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1.  INTRODUCTION 

The Neotropics, encompassing Central America, 
the Caribbean, and South America, boast remarkable 
biodiversity, surpassing the combined diversity of 
plants and animals in the African and Southeast 
Asian tropics (Harvey et al. 2020, Raven et al. 2020). 
Unfortunately, this rich biodiversity faces significant 
risks due to various factors, including global climate 

change, deforestation, and disease (Pounds et al. 
2006, Lips et al. 2008, Newbold et al. 2015, Fisher & 
Garner 2020, Antonelli 2022). Amphibians, parti -
cularly anurans, constitute one of the most diverse 
vertebrate groups in the Neotropics (Vasconcelos 
et al. 2019); yet they are also one of the most threat-
ened vertebrates in South America and also world-
wide (Vitt & Caldwell 2013, Menéndez-Guerrero 
et al. 2020). Among the multitude of threats, emerg-
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ing infectious diseases (EIDs) have become a major 
challenge to amphibian conservation in the Neotro-
pics (Menéndez-Guerrero & Graham 2013, Ortega-
Andrade et al. 2021). 

EIDs may spill over or jump from one taxon to 
another, not just threatening regional biodiversi -
ty (Daszak et al. 2000, Zipkin et al. 2020) but poten-
tially whole ecosystems (Lips et al. 2006, Whiles et al. 
2013, Rantala et al. 2015, Scheele et al. 2019). Chy -
tridio mycosis is one such wildlife EID caused by 
the amphibian-killing fungus (i.e. Batrachochytrium 
dendrobatidis, hereafter Bd), which infects the skin of 
amphibians (Longcore et al. 1999, Grogan et al. 2018, 
Martel et al. 2018). This waterborne disease is charac-
terized by degradation of the mouthparts of larvae or 
hypo- or hyper-keratinization of skin cells in adult 
amphibians. The resulting failure of gas exchange 
and electrolyte transport in the animal can eventually 
lead to death (Voyles et al. 2007, Van Rooij et al. 
2015). Bd infects over 700 species (Lips et al. 2006, 
Scheele et al. 2019), yet susceptibility to, and prev-
alence of, this disease seems to be environment-, 
host-, population-, and strain-specific (Fisher & 
Garner 2020). 

Amphibians in the Neotropics have been severely 
impacted by this fungal disease (Cheng et al. 2011, 
Azat et al. 2022), and Ecuador is especially relevant 
because it is home to one of the highest numbers of 
amphibian species in the Neotropics (Frost et al. 
2006, Coloma et al. 2018, Ortega-Andrade et al. 2021). 
Furthermore, over a third of these species are consid-
ered among the most threatened in South America, as 
they are being extirpated at an alarming rate due to a 
host of risk factors which also includes Bd (Ortega-
Andrade et al. 2021). Within Ecuador, as in other 
parts of Central and South America, detection of Bd 
and reports of chytridiomycosis have mostly come 
from the highlands (Menéndez-Guerrero & Graham 
2013, Guayasamin et al. 2014, Bresciano et al. 2015). 
Meanwhile, studies on the ecology and epidemiology 
of Bd have less frequently focused on lowland hab-
itats such as the Amazon region (Puschendorf et al. 
2009, Zumbado-Ulate et al. 2019), which encom-
passes approximately 42% of Ecuador’s landmass 
(UNDP 2022). Thus, major knowledge gaps still exist 
regarding Bd disease dynamics and their implications 
in these low-elevation regions of South America 
(Becker et al. 2016, Zumbado-Ulate et al. 2019). 

Understanding the influence of host traits (e.g. 
behavior, size, and life history) on disease susceptibil-
ity in the Ecuadorian Amazon also needs more atten-
tion. For instance, in parts of South and Central 
America, the effects of Bd are correlated to the host’s 

exposure to water during different life-history stages 
(Lips et al. 2003, Kriger & Hero 2007, Mesquita et al. 
2017, Sette et al. 2020, Byrne et al. 2022). Accordingly, 
direct-developing (i.e. tadpole life stage absent) spe-
cies that have little or no contact with aquatic envi-
ronments during their ontogeny (Duellman & Trueb 
1994, Altig & McDiarmid 2007) generally have lower 
Bd prevalence than their aquatic counterparts (Lips et 
al. 2003, Kriger & Hero 2007, Bielby et al. 2008, Brem 
& Lips 2008); however, there are some exceptions 
(Gründler et al. 2012, Ribeiro et al. 2020). Most of 
these data come from studies focusing on the high-
lands; thus, whether the same underlying factors 
apply to host–pathogen relationships in the Amazon 
Basin still requires investigation. 

