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SUMMARY

Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental

research and translational applications in agriculture. However, many plant biologists are functionally lim-

ited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently gen-

erate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers

to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an

overview of existing technologies that allow plant biologists to integrate large DNA sequences within a

plant host and some associated technical bottlenecks. Additionally, this review explores a selection of

emerging techniques in other host systems to inspire tool development in plants.

Keywords: large DNA, genome editing, gene targeting, recombinase, integrase, BAC, transposon, T-DNA,
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INTRODUCTION

As global populations continue to grow and the climate

becomes increasingly unstable (Malhi et al., 2021), the need

for optimization and innovation in our agricultural systems

is becoming more urgent. Improved technologies for crop

modification are rapidly emerging and have the potential to

expedite the pace of crop breeding cycles and biological

inquiry. Agricultural innovations such as selective breeding,

application of industrial fertilizers and pesticides, improved

irrigation and automation have resulted in large increases in

average crop yield over the past few decades (Hamdan

et al., 2022; Pingali, 2012). Concurrent with this initial wave

of crop improvement was the development and commer-

cialization of genetically modified (GM) crop technologies in

the late 1980s through the 1990s (Abel et al., 1986; Vaeck

et al., 1987). Early GM crops typically harbored single-trait

transgenes to confer insect, herbicide, or viral resistance,

which were randomly integrated into the genome using

either Agrobacterium-mediated transformation or biolistic

gene delivery (Hamdan et al., 2022). By 2020, GM crops com-

prised approximately 55% of the total harvestable cropland

in the United States (USDA ERS, 2023).

In contrast to earlier GM technologies, which relied on

random integration of DNA sequences into the genome,

the implementation of sequence-specific nucleases (SSNs)

enabled programmable genetic modifications, meaning

that genetic changes could now be directed to a specific,

predetermined DNA sequence. Four main types of SSNs

have been adopted in plant gene editing efforts: meganu-

cleases, zinc finger nucleases (ZFNs), transcription

activator-like effector nucleases (TALENs), and clustered

regularly interspersed short palindromic repeat (CRISPR)/-

Cas systems (Bhagtaney & Sundarrajan, 2023). While the

structure, programmability, and applications for each SSN

vary, all are capable of inducing a double-stranded break

(DSB) at a specific locus. SSNs have been widely applied

in plants to generate gene knockouts, facilitating the study

of gene function across both model and crop species (Feng

et al., 2013; Jiang et al., 2013; Zhang et al., 2010, 2013).

While CRISPR/Cas9 remains the most commonly used SSN

in plants, other Cas-based nucleases like Cas12 have

recently been adopted in plant systems and are gaining

popularity due to their expanded range of editing out-

comes (Zhang et al., 2019). Recent efforts have pivoted to

using SSNs to generate precise base-pair changes (via

base editing or removal), epigenetic modifications,

changes in gene expression, or small, precise DNA inser-

tions by fusing a nuclease-dead version of Cas9 with
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specific DNA-modifying enzymes or other effector domains

(Jogam et al., 2022; Li et al., 2017; Zhu et al., 2020). Despite

the successful application of SSN technologies in plants,

large DNA fragment knock-ins or targeted gene replace-

ment remain particularly challenging.

This review focuses on techniques for introducing

large DNA fragments and gene targeting in plants, includ-

ing (i) traditional transformation-based transgene integra-

tion methods, (ii) non-homologous end joining (NHEJ)

repair-based DNA insertions/gene targeting, (iii)

homology-directed repair-mediated gene insertions/gene

targeting, (iv) transposon-based CRISPR/Cas-guided DNA

insertions, and (v) programmable recombinase/integrase-

based editing.

TRANSGENE DELIVERY SYSTEMS

The first technical hurdle that comes up when making

large DNA changes or introducing transgenes into the

genome is the method of DNA delivery into plant cells.

Efficient transgene delivery is required for both bringing

the cargo DNA intended for genomic integration and the

genome-editing machinery required for the techniques out-

lined in this review. While several transformation tech-

niques have been developed in plants, each comes with

distinct advantages and challenges, particularly in the con-

text of large DNA construct delivery. We examine

Agrobacterium-mediated transformation, biolistic particle

delivery, protoplast transformation, and other approaches,

focusing on their technical limitations, genome-level

impacts, and optimization strategies to improve transfor-

mation efficiency.

Agrobacterium-mediated transformation

Since the first introduction of a foreign gene, the glypho-

sate (herbicide) resistance gene (bar), into tobacco (Nicoti-

ana tobacum) in 1983, Agrobacterium-mediated

transformation has become the predominant method for

introducing foreign genetic material into plants

(Herrera-Estrella et al., 1983). Agrobacterium tumefaciens

(referred to hereafter as Agrobacterium), the causal agent

of crown gall disease, is a gram-negative bacterium capa-

ble of the unidirectional transfer of a segment of plasmid

DNA (known as the T-DNA) into the nuclear genome of a

host plant species. Agrobacterium strains engineered for

plant transformation typically carry two separate plasmids:

a disarmed Ti plasmid, which encodes virulence (Vir)

genes that are required for Agrobacterium infection and

T-DNA transfer (but lacks the actual T-DNA with its

tumor-inducing genes), and a custom T-DNA binary vector

(again, without the tumor-inducing genes) that can be

modified to contain a sequence of interest (Figure 1a). The

binary vector is equipped with two origins of replication

and thus is amenable to replication in both E. coli and

Agrobacterium. This facilitates cloning of a sequence of

interest within the right and left border boundaries of the

T-DNA, which will then be transferred to the plant cell (Gel-

vin, 2017). Agrobacterium containing a T-DNA of interest

can then be used to infect plant tissue through floral dip

transformation or Agrobacterium-mediated tissue culture

transformation and plant regeneration (Figure 1a)

(Loyola-Vargas & Ochoa-Alejo, 2018; Zhang et al., 2006).

Agrobacterium-mediated transformation is capable of

transferring very large T-DNA sequences, exceeding 150 kb,

into plant genomes (Alonso & Stepanova, 2014; Hamil-

ton, 1997). However, this process lacks precision, costing

researchers valuable time and resources in screening

efforts. T-DNA insertions are considered random on a chro-

mosomal level with a slight bias at the sequence level for

AT-rich regions and regions that contain T-DNA border

microhomology (Francis & Spiker, 2005; Kim &Gelvin, 2007;

Shilo et al., 2017). As a consequence of this randomness,

T-DNA insertions often result in the disruption of genes or

regulatory elements that may be important for normal plant

development and/or function (O’Malley & Ecker, 2010) and

lead to positional effects; for example, low expression when

T-DNA is inserted in transcriptionally inactive regions of

chromatin (Weising et al., 1990). Furthermore, T-DNA inser-

tions are not clean. Instead, they are often incorporated as

multiple tandem copies (full or partial), sometimes contain-

ing artifacts of the plasmid backbone (Jupe et al., 2019). At

the site of T-DNA integration, researchers often see inser-

tions, deletions, and even intra/inter-chromosomal rearran-

gements (Jupe et al., 2019).

With the advent of affordable whole-genome sequenc-

ing, the architecture of T-DNA insertions can now be ana-

lyzed with single-nucleotide resolution. Thus, among four

randomly selected T-DNA mutant lines from Arabidopsis

(Arabidopsis thaliana) mutant collections (e.g., SALK, SAIL,

WISC), long-read sequencing revealed the incorporation of

as little as a 28 bp T-DNA fragment and up to seven T-DNA

insertions totaling up to 236 kb in length (Jupe et al., 2019).

This analysis also revealed chromosomal translocations

and epigenetic changes (Jupe et al., 2019). In another

report, long-read sequencing of 14 Arabidopsis GABI-Kat

T-DNA insertion lines revealed an average of about two

T-DNA insertions per transgenic line, in addition to

instances of chromosomal translocations and truncations

(Pucker et al., 2021). While these examples focused on

larger structural genomic variations caused by T-DNA inser-

tions, smaller insertions and deletions have been noted

both within T-DNA insertions and at T-DNA insertion sites

(Latham et al., 2006; Magembe et al., 2023). Sequencing-

based strategies have also been applied in crop species to

elucidate complex T-DNA insertions with similar genomic

outcomes (Gang et al., 2019; Gong et al., 2021; Skarzy�nska

et al., 2021). These studies reveal the unpredictability and

variability associated with Agrobacterium-mediated trans-

formation, forcing researchers to undergo labor-intensive
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screening processes to identify lines in which a transgene

is stably expressed at high levels and no major structural

rearrangement is present. While such structural variations

may be tolerated in basic research applications, the stan-

dards are much higher in commercial crop engineering. In

industry, clean insertions are preferred, as they are

(a)

(b)

(c)

Figure 1. Transgene delivery systems.

(a) Engineered Agrobacterium tumefaciens strains (e.g. LBA4404, GV3101) carry a binary vector (1) and a disarmed tumor-inducing (Ti) plasmid (2). The binary

vector contains the T-DNA region, flanked by left (LB) and right (RB) borders, which typically carries a gene of interest (GOI) and a selectable marker (e.g., glyph-

osate or kanamycin resistance) for genomic integration. The backbone of the binary vector includes dual origins of replication for plasmid maintenance in E. coli

(oriE) and Agrobacterium (oriA). The disarmed Ti plasmid contains virulence (Vir) genes required for plant infection and T-DNA transfer. During co-cultivation,

plant tissues (e.g., floral buds, leaf explants, immature embryos, or callus) are inoculated with Agrobacterium, facilitating T-DNA transfer via a natural infection

process. Transformed tissues are placed on selective media to promote growth of only modified cells, which are regenerated into whole plants with stable T-

DNA integration at random genomic sites.

