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SUMMARY

Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental
research and translational applications in agriculture. However, many plant biologists are functionally lim-
ited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently gen-
erate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers
to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an
overview of existing technologies that allow plant biologists to integrate large DNA sequences within a
plant host and some associated technical bottlenecks. Additionally, this review explores a selection of
emerging techniques in other host systems to inspire tool development in plants.
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INTRODUCTION

As global populations continue to grow and the climate
becomes increasingly unstable (Malhi et al., 2021), the need
for optimization and innovation in our agricultural systems
is becoming more urgent. Improved technologies for crop
modification are rapidly emerging and have the potential to
expedite the pace of crop breeding cycles and biological
inquiry. Agricultural innovations such as selective breeding,
application of industrial fertilizers and pesticides, improved
irrigation and automation have resulted in large increases in
average crop yield over the past few decades (Hamdan
et al., 2022; Pingali, 2012). Concurrent with this initial wave
of crop improvement was the development and commer-
cialization of genetically modified (GM) crop technologies in
the late 1980s through the 1990s (Abel et al., 1986; Vaeck
et al., 1987). Early GM crops typically harbored single-trait
transgenes to confer insect, herbicide, or viral resistance,
which were randomly integrated into the genome using
either Agrobacterium-mediated transformation or biolistic
gene delivery (Hamdan et al., 2022). By 2020, GM crops com-
prised approximately 55% of the total harvestable cropland
in the United States (USDA ERS, 2023).

In contrast to earlier GM technologies, which relied on
random integration of DNA sequences into the genome,
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the implementation of sequence-specific nucleases (SSNs)
enabled programmable genetic modifications, meaning
that genetic changes could now be directed to a specific,
predetermined DNA sequence. Four main types of SSNs
have been adopted in plant gene editing efforts: meganu-
cleases, zinc finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENSs), and clustered
regularly interspersed short palindromic repeat (CRISPR)/-
Cas systems (Bhagtaney & Sundarrajan, 2023). While the
structure, programmability, and applications for each SSN
vary, all are capable of inducing a double-stranded break
(DSB) at a specific locus. SSNs have been widely applied
in plants to generate gene knockouts, facilitating the study
of gene function across both model and crop species (Feng
et al., 2013; Jiang et al., 2013; Zhang et al., 2010, 2013).
While CRISPR/Cas9 remains the most commonly used SSN
in plants, other Cas-based nucleases like Cas12 have
recently been adopted in plant systems and are gaining
popularity due to their expanded range of editing out-
comes (Zhang et al., 2019). Recent efforts have pivoted to
using SSNs to generate precise base-pair changes (via
base editing or removal), epigenetic modifications,
changes in gene expression, or small, precise DNA inser-
tions by fusing a nuclease-dead version of Cas9 with
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specific DNA-modifying enzymes or other effector domains
(Jogam et al., 2022; Li et al., 2017; Zhu et al., 2020). Despite
the successful application of SSN technologies in plants,
large DNA fragment knock-ins or targeted gene replace-
ment remain particularly challenging.

This review focuses on techniques for introducing
large DNA fragments and gene targeting in plants, includ-
ing (i) traditional transformation-based transgene integra-
tion methods, (ii) non-homologous end joining (NHEJ)
repair-based DNA insertions/gene targeting, (iii)
homology-directed repair-mediated gene insertions/gene
targeting, (iv) transposon-based CRISPR/Cas-guided DNA
insertions, and (v) programmable recombinase/integrase-
based editing.

TRANSGENE DELIVERY SYSTEMS

The first technical hurdle that comes up when making
large DNA changes or introducing transgenes into the
genome is the method of DNA delivery into plant cells.
Efficient transgene delivery is required for both bringing
the cargo DNA intended for genomic integration and the
genome-editing machinery required for the techniques out-
lined in this review. While several transformation tech-
niques have been developed in plants, each comes with
distinct advantages and challenges, particularly in the con-
text of large DNA construct delivery. We examine
Agrobacterium-mediated transformation, biolistic particle
delivery, protoplast transformation, and other approaches,
focusing on their technical limitations, genome-level
impacts, and optimization strategies to improve transfor-
mation efficiency.

Agrobacterium-mediated transformation

Since the first introduction of a foreign gene, the glypho-
sate (herbicide) resistance gene (bar), into tobacco (Nicoti-
ana tobacum) in 1983, Agrobacterium-mediated
transformation has become the predominant method for
introducing foreign genetic material into plants
(Herrera-Estrella et al., 1983). Agrobacterium tumefaciens
(referred to hereafter as Agrobacterium), the causal agent
of crown gall disease, is a gram-negative bacterium capa-
ble of the unidirectional transfer of a segment of plasmid
DNA (known as the T-DNA) into the nuclear genome of a
host plant species. Agrobacterium strains engineered for
plant transformation typically carry two separate plasmids:
a disarmed Ti plasmid, which encodes virulence (Vir
genes that are required for Agrobacterium infection and
T-DNA transfer (but lacks the actual T-DNA with its
tumor-inducing genes), and a custom T-DNA binary vector
(again, without the tumor-inducing genes) that can be
modified to contain a sequence of interest (Figure 1a). The
binary vector is equipped with two origins of replication
and thus is amenable to replication in both E. coli and
Agrobacterium. This facilitates cloning of a sequence of

interest within the right and left border boundaries of the
T-DNA, which will then be transferred to the plant cell (Gel-
vin, 2017). Agrobacterium containing a T-DNA of interest
can then be used to infect plant tissue through floral dip
transformation or Agrobacterium-mediated tissue culture
transformation and plant regeneration (Figure 1a)
(Loyola-Vargas & Ochoa-Alejo, 2018; Zhang et al., 2006).

Agrobacterium-mediated transformation is capable of
transferring very large T-DNA sequences, exceeding 150 kb,
into plant genomes (Alonso & Stepanova, 2014; Hamil-
ton, 1997). However, this process lacks precision, costing
researchers valuable time and resources in screening
efforts. T-DNA insertions are considered random on a chro-
mosomal level with a slight bias at the sequence level for
AT-rich regions and regions that contain T-DNA border
microhomology (Francis & Spiker, 2005; Kim & Gelvin, 2007;
Shilo et al., 2017). As a consequence of this randomness,
T-DNA insertions often result in the disruption of genes or
regulatory elements that may be important for normal plant
development and/or function (O’'Malley & Ecker, 2010) and
lead to positional effects; for example, low expression when
T-DNA is inserted in transcriptionally inactive regions of
chromatin (Weising et al., 1990). Furthermore, T-DNA inser-
tions are not clean. Instead, they are often incorporated as
multiple tandem copies (full or partial), sometimes contain-
ing artifacts of the plasmid backbone (Jupe et al., 2019). At
the site of T-DNA integration, researchers often see inser-
tions, deletions, and even intra/inter-chromosomal rearran-
gements (Jupe et al., 2019).

With the advent of affordable whole-genome sequenc-
ing, the architecture of T-DNA insertions can now be ana-
lyzed with single-nucleotide resolution. Thus, among four
randomly selected T-DNA mutant lines from Arabidopsis
(Arabidopsis thaliana) mutant collections (e.g., SALK, SAIL,
WISC), long-read sequencing revealed the incorporation of
as little as a 28 bp T-DNA fragment and up to seven T-DNA
insertions totaling up to 236 kb in length (Jupe et al., 2019).
This analysis also revealed chromosomal translocations
and epigenetic changes (Jupe et al.,, 2019). In another
report, long-read sequencing of 14 Arabidopsis GABI-Kat
T-DNA insertion lines revealed an average of about two
T-DNA insertions per transgenic line, in addition to
instances of chromosomal translocations and truncations
(Pucker et al., 2021). While these examples focused on
larger structural genomic variations caused by T-DNA inser-
tions, smaller insertions and deletions have been noted
both within T-DNA insertions and at T-DNA insertion sites
(Latham et al., 2006; Magembe et al., 2023). Sequencing-
based strategies have also been applied in crop species to
elucidate complex T-DNA insertions with similar genomic
outcomes (Gang et al., 2019; Gong et al., 2021; Skarzynska
et al., 2021). These studies reveal the unpredictability and
variability associated with Agrobacterium-mediated trans-
formation, forcing researchers to undergo labor-intensive
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Figure 1. Transgene delivery systems.