Globally, multiple divergent lineages of Bd have 
been identified using whole genome sequences 
(Farrer et al. 2011, Rosenblum et al. 2013, O’Hanlon et 
al. 2018). Three have so far been detected in South 
America, namely, the global panzootic lineage re -
ferred to as Bd-GPL, the Bd-Asia-2/Bd-Brazil lineage, 
and a hybrid lineage (Schloegel et al. 2012). Bd-GPL, 
the most prevalent and hypervirulent among all the 
lineages (Farrer et al. 2011, James et al. 2015, O’Han-
lon et al. 2018), has been detected in at least 5 differ-
ent South American countries, specifically, Colom-
bia, Peru, Brazil, Chile, and Bolivia (O’Hanlon et al. 
2018). The Bd-Asia-2/Bd-Brazil lineage has been 
reported in the Atlantic Forest of Brazil (Jenkinson et 
al. 2016) but was first detected on a frog, imported 
from Brazil, that was acquired at a local market in 
Michigan, USA (Schloegel et al. 2012). The diversity 
and distribution of these strains underscore the need 
for further genotyping studies in Ecuador to better 
understand the prevalence and dynamics of lineage-
specific Bd infections, as has been previously demon-
strated in other regions of the world (Byrne et al. 2017, 
2019, Abarca et al. 2021, Ghosh et al. 2021, Carvalho 
et al. 2023). 

Our study aimed to (1) investigate the association 
between aquatic dependency, morphology, familial 
taxonomy, and prevalence of Bd in a lowland Ama -
zonian Forest in Ecuador; and (2) genotype Bd col-
lected from various anuran species in the area. In 
doing so, we expand ongoing attempts at divulging 
crucial information on the obscure infection patterns 
of the amphibian-killing fungus in Neotropical low-
lands. Additionally, our study highlights the need 
to reconsider previously identified predictors of Bd 
dynamics, such as aquatic dependency, size, and tax-
onomy, in the context of lowland tropical forests, with 
special attention to transient or permanent brome-
ligenous species that inhabit phytotelmata. Although 
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major Bd-driven amphibian declines have not been 
reported in lowland South American species, our 
results  suggest that these sites could still contribute 
to the spread and persistence of the amphibian-
 killing fungus. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

Sampling was conducted at the Tiputini Biodiver -
sity Station, Orellana Province, Ecuador (0.6379°S, 
76.1498°W; 217 m elev.). Founded in 1994 by Univer-
sidad San Francisco de Quito (USFQ), the station lies 
along the Rio Tiputini and is adjacent to the Yasuní 
Biosphere Reserve, which is renowned for its biodiver-
sity (Bass et al. 2010). The research station has 139 
documented amphibian species within its 6.5 km2 
boundary, spanning the 3 orders Caudata, Gymnophia, 
and Anura, but there are 150 species known from the 
greater Yasuní Biosphere Reserve (Bass et al. 2010, 
USFQ 2023). The climate of the Yasuní region is typi-
cally described as aseasonal, with temperatures aver-
aging 25°C (15°–38°C), humidity averaging 88%, and 
the northwestern area (study location) receiving an 
average of 2425–3145 mm of rainfall per year, with no 
less than 100 mm per month (December and January 
are the driest months) (Bass et al. 2010, McCracken & 
Forstner 2014). 

2.2.  Sample collection 

All observations and data were collected between 
March and November 2008. Anurans were sampled 
during terrestrial surveys or tree canopy bromeliad 
surveys as part of a previous study to document the 
amphibian diversity of the Tiputini Biodiversity Sta-
tion (McCracken & Forstner 2008, McCracken et al. 
2009). Each individual was collected and held in a 
new zip-lock bag with a small amount of commer-
cially bottled water added before being processed to 
prevent desiccation. Processing consisted of weigh-
ing, measuring, photographing, and taking a small 
tissue sample. Morphological measurements for 
snout–vent length (SVL) were taken with a Mitutoyo 
CD-S6’C digital dial caliper (0.01 mm precision), and 
weights were taken with a Pesola digital pocket scale 
(0.01 g precision) on live specimens. 

