to interesting and novel insights into new and existing
organizational problems.

, Vol. 1, No. 1, Article . Publication date: July 2024.

24 Ampel et al.

References
[1] Faizan Ahmad, Ahmed Abbasi, Jingjing Li, David G Dobolyi, Richard G Netemeyer, Gari D Clifford, and Hsinchun

Chen. 2020. A Deep Learning Architecture for Psychometric Natural Language Processing. ACM Trans. Inf. Syst. Secur.
38, 1 (Feb. 2020), 1–29.

[2] Sarah A Alkhodair, Benjamin C M Fung, Steven H H Ding, William K Cheung, and Shih-Chia Huang. 2021. Detecting
high-engaging breaking news rumors in social media. ACM Trans. Manag. Inf. Syst. 12, 1 (March 2021), 1–16.

[3] Benjamin Ampel, Sagar Samtani, Hongyi Zhu, and Hsinchun Chen. 2024. Creating Proactive Cyber Threat Intelligence
with Hacker Exploit Labels: A Deep Transfer Learning Approach. MIS Quarterly 48, 1 (2024), 137–166.

[4] Benjamin Ampel, Sagar Samtani, Hongyi Zhu, and Hsinchun Chen. 2024. Improving Threat Mitigation Through a
Cybersecurity Risk Management Framework: A Computational Design Science Approach. Journal of Management
Information Systems 41, 1 (2024), 236–265.

[5] Despoina Antonakaki, Paraskevi Fragopoulou, and Sotiris Ioannidis. 2021. A survey of Twitter research: Data model,
graph structure, sentiment analysis and attacks. Expert Syst. Appl. 164, 114006 (Feb. 2021), 114006.

[6] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. 2022. A Survey on Data Augmentation for Text Classifica-
tion. ACM Comput. Surv. 55, 7 (Dec. 2022), 1–39.

[7] Victor Benjamin and T S Raghu. 2023. Augmenting social bot detection with crowd-generated labels. Inf. Syst. Res. 34,
2 (June 2023), 487–507.

[8] Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan
Tow, Ben Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. In
Proceedings of BigScience Episode #5. Association for Computational Linguistics.

[9] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to Computer
Programmer as Woman is to Homemaker? Debiasing Word Embeddings. Adv. Neural Inf. Process. Syst. 29 (2016).

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, and Others. 2020. Language Models Are Few-shot Learners. Adv. Neural
Inf. Process. Syst. 33 (2020), 1877–1901.

[11] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom Brown, Dawn Song, Ulfar Erlingsson, and Others. 2021. Extracting training data from large language models. In
30th USENIX Security Symposium (USENIX Security 21). 2633–2650.

[12] Michael Chau and Jennifer Xu. 2012. Business Intelligence in Blogs: Understanding Consumer Interactions and
Communities. MIS Quarterly 36, 4 (2012), 1189–1216.

[13] Hsinchun Chen, Roger H L Chiang, and Veda C Storey. 2012. Business Intelligence and Analytics: From Big Data to
Big Impact. MIS Quarterly 36, 4 (2012), 1165.

[14] Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita Singh, and Bhiksha Raj. 2023. GPT-Sentinel: Distinguishing
Human and ChatGPT Generated Content. arXiv [cs.CL] (May 2023).

[15] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A Smith. 2021. All That’s
‘Human’ Is Not Gold: Evaluating Human Evaluation of Generated Text. In Proceedings of the 59th Annual Meeting of
the ACL, Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). 7282–7296.

[16] John A Czepiel. 2020. Competitor Analysis. In The Routledge Companion to Strategic Marketing. Routledge, New York,
NY: Routledge, 2021. | Series: Routledge companions in business, management & accounting, 125–140.

[17] Sopan Deb. 2023. If Every Brand is Funny Online, is Anything Funny? The New York Times (Oct. 2023).
[18] Chaoqun Deng and T Ravichandran. 2023. Managerial Response to Online Positive Reviews: Helpful or Harmful?

Information Systems Research (Dec. 2023).
[19] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei Zhang, and Yang Liu.

2023. Jailbreaker: Automated Jailbreak Across Multiple Large Language Model Chatbots. arXiv [cs.CR] (July 2023).
[20] Jacob Devlin, Ming-WeiWei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. arXiv (2018), 4171–4186.
[21] Kelvin Du, Frank Xing, and Erik Cambria. 2023. Incorporating Multiple Knowledge Sources for Targeted Aspect-based

Financial Sentiment Analysis. ACM Trans. Manage. Inf. Syst. 14, 3 (June 2023), 1–24.
[22] Yogesh K Dwivedi, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, and Arpan Kumar Kar. 2023.

Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and
implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manage. 71, 102642 (Aug.
2023), 102642.