(a) Engineered Agrobacterium tumefaciens strains (e.g. LBA4404, GV3101) carry a binary vector (1) and a disarmed tumor-inducing (Ti) plasmid (2). The binary
vector contains the T-DNA region, flanked by left (LB) and right (RB) borders, which typically carries a gene of interest (GOI) and a selectable marker (e.g., glyph-
osate or kanamycin resistance) for genomic integration. The backbone of the binary vector includes dual origins of replication for plasmid maintenance in E. coli
(oriE) and Agrobacterium (oriA). The disarmed Ti plasmid contains virulence (Vir) genes required for plant infection and T-DNA transfer. During co-cultivation,
plant tissues (e.g., floral buds, leaf explants, immature embryos, or callus) are inoculated with Agrobacterium, facilitating T-DNA transfer via a natural infection
process. Transformed tissues are placed on selective media to promote growth of only modified cells, which are regenerated into whole plants with stable T-
DNA integration at random genomic sites.

(b) Biolistic particle bombardment uses a gene gun to deliver gold or tungsten particles coated with a chosen cargo (e.g., DNA vectors, double-stranded DNA,
single-stranded DNA, or ribonucleoproteins) into plant tissues. Transformed cells undergo selection and regeneration to produce whole plants with random
transgene integration within the genome.

(c) Isolated protoplasts (plant cells with enzymatically removed cell walls) are transformed with a cargo of choice using polyethylene glycol (PEG), electropora-
tion, or lipofection. This approach is often used for transient expression studies, although protoplasts can sometimes be cultured and regenerated into whole
plants carrying a stable transgene. Figure created in part using BioRender.

Source plant
tissue

screening processes to identify lines in which a transgene may be tolerated in basic research applications, the stan-
is stably expressed at high levels and no major structural dards are much higher in commercial crop engineering. In
rearrangement is present. While such structural variations industry, clean insertions are preferred, as they are
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essential for regulatory approval and commercialization
(Magembe et al., 2023). Despite these challenges,
Agrobacterium-mediated transformation remains the pre-
ferred method of transformation for a wide range of dicot
species and select monocots due to its ease of use and
amenability to large DNA insertions.

Biolistics

Microprojectile bombardment using biolistic particle deliv-
ery emerged soon after the discovery of Agrobacterium-
mediated plant transformation as a means of transforming
plant species that are ‘recalcitrant’ to Agrobacterium-
mediated transformation (Sanford, 1988). Physical means
of transgene delivery, such as biolistics, are not strictly lim-
ited by genotype, thereby enabling genetic transformation
of any plant species that is amenable to tissue culture and
plant regeneration (Altpeter et al., 2005). Biolistic delivery
involves the precipitation of nucleic acid or nucleoprotein
complexes onto gold or tungsten microbeads, which are
delivered to plant tissue using high velocity to penetrate
the cell wall (Figure 1b) (Altpeter et al., 2005). This method
has been used to deliver bacterial artificial chromosomes
(BACs) with DNA cargo of up to 100 kb into potato (Sola-
num tuberosum), maize (Zea mays), rice (Oryza sativa),
and wheat (Triticum aestivum) (Ercolano et al., 2004; Par-
tier et al., 2017; Phan et al., 2007). Unfortunately, biolistic
particle delivery often results in transgene scrambling,
genomic rearrangements, and high insert copy numbers,
which may lead to unstable gene expression and unpre-
dictable consequences in native gene expression (Liu
et al., 2019). For example, following biolistic delivery of a
48 kb linear fragment of lambda phage DNA into rice and
maize, Liu et al., 2019 observed transformation events con-
taining partial lambda phage DNA and multi-transgene
arrays of up to 43 lambda DNA copies in rice and 51 copies
in maize. In addition, these authors observed broken trans-
genes, large chromosomal deletions, and severe genome
rearrangements. In one recovered rice transformant,
sequencing revealed 1810 different lambda phage DNA
fragments throughout the genome, ranging from 81 to
11 387 bp in length (Liu et al., 2019). This study highlights
the severe impact biolistic transformation can have on
genome structure, emphasizing the need for careful char-
acterization of transgenic lines generated by biolistic
transformation.

Other transformation methods

Protoplast transformation is another common method of
plant transformation that involves enzymatic digestion
of the plant cell wall and subsequent delivery of genetic
material through PEG-Ca?"-mediated transformation, elec-
troporation, or lipofection (Figure 1c) (Liu et al., 2020; Reed
& Bargmann, 2021; Shillito et al., 1985). Protoplast transfor-
mation is a high-efficiency method that is frequently

applied in transient expression studies (Abel & Theologis,
1994). Due to the challenges associated with whole-plant
regeneration from protoplasts, the isolation of stable trans-
formants is limited to a few plant species (Reed & Barg-
mann, 2021). DNA vectors for protoplast transformation
are typically ~5 kb or smaller in size (Burris et al., 2016;
Sheen, 2001). Larger DNA vectors are typically associated
with lower transformation efficiency, as they are less effi-
ciently taken up by protoplasts (Bart et al., 2006; Ren
et al., 2020). However, some protocols have been opti-
mized to accommodate plasmids of up to 18 kb in size by
tweaking tissue source/age, cell wall digestion time, incu-
bation time, and the concentration of PEG, Ca®", and DNA
(Zhang et al., 2023). Currently, protoplast transformation
protocols are not well optimized to accommodate larger
constructs, and the challenge of whole-plant regeneration
limits the current practical applications of this technology.

Other methods of plant transformation include silicon-
carbide whiskers, microinjection, pollen tube transforma-
tion, and nanomaterial technologies (Squire et al., 2023; Su
et al., 2023). These transformation techniques have not yet
been applied to large construct delivery and will not be
covered in this review.

CRISPR/CAS9 NHEJ-MEDIATED DNA REPLACEMENT OR
INSERTION INTO PLANT GENOMES

Non-homologous end joining (NHEJ) is the most common
DNA double-strand break repair mechanism in most
eukaryotes (Puchta, 2005; Sargent et al., 1997). Following a
DSB, DNA ends are re-ligated, often resulting in small
insertions or deletions (indels) at the repaired site. The
error-prone nature of NHEJ has been thoroughly exploited
in CRISPR/Cas9-based mutagenesis experiments, typically
to generate frameshift mutations in a coding sequence
(Feng et al., 2013; Jiang et al., 2013; Liang et al., 2017;
Wang et al., 2014), but it can also be leveraged to incorpo-
rate DNA fragments of interest at the cut sites by providing
a donor DNA molecule (Li et al., 2016).

Given the prevalence of NHEJ repair over other mech-
anisms, researchers sought to use NHEJ to generate large,
sequence-specific insertions by targeting Cas9 modifica-
tions to the gene's intronic sequences where small indels
are likely to be well tolerated (Li et al., 2016). Using particle
bombardment of plasmid DNA, a pair of single guide (g)
RNAs targeting two adjacent introns was delivered into
rice alongside Streptococcus pyogenes-derived Cas9
(SpCas9) and a donor DNA repair template flanked by the
same pair of gRNA recognition sequences (Figure 2a). Fol-
lowing the Cas9-mediated DSBs in the two target sites in
the genome and simultaneous DNA donor excision from
the T-DNA, the genomic and donor copies were ‘swapped’,
resulting in gene replacement via NHEJ (Figure 2a). This
method was applied in rice with 2% efficiency in the
5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE =~ SYNTHASE
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Figure 2. CRISPR/Cas9 NHEJ-mediated insertions.

(a) Intron targeting uses two gRNAs to generate double-stranded breaks (DSBs) within intronic regions on either side of the target modification site. A donor
repair template is delivered in parallel, flanked by identical gRNA target sequences as the genomic target sites. Cas9-mediated cleavage results in the release of
the donor repair template from the T-DNA and target site cleavage simultaneously. Following integration of the donor sequence in place of the genomic
sequence, broken DNA fragments are repaired via non-homologous end joining (NHEJ), often resulting in insertions and deletions (indels) at the repaired sites.
Since indels occur in intronic regions, there should be no effect on the coding sequence, and therefore, splicing and mRNA processing occur as normal.