(b) Biolistic particle bombardment uses a gene gun to deliver gold or tungsten particles coated with a chosen cargo (e.g., DNA vectors, double-stranded DNA,

single-stranded DNA, or ribonucleoproteins) into plant tissues. Transformed cells undergo selection and regeneration to produce whole plants with random

transgene integration within the genome.

(c) Isolated protoplasts (plant cells with enzymatically removed cell walls) are transformed with a cargo of choice using polyethylene glycol (PEG), electropora-

tion, or lipofection. This approach is often used for transient expression studies, although protoplasts can sometimes be cultured and regenerated into whole

plants carrying a stable transgene. Figure created in part using BioRender.
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essential for regulatory approval and commercialization

(Magembe et al., 2023). Despite these challenges,

Agrobacterium-mediated transformation remains the pre-

ferred method of transformation for a wide range of dicot

species and select monocots due to its ease of use and

amenability to large DNA insertions.

Biolistics

Microprojectile bombardment using biolistic particle deliv-

ery emerged soon after the discovery of Agrobacterium-

mediated plant transformation as a means of transforming

plant species that are ‘recalcitrant’ to Agrobacterium-

mediated transformation (Sanford, 1988). Physical means

of transgene delivery, such as biolistics, are not strictly lim-

ited by genotype, thereby enabling genetic transformation

of any plant species that is amenable to tissue culture and

plant regeneration (Altpeter et al., 2005). Biolistic delivery

involves the precipitation of nucleic acid or nucleoprotein

complexes onto gold or tungsten microbeads, which are

delivered to plant tissue using high velocity to penetrate

the cell wall (Figure 1b) (Altpeter et al., 2005). This method

has been used to deliver bacterial artificial chromosomes

(BACs) with DNA cargo of up to 100 kb into potato (Sola-

num tuberosum), maize (Zea mays), rice (Oryza sativa),

and wheat (Triticum aestivum) (Ercolano et al., 2004; Par-

tier et al., 2017; Phan et al., 2007). Unfortunately, biolistic

particle delivery often results in transgene scrambling,

genomic rearrangements, and high insert copy numbers,

which may lead to unstable gene expression and unpre-

dictable consequences in native gene expression (Liu

et al., 2019). For example, following biolistic delivery of a

48 kb linear fragment of lambda phage DNA into rice and

maize, Liu et al., 2019 observed transformation events con-

taining partial lambda phage DNA and multi-transgene

arrays of up to 43 lambda DNA copies in rice and 51 copies

in maize. In addition, these authors observed broken trans-

genes, large chromosomal deletions, and severe genome

rearrangements. In one recovered rice transformant,

sequencing revealed 1810 different lambda phage DNA

fragments throughout the genome, ranging from 81 to

11 387 bp in length (Liu et al., 2019). This study highlights

the severe impact biolistic transformation can have on

genome structure, emphasizing the need for careful char-

acterization of transgenic lines generated by biolistic

transformation.

Other transformation methods

Protoplast transformation is another common method of

plant transformation that involves enzymatic digestion

of the plant cell wall and subsequent delivery of genetic

material through PEG-Ca2+-mediated transformation, elec-

troporation, or lipofection (Figure 1c) (Liu et al., 2020; Reed

& Bargmann, 2021; Shillito et al., 1985). Protoplast transfor-

mation is a high-efficiency method that is frequently

applied in transient expression studies (Abel & Theologis,

1994). Due to the challenges associated with whole-plant

regeneration from protoplasts, the isolation of stable trans-

formants is limited to a few plant species (Reed & Barg-

mann, 2021). DNA vectors for protoplast transformation

are typically ~5 kb or smaller in size (Burris et al., 2016;

Sheen, 2001). Larger DNA vectors are typically associated

with lower transformation efficiency, as they are less effi-

ciently taken up by protoplasts (Bart et al., 2006; Ren

et al., 2020). However, some protocols have been opti-

mized to accommodate plasmids of up to 18 kb in size by

tweaking tissue source/age, cell wall digestion time, incu-

bation time, and the concentration of PEG, Ca2+, and DNA

(Zhang et al., 2023). Currently, protoplast transformation

protocols are not well optimized to accommodate larger

constructs, and the challenge of whole-plant regeneration

limits the current practical applications of this technology.

Other methods of plant transformation include silicon-

carbide whiskers, microinjection, pollen tube transforma-

tion, and nanomaterial technologies (Squire et al., 2023; Su

et al., 2023). These transformation techniques have not yet

been applied to large construct delivery and will not be

covered in this review.

CRISPR/CAS9 NHEJ-MEDIATED DNA REPLACEMENT OR

INSERTION INTO PLANT GENOMES

Non-homologous end joining (NHEJ) is the most common

DNA double-strand break repair mechanism in most

eukaryotes (Puchta, 2005; Sargent et al., 1997). Following a

DSB, DNA ends are re-ligated, often resulting in small

insertions or deletions (indels) at the repaired site. The

error-prone nature of NHEJ has been thoroughly exploited

in CRISPR/Cas9-based mutagenesis experiments, typically

to generate frameshift mutations in a coding sequence

(Feng et al., 2013; Jiang et al., 2013; Liang et al., 2017;

Wang et al., 2014), but it can also be leveraged to incorpo-

rate DNA fragments of interest at the cut sites by providing

a donor DNA molecule (Li et al., 2016).

Given the prevalence of NHEJ repair over other mech-

anisms, researchers sought to use NHEJ to generate large,

sequence-specific insertions by targeting Cas9 modifica-

tions to the gene’s intronic sequences where small indels

are likely to be well tolerated (Li et al., 2016). Using particle

bombardment of plasmid DNA, a pair of single guide (g)

RNAs targeting two adjacent introns was delivered into

rice alongside Streptococcus pyogenes-derived Cas9

(SpCas9) and a donor DNA repair template flanked by the

same pair of gRNA recognition sequences (Figure 2a). Fol-

lowing the Cas9-mediated DSBs in the two target sites in

the genome and simultaneous DNA donor excision from

the T-DNA, the genomic and donor copies were ‘swapped’,

resulting in gene replacement via NHEJ (Figure 2a). This

method was applied in rice with 2% efficiency in the

5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE
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(a)

(b)

Figure 2. CRISPR/Cas9 NHEJ-mediated insertions.

(a) Intron targeting uses two gRNAs to generate double-stranded breaks (DSBs) within intronic regions on either side of the target modification site. A donor

repair template is delivered in parallel, flanked by identical gRNA target sequences as the genomic target sites. Cas9-mediated cleavage results in the release of

the donor repair template from the T-DNA and target site cleavage simultaneously. Following integration of the donor sequence in place of the genomic

sequence, broken DNA fragments are repaired via non-homologous end joining (NHEJ), often resulting in insertions and deletions (indels) at the repaired sites.

Since indels occur in intronic regions, there should be no effect on the coding sequence, and therefore, splicing and mRNA processing occur as normal.

(b) Repair template in the form of double-stranded oligodeoxynucleotides (dsODNs) with phosphorothioate modifications is delivered in excess using biolistics.

The donor can either be provided as blunt-end dsODNs (top) or with 1-nt overhangs (bottom). A Cas9-mediated DSB is used to ‘capture’ dsODNs. DNA ends are

then repaired via NHEJ.

� 2025 The Author(s).
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(OsEPSPS ) gene, resulting in the successful ‘swapping’ of

a 1.6 kb fragment of exon two to introduce a double amino

acid substitution that leads to glyphosate resistance.

Despite the occurrence of indels at the repaired junctions,

EPSPS was functionally spliced and translated (Li

et al., 2016). However, the most frequent editing outcome

was indels at the 30 and 50 CRISPR target sites without frag-

ment excision or target insertion (80–83%). In instances in

which cutting occurred at both gRNA sites, either fragment

deletion occurred (11.3%) or the donor template was

inserted in an orientation-nonspecific manner, resulting in

the inversion of the genomic exon (1.8%) or inverse inser-

tion of the donor template (1.3%) (Li et al., 2016). It is

important to note, however, that even small indel muta-

tions in an intron may impact splicing or gene regulation,

requiring further screening of modified targets (Back &

Walther, 2021). It remains to be seen how big of a DNA

fragment can be replaced or incorporated using this

approach.

Another exciting method that leverages DSB repair via

NHEJ builds on previously established techniques in mam-

malian cells (Renaud et al., 2016). Lu et al. (2020) employed

biolistics to deliver phosphorothioate-modified linear

donor DNA along with a plasmid that carries CRISPR

machinery to generate targeted insertions of up to 2 kb in

the rice genome. An average insertion efficiency of 25%

across 14 different targeted loci was achieved, with most

of these (~17% of 25%) being in the desired orientation (Lu

et al., 2020). The dual phosphorothioate linkages at the 50-
and 30-ends of both DNA strands in double-stranded, 50-
phosphorylated oligodeoxynucleotides (dsODN) serve to

protect the DNA from degradation in the cellular environ-

ment. Following a SpCas9-mediated DSB of the chromo-

somal DNA target, the dsODN is inserted into the genome,

and the insertion junction is repaired by NHEJ (Figure 2b).