[23] Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, and Siva Reddy. 2022. On the Origin of Hallucinations in Conversa-
tional Models: Is it the Datasets or the Models?. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics. Association for Computational Linguistics.

, Vol. 1, No. 1, Article . Publication date: July 2024.

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 25

[24] Mohammadreza Ebrahimi, Yidong Chai, Sagar Samtani, and Hsinchun Chen. 2022. Cross-lingual Cybersecurity
Analytics in the International Dark Web with Adversarial Deep Representation Learning. MIS Quarterly 46, 2 (2022),
1209–1226.

[25] Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed. 2021. Automatic Text Summarization: A
Comprehensive Survey. Expert Syst. Appl. 165 (March 2021), 113679.

[26] Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical Neural Story Generation. In Proceedings of the 56th
Annual Meeting of the ACL. 889–898.

[27] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. 2023. On the Effectiveness of
Parameter-Efficient Fine-Tuning. AAAI 37, 11 (June 2023), 12799–12807.

[28] Myles D Garvey, Jim Samuel, and Alexander Pelaez. 2021. Would you please like my tweet?! An artificially intelligent,
generative probabilistic, and econometric based system design for popularity-driven tweet content generation. Decis.
Support Syst. 144, 113497 (May 2021), 113497.

[29] Shirley Gregor and Alan R Hevner. 2013. Positioning and Presenting Design Science Research for Maximum Impact.
MIS Quarterly 37, 2 (2013), 337–355.

[30] Xuanli He, Lingjuan Lyu, Chen Chen, and Qiongkai Xu. 2022. Extracted BERT Model Leaks More Information than
You Think!. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 1530–1537.

[31] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The Curious Case of Neural Text Degeneration.
In International Conference on Learning Representations.

[32] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
2021. LoRA: Low-Rank Adaptation of large language models. arXiv [cs.CL] (June 2021).

[33] Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. 2023. A Survey of Knowledge Enhanced
Pre-Trained Language Models. IEEE Trans. Knowl. Data Eng. 99 (2023), 1–19.

[34] Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong Sun. 2022.
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,
2225–2240.

[35] Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023. RADAR: Robust AI-Text Detection via Adversarial Learning.
arXiv [cs.CL] (July 2023).

[36] Allen H Huang, Hui Wang, and Yi Yang. 2023. FinBERT: A Large Language Model For Extracting Information From
Financial Text. Contemporary Accounting Research 40, 2 (May 2023), 806–841.

[37] Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Ruiyang Sun, Yizhou Wang, and Yaodong Yang.
2023. BeaverTails: Towards improved safety alignment of LLM via a human-preference dataset. In Advances in Neural
Information Processing Systems. 1–36.

[38] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. TinyBERT:
Distilling BERT for Natural Language Understanding. In Findings of the Association for Computational Linguistics:
EMNLP 2020. 4163–4417.

[39] Adhishree Kathikar, Aishwarya Nair, Ben Lazarine, Agrim Sachdeva, and Sagar Samtani. 2023. Assessing the Vul-
nerabilities of the Open-Source Artificial Intelligence (AI) Landscape: A Large-Scale Analysis of the Hugging Face
Platform. In IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE, 1–6.

[40] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie Yan Liu. 2017. LightGBM:
A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. (2017), 3147–3155.

[41] Rajiv Kohli and Sharon Swee-Lin Tan. 2016. Electronic Health Records: How Can IS Researchers Contribute to
Transforming Healthcare? MIS Quarterly 40, 3 (2016), 553–574.

[42] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes, and Donald Brown.
2019. Text Classification Algorithms: A Survey. Information 10, 4 (April 2019), 150.

[43] Wojciech Kryściński, Romain Paulus, Caiming Xiong, and Richard Socher. 2018. Improving Abstraction in Text
Summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics.

[44] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, and Daniel Hesslow. 2022. BLOOM: A
176B-Parameter Open-Access Multilingual Language Model. arXiv [cs.CL] (Nov. 2022).

[45] Dongkyu Lee, Gyeonghun Kim, Janghoon Han, Taesuk Hong, Yi-Reun Kim, Stanley Jungkyu Choi, and Nevin L Zhang.
2023. Local Temperature Beam Search: Avoid Neural Text DeGeneration via Enhanced Calibration. In Findings of the
ACL. 9903–9915.

[46] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational

, Vol. 1, No. 1, Article . Publication date: July 2024.

26 Ampel et al.

Linguistics. aclanthology.org, 7871–7880.
[47] Jingjing Li, Kai Larsen, and Ahmed Abbasi. 2020. TheoryOn: A design framework and system for unlocking behavioral

knowledge through ontology learning. MIS Q 44, 4 (Dec. 2020), 1733–1772.
[48] Quanzhi Li and Qiong Zhang. 2021. Twitter Event Summarization By Exploiting Semantic Terms and Graph Network.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. AAAI, 15347–15354.
[49] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing Continuous Prompts for Generation. In Proceedings of

the 59th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
[50] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out.