(b) Repair template in the form of double-stranded oligodeoxynucleotides (dsODNs) with phosphorothioate modifications is delivered in excess using biolistics.
The donor can either be provided as blunt-end dsODNs (top) or with 1-nt overhangs (bottom). A Cas9-mediated DSB is used to ‘capture’ dsODNs. DNA ends are
then repaired via NHEJ.
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(OsEPSPS) gene, resulting in the successful ‘swapping’ of
a 1.6 kb fragment of exon two to introduce a double amino
acid substitution that leads to glyphosate resistance.
Despite the occurrence of indels at the repaired junctions,
EPSPS was functionally spliced and translated (Li
et al., 2016). However, the most frequent editing outcome
was indels at the 3' and 5’ CRISPR target sites without frag-
ment excision or target insertion (80-83%). In instances in
which cutting occurred at both gRNA sites, either fragment
deletion occurred (11.3%) or the donor template was
inserted in an orientation-nonspecific manner, resulting in
the inversion of the genomic exon (1.8%) or inverse inser-
tion of the donor template (1.3%) (Li et al., 2016). It is
important to note, however, that even small indel muta-
tions in an intron may impact splicing or gene regulation,
requiring further screening of modified targets (Back &
Walther, 2021). It remains to be seen how big of a DNA
fragment can be replaced or incorporated using this
approach.

Another exciting method that leverages DSB repair via
NHEJ builds on previously established techniques in mam-
malian cells (Renaud et al., 2016). Lu et al. (2020) employed
biolistics to deliver phosphorothioate-modified linear
donor DNA along with a plasmid that carries CRISPR
machinery to generate targeted insertions of up to 2 kb in
the rice genome. An average insertion efficiency of 25%
across 14 different targeted loci was achieved, with most
of these (~17% of 25%) being in the desired orientation (Lu
et al., 2020). The dual phosphorothioate linkages at the 5'-
and 3-ends of both DNA strands in double-stranded, 5'-
phosphorylated oligodeoxynucleotides (dsODN) serve to
protect the DNA from degradation in the cellular environ-
ment. Following a SpCas9-mediated DSB of the chromo-
somal DNA target, the dsODN is inserted into the genome,
and the insertion junction is repaired by NHEJ (Figure 2b).
This system is useful for the targeted insertions of shorter
donor sequences which are compatible with commercial
DNA oligo synthesis parameters (typically up to ~200 bp).
Longer fragments can be generated using chemically mod-
ified oligos and PCR amplification; however, following PCR
amplification, only the 5" end will still contain a chemical
modification from the annealed primer, and thus deletions
at the 5’ and 3’ insertion junction would be anticipated due
to DNA degradation that results from unprotected 3' ends
(Lu et al., 2020). Although this system suffers from a lack
of control over the directionality of insertions and the pres-
ence of indels at insertion sites, a tweak to the dsODNs to
add one-nucleotide 5 overhangs that are complementary
to the —4 position upstream of the protospacer adjacent
motif (PAM) improves both issues, enabling in-frame inser-
tions (Figure 2b). This follows recent evidence in mammals
and plants that SpCas9 frequently introduces staggered
cleavage, resulting in one nucleotide 5 overhangs at the
—4 position upstream of the PAM sequence (Kumar

et al., 2023; Molla & Yang, 2020; Shou et al., 2018). Donor
DNA molecules with one-nucleotide 5’ overhangs result in
seamless targeted insertions that occur in the intended ori-
entation with 30.1 to 60.9% frequency (Kumar et al., 2023).
To demonstrate the applications of this technique, Kumar
et al. applied this method to successfully tag three endoge-
nous genes in Setaria viridis with the small subunit of
nanoLuciferase (HiBiT) and the 3xFLAG epitope, as well as
engineered bacterial blight resistance in rice by inserting
two distinct transcription activator-like cis-regulatory ele-
ments upstream of a recessive allele of the bacterial blight
resistance (R) gene (Dixon et al., 2016). In addition, this
logic could easily be extended to other nucleases that pro-
duce an overhang upon cutting, such as Cas12a or paired
nickase Cas9. Overall, harnessing NHEJ repair to create tar-
geted insertions is a promising and efficient approach that
would benefit applications amenable to biolistic delivery of
dsODNs. This technology may eventually be able to
accommodate very large DNA insertions. As DNA synthe-
sis technology improves, it may become possible to syn-
thesize dsODNs beyond 2kbs or generate them through
ligation of adapters containing modified bases.

It is important to distinguish between two major appli-
cations of targeted insertion strategies: instances that toler-
ate indels and instances that do not. In cases such as
intron targeting or inserting an expression cassette into a
safe-harbor region of the genome, indels are generally tol-
erated, making NHEJ-based approaches preferable due to
their higher efficiency. In contrast, precise in-frame inser-
tions within coding sequences require indel-free targeting
and may be better suited for homology-directed repair
(HDR)-based approaches due to their higher precision.

HDR-DEPENDENT PRECISION GENE TARGETING

Homologous recombination mediates the repair of dam-
aged DNA using intact homologous chromosomal regions
as a template and enables crossover events during meio-
sis. As discussed above, NHEJ is the dominant form of
DNA repair, but it is not ideal for the generation of precise
edits or large DNA insertions. In contrast, HDR is a more
precise DNA repair mechanism that enables large DNA
insertions or gene replacements (Figure 3a). HDR-mediated
gene targeting is easily achieved in bacteria and yeast
(Gardner & Jaspersen, 2014); however, it is much more
challenging in higher eukaryotes due to the dominance of
the NHEJ repair pathway (Sargent et al., 1997). The discov-
ery that introducing a DSB at a target locus increases the
efficiency of the HDR was the first breakthrough in the field
(Puchta et al., 1993). Initial experiments were conducted by
co-transforming into tobacco protoplasts the rare-cutting
endonuclease, meganuclease /-Scel, and plasmid DNA con-
taining two overlapping, non-functional fragments of the
uidA (f-glucuronidase) gene as recombination substrates
(Puchta et al., 1993). In protoplasts transformed with /-Scel,
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functional B-glucuronidase expression, detected by histo-
chemical staining, was 10-fold higher than in the control.
Later, the utility of targeted DSB for in planta gene target-
ing (discussed below) was demonstrated in a variety of
plants, including Arabidopsis, barley (Hordeum vulgare),
and maize (Barone et al., 2020; Lawrenson et al., 2021;
Schiml et al., 2014).

The introduction of programmable sequence-specific
nucleases, such as ZFNs, TALENSs, and the CRISPR/Cas sys-
tems, vastly expanded the practical applications of gene
targeting by enabling targeted DSBs at a site of interest in
the genome (Shukla et al., 2009; Townsend et al., 2009;
Wright et al., 2005; Zhang et al., 2013). Still, the introduc-
tion of a DSB at a target locus alone results in a relatively
low gene-targeting frequency, and existing studies often
rely on the use of selectable markers to enrich for rare
HDR-editing events (Butler et al., 2016; Endo et al., 2016;
Kumar et al., 2016; Schiml et al., 2014; Wang et al., 2017).
Several tools have since emerged to overcome some of
the biological bottlenecks to favor HDR editing, as
described below and as summarized in Table 1. It is impor-
tant to note here that HDR efficiencies are calculated differ-
ently across studies; therefore, the reported efficiencies are
often not directly comparable. Table 1 clarifies some of the
methodology differences between different reports.

Ways to improve the availability of DNA repair template in
HDR

Enhancing the efficiency of HDR-mediated genome editing
in plants requires strategies to improve the availability of
DNA repair templates at the site of a DSB. Methods, such
as in planta gene targeting, leverage Cas-based nucleases
to excise the DNA repair template from the genome,
enabling higher rates of HDR than with a chromosomally
integrated repair template alone. Further advances include
tethering repair templates to SSN and utilizing viral repli-
cons like geminiviruses to amplify repair template copy
numbers, as discussed below.