This system is useful for the targeted insertions of shorter

donor sequences which are compatible with commercial

DNA oligo synthesis parameters (typically up to ~200 bp).

Longer fragments can be generated using chemically mod-

ified oligos and PCR amplification; however, following PCR

amplification, only the 50 end will still contain a chemical

modification from the annealed primer, and thus deletions

at the 50 and 30 insertion junction would be anticipated due

to DNA degradation that results from unprotected 30 ends
(Lu et al., 2020). Although this system suffers from a lack

of control over the directionality of insertions and the pres-

ence of indels at insertion sites, a tweak to the dsODNs to

add one-nucleotide 50 overhangs that are complementary

to the �4 position upstream of the protospacer adjacent

motif (PAM) improves both issues, enabling in-frame inser-

tions (Figure 2b). This follows recent evidence in mammals

and plants that SpCas9 frequently introduces staggered

cleavage, resulting in one nucleotide 50 overhangs at the

�4 position upstream of the PAM sequence (Kumar

et al., 2023; Molla & Yang, 2020; Shou et al., 2018). Donor

DNA molecules with one-nucleotide 50 overhangs result in

seamless targeted insertions that occur in the intended ori-

entation with 30.1 to 60.9% frequency (Kumar et al., 2023).

To demonstrate the applications of this technique, Kumar

et al. applied this method to successfully tag three endoge-

nous genes in Setaria viridis with the small subunit of

nanoLuciferase (HiBiT) and the 3xFLAG epitope, as well as

engineered bacterial blight resistance in rice by inserting

two distinct transcription activator-like cis-regulatory ele-

ments upstream of a recessive allele of the bacterial blight

resistance (R) gene (Dixon et al., 2016). In addition, this

logic could easily be extended to other nucleases that pro-

duce an overhang upon cutting, such as Cas12a or paired

nickase Cas9. Overall, harnessing NHEJ repair to create tar-

geted insertions is a promising and efficient approach that

would benefit applications amenable to biolistic delivery of

dsODNs. This technology may eventually be able to

accommodate very large DNA insertions. As DNA synthe-

sis technology improves, it may become possible to syn-

thesize dsODNs beyond 2kbs or generate them through

ligation of adapters containing modified bases.

It is important to distinguish between two major appli-

cations of targeted insertion strategies: instances that toler-

ate indels and instances that do not. In cases such as

intron targeting or inserting an expression cassette into a

safe-harbor region of the genome, indels are generally tol-

erated, making NHEJ-based approaches preferable due to

their higher efficiency. In contrast, precise in-frame inser-

tions within coding sequences require indel-free targeting

and may be better suited for homology-directed repair

(HDR)-based approaches due to their higher precision.

HDR-DEPENDENT PRECISION GENE TARGETING

Homologous recombination mediates the repair of dam-

aged DNA using intact homologous chromosomal regions

as a template and enables crossover events during meio-

sis. As discussed above, NHEJ is the dominant form of

DNA repair, but it is not ideal for the generation of precise

edits or large DNA insertions. In contrast, HDR is a more

precise DNA repair mechanism that enables large DNA

insertions or gene replacements (Figure 3a). HDR-mediated

gene targeting is easily achieved in bacteria and yeast

(Gardner & Jaspersen, 2014); however, it is much more

challenging in higher eukaryotes due to the dominance of

the NHEJ repair pathway (Sargent et al., 1997). The discov-

ery that introducing a DSB at a target locus increases the

efficiency of the HDR was the first breakthrough in the field

(Puchta et al., 1993). Initial experiments were conducted by

co-transforming into tobacco protoplasts the rare-cutting

endonuclease, meganuclease I-SceI, and plasmid DNA con-

taining two overlapping, non-functional fragments of the

uidA (b-glucuronidase) gene as recombination substrates

(Puchta et al., 1993). In protoplasts transformed with I-SceI,

� 2025 The Author(s).
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functional b-glucuronidase expression, detected by histo-

chemical staining, was 10-fold higher than in the control.

Later, the utility of targeted DSB for in planta gene target-

ing (discussed below) was demonstrated in a variety of

plants, including Arabidopsis, barley (Hordeum vulgare),

and maize (Barone et al., 2020; Lawrenson et al., 2021;

Schiml et al., 2014).

The introduction of programmable sequence-specific

nucleases, such as ZFNs, TALENs, and the CRISPR/Cas sys-

tems, vastly expanded the practical applications of gene

targeting by enabling targeted DSBs at a site of interest in

the genome (Shukla et al., 2009; Townsend et al., 2009;

Wright et al., 2005; Zhang et al., 2013). Still, the introduc-

tion of a DSB at a target locus alone results in a relatively

low gene-targeting frequency, and existing studies often

rely on the use of selectable markers to enrich for rare

HDR-editing events (Butler et al., 2016; Endo et al., 2016;

Kumar et al., 2016; Schiml et al., 2014; Wang et al., 2017).

Several tools have since emerged to overcome some of

the biological bottlenecks to favor HDR editing, as

described below and as summarized in Table 1. It is impor-

tant to note here that HDR efficiencies are calculated differ-

ently across studies; therefore, the reported efficiencies are

often not directly comparable. Table 1 clarifies some of the

methodology differences between different reports.

Ways to improve the availability of DNA repair template in

HDR

Enhancing the efficiency of HDR-mediated genome editing

in plants requires strategies to improve the availability of

DNA repair templates at the site of a DSB. Methods, such

as in planta gene targeting, leverage Cas-based nucleases

to excise the DNA repair template from the genome,

enabling higher rates of HDR than with a chromosomally

integrated repair template alone. Further advances include

tethering repair templates to SSN and utilizing viral repli-

cons like geminiviruses to amplify repair template copy

numbers, as discussed below.

Methods to mobilize DNA repair template for HDR-

mediated editing

One of the first approaches to increase the efficiency of

gene targeting in plants that remains relevant, known as in

planta gene targeting (ipGT), relies on the simultaneous

excision of the donor repair template from chromosomal

DNA and the creation of a DSB at the target locus. The

donor repair template and nuclease-encoding genes are

delivered on a single T-DNA (Figure 3b). The donor repair

template sequence is flanked by nuclease recognition sites,

allowing the SSN to simultaneously cleave the donor

repair template from the T-DNA and introduce a DSB at the

target site in the genome. This coordinated cleavage mobi-

lizes the repair template, making it more accessible at the

target site. For example, following the introduction of

CRISPR/Cas9, ipGT was applied in Arabidopsis using

paired nickase SpCas9 to release the DNA donor template

from a T-DNA and cleave the target locus of ALCOHOL

DEHYDROGENASE1 (AtADH1) (Schiml et al., 2014). Subse-

quently, a modification of the ipGT approach involving two

successive rounds of Agrobacterium-mediated transforma-

tion yielded a significant increase in efficiency compared

to single-step transformation experiments (up to 6–9% effi-

ciency following the second round of transformation) (Miki

et al., 2018). In the Miki et al. (2018) study, the first round

of transformation introduced SpCas9 into the parental line,

generating a stable line expressing only the nuclease. The

second round of transformation introduced the DNA donor

template and the gRNA, enabling gene editing to take

place in this second round of transformation (Figure 3b). In

contrast, single-step transformation experiments, in which

the SpCas9, the gRNA, and the DNA donor template were

all introduced on one T-DNA in one transformation step,

resulted in no heritable gene targeting events (Miki

et al., 2018).

Additional modifications to ipGT, such as the use of

Lachnospiraceae bacterium-derived Cas12a (LbCas12a) or

tissue-specific promoter-driven expression of SpCas9, fur-

ther increased the efficiency of gene targeting in Arabidop-

sis (Miki et al., 2018; Wolter & Puchta, 2019). Given that

pre-integration of Cas9 is not always feasible or practical,

an ‘all-in-one’ approach using heat-shock-inducible activa-

tion of SpCas9 was used in maize (Barone et al., 2020). Fol-

lowing successful repair template excision from the T-DNA

by Cas9 and subsequent DNA repair, an herbicide select-

able marker HIGHLY RESISTANT ACETOLACTATE

SYNTHASE (Hra) was constituted with its promoter ele-

ment, enabling enrichment of events in which repair tem-

plate excision took place (Figure 3b). This method

achieved a 4.7% gene-targeting efficiency in the T0 genera-

tion (Barone et al., 2020), suggesting that enrichment for

donor template excision aids in gene targeting. In another

example, Li et al. employed an ‘all-in-one’ gene-targeting

strategy using a rice codon-optimized LbCas12a and two

distinct crRNAs to target the ACETOLACTATE SYNTHASE

(OsALS ) gene and cleave the donor template (Li et al.,

2020). The crRNA sites were positioned approximately

484 bp apart, outside the target modification region, to

increase the likelihood that at least one crRNA would suc-

cessfully cleave the target site. After biolistic delivery of

the ‘all-in-one’ vector, 1.8% of T0 events exhibited biallelic

precise HDR (Li et al., 2020).