Association for Computational Linguistics, 74–81.
[51] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, Prompt,

and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. Comput. Surveys 55, 9 (2023),
1–35.

[52] Yang Liu and Mirella Lapata. 2019. Text Summarization with Pretrained Encoders. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

[53] Lukas, Salem, Sim, Tople, Wutschitz, and Zanella-Béguelin. 2023. Analyzing Leakage of Personally Identifiable
Information in Language Models. In 2023 IEEE Symposium on Security and Privacy (SP), Vol. 0. computer.org, 346–363.

[54] Roman Lukyanenko, HEC Montreal, Jeffrey Parsons, Yolanda F Wiersma, and Mahed Maddah. 2019. Expecting the
Unexpected: Effects of Data Collection Design Choices on the Quality of Crowdsourced User-Generated Content. MIS
Quarterly 43, 2 (Jan. 2019), 623–647.

[55] Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. 2014. Good debt or bad debt: Detecting
semantic orientations in economic texts. J. Assoc. Inf. Sci. Technol. 65, 4 (April 2014), 782–796.

[56] Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. 2022. Generating Training Data with Language Models: Towards
Zero-Shot Language Understanding. Adv. Neural Inf. Process. Syst. 35 (2022), 462–477.

[57] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana
Heintz, and Dan Roth. 2023. Recent Advances in Natural Language Processing via Large Pre-Trained Language Models:
A Survey. Comput. Surveys (June 2023).

[58] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. 2023. DetectGPT:
Zero-Shot Machine-Generated Text Detection using Probability Curvature. arXiv [cs.CL] (Jan. 2023).

[59] Reza Mousavi and Bin Gu. 2023. Resilience Messaging: The Effect of Governors’ Social Media Communications on
Community Compliance During a Public Health Crisis. Information Systems Research (July 2023).

[60] Jay F Nunamaker, Robert O Briggs, Douglas C Derrick, and Gerhard Schwabe. 2015. The Last Research Mile: Achieving
Both Rigor and Relevance in Information Systems Research. Journal of Management Information Systems 32, 3 (2015),
10–47.

[61] OpenAI. 2023. GPT-4 Technical Report. OpenAI (March 2023).
[62] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, and Pamela Mishkin. 2022. Training Language

Models To Follow Instructions With Human Feedback. In Advances in Neural Information Processing Systems, Vol. 35.
27730–27744.

[63] Balaji Padmanabhan, Xiao Fang, Nachiketa Sahoo, and Andrew Burton-Jones. 2022. Machine Learning in Information
Systems Research. Management Information Systems Quarterly 46, 1 (2022), iii–xix.

[64] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method For Automatic Evaluation
of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 311–318.

[65] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics. Association for Computational Linguistics.

[66] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, and Zaid Harchaoui.
2021. MAUVE: Measuring the gap between neural text and human text using divergence frontiers. Advances in Neural
Information Processing Systems 34 (2021), 4816–4828.

[67] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving Language Understanding by
Generative Pre-Training. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf. Accessed:
2022-11-29.

[68] A Radford, J Wu, R Child, D Luan, D Amodei, and I Sutskever. 2019. Language Models Are Unsupervised Multitask
Learners. Technical Report.

[69] Arun Rai. 2017. Editor’s Comments: Diversity of Design Science Research. MIS Quarterly 41, 1 (2017), iii.
[70] Sagar Samtani, Hongyi Zhu, Balaji Padmanabhan, Yidong Chai, Hsinchun Chen, and Jay F Nunamaker, Jr. 2023. Deep

Learning for Information Systems Research. Journal of Management Information Systems 40, 1 (Jan. 2023), 271–301.

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Large Language Models for Conducting Advanced Text Analytics Information Systems Research 27

[71] Ryan M Schuetzler, G Mark Grimes, and Justin Scott Giboney. 2020. The Impact of Chatbot Conversational Skill on
Engagement and Perceived Humanness. Journal of Management Information Systems 37, 3 (July 2020), 875–900.

[72] Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. 2021. Partial Is Better Than All:
Revisiting Fine-tuning Strategy for Few-shot Learning. AAAI 35, 11 (May 2021), 9594–9602.

[73] Natasha Singer. 2023. Ban or Embrace? Colleges Wrestle With A.I.-Generated Admissions Essays. The New York Times
(Sept. 2023).

[74] Zachary R Steelman, Oklahoma State University, Bryan I Hammer, Moez Limayem, Oklahoma State University, and
University of South Florida. 2014. Data Collection in the Digital Age: Innovative Alterantives to Student Samples. MIS
Quarterly 38, 2 (Feb. 2014), 355–378.