Methods to mobilize DNA repair template for HDR-
mediated editing

One of the first approaches to increase the efficiency of
gene targeting in plants that remains relevant, known as in
planta gene targeting (ipGT), relies on the simultaneous
excision of the donor repair template from chromosomal
DNA and the creation of a DSB at the target locus. The
donor repair template and nuclease-encoding genes are
delivered on a single T-DNA (Figure 3b). The donor repair
template sequence is flanked by nuclease recognition sites,
allowing the SSN to simultaneously cleave the donor
repair template from the T-DNA and introduce a DSB at the
target site in the genome. This coordinated cleavage mobi-
lizes the repair template, making it more accessible at the
target site. For example, following the introduction of

© 2025 The Author(s).
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CRISPR/Cas9, ipGT was applied in Arabidopsis using
paired nickase SpCas9 to release the DNA donor template
from a T-DNA and cleave the target locus of ALCOHOL
DEHYDROGENASE1 (AtADH1) (Schiml et al., 2014). Subse-
quently, a modification of the ipGT approach involving two
successive rounds of Agrobacterium-mediated transforma-
tion yielded a significant increase in efficiency compared
to single-step transformation experiments (up to 6-9% effi-
ciency following the second round of transformation) (Miki
et al., 2018). In the Miki et al. (2018) study, the first round
of transformation introduced SpCas9 into the parental line,
generating a stable line expressing only the nuclease. The
second round of transformation introduced the DNA donor
template and the gRNA, enabling gene editing to take
place in this second round of transformation (Figure 3b). In
contrast, single-step transformation experiments, in which
the SpCas9, the gRNA, and the DNA donor template were
all introduced on one T-DNA in one transformation step,
resulted in no heritable gene targeting events (Miki
et al., 2018).

Additional modifications to ipGT, such as the use of
Lachnospiraceae bacterium-derived Cas12a (LbCas12a) or
tissue-specific promoter-driven expression of SpCas9, fur-
ther increased the efficiency of gene targeting in Arabidop-
sis (Miki et al., 2018; Wolter & Puchta, 2019). Given that
pre-integration of Cas9 is not always feasible or practical,
an ‘all-in-one" approach using heat-shock-inducible activa-
tion of SpCas9 was used in maize (Barone et al., 2020). Fol-
lowing successful repair template excision from the T-DNA
by Cas9 and subsequent DNA repair, an herbicide select-
able marker HIGHLY RESISTANT ACETOLACTATE
SYNTHASE (Hra) was constituted with its promoter ele-
ment, enabling enrichment of events in which repair tem-
plate excision took place (Figure 3b). This method
achieved a 4.7% gene-targeting efficiency in the TO genera-
tion (Barone et al., 2020), suggesting that enrichment for
donor template excision aids in gene targeting. In another
example, Li et al. employed an ‘all-in-one’ gene-targeting
strategy using a rice codon-optimized LbCas12a and two
distinct crRNAs to target the ACETOLACTATE SYNTHASE
(OsALS) gene and cleave the donor template (Li et al.,
2020). The crRNA sites were positioned approximately
484 bp apart, outside the target modification region, to
increase the likelihood that at least one crRNA would suc-
cessfully cleave the target site. After biolistic delivery of
the ‘all-in-one’ vector, 1.8% of TO events exhibited biallelic
precise HDR (Li et al., 2020).

Another successful way of increasing the availability
of a donor repair template at a DSB was achieved by teth-
ering the repair template to the SSN. A 100-nucleotide
single-stranded (ss) DNA repair template was delivered to
rice via particle bombardment along with a vector encod-
ing a chimeric SpCas9-VirD2 complex (Figure 3c) (Ali
et al., 2020). VirD2 is an Agrobacterium-derived virulence
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Figure 3. HDR-dependent gene targeting strategies.

(a) Overview of synthesis-dependent strand annealing (SDSA). The first step in SDSA following a double-stranded break (DSB) is end resection, creating 3’
ssDNA overhangs. Strand invasion of ssDNA overhangs initiates D-loop formation. Then DNA synthesis copies from the homologous template and fills in any
remaining gaps.

(b) In planta gene targeting (ipGT) uses sequence-specific nucleases (SSNs) to release the donor template from the T-DNA and create a DSB at the target site.
LHA, left homology arm; RHA, right homology arm. A variation of ipGT uses sequential transformation in which Cas9 is integrated into the parental plant line
and gRNA and donor template are introduced in a second round of transformation. An all-in-one variation of ipGT involves just one round of transformation.
The SSN is controlled by either a tissue-specific or inducible promoter (represented by striped boxes) to mediate coordinated excision of donor template and
cutting at the target site. Following excision of the donor template from the T-DNA, an antibiotic or herbicide (Hra = HIGHLY RESISTANT ACETOLACTATE
SYNTHASE) resistance transcriptional unit is constituted, enabling enrichment of events in which excision is successful.

(c) The VirD2-Cas9 system is a fusion of the Agrobacterium VirD2 protein (green) to Cas9. VirD2 binds a 25 nt sequence that is included in the repair template,
bringing the repair template in close proximity to the Cas9 protein and target DNA break site to facilitate homology-directed repair.

(d) A geminivirus-supplied donor template strategy uses a deconstructed DNA plant virus that carries the donor template along with essential viral genes
required for geminivirus-driven rolling-circle replication. This vector retains only the necessary viral sequences, excluding the coat protein and movement pro-
tein genes. Instead, the viral sequences are delivered to the plant on a T-DNA alongside a site-specific nuclease (SSN) to facilitate targeted DNA cleavage. The
replication process generates thousands of circular replicons, amplifying the donor DNA and enhancing repair template availability for HDR. Figure created in

part using BioRender.

protein that aids in the transfer of single-stranded T-DNA
into plant cells (Dumas et al., 2001) through its ability to
covalently bind to a 25-nucleotide sequence at the 5’ right
border of T-DNA. By fusing VirD2 to Cas9, a repair tem-
plate containing the VirD2-binding sequence is drawn
close to the DSB, facilitating five- to six-fold higher rates of
HDR. Expression of additional Agrobacterium virulence
genes, VirD1 and VirE2, further enhanced the efficiency of
the Cas-VirD2 system, achieving 22-fold higher rates
of HDR editing in rice protoplasts as compared to the deliv-
ery of Cas9-VirD2 alone (Tang et al., 2023). Another
method to tether the donor repair template to Cas proteins
was demonstrated using a chimeric fusion of LbCas12a to
the fava bean necrotic yellow virus replication (Rep) pro-
tein (a HUH endonuclease), which is capable of binding
ssDNA. A four-fold increase in gene targeting was
achieved in soybean compared to untethered controls
(Nagy et al., 2022). It remains to be seen if this method of
fusing Rep to Cas proteins can be combined with the use
of geminivirus replicon proliferation to produce more DNA
repair template and thus further increase the rate of HDR,
as described below.

Use of geminiviruses to increase DNA repair template
levels for HDR-mediated repair

Repair template availability is often considered a major bot-
tleneck that limits the efficiency of HDR-mediated gene tar-
geting in plants (Baltes et al., 2014). Modified plant DNA
viruses are often used to increase the amount of DNA repair
template accessible for gene targeting and potentially prime
the plant cell into a replicative state that is more favorable
for HDR repair (Figure 3d) (Baltes et al., 2014). Gemini-
viruses are a family of DNA viruses that can infect a wide
range of crop species by reprogramming the plant host cell
to favor viral replication. Pioneering work by Baltes
et al. (2014) demonstrated the utility of a deconstructed
geminivirus vector for the expression of SSNs and DNA
repair template, achieving gene-targeting frequencies one

© 2025 The Author(s).