Appropriate cross-contamination preventative mea -
sures were taken between each anuran processed. 
These included the use of new nitrile gloves, spraying 

calipers and surfaces (polyethylene cutting boards) 
with 70% ethanol and air drying afterwards, and flame-
sterilizing scissors, scalpels, and forceps be tween indi-
viduals. For voucher specimens a small portion of 
thigh muscle tissue that included skin was extracted 
prior to fixation. A toe clip was collected from anurans 
being returned to their original capture location. All 
tissue samples were placed in 1.8 ml Nunc cryotubes 
(Thermo Fisher Scientific) with 95% ethanol, stored at 
4°C in the field, and transferred to –80°C for long-
term storage. DNA was extracted using the DNeasy 
Blood & Tissue Kit (Qiagen), and DNA presence and 
quality were assessed using agarose electrophoresis. 

This research was conducted in compliance with 
the rules overseen by the Texas State University Insti-
tutional Animal Care and Use Committee (Protocol 
nos. 0721-0530-7, 05-05C38ADFDB, and 06-01C694
AF). Permission and permits were issued by the Min-
isterio del Ambiente, Ecuador (Permit nos.  006-IC-
FA-PNY-RSO, 012-IC-FA-PNY-RSO; Provincial de 
Orellana Fauna permit number 0018 DPO-MA; and 
Provincial de Napo Fauna permit number 017-IC-
FAU/FLO-DPN/MA). 

2.3.  Bd detection, quantification, and genotyping 
via qPCR 

Reactions for the quantification of Bd load infection 
intensity were run in singlicate 25 µl volumes com-
prising 5 µl of DNA (diluted 1:10) and 12.5 µl of Taq-
Man Fast Advanced Master Mix (Thermo Fisher Sci-
entific), 2.75 µl nuclease-free water, 0.625 µl of primer 
ITS1-3 Chytr (18 µM), 0.625 µl of primer 5.8S Chytr 
(18 µM), 0.625 µl of probe Chytr MGB2 (5 µM), and 
0.50 µl bovine serum albumin (400 ng µl–1) per reac-
tion (Boyle et al. 2004, Kriger et al. 2006). A standard 
curve was generated using the global panzootic strain 
JEL423 (Fisher et al. 2012), which had a dynamic 
range of 0.1 to 1000 zoospore equivalents (ZE). We 
considered samples Bd positive via qPCR if the load 
was greater than 1 ZE. 

All samples were genotyped, regardless of Bd pre -
sence or absence, using a single nucleotide poly -
morphism (SNP) assay that discriminates between Bd-
GPL and Bd-Asia2/Bd-Brazil (SC9_200709_CT) based 
on 27 global Bd genomes (Rosenblum et al. 2013). The 
primers amplify a 109 base pair fragment, and dual 
probes target an SNP at position 200 709 on the super-
cont1.9 genomic scaffold of the strain JEL423 refer-
ence genome (GenBank: DS022308.1). The dual 
probes can detect either Bd-GPL (genotype TT), Bd-
Asia2/Bd-Brazil (genotype CC), or a co-infection or 
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hybrid strain (genotype CT) (Table 1). Genotyping re-
actions were conducted in singlicate 15 µl volumes 
comprising 15 µl of TaqMan Fast Advanced Master 
Mix, 0.75 µl of the SNP assay (20× concentration), 
4.25 µl of nuclease-free water, and 5 µl of extracted 
DNA (variable concentrations). The results were inter-
preted using the Thermo Fisher Connect cloud service 
and the ‘Standard Curve’ and ‘Genotyping’ applica-
tions to detect Bd presence/absence, Bd infection 
load, and generate the Bd SNP genotype calls. 

2.4.  Statistical analyses 

All analyses were conducted in the R environment 
for statistical computing (version 4.3.0) (R Core Team 
2021). The overall prevalence of Bd was determined 
by calculating the ratio of samples that tested positive 
for Bd to the total sample size. Additionally, the prev-
alence was calculated for each family of anuran sam-
pled, and 95% Wilson binomial confidence intervals 
(CI) were generated for prevalence estimates using 
the epi.conf() function in the ‘epiR’ package (version 
2.0.62) (Stevenson 2022). To maximize the overall 
sample size and account for the uncertain species-
level identification of some samples, individuals were 
grouped by taxonomic family. 