[75] Y Su, T Lan, Y Wang, D Yogatama, L Kong, and N Collier. 2022. A Contrastive Framework for Neural Text Generation.
In Advances In Neural Information Processing Systems (35).

[76] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. Efficient Transformers: A Survey. Comput. Surveys
55, 6 (Dec. 2022), 1–28.

[77] M Thangaraj and M Sivakami. 2018. Text Classification Techniques: A Literature Review. Interdisciplinary Journal of
Information, Knowledge, and Management 13 (2018), 117–135.

[78] Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating Large Language Model Applications Utilizing LangChain:
A Primer on Developing LLM Apps Fast. In Proceedings of the International Conference on Applied Engineering and
Natural Sciences. 10–12.

[79] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, and Nikolay Bashlykov.
2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv [cs.CL] (July 2023).

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention Is All You Need. Advances in Neural Information Processing Systems 30, 1 (2017), 5999–6009.

[81] Xiangyu Wang, Kang Zhao, Xun Zhou, and Nick Street. 2020. Predicting User Posting Activities in Online Health
Communities with Deep Learning. ACM Trans. Manag. Inf. Syst. 11, 3 (Sept. 2020), 1–15.

[82] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
2022. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In Advances in Neural Information
Processing Systems, S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho, and A Oh (Eds.), Vol. 35. 24824–24837.

[83] Markus Weinmann, Joseph Valacich, Christoph Schneider, Jeffrey L Jenkins, and Martin Thomas Hibbeln. 2021. The
Path of the Righteous: Using Trace Data to Understand Fraud Decisions in Real Time. MIS Quarterly (Oct. 2021).

[84] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. 2019. Neural Text
Generation With Unlikelihood Training. In International Conference on Learning Representations. 1–18.

[85] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Transformers: State-of-the-art natural language processing.
arXiv (2019).

[86] Jiaheng Xie, Xiao Liu, Daniel Dajun Zeng, and Xiao Fang. 2022. Understanding Medication Nonadherence from Social
Media: A Sentiment-Enriched Deep Learning Approach. MIS Quarterly 46, 1 (Feb. 2022), 341–372.

[87] Xianjun Yang, Wei Cheng, Linda Petzold, William Yang Wang, and Haifeng Chen. 2023. DNA-GPT: Divergent N-Gram
Analysis for Training-Free Detection of GPT-Generated Text. arXiv [cs.CL] (May 2023).

[88] Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, and Meng Jiang. 2022. A Survey of
Knowledge-Enhanced Text Generation. ACM Comput. Surv. (Jan. 2022).

[89] Yuan, Neubig, and Liu. 2021. Bartscore: Evaluating generated text as text generation. Adv. Neural Inf. Process. Syst.
(2021).

[90] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. PEGASUS: Pre-training with Extracted Gap-
sentences for Abstractive Summarization. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé Iii and Aarti Singh (Eds.). PMLR, 11328–11339.

[91] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2020. BERTScore: Evaluating Text
Generation with BERT. In International Conference on Learning Representations. 1–43.

[92] David Zimbra, Ahmed Abbasi, Daniel Zeng, and Hsinchun Chen. 2018. The State-of-the-Art in Twitter Sentiment
Analysis: A Review and Benchmark Evaluation. ACM Trans. Manage. Inf. Syst. 9, 2 (Aug. 2018), 1–29.

[93] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. 2023. Universal and Transferable Adversarial Attacks on
Aligned Language Models. arXiv [cs.CL] (July 2023).

Received 27 December 2023; revised 23 May 2024; accepted 17 July 2024

, Vol. 1, No. 1, Article . Publication date: July 2024.

	Abstract
	1 Introduction
	2 An Overview of Large Language Models
	2.1 Encoder LLMs
	2.2 Encoder-Decoder LLMs
	2.3 Decoder LLMs

	3 Major LLM Players
	3.1 Closed-source LLMs
	3.2 Open-source LLMs

	4 LLMs For Text Analytics Information Systems Research (TAISR) Framework
	4.1 Research Objective
	4.2 Text Analytics Task
	4.3 Data Collection
	4.4 LLM Implementation
	4.5 Evaluation

	5 Case Studies
	5.1 Case Study 1: Sentiment Analysis for Organizations
	5.2 Case Study 2: Automated Reporting of Competitor Actions
	5.3 Case Study 3: Social Media Content Generation for Organizations

	6 LLM Challenges and Limitations
	6.1 Hallucinations
	6.2 Sensitive Information Disclosure
	6.3 Detecting LLM-generated Text
	6.4 Adversarial Prompts

	7 Conclusion
	References