to two orders of magnitude greater than with conventional
T-DNA delivery in Nicotiana tabacum. The native bean yel-
low dwarf virus genome was modified by swapping viral
coat protein and movement protein genes for DNA repair
template sequence, eliminating viral cell-to-cell movement
and potentially alleviating genome size constraints imposed
by viral packaging and plasmodesmata size exclusion
(Baltes et al., 2014; Gilbertson et al., 2003). In lieu of native
viral delivery, the deconstructed vector is deployed as part
of a T-DNA using Agrobacterium. Transformed cells accu-
mulate thousands of copies of modified viral DNA replicons,
providing an excess of repair template. Following the Baltes
et al., 2014 study, many papers have been published using
geminivirus vectors to deliver genome editing machinery
and/or repair template in rice (Kim et al., 2022; Wang
et al., 2017), cotton (Gossypium hirsutum) (Li et al., 2022),
barley (Lawrenson et al., 2021), potato (Butler et al., 2016),
grape (Vitis vinifera) (Olivares et al., 2021), and tomato
(Solanum lycopersicum) (Cermak et al., 2015; Dahan-Meir
et al., 2018; Vu et al., 2020). These studies, along with addi-
tional examples of geminivirus-based plant genome engi-
neering, are summarized in Table 2, which includes details
on the viral vectors used, plant species targeted, SSN
employed, the viral cargo size, and editing efficiencies.
Notably, Dahan-Meir et al. (2018) achieved very high
editing efficiency at the CAROTENOID ISOMERASE locus
in tomato, with 25% of T0 plants giving rise to edited fruit
in the absence of selection for HDR during the tissue-
culture stage (Dahan-Meir et al., 2018). This result, how-
ever, was not replicated in other target sites, indicating
that editing efficiency may be dependent on other factors
such as chromatin accessibility (Filler-Hayut et al., 2021;
Janssen et al., 2019). In fact, editing efficiencies achieved
in different genetic loci and crop species vary greatly with
this method. For example, the use of wheat dwarf virus
(WDV) to modify wheat resulted in high editing efficiencies
in somatic tissues, but whole plants could not be regener-
ated from modified cells (Gil-Humanes et al., 2017).
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(continued)

Table 1.

© 2025 The Author(s).

Citations

Efficiency calculation

HDR efficiency

Max size

Limitations

Advantages

Gene(s) targeted

Plant model

Technology name  Tool delivery system

Efficiency was calculated Liu et al. (2024)

6.5-36%

Up to 8.6 kb

Arabidopsis, Phytoene DESATURASE 3

Agrobacterium-mediated

Transposase-

* Introduces >400 bp of mPing
transposon in addition to the

sequence of interest

* Very high efficiency

as the percentage of T1

(PDS3), ALCOHOL

soybean

transformation

assisted target-

* Amendable to large

insertions

plants that carried the
targeted insertion

DEHYDROGENASE 1(ADH1),
Actin 8(ACT8), DD20 (a

site integration

* Small indels and target site

duplications are common

genomic safe harbor site in

soybean)

* Efficiency decreases as

cargo size increases

* Off-target transposon
insertions may occur

DSB, double-stranded break; dsDNA, double-stranded DNA; dsODNs, double-stranded oligodeoxynucleotides; HA, hemagglutinin; HDR, homology directed repair; NHEJ, non-homologous

end joining; RNP, ribonucleoprotein; ssDNA, single-stranded DNA.
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Additionally, to date, there are no reports on efficient HDR
using geminivirus-supplied repair templates in Arabidopsis
(Baltes et al., 2014; De Pater et al., 2018; Hahn et al., 2018).
This is possibly due to a host-virus species incompatibility
or an inefficiency associated with direct editing of germline
cells as opposed to somatic cells in the case of tissue-cul-
ture-mediated editing and plant regeneration (Baltes
et al., 2014; Hahn et al., 2018; Shan et al., 2018).

The typical viral vector cargo size used in these studies
ranges from one to 8 kb (Baltes et al., 2014, Wang
et al., 2017). Some studies report a decrease in reporter
gene transcription as cargo size increases: for example, for
WDV, cargo sizes exceeding 3 kb led to the poor expression
of a GFP reporter cargo in rice calli (Wang et al., 2017). On
the other hand, Gil-Humanes et al., 2017 demonstrated
high-efficiency gene targeting with ~9 kb of cargo contained
within the replicon boundaries of the same virus (Gil-
Humanes et al., 2017). It remains unclear whether there are
limitations to acceptable cargo size in coat protein and
movement protein mutants of geminivirus. However, it is
anticipated that viral replication may be hindered, or intra-
or intermolecular recombination may occur among repli-
cons as cargo sizes increase. To allow for larger repair tem-
plate cargos in these disarmed viruses, SSN sequences can
be moved out of the replicon with little impact on gene tar-
geting efficiency (Baltes et al., 2014).

Other methods to increase DNA template availability for
HDR

With biolistic delivery, transgene copy number depends on
the amount of DNA delivered to cells (Altpeter et al., 2005).
The multi-copy number nature of biolistic delivery can be
leveraged to deliver excess DNA repair template, increas-
ing the likelihood of HDR events (Svitashev et al., 2015).
One study in maize achieved 4.1% successful gene target-
ing in the ALS gene (to confer chlorsulfuron herbicide
resistance) by using biolistics to deliver SpCas9, gRNA,
and donor template in a single vector. In contrast, when
the same vector was delivered using Agrobacterium-
mediated transformation, no successful gene-targeting
events were isolated (Svitashev et al., 2015). As discussed
above, there may be negative outcomes associated with
biolistic delivery, such as transgene scrambling, transgene
or native gene silencing, and genomic rearrangements that
should be carefully considered when recovering HDR
events generated using biolistics.

An alternative method developed to increase repair-
template copy number relies on a retrotransposon-derived
sequence in the T-DNA, resulting in the formation of large,
complex T-DNA arrays (Dickinson et al., 2023). The inclu-
sion of long terminal repeats from retrotransposon-derived
sequences increased the number of T-DNA copies per
genome 50-fold in Arabidopsis as compared to that of con-
trol constructs without retrotransposon sequences

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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16 of 30 Katie Vollen et al.