The null hypothesis regarding the absence of a sig-
nificant relationship between taxonomy (at the family 
level), morphology (SVL and weight), aquatic index 
(AI) of the host, and the Bd infection status (presence/
absence) was tested to investigate the relationship be-
tween infection status and host traits. AI assignments 
followed the approach of Lips et al. (2003), with mod-
ifications based on literature sources such as Amphibi-
aWeb (AmphibiaWeb 2022) and the IUCN Red List of 
Threatened Species (IUCN 2022). Anuran families 
were categorized into 4 AI categories: AI0 for terrestrial 
species with direct development (terrestrial breeders), 

AI1 for arboreal species that breed in water, AI2 for ri-
parian species that breed in water, and AI3 for direct-
developing bromeligenous species, introduced in this 
study to encompass species reliant on the moist micro-
habitat of phytotelmata for shelter and/or breeding, 
bypassing the aquatic larval stage. 

The dataset was initially analyzed using summary 
statistics and visual inspections of variable distribu-
tions. Continuous variables that did not exhibit a nor-
mal distribution were log-transformed to enhance 
suitability for subsequent model fitting processes. 
Next, a null model was fitted using the glmer() func-
tion from the ’lme4’ package (version 1.1-33) (Bates 
2018), employing maximum likelihood (Laplace 
Approximation) with a binomial family and a logit 
link. This null model included only an intercept term, 
serving as the baseline for comparison in the analysis 
to assess whether adding more predictors improved 
the model’s explanatory ability and overall fit to the 
data. The mixed model approach was chosen to 
account for the non-independence of data points due 
to phylogenetic correlations within families. 

Subsequently, a series of general linear mixed mod -
els (GLMMs) were fitted to explore how the addition 
of predictor variables and their interactions influence 
infection status, accounting for random effects due to 
familial clustering. A total of 11 GLMMs were tested, 
including the full model (all 3 predictors) and models 
with individual predictors and interactions. To de -
termine the best-fitting model, each model’s per -
formance score was computed using the compare_
performance() function from the ‘performance’ pack-
age (version 0.12.0) (Lüdecke et al. 2021). This in -
volved normalizing 10 different fit indices (scaled 
from 0 to 1) and calculating their mean value for each 
model (Table S1 in the Supplement; www.int-res.com/
articles/suppl/d160p115_supp.pdf). 

Model validation for the best-performing model 
was conducted using the check_model() function 

Primer/Probe           Sequence (5’–3’)                                                              Concentration      Reporter      Quencher         Strain 
                                                                                                                                              (µM) 
 
Forward primer       GCG GTC ATT GTA AAG GAT ACT GAT ACT                 36 
Reverse primer        CAT CAA TTG AAG TCC ATC GAC CAG AT                   36 
Reporter 1                 CTT TGG TTT CCG TCG CAT C                                             8                       VIC               NFQ         Bd-ASIA2/ 
                                                                                                                                                                                                                       Bd-Brazil 
Reporter 2                 CTT TGG TTT CCA TCGC ATC                                              8                      FAM              NFQ            Bd-GPL

Table 1. Primer and probe sequences for SC9_200709_CT (Assay ID AHGJ91E), a custom TaqMan single nucleotide polymor-
phism (SNP) genotyping assay (Applied Biosystems) at 40× concentration (SNP in bold and underlined). This assay targets the 
nuclear genome of Batrachochytrium dendrobatidis and discriminates between alleles that identify lineages Bd-GPL or  

Bd-ASIA2/Bd-Brazil
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from the ’performance’ package. This involved asses-
sing for overdispersion, singularity, multicollinearity 
among random effects, collinearity among predictor 
variables, and heteroscedasticity. Residual diagnos-
tics were employed to evaluate model fit and poten-
tial misspecifications, supported by simulations to 
visually inspect residual distributions. Six outliers 
were detected but disregarded due to satisfactory 
outcomes from other diagnostic checks, which indi-
cated that they did not detrimentally impact the 
model’s overall accuracy or reliability. 

Lastly, an F-test for overall significance was con-
ducted using the ANOVA() function in base R. This 
facilitated the comparison of the best-performing 
model against the null model. The odds ratio for the 
best-performing model identified through the F-test 
was generated using the or_plot() function from the 
‘finalfit’ package (version 1.0.6) (Harrison 2023). 