Another successful way of increasing the availability

of a donor repair template at a DSB was achieved by teth-

ering the repair template to the SSN. A 100-nucleotide

single-stranded (ss) DNA repair template was delivered to

rice via particle bombardment along with a vector encod-

ing a chimeric SpCas9-VirD2 complex (Figure 3c) (Ali

et al., 2020). VirD2 is an Agrobacterium-derived virulence

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2025), 121, e70099
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protein that aids in the transfer of single-stranded T-DNA

into plant cells (Dumas et al., 2001) through its ability to

covalently bind to a 25-nucleotide sequence at the 50 right
border of T-DNA. By fusing VirD2 to Cas9, a repair tem-

plate containing the VirD2-binding sequence is drawn

close to the DSB, facilitating five- to six-fold higher rates of

HDR. Expression of additional Agrobacterium virulence

genes, VirD1 and VirE2, further enhanced the efficiency of

the Cas-VirD2 system, achieving 22-fold higher rates

of HDR editing in rice protoplasts as compared to the deliv-

ery of Cas9-VirD2 alone (Tang et al., 2023). Another

method to tether the donor repair template to Cas proteins

was demonstrated using a chimeric fusion of LbCas12a to

the fava bean necrotic yellow virus replication (Rep) pro-

tein (a HUH endonuclease), which is capable of binding

ssDNA. A four-fold increase in gene targeting was

achieved in soybean compared to untethered controls

(Nagy et al., 2022). It remains to be seen if this method of

fusing Rep to Cas proteins can be combined with the use

of geminivirus replicon proliferation to produce more DNA

repair template and thus further increase the rate of HDR,

as described below.

Use of geminiviruses to increase DNA repair template

levels for HDR-mediated repair

Repair template availability is often considered a major bot-

tleneck that limits the efficiency of HDR-mediated gene tar-

geting in plants (Baltes et al., 2014). Modified plant DNA

viruses are often used to increase the amount of DNA repair

template accessible for gene targeting and potentially prime

the plant cell into a replicative state that is more favorable

for HDR repair (Figure 3d) (Baltes et al., 2014). Gemini-

viruses are a family of DNA viruses that can infect a wide

range of crop species by reprogramming the plant host cell

to favor viral replication. Pioneering work by Baltes

et al. (2014) demonstrated the utility of a deconstructed

geminivirus vector for the expression of SSNs and DNA

repair template, achieving gene-targeting frequencies one

to two orders of magnitude greater than with conventional

T-DNA delivery in Nicotiana tabacum. The native bean yel-

low dwarf virus genome was modified by swapping viral

coat protein and movement protein genes for DNA repair

template sequence, eliminating viral cell-to-cell movement

and potentially alleviating genome size constraints imposed

by viral packaging and plasmodesmata size exclusion

(Baltes et al., 2014; Gilbertson et al., 2003). In lieu of native

viral delivery, the deconstructed vector is deployed as part

of a T-DNA using Agrobacterium. Transformed cells accu-

mulate thousands of copies of modified viral DNA replicons,

providing an excess of repair template. Following the Baltes

et al., 2014 study, many papers have been published using

geminivirus vectors to deliver genome editing machinery

and/or repair template in rice (Kim et al., 2022; Wang

et al., 2017), cotton (Gossypium hirsutum) (Li et al., 2022),

barley (Lawrenson et al., 2021), potato (Butler et al., 2016),

grape (Vitis vinifera) (Olivares et al., 2021), and tomato

(Solanum lycopersicum) (�Cerm�ak et al., 2015; Dahan-Meir

et al., 2018; Vu et al., 2020). These studies, along with addi-

tional examples of geminivirus-based plant genome engi-

neering, are summarized in Table 2, which includes details

on the viral vectors used, plant species targeted, SSN

employed, the viral cargo size, and editing efficiencies.

Notably, Dahan-Meir et al. (2018) achieved very high

editing efficiency at the CAROTENOID ISOMERASE locus

in tomato, with 25% of T0 plants giving rise to edited fruit

in the absence of selection for HDR during the tissue-

culture stage (Dahan-Meir et al., 2018). This result, how-

ever, was not replicated in other target sites, indicating

that editing efficiency may be dependent on other factors

such as chromatin accessibility (Filler-Hayut et al., 2021;

Janssen et al., 2019). In fact, editing efficiencies achieved

in different genetic loci and crop species vary greatly with

this method. For example, the use of wheat dwarf virus

(WDV) to modify wheat resulted in high editing efficiencies

in somatic tissues, but whole plants could not be regener-

ated from modified cells (Gil-Humanes et al., 2017).

Figure 3. HDR-dependent gene targeting strategies.

(a) Overview of synthesis-dependent strand annealing (SDSA). The first step in SDSA following a double-stranded break (DSB) is end resection, creating 30

ssDNA overhangs. Strand invasion of ssDNA overhangs initiates D-loop formation. Then DNA synthesis copies from the homologous template and fills in any

remaining gaps.

(b) In planta gene targeting (ipGT) uses sequence-specific nucleases (SSNs) to release the donor template from the T-DNA and create a DSB at the target site.

LHA, left homology arm; RHA, right homology arm. A variation of ipGT uses sequential transformation in which Cas9 is integrated into the parental plant line

and gRNA and donor template are introduced in a second round of transformation. An all-in-one variation of ipGT involves just one round of transformation.

The SSN is controlled by either a tissue-specific or inducible promoter (represented by striped boxes) to mediate coordinated excision of donor template and

cutting at the target site. Following excision of the donor template from the T-DNA, an antibiotic or herbicide (Hra = HIGHLY RESISTANT ACETOLACTATE

SYNTHASE ) resistance transcriptional unit is constituted, enabling enrichment of events in which excision is successful.

(c) The VirD2-Cas9 system is a fusion of the Agrobacterium VirD2 protein (green) to Cas9. VirD2 binds a 25 nt sequence that is included in the repair template,

bringing the repair template in close proximity to the Cas9 protein and target DNA break site to facilitate homology-directed repair.

(d) A geminivirus-supplied donor template strategy uses a deconstructed DNA plant virus that carries the donor template along with essential viral genes

required for geminivirus-driven rolling-circle replication. This vector retains only the necessary viral sequences, excluding the coat protein and movement pro-

tein genes. Instead, the viral sequences are delivered to the plant on a T-DNA alongside a site-specific nuclease (SSN) to facilitate targeted DNA cleavage. The

replication process generates thousands of circular replicons, amplifying the donor DNA and enhancing repair template availability for HDR. Figure created in

part using BioRender.

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2025), 121, e70099
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Additionally, to date, there are no reports on efficient HDR

using geminivirus-supplied repair templates in Arabidopsis

(Baltes et al., 2014; De Pater et al., 2018; Hahn et al., 2018).

This is possibly due to a host-virus species incompatibility

or an inefficiency associated with direct editing of germline

cells as opposed to somatic cells in the case of tissue-cul-

ture-mediated editing and plant regeneration (Baltes

et al., 2014; Hahn et al., 2018; Shan et al., 2018).

The typical viral vector cargo size used in these studies

ranges from one to 8 kb (Baltes et al., 2014; Wang

et al., 2017). Some studies report a decrease in reporter

gene transcription as cargo size increases: for example, for

WDV, cargo sizes exceeding 3 kb led to the poor expression

of a GFP reporter cargo in rice calli (Wang et al., 2017). On

the other hand, Gil-Humanes et al., 2017 demonstrated

high-efficiency gene targeting with ~9 kb of cargo contained

within the replicon boundaries of the same virus (Gil-

Humanes et al., 2017). It remains unclear whether there are

limitations to acceptable cargo size in coat protein and

movement protein mutants of geminivirus. However, it is

anticipated that viral replication may be hindered, or intra-

or intermolecular recombination may occur among repli-

cons as cargo sizes increase. To allow for larger repair tem-

plate cargos in these disarmed viruses, SSN sequences can

be moved out of the replicon with little impact on gene tar-

geting efficiency (Baltes et al., 2014).

Other methods to increase DNA template availability for

HDR

With biolistic delivery, transgene copy number depends on

the amount of DNA delivered to cells (Altpeter et al., 2005).

The multi-copy number nature of biolistic delivery can be

leveraged to deliver excess DNA repair template, increas-

ing the likelihood of HDR events (Svitashev et al., 2015).

One study in maize achieved 4.1% successful gene target-

ing in the ALS gene (to confer chlorsulfuron herbicide

resistance) by using biolistics to deliver SpCas9, gRNA,

and donor template in a single vector. In contrast, when

the same vector was delivered using Agrobacterium-

mediated transformation, no successful gene-targeting

events were isolated (Svitashev et al., 2015). As discussed

above, there may be negative outcomes associated with

biolistic delivery, such as transgene scrambling, transgene

or native gene silencing, and genomic rearrangements that

should be carefully considered when recovering HDR

events generated using biolistics.