(Dickinson et al., 2023). Retrotransposon-derived sequences

S S @
@ % § § can be included in the donor DNA delivery strategy to
% = E c T: Tg’ increase the amount of repair template in gene-targeting
S| @® g ® 5 experiments. As with ipGT strategies (see above), the donor
5 ;&’E repair template is excised from an array of T-DNAs by Cas9,
= r=Ev 3 b making multiple copies available for HDR. The inclusion of
” ,‘f o E % a repair template-derived sequence achieved three-fold
§ E £ E £ higher gene-targeting efficiency (~4% percent true gene-
»g é é g 2 g targeting events at AtALS) than standard ipGT (Dickinson
= gg @ g g et al., 2023). However, careful analysis and outcrossing of
§ g‘—; § 3 g the T-DNA construct are required to generate plants con-
S| = % = 2 s taining the desired edits but free of T-DNA insertions. Addi-
al . 8¢ . g tionally, some instances of ectopic gene targeting were
§ ; observed, in which parts of the genomic target sequence
‘g w were copied onto the T-DNA (Dickinson et al., 2023; De
Ea § é Pater et al., 2018). This generated a functional gene with a
g5 % E % \g kS repair template sequence that is randomly integrated into
S IR= o s the genome, highlighting the importance of screening for
g ¥RE g e HDR using genotyping primers that lie outside of the
@ -2 S £ T
E = T a s=2 % homology template to capture true HDR events (Dickinson
— @ et al., 2023). Besides the off-targeting concern, it is impor-
28 € ?; 5.5 S tant to consider how repetitive T-DNA insertions might
C é‘g -§ s o3 § E> impact transgene expression, genome, and epigenome
% § 8 § E B ? g,)é g 8. structure. Finally, the repair template used in this study was
3 0\2 E’ 2E s § 2 g § § s small (Table 1) and required the inclusion of approximately
_E 5 E ‘g,i E @ éé‘;g e %_ 2 kb of retrotransposon-derived sequences. The impact of
2 55 £ %% % £8% % % i’ these retrotransposon-derived sequences on the overall
E Eé §§§ £ gg §§ s Z size and functionality of the repair template was not
W ow o 8 g examined.
& % E NHEJ mutants and overexpression of HDR machinery
o R s) IS
% § . E :’-; There are both direct and indirect strategies to promote
x 2‘ § 2 = HDR-mediated gene editing. Indirect methods include sup-
T - - g é pression of the competing NHEJ pathway. Studies in plants
T = have primarily focused on NHEJ-associated proteins like
) % 3 Ku70/80 and DNA ligase IV (LIG4) (Endo et al., 2016;
§m® g < & £ Nishizawa-Yokoi et al., 2012; Qi et al., 2013). The Ku pro-
S8 = 2 2 § teins act as a heterodimer, binding to broken DNA ends and
19, é recruiting other components of the NHEJ repair machinery,
= - % 2 including X-RAY REPAIR CROSS-COMPLEMENTING PRO-
o BS § f_} § TEIN4 (XRCC4) and LIG4, which help to rejoin the broken
g 5 ;‘Tﬁ = % ° DNA strands. In Arabidopsis, gene targeting efficiency was
S| 238 2 - & enhanced 16-fold in a ku70 mutant and three- to four-fold in
f N © % § a lig4 mutant (Qi et al., 2013). Interestingly, in a double
§ 5 2 knockout mutant of ku70 and the alternative NHEJ-
| 8 E z associated DNA polymerase Q (polQ), gene-targeting effi-
5 S 8 t: 23 ciencies were markedly lower than in the ku70 single
~ a| - (= %é g mutant or wild-type plants (Merker et al., 2024). Similarly,
§ g - Z o van Tol et al. (2022) reported reduced gene targeting and
£ i g gg lack of T-DNA integration in po/lQ mutants. However, a
S 2 Z2Fo follow-up study by Kralemann et al. (2024) found that gene-
- > S o 2 . - .
o 3 = - o £8 targeting efflcn.ancy was enhanced .m polQ .mu.tants when T-
2 g 59 2 [ DNA was pre-integrated, suggesting an indirect effect of
e S| &= @ G&2 POLQ on gene-targeting efficiencies.
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Direct promotion of HDR can also be achieved
through the overexpression of HDR machinery. For exam-
ple, overexpression of the yeast DNA REPAIR AND
RECOMBINATION PROTEIN54 (RAD54) gene in Arabidop-
sis enhanced gene targeting efficiency up to two-fold
(Shaked et al., 2005). Furthermore, a combined strategy in
which the NHEJ recombination factor, XRCC4, was down-
regulated and HDR enhancers, C-TERMINAL-BINDING
PROTEIN-INTERACTING PROTEIN (CtIP) and MEIOTIC
RECOMBINATION11  (MRE11), were overexpressed
enabled high-efficiency (48%) knockin of the bleomycin
resistance gene (BleoR) in poplar (Movahedi et al., 2022).
While efficient HDR can be achieved by either suppressing
NHEJ or promoting HDR directly, it is inadvisable in most
applications to tamper with the endogenous DNA
repair machinery pathway to achieve precision editing.
Such modifications can introduce unintended conse-
quences, including an increased likelihood of additional
mutations, growth defects, or genomic instability (Merker
et al., 2024). Furthermore, in species where genetic
crosses are not feasible, it may be impossible to remove
these alterations post-editing, limiting their practicality for
many applications. One potential approach could involve
transiently knocking down NHEJ components using induc-
ible RNA interference (RNAI). This strategy may avoid
some of the complications of working in an NHEJ mutant
background while still enhancing HDR efficiency (Li, Liu,
et al., 2018).

Optimizing gene-targeting efficiency through nuclease
selection

There is an almost constant expansion of available SSN
variants for genome editing in plants (Wada et al., 2022).
Herein, we will specifically highlight CRISPR-Cas systems
that have been adopted in gene targeting or gene insertion
experiments in plants. One such example is the application
of Cas9 from Staphylococcus aureus (SaCas9) to improve
the efficiency of ipGT in Arabidopsis. SaCas9 driven by an
egg-cell-specific promoter AtEC1.1/1.2 reached gene-
targeting efficiencies at the AtALS locus of 1-6% (Wolter
et al., 2018).

Another widely used Cas enzyme is Cas12a (or Cpf1),
a class 2 CRISPR family nuclease that has been widely
adopted for plant genome editing applications (Dickinson
et al., 2023; Merker et al., 2020; Nagy et al., 2022; Wolter
& Puchta, 2019). Cas12a has expanded the range of tar-
getable sequences to include T-rich PAM sequences that
SpCas9 is not suitable for. A codon-optimized version of
LbCas12a that is active at lower temperatures (e.g., 22°C)
more suitable for plant cultivation has been successfully
applied to enhance the efficiency of ipGT in Arabidopsis,
with temperature-tolerant ttLbCas12a boasting the highest
efficiency of editing among Cas12a nucleases (1.3%) (Mer-
ker et al., 2020). Furthermore, ttLbCas12a was used to

© 2025 The Author(s).
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target the ALS gene in Nicotiana tabacum, resulting in an
average gene targeting efficiency of 20% in somatic tis-
sues and the isolation of heritable gene targeting events
(Huang et al., 2021). It was postulated that Cas12a may
mediate higher-efficiency gene targeting than Cas9 nucle-
ases because cutting occurs more distally relative to the
PAM sequence: if a cut is repaired through NHEJ,
the PAM site likely remains intact, thereby increasing the
likelihood that re-cutting can occur to give HDR a ‘second
chance’ (Wolter & Puchta, 2019). Additionally, Cas12a cuts
in a staggered manner, which results in 5 ssDNA
overhangs that may be superior for gene-targeting appli-
cations (Li, Liu, et al., 2018; Merker et al., 2020; Zhao
et al., 2022).

In mammalian systems, the staggered cuts produced
by Acidaminococcus sp. Cas12a (AsCas12a) have been uti-
lized to achieve precise integrations by using a double-
stranded (ds) DNA repair template with a sticky end
homologous to a Cas12a overhang. This approach com-
bines microhomology-mediated end joining (MMEJ) and
HDR to facilitate targeted insertions (Zhao et al., 2022). In
plants, LbCas12a is more widely used than AsCas12a due
to its increased tolerance to low temperatures, which
enhances editing efficiency in plant systems (Malzahn
et al., 2019; Tang et al., 2017). In Arabidopsis, staggered
cutting using paired nickase SpCas9 reportedly increased
the efficiency of gene targeting (Cermak et al., 2017; Wolter
et al., 2018). Additionally, recent evidence demonstrates
that the presence of long, free 3'-ends at the target DSB
can lead to enhanced gene-targeting efficiency (Schmidt
et al., 2019; Schreiber et al., 2024). To generate long, free
3'-ends in vivo, SpCas9 or LbCas12a was fused to a herpes
virus 5’ exonuclease (Schreiber et al., 2024). Gene targeting
in N. benthamiana leaves increased up to 38-fold and up to
10-fold in Arabidopsis compared to WT Cas9 or Cas12
alone (Schreiber et al., 2024).

Finally, the use of an intronized version of Cas9 or
Cas12a can increase gene editing efficiency through intron-
mediated enhancement of SSN expression (Grutzner
et al., 2021; Schindele et al., 2023). Grutzner et al. demon-
strated that the insertion of 13 introns within a maize
codon-optimized version of Cas9 (ZmCas9i) increased edit-
ing efficiency in Arabidopsis. While the ZmCas9 construct
without introns showed 0% editing efficiency, the intro-
nized version achieved editing efficiencies ranging from 70
to 100% in T1 plants (Gritzner et al., 2021). The insertion
of introns in ttLbCas12a-i resulted in a more modest
increase in editing, with 21-73% of primary transformants
edited across seven target sites, while the intronless ver-
sion’s editing efficiency ranged from 5 to 57% (Schindele
et al., 2023). Furthermore, Schindele et al. (2023) tested the
capability of ttLbCas12a-i for gene targeting at the ALS
locus in Arabidopsis, achieving 2.46% efficiency (Schindele
et al., 2023).
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It is expected that continuous development of SSNs
will result in further improved gene-targeting efficiency, as
well as increased target site flexibility through relaxed
PAM site restrictions. The success of these nucleases also
depends on their expression in the appropriate tissues at
the right developmental stages, particularly in germline tis-
sues, to achieve heritable gene modifications. As such,
selecting the right promoter to drive SSN and gRNAs is as
important as choosing the appropriate nuclease for effi-
cient and precise genome editing (Vollen et al., 2024).