3.  RESULTS 

A total of 207 individual anurans were sampled, 
spanning 9 families, 25 genera, and approximately 55 
known species (Table S2). The overall prevalence of 
Bd infections was 0.58 (95% CI = 0.51–0.64; n = 207). 
Among families with 5 or more individuals, Leptodac-
tylidae had the highest Bd prevalence at 0.90 (95% 
CI = 0.80–0.95; n = 20) while prevalence for Bufo -
nidae, Dendrobatidae, Hylidae, and Microhylidae 
ranged from 0.40 to 0.50 (Table 2). The single repre-
sentatives of Aromobatidae and Ranidae tested posi-
tive, while the single representative of 
Centrolenidae tested negative for Bd 
(Table 2). When grouped by AI, ripar-
ian frogs that breed in water (AI2) had 
the highest Bd prevalence at 0.64 (95% 
CI = 0.49–0.76; n = 44), prevalence 
was 0.57 (95% CI = 0.46–0.70; n = 65) 
for terrestrial species with direct devel-
opment (AI0), also 0.57 (95% CI = 
0.41–0.72; n = 35) for direct-develop-
ing bromeligenous species (AI3), and 
0.54 (95% CI = 0.42–0.66; n = 63) for 
arboreal species that breed in water 
(AI1) (Table 2). Prevalence was not 
statistically different among different 
AI categories (Table S1). 

Neither the median weight nor SVL 
of the host was significantly different 
between infected and uninfected indi-
viduals (Fig. 1). The GLMM with 
weight (log-transformed to adjust for 

positive skewness) as the predictor variable and 
Family as the random effect term was identified as the 
best-performing model (performance score = 69%) 
(Table S1). The fixed effect for weight was statistically 
significant (estimate = –1.00, SE = 0.30, z = –3.30, p 
< 0.001), indicating that higher weight was associated 
with lower odds of infection (Table S3). The F-test for 
overall significance indicated a significant improve-
ment in model fit when including the predictor vari-
able weight (χ2 = 12.99, df = 1, p < 0.001), compared 
to the null model containing only an intercept (Table 
S4). This is further supported by the odds ratio (OR) 
ana lysis for weight (OR = 0.37, 95% CI = 0.20 – 0.67, 
p = 0.001). This OR indicates that for each unit 
increase in weight, the odds of infection decrease by 
63% (since 1 – 0.37 = 0.63). The confidence interval 
does not include 1, reinforcing that the association is 
statistically significant. 

All DNA extractions from the toe clips showed a 
high molecular weight band on an agarose gel. Out of 
120 Bd-positive samples via qPCR, 72 (60%) were 
genotyped as strain Bd-GPL based on the results of 
the SNP Assay. The remaining 48 positive samples 
did not show an amplification curve for either dye. As 
expected, samples that were qPCR negative also did 
not return a genotype. The median infection intensity 
for genotyped samples was 2329 ZE with a range of 
458–1 048 416 ZE, and 122 ZE with a range of 1.83–
2656 ZE for non-genotyped samples (Fig. S1). These 
median infection intensity values were significantly 
different (2-sample Wilcoxon test; W = 306, α = 0.05, 
p < 0.0001). 
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Category                                  Prevalence     Sample size       SE            Wilson 
                                                                                                                        binomial CI 
 
Aromobatidae                               1.00                      1                0.70        0.50–1.00 
Bufonidae                                       0.50                     10              0.41        0.35–0.65 
Centrolenidae                               0.00                      1                0.70        0.00–0.50 
Dendrobatidae                              0.50                     11              0.39        0.36–0.64 
Hylidae                                            0.50                     58              0.26        0.43–0.56 
Leptodactylidae                            0.90                     20              0.27        0.80–0.95 
Microhylidae                                 0.40                      5                0.49        0.22–0.62 
Ranidae                                           1.00                      1                0.70        0.50–1.00 
Strabomantidae                            0.58                    100             0.22        0.53–0.63 
AI0-terrestrial/terrestrial           0.57                     65              0.25        0.46–0.70 
AI1-arboreal/aquatic                  0.54                     63              0.25        0.42–0.66 
AI2-terrestrial/aquatic               0.64                     44              0.27        0.49–0.76 
AI3-arboreal/terrestrial             0.57                     35              0.30        0.41–0.72

Table 2. Prevalence of Batrachochytrium dendrobatidis (Bd) infections, sample 
sizes, estimates of standard error, and lower and upper Wilson binomial con -
fidence intervals (CIs) for 9 anuran families sampled at Tiputini Biodiversity 
Station, Ecuador, and for individuals grouped by their aquatic index (AI) with  

life-stage habitat (adult/larval)
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4.  DISCUSSION 