An alternative method developed to increase repair-

template copy number relies on a retrotransposon-derived

sequence in the T-DNA, resulting in the formation of large,

complex T-DNA arrays (Dickinson et al., 2023). The inclu-

sion of long terminal repeats from retrotransposon-derived

sequences increased the number of T-DNA copies per

genome 50-fold in Arabidopsis as compared to that of con-

trol constructs without retrotransposon sequencesT
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(Dickinson et al., 2023). Retrotransposon-derived sequences

can be included in the donor DNA delivery strategy to

increase the amount of repair template in gene-targeting

experiments. As with ipGT strategies (see above), the donor

repair template is excised from an array of T-DNAs by Cas9,

making multiple copies available for HDR. The inclusion of

a repair template-derived sequence achieved three-fold

higher gene-targeting efficiency (~4% percent true gene-

targeting events at AtALS ) than standard ipGT (Dickinson

et al., 2023). However, careful analysis and outcrossing of

the T-DNA construct are required to generate plants con-

taining the desired edits but free of T-DNA insertions. Addi-

tionally, some instances of ectopic gene targeting were

observed, in which parts of the genomic target sequence

were copied onto the T-DNA (Dickinson et al., 2023; De

Pater et al., 2018). This generated a functional gene with a

repair template sequence that is randomly integrated into

the genome, highlighting the importance of screening for

HDR using genotyping primers that lie outside of the

homology template to capture true HDR events (Dickinson

et al., 2023). Besides the off-targeting concern, it is impor-

tant to consider how repetitive T-DNA insertions might

impact transgene expression, genome, and epigenome

structure. Finally, the repair template used in this study was

small (Table 1) and required the inclusion of approximately

2 kb of retrotransposon-derived sequences. The impact of

these retrotransposon-derived sequences on the overall

size and functionality of the repair template was not

examined.

NHEJ mutants and overexpression of HDR machinery

There are both direct and indirect strategies to promote

HDR-mediated gene editing. Indirect methods include sup-

pression of the competing NHEJ pathway. Studies in plants

have primarily focused on NHEJ-associated proteins like

Ku70/80 and DNA ligase IV (LIG4) (Endo et al., 2016;

Nishizawa-Yokoi et al., 2012; Qi et al., 2013). The Ku pro-

teins act as a heterodimer, binding to broken DNA ends and

recruiting other components of the NHEJ repair machinery,

including X-RAY REPAIR CROSS-COMPLEMENTING PRO-

TEIN4 (XRCC4) and LIG4, which help to rejoin the broken

DNA strands. In Arabidopsis, gene targeting efficiency was

enhanced 16-fold in a ku70 mutant and three- to four-fold in

a lig4 mutant (Qi et al., 2013). Interestingly, in a double

knockout mutant of ku70 and the alternative NHEJ-

associated DNA polymerase Q (polQ ), gene-targeting effi-

ciencies were markedly lower than in the ku70 single

mutant or wild-type plants (Merker et al., 2024). Similarly,

van Tol et al. (2022) reported reduced gene targeting and

lack of T-DNA integration in polQ mutants. However, a

follow-up study by Kralemann et al. (2024) found that gene-

targeting efficiency was enhanced in polQ mutants when T-

DNA was pre-integrated, suggesting an indirect effect of

POLQ on gene-targeting efficiencies.T
a
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Direct promotion of HDR can also be achieved

through the overexpression of HDR machinery. For exam-

ple, overexpression of the yeast DNA REPAIR AND

RECOMBINATION PROTEIN54 (RAD54) gene in Arabidop-

sis enhanced gene targeting efficiency up to two-fold

(Shaked et al., 2005). Furthermore, a combined strategy in

which the NHEJ recombination factor, XRCC4, was down-

regulated and HDR enhancers, C-TERMINAL–BINDING

PROTEIN–INTERACTING PROTEIN (CtIP ) and MEIOTIC

RECOMBINATION11 (MRE11), were overexpressed

enabled high-efficiency (48%) knockin of the bleomycin

resistance gene (BleoR) in poplar (Movahedi et al., 2022).

While efficient HDR can be achieved by either suppressing

NHEJ or promoting HDR directly, it is inadvisable in most

applications to tamper with the endogenous DNA

repair machinery pathway to achieve precision editing.

Such modifications can introduce unintended conse-

quences, including an increased likelihood of additional

mutations, growth defects, or genomic instability (Merker

et al., 2024). Furthermore, in species where genetic

crosses are not feasible, it may be impossible to remove

these alterations post-editing, limiting their practicality for

many applications. One potential approach could involve

transiently knocking down NHEJ components using induc-

ible RNA interference (RNAi). This strategy may avoid

some of the complications of working in an NHEJ mutant

background while still enhancing HDR efficiency (Li, Liu,

et al., 2018).

Optimizing gene-targeting efficiency through nuclease

selection

There is an almost constant expansion of available SSN

variants for genome editing in plants (Wada et al., 2022).

Herein, we will specifically highlight CRISPR-Cas systems

that have been adopted in gene targeting or gene insertion

experiments in plants. One such example is the application

of Cas9 from Staphylococcus aureus (SaCas9) to improve

the efficiency of ipGT in Arabidopsis. SaCas9 driven by an

egg-cell-specific promoter AtEC1.1/1.2 reached gene-

targeting efficiencies at the AtALS locus of 1–6% (Wolter

et al., 2018).

Another widely used Cas enzyme is Cas12a (or Cpf1),

a class 2 CRISPR family nuclease that has been widely

adopted for plant genome editing applications (Dickinson

et al., 2023; Merker et al., 2020; Nagy et al., 2022; Wolter

& Puchta, 2019). Cas12a has expanded the range of tar-

getable sequences to include T-rich PAM sequences that

SpCas9 is not suitable for. A codon-optimized version of

LbCas12a that is active at lower temperatures (e.g., 22°C)
more suitable for plant cultivation has been successfully

applied to enhance the efficiency of ipGT in Arabidopsis,

with temperature-tolerant ttLbCas12a boasting the highest

efficiency of editing among Cas12a nucleases (1.3%) (Mer-

ker et al., 2020). Furthermore, ttLbCas12a was used to

target the ALS gene in Nicotiana tabacum, resulting in an

average gene targeting efficiency of 20% in somatic tis-

sues and the isolation of heritable gene targeting events

(Huang et al., 2021). It was postulated that Cas12a may

mediate higher-efficiency gene targeting than Cas9 nucle-

ases because cutting occurs more distally relative to the

PAM sequence: if a cut is repaired through NHEJ,

the PAM site likely remains intact, thereby increasing the

likelihood that re-cutting can occur to give HDR a ‘second

chance’ (Wolter & Puchta, 2019). Additionally, Cas12a cuts

in a staggered manner, which results in 50 ssDNA

overhangs that may be superior for gene-targeting appli-

cations (Li, Liu, et al., 2018; Merker et al., 2020; Zhao

et al., 2022).

In mammalian systems, the staggered cuts produced

by Acidaminococcus sp. Cas12a (AsCas12a) have been uti-

lized to achieve precise integrations by using a double-

stranded (ds) DNA repair template with a sticky end

homologous to a Cas12a overhang. This approach com-

bines microhomology-mediated end joining (MMEJ) and

HDR to facilitate targeted insertions (Zhao et al., 2022). In

plants, LbCas12a is more widely used than AsCas12a due

to its increased tolerance to low temperatures, which

enhances editing efficiency in plant systems (Malzahn

et al., 2019; Tang et al., 2017). In Arabidopsis, staggered

cutting using paired nickase SpCas9 reportedly increased

the efficiency of gene targeting (�Cerm�ak et al., 2017; Wolter

et al., 2018). Additionally, recent evidence demonstrates

that the presence of long, free 30-ends at the target DSB

can lead to enhanced gene-targeting efficiency (Schmidt

et al., 2019; Schreiber et al., 2024). To generate long, free

30-ends in vivo, SpCas9 or LbCas12a was fused to a herpes

virus 50 exonuclease (Schreiber et al., 2024). Gene targeting

in N. benthamiana leaves increased up to 38-fold and up to

10-fold in Arabidopsis compared to WT Cas9 or Cas12

alone (Schreiber et al., 2024).

Finally, the use of an intronized version of Cas9 or

Cas12a can increase gene editing efficiency through intron-

mediated enhancement of SSN expression (Gr€utzner

et al., 2021; Schindele et al., 2023). Gr€utzner et al. demon-

strated that the insertion of 13 introns within a maize

codon-optimized version of Cas9 (ZmCas9i) increased edit-

ing efficiency in Arabidopsis. While the ZmCas9 construct

without introns showed 0% editing efficiency, the intro-

nized version achieved editing efficiencies ranging from 70

to 100% in T1 plants (Gr€utzner et al., 2021). The insertion

of introns in ttLbCas12a-i resulted in a more modest

increase in editing, with 21–73% of primary transformants

edited across seven target sites, while the intronless ver-

sion’s editing efficiency ranged from 5 to 57% (Schindele

et al., 2023). Furthermore, Schindele et al. (2023) tested the

capability of ttLbCas12a-i for gene targeting at the ALS

locus in Arabidopsis, achieving 2.46% efficiency (Schindele

et al., 2023).

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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It is expected that continuous development of SSNs

will result in further improved gene-targeting efficiency, as

well as increased target site flexibility through relaxed

PAM site restrictions. The success of these nucleases also

depends on their expression in the appropriate tissues at

the right developmental stages, particularly in germline tis-

sues, to achieve heritable gene modifications. As such,

selecting the right promoter to drive SSN and gRNAs is as

important as choosing the appropriate nuclease for effi-

cient and precise genome editing (Vollen et al., 2024).