Optimizing gene targeting efficiency through promoter
selection

Efficient gene targeting relies on providing an active nucle-
ase and an accessible repair template to the right tissue at
the right time. Proper selection of promoter and terminator
elements to drive an SSN of interest is key to ensuring effi-
cient nuclease expression. Constitutive promoters, such as
CaMV35S, are often leveraged to drive ubiquitous expres-
sion of SSNs with the assumption that high transgene
expression is independent of cell type. However, increas-
ing evidence suggests that ‘constitutive’ promoter-driven
expression varies by plant organ, developmental stage,
and in response to external stimuli (Kiselev et al., 2021;
Sunilkumar et al., 2002). Early gene editing experiments
that made use of the 35S promoter to drive SSN expres-
sion resulted in a high percentage of somatic and/or chi-
meric editing events, likely due to poor expression of
35S-driven genes in germline tissues (Feng et al., 2013;
Xing et al., 2014). For a DNA modification to be inherited in
experiments in which reproductive organs are directly
transformed (e.g., via floral dip), edits must occur in repro-
ductive tissues, either the male or female gametophyte, or
in early embryo development to ensure genetic changes
are transmitted to offspring. Therefore, efforts have been
made to identify promoters that are highly active in germ-
line tissues for CRISPR-based experiments (Mao et al.,
2016; Miki et al., 2018; Wang et al., 2015; Wolter
et al., 2018; Yan et al., 2015).

In gene targeting experiments, the Arabidopsis DOWN-
REGULATED IN dif1 45 (DD45), CELL DIVISION CYCLE45
(CDC45), embryogenesis-associated YAOZHE (YAO), and
the tomato pollen-specific ANTHER-SPECIFIC PROTEIN52
(LAT52) gene promoters were used to drive SpCas9 for tar-
geted knockin of GFP in Arabidopsis. Among these, only
DD45 (also referred to as EGG CELL 1.2 (EC1.2, At2g21740)),
a promoter that drives expression exclusively in zygotes
and early embryos, generated a high frequency of heritable,
homozygous mutants by the T2 and T3 generations (Miki
et al., 2018). Further comparisons of the CLAVATA3 (CLV3),
YAO, and EC1.2/EC1.1 promoters revealed that the
EC1.2/EC1.1enhancer-promoter fusion construct — an amal-
gamation of the EC1.2 (DD45) enhancer and the EC1.17 pro-
moter — was the most effective, achieving high-efficiency

gene targeting when driving SaCas9 expression (Wolter
et al., 2018). However, a subsequent study failed to repro-
duce high gene-targeting efficiencies using EC1.2/EC1.1 to
drive SpCas9 (Peng et al., 2020), suggesting that other con-
tributing factors beyond SSN expression patterns are
important for determining the gene-targeting rates.

One key aspect to consider is SSN expression levels.
Transcriptional and translational enhancers have been
used with some success to improve Cas9 expression and
tissue specificity (Gasparis et al., 2018; Kusano et al., 2018;
Peng et al., 2020). In Arabidopsis, the addition of an omega
translational enhancer from tobacco mosaic virus (TMV) to
the EC1.2 (DD45) promoter resulted in a three-fold increase
in gene targeting compared to the control without the
omega sequence (Peng et al., 2020). The addition of the
35S enhancer to the EC1.17 promoter increased Cas9
expression but in a non-tissue-specific manner. In contrast,
the addition of the EC1.2 (DD45) enhancer to the EC1.7 pro-
moter resulted in higher rates of gene editing (Wang
et al., 2015). Interestingly, the incorporation of the omega
translational enhancer into the EC1.2en (DD45)/EC1.1
enhancer-promoter fusion construct did not yield any gene
targeting events (Wang et al., 2015). Additionally, this
study demonstrated the importance of terminator selection
by comparing combinations of eight promoters and two
terminators: the Agrobacterium-derived nos terminator
and the Pisum sativum-derived SMALL SUBUNIT OF
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE (rbcS)-E9
terminator. The rbcS E9t terminator combinations resulted
in more heritable editing events overall than any nos ter-
minator combinations, potentially due to increased mRNA
stability resulting from strong transcriptional termination
in the target tissues (Wang et al., 2015).

Even modest improvements in overall genome editing
efficiency translate into better gene-targeting outcomes.
Continued efforts to refine CRISPR/Cas-based systems,
improve tissue-specific delivery, and optimize the design
of repair templates are critical for maximizing HDR-
mediated targeting efficiency. With time, these advance-
ments are expected to expand the feasibility of HDR to
more complex and larger sequence modifications. In paral-
lel with these advances, alternative strategies that bypass
the inherent limitations of HDR are emerging as powerful
tools for achieving large sequence insertions.

TRANSPOSON-BASED DNA INSERTIONS

Transposable elements (TEs), or transposons, are natural
DNA elements capable of moving throughout the genome
(Mhiri et al., 2022). TEs are organized into two broad clas-
ses: type | and type Il. Type | TEs move via an RNA inter-
mediate in a ‘copy-and-paste’ manner, wherein the DNA
element serves as a template for transcription. In contrast,
type Il TEs move via a DNA intermediate in a ‘cut-and-
paste’ manner, in which the DNA element is excised from
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Transposase-assisted target-site integration
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Figure 4. Transposon-based DNA insertions.
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Transposase-assisted target-site integration (TATSI) uses the rice mPing transposable element in combination with Cas9 to mediate targeted transposon inser-
tion. Cas9, gRNA, the mPing element, and transposase genes (ORF1 and ORF2) are delivered on a T-DNA (promoters and terminators are represented by orange
boxes). A sequence of interest (SOI) can be inserted within the mPing element for delivery into the host genome. ORF1 and ORF2 excise the mPing element
from the T-DNA and direct insertion at the site of a double-stranded break, enabling Cas9-mediated delivery of a SOI.

one location in the genome and inserted into a new loca-
tion (Mhiri et al., 2022). Historically, the ‘cut-and-paste’
nature of type |l TEs has been widely used to move DNA
elements somewhat randomly throughout the genome
(Kirov, 2023). As most transposons exhibit a tendency for
local transposition within the genome (Kunze & Weil, 2007;
Moreno et al., 1992), some level of ‘targeting’ can be
achieved by activating an inactive transposon near a
desired target insertion site. By activating a previously
inactive transposon, either by crossing in a transposase or
transposase activation, one can introduce a transposon in
proximity to a desired gene. This proximity effect has
enabled the development of transposon insertional mutant
libraries in various species, facilitating the identification
and characterization of gene function (Brutnell, 2002).

A significant advancement in location-specific DNA
integration has been the combination of Cas9-based tech-
nology with transposase/TE systems for transposase-
assisted target-site integration (TATSI) in plants (Liu, Dong,
et al., 2024). Liu, Dong, et al. (2024) designed a system that
utilizes the rice Ping/Pong DNA transposon/transposase
system combined with a programmable nuclease for tar-
geted transposon insertion in Arabidopsis and soybean
(Figure 4). These researchers tested various configurations
of SpCas9 fused to the Pong transposase genes (ORF1 and
ORF2), which are essential for mPing transposon excision
and insertion. Fusing Cas9 to the C-terminus of ORF2
resulted in slightly reduced off-target integrations

© 2025 The Author(s).

compared to all other fused and unfused configurations
tested in this study (Liu, Dong, et al., 2024). Results
revealed that 36% of T1 Arabidopsis plants contained the
mPing TE insertion targeted upstream of the ACTIN8
(AtACTS8) gene, although deep sequencing still showed the
occurrence of off-target integrations caused by free TE
transposition. Liu et al. then tested the cargo capacity of
the mPing TE by engineering TE versions that contained
additional DNA sequences for insertion. Insertions of up to
8.6 kb were obtained, although integration efficiency
declined as cargo size increased. To demonstrate the com-
mercial viability of the TATSI system, a bar (glyphosate
resistance gene) transcriptional unit was inserted within
the mPing TE and successfully targeted to a genome-safe-
harbor site, DD20, in soybean (Liu, Dong, et al., 2024).
Genome safe harbor sites are DNA sites that tolerate trans-
gene insertion well due to the absence of coding genes,
regulatory elements, miRNAs, IncRNAs, tRNAs, and centro-
meres (Sun et al., 2024). The TATSI system provides a rela-
tively simple method to integrate custom DNA sequences
in a location-specific manner with high efficiency. How-
ever, the TATSI system suffers from limitations, such as
the introduction of over 400 nucleotides of transposon
DNA along with the sequence of interest and a high rate of
off-target integration. Future efforts aimed at reducing off-
target effects and unintended transposon DNA integration
are essential to ensure translation to commercial crop
development (Liu, Dong, et al., 2024).
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INTEGRASE-BASED DNA INSERTIONS