4.1.  Overview 

Since Bd infections in amphibians first gained wide-
spread attention in the late 1990s (Berger et al. 1998, 
Lips 1999, Longcore et al. 1999), a significant amount 
of research has been carried out on various aspects 
of amphibian chytridiomycosis in the Neotropics. 
However, the majority of these Bd studies, thus far, 
have prioritized highlands and montane ecosystems 
over lowland tropical forests. While these warmer 
lowlands might not provide abiotic conditions within 
the optimal physiological parameters for this patho-
genic fungus (Piotrowski et al. 2004, Ron 2005, Pusch-
endorf et al. 2009, Liu et al. 2013, Menéndez-Guerrero 
& Graham 2013) — however, see McCracken et al. 
(2009) for an exception — the role of Neotropical low-
lands as putative Bd reservoirs or sinks has only 
recently begun to be investigated (Becker et al. 2016, 
Rodríguez-Brenes et al. 2016, Russell et al. 2019, Zum-
bado-Ulate et al. 2019). Our study is one amongst 
only a handful of contributions to a better under-
standing of the associations between anuran host 

traits and Bd infections in the lowlands of South 
America. 

4.2.  Overall Bd prevalence and genotyping 

Our results indicate an overall higher Bd prevalence 
(0.58, n = 207) than those reported by earlier studies 
from the Amazonian lowlands; specifically, 0.38, n = 
1391 (retrospective study; Becker et al. 2016), 0.34, n = 
324 (Russell et al. 2019), 0.007–0.073, n = 282 (von 
May et al. 2018), and one study (0.20; n = 86) that was 
carried out at the same location (McCracken et al. 
2009). Our prevalence data are comparable to other 
studies in the lowlands of Costa Rica in Central Amer-
ica (0.546, n = 348) (Zumbado-Ulate et al. 2019) and 
Brazil in South America (1.0, n = 40) (Ruggeri et al. 
2020), although the latter only tested tadpoles of 
Boana faber. Most Bd studies on adult amphibians 
now routinely rely on DNA extracts from skin swabs of 
a larger body area; consequently, we may have under-
estimated Bd prevalence and infection intensity if we 
potentially missed low-load infections. However, some 
studies have shown no differences between swab and 
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toe extracts on Bd detection (at early life stages) or in-
fection intensity estimates (Hyatt et al. 2007, Burrowes 
et al. 2011). Regardless, we recommend future Bd sur-
veillance efforts in this region use standardized Bd 
swabbing procedures. 

There is some limited evidence of Bd-GPL from the 
Andes and the east coast of Ecuador detected on 
swabs taken from 5 museum specimens of Atelopus 
sp. and Telmatobius sp. (Byrne et al. 2019). However, 
to the best of our knowledge, no prior information on 
the genotype of Bd was known from the Ecuadorian 
Amazon. Based on our results, this site only showed 
evidence of the global panzootic lineage with no 
detection of Bd-Brazil/Asia2. This is consistent with 
the genotyping results for Bd from the Peruvian Ama-
zon (Russell et al. 2019) and extends the range of Bd-
GPL to now include other parts of Ecuador along with 
other South American countries such as Brazil, Chile, 
and Colombia. 

Our molecular results show a clear and strong posi-
tive association between the infection intensity (i.e. 
the load of Bd) and the odds of the Bd lineage being 
successfully genotyped (Fig. S1). This implies that 
samples that tested positive for Bd might not have 
returned a genotype unless the fungal load was above 
a given threshold (roughly between 458 and 2656 ZE). 
Future studies should be mindful that Bd infection 
prevalence rates in a sampled population are prone to 
underestimation if single SNP qPCR genotyping is 
used as the sole method of chytrid detection. 