Optimizing gene targeting efficiency through promoter

selection

Efficient gene targeting relies on providing an active nucle-

ase and an accessible repair template to the right tissue at

the right time. Proper selection of promoter and terminator

elements to drive an SSN of interest is key to ensuring effi-

cient nuclease expression. Constitutive promoters, such as

CaMV35S, are often leveraged to drive ubiquitous expres-

sion of SSNs with the assumption that high transgene

expression is independent of cell type. However, increas-

ing evidence suggests that ‘constitutive’ promoter-driven

expression varies by plant organ, developmental stage,

and in response to external stimuli (Kiselev et al., 2021;

Sunilkumar et al., 2002). Early gene editing experiments

that made use of the 35S promoter to drive SSN expres-

sion resulted in a high percentage of somatic and/or chi-

meric editing events, likely due to poor expression of

35S-driven genes in germline tissues (Feng et al., 2013;

Xing et al., 2014). For a DNA modification to be inherited in

experiments in which reproductive organs are directly

transformed (e.g., via floral dip), edits must occur in repro-

ductive tissues, either the male or female gametophyte, or

in early embryo development to ensure genetic changes

are transmitted to offspring. Therefore, efforts have been

made to identify promoters that are highly active in germ-

line tissues for CRISPR-based experiments (Mao et al.,

2016; Miki et al., 2018; Wang et al., 2015; Wolter

et al., 2018; Yan et al., 2015).

In gene targeting experiments, the Arabidopsis DOWN-

REGULATED IN dif1 45 (DD45), CELL DIVISION CYCLE45

(CDC45), embryogenesis-associated YAOZHE (YAO), and

the tomato pollen-specific ANTHER-SPECIFIC PROTEIN52

(LAT52) gene promoters were used to drive SpCas9 for tar-

geted knockin of GFP in Arabidopsis. Among these, only

DD45 (also referred to as EGG CELL 1.2 (EC1.2, At2g21740)),

a promoter that drives expression exclusively in zygotes

and early embryos, generated a high frequency of heritable,

homozygous mutants by the T2 and T3 generations (Miki

et al., 2018). Further comparisons of the CLAVATA3 (CLV3),

YAO, and EC1.2/EC1.1 promoters revealed that the

EC1.2/EC1.1 enhancer-promoter fusion construct – an amal-

gamation of the EC1.2 (DD45) enhancer and the EC1.1 pro-

moter – was the most effective, achieving high-efficiency

gene targeting when driving SaCas9 expression (Wolter

et al., 2018). However, a subsequent study failed to repro-

duce high gene-targeting efficiencies using EC1.2/EC1.1 to

drive SpCas9 (Peng et al., 2020), suggesting that other con-

tributing factors beyond SSN expression patterns are

important for determining the gene-targeting rates.

One key aspect to consider is SSN expression levels.

Transcriptional and translational enhancers have been

used with some success to improve Cas9 expression and

tissue specificity (Gasparis et al., 2018; Kusano et al., 2018;

Peng et al., 2020). In Arabidopsis, the addition of an omega

translational enhancer from tobacco mosaic virus (TMV) to

the EC1.2 (DD45) promoter resulted in a three-fold increase

in gene targeting compared to the control without the

omega sequence (Peng et al., 2020). The addition of the

35S enhancer to the EC1.1 promoter increased Cas9

expression but in a non-tissue-specific manner. In contrast,

the addition of the EC1.2 (DD45) enhancer to the EC1.1 pro-

moter resulted in higher rates of gene editing (Wang

et al., 2015). Interestingly, the incorporation of the omega

translational enhancer into the EC1.2en (DD45)/EC1.1

enhancer-promoter fusion construct did not yield any gene

targeting events (Wang et al., 2015). Additionally, this

study demonstrated the importance of terminator selection

by comparing combinations of eight promoters and two

terminators: the Agrobacterium-derived nos terminator

and the Pisum sativum-derived SMALL SUBUNIT OF

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE (rbcS )-E9

terminator. The rbcS E9t terminator combinations resulted

in more heritable editing events overall than any nos ter-

minator combinations, potentially due to increased mRNA

stability resulting from strong transcriptional termination

in the target tissues (Wang et al., 2015).

Even modest improvements in overall genome editing

efficiency translate into better gene-targeting outcomes.

Continued efforts to refine CRISPR/Cas-based systems,

improve tissue-specific delivery, and optimize the design

of repair templates are critical for maximizing HDR-

mediated targeting efficiency. With time, these advance-

ments are expected to expand the feasibility of HDR to

more complex and larger sequence modifications. In paral-

lel with these advances, alternative strategies that bypass

the inherent limitations of HDR are emerging as powerful

tools for achieving large sequence insertions.

TRANSPOSON-BASED DNA INSERTIONS

Transposable elements (TEs), or transposons, are natural

DNA elements capable of moving throughout the genome

(Mhiri et al., 2022). TEs are organized into two broad clas-

ses: type I and type II. Type I TEs move via an RNA inter-

mediate in a ‘copy-and-paste’ manner, wherein the DNA

element serves as a template for transcription. In contrast,

type II TEs move via a DNA intermediate in a ‘cut-and-

paste’ manner, in which the DNA element is excised from

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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one location in the genome and inserted into a new loca-

tion (Mhiri et al., 2022). Historically, the ‘cut-and-paste’

nature of type II TEs has been widely used to move DNA

elements somewhat randomly throughout the genome

(Kirov, 2023). As most transposons exhibit a tendency for

local transposition within the genome (Kunze & Weil, 2007;

Moreno et al., 1992), some level of ‘targeting’ can be

achieved by activating an inactive transposon near a

desired target insertion site. By activating a previously

inactive transposon, either by crossing in a transposase or

transposase activation, one can introduce a transposon in

proximity to a desired gene. This proximity effect has

enabled the development of transposon insertional mutant

libraries in various species, facilitating the identification

and characterization of gene function (Brutnell, 2002).

A significant advancement in location-specific DNA

integration has been the combination of Cas9-based tech-

nology with transposase/TE systems for transposase-

assisted target-site integration (TATSI) in plants (Liu, Dong,

et al., 2024). Liu, Dong, et al. (2024) designed a system that

utilizes the rice Ping/Pong DNA transposon/transposase

system combined with a programmable nuclease for tar-

geted transposon insertion in Arabidopsis and soybean

(Figure 4). These researchers tested various configurations

of SpCas9 fused to the Pong transposase genes (ORF1 and

ORF2), which are essential for mPing transposon excision

and insertion. Fusing Cas9 to the C-terminus of ORF2

resulted in slightly reduced off-target integrations

compared to all other fused and unfused configurations

tested in this study (Liu, Dong, et al., 2024). Results

revealed that 36% of T1 Arabidopsis plants contained the

mPing TE insertion targeted upstream of the ACTIN8

(AtACT8) gene, although deep sequencing still showed the

occurrence of off-target integrations caused by free TE

transposition. Liu et al. then tested the cargo capacity of

the mPing TE by engineering TE versions that contained

additional DNA sequences for insertion. Insertions of up to

8.6 kb were obtained, although integration efficiency

declined as cargo size increased. To demonstrate the com-

mercial viability of the TATSI system, a bar (glyphosate

resistance gene) transcriptional unit was inserted within

the mPing TE and successfully targeted to a genome-safe-

harbor site, DD20, in soybean (Liu, Dong, et al., 2024).

Genome safe harbor sites are DNA sites that tolerate trans-

gene insertion well due to the absence of coding genes,

regulatory elements, miRNAs, lncRNAs, tRNAs, and centro-

meres (Sun et al., 2024). The TATSI system provides a rela-

tively simple method to integrate custom DNA sequences

in a location-specific manner with high efficiency. How-

ever, the TATSI system suffers from limitations, such as

the introduction of over 400 nucleotides of transposon

DNA along with the sequence of interest and a high rate of

off-target integration. Future efforts aimed at reducing off-

target effects and unintended transposon DNA integration

are essential to ensure translation to commercial crop

development (Liu, Dong, et al., 2024).

Figure 4. Transposon-based DNA insertions.

Transposase-assisted target-site integration (TATSI) uses the rice mPing transposable element in combination with Cas9 to mediate targeted transposon inser-

tion. Cas9, gRNA, the mPing element, and transposase genes (ORF1 and ORF2) are delivered on a T-DNA (promoters and terminators are represented by orange

boxes). A sequence of interest (SOI) can be inserted within the mPing element for delivery into the host genome. ORF1 and ORF2 excise the mPing element

from the T-DNA and direct insertion at the site of a double-stranded break, enabling Cas9-mediated delivery of a SOI.

� 2025 The Author(s).
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INTEGRASE-BASED DNA INSERTIONS

Bacterial enzymes known as site-specific recombinases

(SSRs) are capable of DNA insertions, deletions, or inver-

sions by recognizing and cleaving short, specific DNA

sequences, following which SSRs exchange DNA frag-

ments and rejoin the DNA strands (Smith, 2015). SSRs

have been applied in plants for transgene marker removal,

site-specific integration, and gene stacking (Ow, 2016). One

challenge when applying SSRs in plants is that, unlike

SSNs, SSRs are not programmable and only recognize

long sequences (~20 nt) that must be pre-integrated into

the genome as ‘landing sites’. Only recently have

researchers been able to precisely integrate recombinase

landing sites at specific genomic loci using prime editing

technology (Anzalone et al., 2022; Sun et al., 2024). Prime

editing is a genome editing approach that uses a nickase

Cas9 fused to a reverse transcriptase and a prime editing

gRNA (pegRNA) to introduce small, targeted insertions,

deletions, sequence replacements, and inversions (Anza-

lone et al., 2019; Molla et al., 2021; Zhao et al., 2025).

Inspired by success in human cells (Anzalone et al., 2022;

Yarnall et al., 2023), Sun et al. (2024) applied a tool coined

as PrimeRoot for plant-optimized dual-enhanced prime

editing combined with SSR technology to mediate large

DNA insertions (up to 11.1 kb in rice) (Sun et al., 2024).

The dual-enhanced prime editing system is used to intro-

duce SSR sites in a specific DNA sequence. Two adjacent

prime editing gRNAs (pegRNAs) are designed, where each

is equipped with reverse transcription templates with the

required sequence homology to introduce SSR target sites

at a desired locus. A SpCas9 nickase nicks the target site,

and the nicked strand serves as a reverse transcription

primer. Reverse transcriptase then introduces the desired

changes using the pegRNA template. Since current prime

editing tools are limited by size (an insertion of up to

300 bp has been achieved in plants) (Sun et al., 2024),

instead, an SSR recombinase ‘landing site’ is integrated,

facilitating larger targeted insertions at a given site. Follow-

ing SSR landing site integration by prime editing, SSRs

then excise the target sequence from the donor DNA and

integrate it into the genomic recombinase sites, resulting

in the precise incorporation of a desired sequence in the

genome (Figure 5a). To test the capacity of this system,

researchers tested DNA donors ranging from 1.4 to 11.1 kb

in length and found only a slight decrease in efficiency

with larger donor templates. To demonstrate some agricul-

turally relevant applications, Sun et al. (2024) introduced a

gene cassette to confer rice blast resistance at a predicted

genomic safe harbor site in the Kitaake rice cultivar,

achieving 6.3% gene-targeting efficiency (Sun et al., 2024).

PrimeRoot represents a novel method for generating

targeted, large insertions that do not create DSBs. Some

limitations include targeting restrictions imposed by

dual-prime editing design specifications, recombination

site ‘scars,’ and variable editing efficiency across sites (Sun

et al., 2024).

Further optimization of prime editing and SSRs will

likely continue to improve the efficiency and flexibility of

this technique. One promising development is DNA-

dependent DNA polymerase editing, an efficient technique

to introduce modifications (>100 nt) implemented in

mammalian cells (Figure 5b) (Liu, Panda, et al., 2024).

DNA-dependent DNA polymerase editing uses an unfused

nickase SpCas9 to nick the target DNA strand. The nicked

strand can then anneal with a synthetic linear DNA/RNA

hybrid repair template through DNA base-pairing interac-

tions. The repair template contains a 30 RNA-based MS2

aptamer that is capable of binding a DNA polymerase-

MCP fusion, bringing the high fidelity DNA polymerase

(Phi29), repair template, and nicked target site in proxim-

ity to facilitate the desired sequence modification (Liu,

Panda, et al., 2024). To demonstrate the application of

DNA-dependent DNA polymerase editing, a single tem-

plate was used to insert the 40 bp loxP site at the

ADENO-ASSOCIATED VIRUS INTEGRATION SITE1 with

35% efficiency. Importantly, DNA-dependent DNA poly-

merase is of higher fidelity and efficiency than the reverse

transcriptase used in current prime editing approaches.

Additionally, DNA polymerase editing templates can

accommodate longer sequences than pegRNAs, which

suffer from autoinhibitory intramolecular base pairing of

the primer binding site with the pegRNA spacer (Liu,

Panda, et al., 2024). This technique could be translated

into plants as an alternative way to introduce small to

medium modifications or SSR recognition sites using only

a single template.

LOOKING FORWARD: DCAS9-SSAP, RECOMBINEERING,

AND BRIDGERNAS

Plant biologists have long turned to innovations in other

eukaryotic or prokaryotic systems to inspire tool develop-

ment in plants. Three innovative approaches that will

hopefully be translated into plants soon include a chimeric

catalytically inactive Cas9 fusion with single-strand anneal-

ing protein (dCas9-SSAP), lambda red recombineering,

and bridgeRNAs (Durrant et al., 2024; Hiraizumi et al.,

2024; Thomason et al., 2023; Wang et al., 2022).

Single-strand annealing proteins (SSAPs) are

bacteriophage-derived enzymes capable of recombination

without induction of a DSB or nick. The association of a

SSAP with dCas9 enabled programmable targeted DNA

insertions without the creation of a DSB in mammalian

cells (Wang et al., 2022). The RecT SSAP is recruited to

dCas9 via a gRNA extension, i.e., an MS2 RNA aptamer

that interacts with the MS2 coat protein (MCP) fused to

RecT. The dCas9 is guided to and unwinds the target

� 2025 The Author(s).
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insertion site DNA, mediating R-loop formation, while the

SSAP orchestrates homology-mediated integration of the

donor DNA (Figure 6a). dCas9/SSAP successfully integrates

large DNA fragments (>1 kb) with 5-fold higher editing effi-

ciency than dCas9 alone, reaching up to 20% efficiency

with no detected off-target insertions (Wang et al., 2022).

The high precision, efficiency, and lack of off-target effects

associated with dCas9/SSAP in mammalian cells are

extremely encouraging, but it remains to be seen if SSAPs

will function well in plant cells.

(a)

(b)

Figure 5. Integrase-based DNA insertions.

(a) PrimeRoot uses dual prime editing to introduce a recombinase recognition sequence at a desired sequence. The dual prime editing machinery consists of

dual nickase Cas9 (nCas9), each equipped with prime editing gRNA and a fused reverse transcriptase. The nicked DNA strand acts as a reverse transcriptase

primer, enabling the reverse transcriptase molecule to integrate the recombinase recognition sequence (part of the pegRNA) at the target locus. Then, the site-

specific recombinase (SSR) excises a sequence of interest (SOI) from the donor template and directs recombination at the target recombinase integration site,

resulting in a targeted insertion at a desired locus.

(b) DNA-dependent DNA polymerase editing is a technique that has been developed and employed in mammalian systems to introduce sequence insertions of

up to 100 bp. A nickase Cas9 (nCas) creates a single-strand break at the target DNA site, generating a free DNA strand. A DNA–RNA hybrid template binds to this

free stand via a DNA primer at the primer binding site. The DNA–RNA template is tethered to the MS2 coat protein (MCP) fusion with the DNA polymerase

Phi29 through an RNA MS2 loop at the 50 end of the DNA repair template. This interaction creates spatial proximity between the DNA polymerase, DNA tem-

plate and nicked DNA target site, facilitating efficient and high-fidelity sequence insertion. Figure created in part using BioRender.

� 2025 The Author(s).
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Recombineering is a homologous recombination-

based gene engineering method implemented in bacteria.

It relies on phage machinery expressed in an inducible

manner in E. coli to edit DNA in vivo in the context of the

bacterial genome or plasmid vector (Thomason et al.,

2023). This technology can be employed to make targeted

(a)

(c)

(b)
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deletions, insertions, inversions, and replacements of vari-

able sizes, from single nucleotides to several kilobases.

One such system, lambda red, relies on three lambda bac-

teriophage proteins, Exo, Bet, and Gam, expressed in E.

coli in an inducible manner to catalyze the recombination

between a user-provided linear DNA repair template (typi-

cally delivered into bacterial cells via electroporation) and

the target locus (Figure 6b) (Murphy, 2016). Exo is an exo-

nuclease that processes the dsDNA repair template to pro-

duce recombinogenic ssDNA ends, Bet is a SSAP that

brings together and recombines the template with the tar-

get locus, and Gam keeps endogenous E. coli nucleases in

check to prevent template degradation. As little as 40 bp of

homology at the ends of the DNA repair template is suffi-

cient for Bet to do its job. Recombineering has been suc-

cessfully used to edit phage, bacterial, plant, and animal

DNA in E. coli (Ayadi et al., 2012; Sarov et al., 2006; Zhang

et al., 1998; Zhou et al., 2011), but to our knowledge, no

studies have yet been published that succeeded in imple-

menting recombineering directly in eukaryotes. To date,

recombineering performed in E. coli large transformable

BACs harboring Arabidopsis genomic DNA has been suc-

cessful in making a variety of edits, from single-nucleotide

replacements to multi-gene deletions to reporter integra-

tion (Bitri�an et al., 2011; Hu et al., 2019, 2022; Stepanova

et al., 2008; Zhou et al., 2011). The Agrobacterium-

mediated transformation of these constructs could suc-

cessfully deliver and express in Arabidopsis the recombi-

neered transgenes of up to 82 kb total cargo size

(Stepanova et al., 2008; Zhou et al., 2011). What would be

even more exciting, however, is to have the recombineer-

ing technology implemented in planta by integrating an

inducible Bet recombinase and helper proteins directly into

the plant genome. Although it is likely going to be chal-

lenging to get Bet to work effectively in plants due to the

limited accessibility of chromatin-packaged genomic DNA,

the results in mammalian cells using bacteriophage-

derived SSAPs described above are encouraging.