4.3.  Body measurements and Bd infection status 

The median weight (and SVL) across families indi-
cated significant variation in body size among different 
taxonomic groups in our dataset (Table S5). To ac-
count for potential phylogenetic relationships and 
other family-specific factors that might affect the re-
sponse variable, the taxonomic family was included as 
a random effect in the model. After accounting for 
 variability between families, host weight was found 
to be a significant predictor of Bd infection status 
(Table S1). The median weight of uninfected individ-
uals (1.80 g) was slightly larger than the median 
weight of infected individuals (1.50 g) (Fig. 1b). Ac-
cording to our GLMM, for each unit increase in 
weight, the log-odds of being infected with Bd de-
creased by 1.00, indicating that heavier individuals are 
less likely to be infected by Bd. The median SVL of un-
infected anurans (27.6 mm) was also higher than that 
of infected anurans (26.9 mm) (Fig. 1a). Models in-
cluding SVL performed poorly compared to the model 

with only weight (Table S3). However, because we do 
not have genetic data for the host, we cannot fully ac-
count for phylogenetic relatedness among host spe-
cies. Including the taxonomic family as a random 
effect may not capture true evolutionary relationships 
within and between families. Although we found a sig-
nificant effect of mass, any effect of mass could be an 
effect of species (e.g. smaller sampled species may be 
the ones that tend to be infected). Including family as a 
random effect does not fully account for multiple sam-
ples from the same species. Consequently, some ob-
served effects might be influenced by unaccounted 
phylogenetic factors. Future studies with comprehen-
sive phylogenetic data and the use of phylogenetic 
linear models would be better positioned to disentan-
gle the effects of body size and phylogenetic related-
ness on Bd infection status. 

The influence of host size on the infection intensity 
and status of Bd is not clear. Some research has shown 
that larger (and older) hosts in several different 
organisms (including frogs infected with Bd) can 
have more developed immune systems and are there-
fore able to mount better defenses against pathogens 
(Møller et al. 1998, Lamirande & Nichols 2002, Wil-
coxen et al. 2010). For example, Burrow et al. (2017) 
investigated the association between host size and Bd 
and found that smaller size in anurans increased sus-
ceptibility to diseases. Similarly, studies on Austral-
ian frogs and European anurans have uncovered an 
in verse relationship between the status of Bd infec-
tion and SVL (Kriger et al. 2006, Kriger & Hero 2007) 
and mass (Meurling et al. 2024), respectively. Con-
versely, research has also shown that larger hosts are 
not only more likely to be infected but also more 
likely to experience declines (Lips et al. 2003, Ban-
croft et al. 2011). 

Considering the totality of available evidence, the 
correlation between an anuran’s size/weight and its 
ability to combat Bd infections appears to be more 
complex than a simple linear relationship. For exam-
ple, according to Lips et al. (2003), large frogs in -
fected by Bd only declined at high elevations, 
whereas large infected lowland anurans survived. 
Cohen et al. (2019) examined how thermal mis-
matches interact with body size and other host traits 
and found that cold-adapted species with larger adult 
body sizes had higher Bd prevalence. These findings 
hint at the existence of some form of interaction 
between various predictors of Bd in their effect on the 
prevalence and intensity of the pathogen. 

The relationship between body measurement and 
Bd infections in our data underscores the need to 
investigate whether size and weight drive the ability 
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to prevent infections, or conversely, whether infec-
tions pose constraints on how large anurans can grow. 
There is support for both hypotheses in the literature 
(Parris & Cornelius 2004, Wu et al. 2018), and clearly, 
more data are required before these questions can be 
addressed. For now, our results show a lower pres-
ence of Bd infections in heavier anuran species, from 
an important ecological site within the Ecuadorian 
Amazon, compared to lighter taxa. 

4.4.  Aquatic indices and Bd prevalence 

Our logistic regression analyses revealed no signifi-
cant association between the AI and the status of Bd 
infections in anurans from Tiputini (Table S1). Previous 
studies have found aquatic breeders to have a statisti-
cally higher prevalence of Bd especially when com-
pared to terrestrial breeders (Lips et al. 2003, Kriger & 
Hero 2007, Bancroft et al. 2011, Mesquita et al. 2017). 
However, this does not appear to be a consistent pat-
tern across all studies. For example, Ribeiro et al. 
(2020), recorded a higher Bd prevalence for direct 
 developing/terrestrial frogs compared to aquatic 
breeders. The authors accredited this to sampling that 
was restricted to riparian zones, unlike some other 
studies, which are areas that may facilitate contact 
with waterborne Bd regardless of the type of breeding 
environment (Lips et al. 2006, Brem & Lips 2008, Ri-
beiro et al. 2020). Stream-adjacent populations of di-
rect-developing frogs could thus be at a higher risk of 
infection by Bd than currently thought. This reinforces 
the need for more surveys that focus on these lowland 
riparian environments and their role in the host–
 pathogen dynamics of the amphibian chytrid fungus. 