BridgeRNAs are a programmable recombination tool

developed in bacteria that will likely open a new frontier of

genome editing across species. IS110-family insertion

sequences are bacterial mobile genetic elements that,

when excised from the genome, form a circular DNA struc-

ture capable of expressing a structural non-coding (nc)

RNA and IS110-family recombinase (Durrant et al., 2024;

Hiraizumi et al., 2024). This ncRNA binds to the IS110

recombinase and contains internal loops that base-pair

with target and donor DNA, ‘bridging’ these DNA sites and

enabling the recombinase-mediated seamless recombina-

tion (Figure 6c). Durrant et al. reprogrammed bridgeRNAs

to direct recombinase activity in a plasmid-based recombi-

nation assay to seven different genomic targets with a

13.8–59.5% efficiency in E. coli. This demonstrates the tech-

nology’s genome editing potential. Recombination was

then demonstrated in the native E. coli genome, with

51.6% of insertions occurring at the target site and the

remaining 48.4% of insertions integrating in other loca-

tions throughout the E. coli genome. Target specificity was

further improved by increasing the number of base-pairing

interactions between the IS110-associated ncRNA and the

target loop upon the extension of the target sequence from

4 to 7 bp (Durrant et al., 2024). Given the novelty of this

discovery, it remains to be seen if these recombinases can

be applied in plants and other eukaryotes whose DNA is

less accessible due to chromatin. However, given that

other bacterial RNA-associated proteins work well in

eukaryotic cells (Nekrasov et al., 2013), it is reasonable that

after some optimization, these recombinases may facilitate

programmable DNA insertion, excision, or inversion in

plants.

REMAINING CHALLENGES

Despite the development of large DNA modification tech-

nologies, several challenges hinder the practical applica-

tions for model and crop plant species. Given that the

current methods for gene insertion primarily rely on HDR-

based techniques, they are often inefficient because they

depend on the cell’s natural DNA repair processes. This

low efficiency makes it difficult to identify successful edit-

ing events, especially without the use of visual phenotypes

or selectable markers. In fact, most of the technologies dis-

cussed herein that provided a proof-of-concept

Figure 6. Emerging technologies.

(a) A nuclease-dead Cas9 (dCas9) fused with bacteriophage-derived single-strand annealing protein (SSAP) can mediate programmable DNA insertions in mam-

malian cells. A modified gRNA containing MS2 loops (light green) is capable of binding the SSAP-MS2 coat protein (MCP) fusion, bringing the SSAP in proxim-

ity to the desired editing site. dCas9 unwinds the target site DNA, making the region accessible for SSAP to orchestrate homology-mediated integration of a

donor sequence (orange).

(b) k phage recombineering makes use of three key proteins to mediate recombination in E. coli: Exo (red), Beta (cyan), and Gam (not pictured). A

recombineering-competent strain of E. coli is transformed with a linear DNA fragment containing a sequence of interest (SOI) and short regions of homology

with the target modification site. Exo binds linear DNA and generates 30 ssDNA overhangs through 50 to 30 exonuclease activity. Beta proteins bind ssDNA, pro-

tecting it from degradation and facilitating recombination at the target locus.

(c) The IS110 insertion sequence is a bacterial mobile genetic element that is capable of self-excision from its genomic context and assuming a dsDNA circular

form (right). This circular form constitutes the IS110 promoter with a ncRNA sequence enabling its expression. This ncRNA (dark blue, below) serves as an RNA

bridge: one of its structural loops binds both strands of the target DNA sequence (red) in the genome, and another binds both strands of the donor DNA (cyan),

aligning the two DNA sites for recombination by the IS110-encoded recombinase (pink shape, bound as a tetramer to ncRNA). Figure created in part using

BioRender.

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2025), 121, e70099
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demonstration of their editing capability leveraged

phenotypic changes or included selectable markers in DNA

cargos in gene targeting and insertion experiments. How-

ever, as gene targeting and sequence insertion technolo-

gies advance, one can imagine an expansion of DNA

cargoes to include larger and more complex sequences,

enabling precision gene insertion at safe harbor sites,

multi-gene stacking, or even the introduction of entire bio-

chemical pathways.

Besides limited editing efficiency, HDR-mediated gene

insertions remain somewhat error-prone and can result in

one-sided HDR events, instances of homologous recombi-

nation in which only one end of the repair template recom-

bines at the target locus and the other end of the repair

template is integrated at the target locus via NHEJ, result-

ing in indels (Puchta, 1998; Puchta & Fauser, 2014).

Researchers have designed strategies to take advantage of

this phenomenon in mammalian systems by using a single

homologous stretch of donor DNA that is repaired using a

combination of NHEJ and HDR repair (Suzuki et al., 2019).

Perhaps further optimization of repair template design,

delivery, and target site modification can increase the effi-

ciency and fidelity of insertions and limit unintended par-

tial HDR events.

One critical factor in further improving gene targeting

is the form of the DNA repair template. Gene

targeting approaches rely on diverse donor template for-

mats, such as ssDNA, ribonucleoprotein (RNP) complexes,

and dsODNs, many of which are incompatible with

Agrobacterium-mediated transformation, necessitating

alternative donor delivery methods such as biolistic deliv-

ery. In the future, the direct delivery of CRISPR-Cas RNP

complexes and donor repair templates instead of DNA-

based delivery systems can help mitigate concerns about

random genomic integration of transgene constructs and

off-target effects of Cas9 in gene targeting experiments,

reducing the need for time-consuming backcrossing or

resource-intensive screening following editing experiments

(Metje-Sprink et al., 2019; Svitashev et al., 2016; Woo

et al., 2015).

Furthermore, machine learning models may soon fill

the gaps in gRNA and repair template design to increase

the efficiency of HDR. Machine learning models are power-

ful tools for designing gRNAs (Chuai et al., 2018; Wang

et al., 2020), predicting off-target effects (Listgarten et al.,

2018) and forecasting editing outcomes (Chen et al., 2019;

Shen et al., 2018). Aside from CRISPR/Cas9-triggered muta-

genesis, O’Brien et al. developed a machine learning

model to determine the optimal gene targeting strategy for

HDR-mediated editing, enabling users to design HDR-

mediated gene targets with 83% higher efficiency than tra-

ditionally designed targets (O’Brien et al., 2019). While

most of these tools have been trained on experimental

data from synthetic contexts or mammalian systems,

findings from these tools can likely be translated to plant

gene editing.

A recent shift in focus towards integrase-based DNA

insertions promises a highly efficient method for

sequence-specific integration (Sun et al., 2024). Current

integrase-based methods in plants remain technically chal-

lenging for most research applications. Additionally, these

methods require the integration of recombinase recogni-

tion sites at the target locus and result in remnant recombi-

nation site ‘scars’ following successful integration. The

development of programmable recombinases, such as

the IS110 family of recombinases, in plants may open up a

new era of genome editing in which programmable, seam-

less integration of donor DNA at a given locus is achiev-

able (Durrant et al., 2024; Hiraizumi et al., 2024).

Independent of genome editing tools, significant hur-

dles to technology transfer in agriculturally relevant crop

species remain (Hua et al., 2019). Many agriculturally rele-

vant crops are recalcitrant to traditional transformation

methods or plant regeneration (Anjanappa & Gruis-

sem, 2021). These limitations necessitate improvements in

delivery methods to ensure that editing tools and donor

DNA templates reach target cells efficiently.

Beyond delivery challenges, the identification of

genome safe-harbor sites can enable gene stacking (Cec-

con et al., 2020) and ensure stable transgene expression;

however, there are few established methods to identify

genome safe-harbor sites in crop species (Cantos

et al., 2014; Sun et al., 2024). More robust computational

pipelines and subsequent validation of genome safe-

harbor sites are needed to support crop engineering

efforts.

Finally, it is important to consider the regulatory land-

scape when designing a gene-targeting experiment. Small,

‘cisgenic’ modifications that consist of minor edits face

much more lenient regulations in the United States

(Ahmad et al., 2023). Transgenic crops, however, still face

tight restrictions globally, often lengthening the time to

market and increasing the cost of crop development

(Ahmad et al., 2023). To mitigate some regulatory and

environmental concerns associated with genetically modi-

fied crops, transgene containment technologies are of par-

amount importance (Stockdale & Millwood, 2023). Crops

that contain larger sequence modifications are currently

subject to the same regulations as traditional GM crops

(Vora et al., 2023). Thus, prior to commercialization, a thor-

ough assessment of transgene contamination risk is

required. Several strategies have been developed to pre-

vent outcrossing with wild relatives and native species,

such as engineered male sterility, maternal inheritance,

genome incompatibility, or delayed flowering (Stockdale &

Millwood, 2023).

In summary, the tremendous progress made in

genome engineering in the past few years has changed the

� 2025 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2025), 121, e70099

24 of 30 Katie Vollen et al.

 1365313x, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.70099 by A

nna Stepanova - N
orth C

arolina State U
niversity , W

iley O
nline Library on [29/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



manner and scale of genome modifications that are possi-

ble. This review aimed to highlight a few of the key

approaches to enhance the frequency of large modifica-

tions that have been tested in plants, as well as illuminate

some of the groundbreaking strategies that have been

developed in other organisms. Improved transformation

and regeneration techniques, combined with the optimiza-

tion of new and existing technologies, will continue to

improve our ability to generate large, sequence-specific

modifications in a range of plant species.
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