Though they did not investigate the association 
between exposure to water and Bd infections, 
McCracken et al. (2009) found that the prevalence of 
Bd was non-randomly distributed along the vertical 
axis. Specifically, the frogs that inhabited the canopy 
(defined as over 4 m above ground level) had the 
highest prevalence with as many as 33% being 
infected. This further corroborates our findings show-
ing a lack of association between AI and Bd, consider-
ing that several canopy-inhabiting species in our 
dataset are either direct developers or terrestrial 
 species that lay eggs in water (i.e. AI0 and AI2, 
respectively). 

It has been proposed that canopy-dwelling species 
can also be regularly exposed to Bd, which may be 
present in standing water collected within the phyto-
telmata of tank bromeliads (McCracken et al. 2009). 
Several species of frogs exploit these water-filled 

plant cavities for egg or tadpole development or even 
spend their entire life cycle within them (Peixoto 
2013, Sabagh et al. 2017, Tonini et al. 2020). To factor 
in the near-constant exposure to water or humidity, 
species occupying this niche (all belonging to the 
genus Pristimantis) sampled in our study, were 
assigned a separate AI category (AI3). Indeed, the 
prevalence of Bd was higher (though not signifi-
cantly) in these bromeligenous frogs (A3) when com-
pared to aquatic breeders that are arboreal and breed 
in water (A1) (Table 2). This is not entirely surprising 
because even though ambient temperatures in low-
land tropical rainforests may not be optimal for the 
proliferation of Bd, McCracken et al. (2009) found the 
water in lowland bromeliads to be at temperatures 
that are conducive for the survival of Bd. A high prev-
alence of Bd has also been reported for frogs inhabit-
ing phytotelma microhabitats in other Neotropical 
lowland forests (Ruano-Fajardo et al. 2016). While 
technically challenging, future amphibian chytrid 
research would thus benefit by investigating the role 
of this water-impounding foliage as reservoirs of Bd in 
lowland tropical forests. 

4.5.  Taxonomy and Bd prevalence 

Exploratory data analysis revealed a significant cor-
relation between taxonomic rank at the family level 
and aquatic indices in our dataset. Furthermore, a 
model that included only Family as a fixed effect did 
not perform well, indicating that Family alone does 
not significantly predict Bd infection status in this 
community. This suggests that Bd prevalence is 
mostly randomly distributed among taxonomic fam-
ilies; however, Leptodactylidae (n = 20) did show a 
very high prevenance of Bd (0.90: 95% CI = 0.80–
0.95) among the individuals sampled. While contra-
dictory to some previous findings (Bancroft et al. 
2011, Burrowes & De la Riva 2017), this general lack of 
association is documented by others who have looked 
at phylogenetic relatedness as a predictor of Bd prev-
alence and susceptibility (Berger et al. 1998, Craw-
ford et al. 2010). Overall, 88% (8 out of 9) of the fam-
ilies sampled for Bd were found to be infected by the 
fungus, compared to 43% (3 out of 7) of the amphibian 
families that were sampled by McCracken et al. 
(2009) at the same site. Similar to our findings regard-
ing morphology, our results do not align with the 
existing literature on studies conducted in the high-
lands of the Neotropics concerning the association 
between taxonomy and Bd infections in anuran fauna 
and point to a lack of host specificity. 
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5.  CONCLUSIONS 

Our study contributes to the limited body of 
research investigating the prevalence of Bd infections 
in the lowland Amazonian rainforest of Ecuador 
(McCracken et al. 2009). Notably, we confirm the 
presence of the Bd-GPL strain infecting amphibians 
in this region and report a comparatively high prev-
alence of Bd infections among Neotropical lowland 
anuran fauna. Furthermore, our findings highlight 
the need to re-evaluate previously identified predic-
tors of Bd dynamics, such as morphology, aquatic 
dependence, and taxonomy, which were primarily 
derived from studies focused on highland environ-
ments. In the context of lowland tropical forests, spe-
cial attention should be given to bromeligenous am -
phibian species. Although major Bd-driven de clines 
have not been reported in lowland South American 
amphibians, our results suggest that these sites could 
still contribute to the spread and persistence of the 
amphibian chytrid fungus, a pathogen responsible for 
one of the most devastating wildlife EIDs in modern 
history. 
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