Bacterial enzymes known as site-specific recombinases
(SSRs) are capable of DNA insertions, deletions, or inver-
sions by recognizing and cleaving short, specific DNA
sequences, following which SSRs exchange DNA frag-
ments and rejoin the DNA strands (Smith, 2015). SSRs
have been applied in plants for transgene marker removal,
site-specific integration, and gene stacking (Ow, 2016). One
challenge when applying SSRs in plants is that, unlike
SSNs, SSRs are not programmable and only recognize
long sequences (~20 nt) that must be pre-integrated into
the genome as ‘landing sites’. Only recently have
researchers been able to precisely integrate recombinase
landing sites at specific genomic loci using prime editing
technology (Anzalone et al., 2022; Sun et al., 2024). Prime
editing is a genome editing approach that uses a nickase
Cas9 fused to a reverse transcriptase and a prime editing
gRNA (pegRNA) to introduce small, targeted insertions,
deletions, sequence replacements, and inversions (Anza-
lone et al., 2019; Molla et al., 2021; Zhao et al., 2025).
Inspired by success in human cells (Anzalone et al., 2022;
Yarnall et al., 2023), Sun et al. (2024) applied a tool coined
as PrimeRoot for plant-optimized dual-enhanced prime
editing combined with SSR technology to mediate large
DNA insertions (up to 11.1 kb in rice) (Sun et al., 2024).
The dual-enhanced prime editing system is used to intro-
duce SSR sites in a specific DNA sequence. Two adjacent
prime editing gRNAs (pegRNAs) are designed, where each
is equipped with reverse transcription templates with the
required sequence homology to introduce SSR target sites
at a desired locus. A SpCas9 nickase nicks the target site,
and the nicked strand serves as a reverse transcription
primer. Reverse transcriptase then introduces the desired
changes using the pegRNA template. Since current prime
editing tools are limited by size (an insertion of up to
300 bp has been achieved in plants) (Sun et al., 2024),
instead, an SSR recombinase ‘landing site’ is integrated,
facilitating larger targeted insertions at a given site. Follow-
ing SSR landing site integration by prime editing, SSRs
then excise the target sequence from the donor DNA and
integrate it into the genomic recombinase sites, resulting
in the precise incorporation of a desired sequence in the
genome (Figure 5a). To test the capacity of this system,
researchers tested DNA donors ranging from 1.4 to 11.1 kb
in length and found only a slight decrease in efficiency
with larger donor templates. To demonstrate some agricul-
turally relevant applications, Sun et al. (2024) introduced a
gene cassette to confer rice blast resistance at a predicted
genomic safe harbor site in the Kitaake rice cultivar,
achieving 6.3% gene-targeting efficiency (Sun et al., 2024).
PrimeRoot represents a novel method for generating
targeted, large insertions that do not create DSBs. Some
limitations include targeting restrictions imposed by

dual-prime editing design specifications, recombination
site ‘scars,’ and variable editing efficiency across sites (Sun
et al., 2024).

Further optimization of prime editing and SSRs will
likely continue to improve the efficiency and flexibility of
this technique. One promising development is DNA-
dependent DNA polymerase editing, an efficient technique
to introduce modifications (>100 nt) implemented in
mammalian cells (Figure 5b) (Liu, Panda, et al., 2024).
DNA-dependent DNA polymerase editing uses an unfused
nickase SpCas9 to nick the target DNA strand. The nicked
strand can then anneal with a synthetic linear DNA/RNA
hybrid repair template through DNA base-pairing interac-
tions. The repair template contains a 3' RNA-based MS2
aptamer that is capable of binding a DNA polymerase-
MCP fusion, bringing the high fidelity DNA polymerase
(Phi29), repair template, and nicked target site in proxim-
ity to facilitate the desired sequence modification (Liu,
Panda, et al., 2024). To demonstrate the application of
DNA-dependent DNA polymerase editing, a single tem-
plate was used to insert the 40 bp /oxP site at the
ADENQ-ASSOCIATED VIRUS INTEGRATION SITET with
35% efficiency. Importantly, DNA-dependent DNA poly-
merase is of higher fidelity and efficiency than the reverse
transcriptase used in current prime editing approaches.
Additionally, DNA polymerase editing templates can
accommodate longer sequences than pegRNAs, which
suffer from autoinhibitory intramolecular base pairing of
the primer binding site with the pegRNA spacer (Liu,
Panda, et al., 2024). This technique could be translated
into plants as an alternative way to introduce small to
medium modifications or SSR recognition sites using only
a single template.

LOOKING FORWARD: DCAS9-SSAP, RECOMBINEERING,
AND BRIDGERNAS

Plant biologists have long turned to innovations in other
eukaryotic or prokaryotic systems to inspire tool develop-
ment in plants. Three innovative approaches that will
hopefully be translated into plants soon include a chimeric
catalytically inactive Cas9 fusion with single-strand anneal-
ing protein (dCas9-SSAP), lambda red recombineering,
and bridgeRNAs (Durrant et al., 2024; Hiraizumi et al.,
2024; Thomason et al., 2023; Wang et al., 2022).
Single-strand  annealing proteins (SSAPs) are
bacteriophage-derived enzymes capable of recombination
without induction of a DSB or nick. The association of a
SSAP with dCas9 enabled programmable targeted DNA
insertions without the creation of a DSB in mammalian
cells (Wang et al., 2022). The RecT SSAP is recruited to
dCas9 via a gRNA extension, i.e., an MS2 RNA aptamer
that interacts with the MS2 coat protein (MCP) fused to
RecT. The dCas9 is guided to and unwinds the target
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Figure 5. Integrase-based DNA insertions.

(a) PrimeRoot uses dual prime editing to introduce a recombinase recognition sequence at a desired sequence. The dual prime editing machinery consists of
dual nickase Cas9 (nCas9), each equipped with prime editing gRNA and a fused reverse transcriptase. The nicked DNA strand acts as a reverse transcriptase
primer, enabling the reverse transcriptase molecule to integrate the recombinase recognition sequence (part of the pegRNA) at the target locus. Then, the site-
specific recombinase (SSR) excises a sequence of interest (SOI) from the donor template and directs recombination at the target recombinase integration site,

resulting in a targeted insertion at a desired locus.

(b) DNA-dependent DNA polymerase editing is a technique that has been developed and employed in mammalian systems to introduce sequence insertions of
up to 100 bp. A nickase Cas9 (nCas) creates a single-strand break at the target DNA site, generating a free DNA strand. A DNA-RNA hybrid template binds to this
free stand via a DNA primer at the primer binding site. The DNA-RNA template is tethered to the MS2 coat protein (MCP) fusion with the DNA polymerase
Phi29 through an RNA MS2 loop at the 5" end of the DNA repair template. This interaction creates spatial proximity between the DNA polymerase, DNA tem-
plate and nicked DNA target site, facilitating efficient and high-fidelity sequence insertion. Figure created in part using BioRender.

insertion site DNA, mediating R-loop formation, while the
SSAP orchestrates homology-mediated integration of the
donor DNA (Figure 6a). dCas9/SSAP successfully integrates
large DNA fragments (>1 kb) with 5-fold higher editing effi-
ciency than dCas9 alone, reaching up to 20% efficiency

© 2025 The Author(s).

with no detected off-target insertions (Wang et al., 2022).
The high precision, efficiency, and lack of off-target effects
associated with dCas9/SSAP in mammalian cells are
extremely encouraging, but it remains to be seen if SSAPs
will function well in plant cells.
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Recombineering is a homologous recombination-

based gene engineering method implemented in bacteria.
It relies on phage machinery expressed in an inducible
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manner in E. coli to edit DNA in vivo in the context of the
bacterial genome or plasmid vector (Thomason et al.,
2023). This technology can be employed to make targeted
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Figure 6. Emerging technologies.

(a) A nuclease-dead Cas9 (dCas9) fused with bacteriophage-derived single-strand annealing protein (SSAP) can mediate programmable DNA insertions in mam-
malian cells. A modified gRNA containing MS2 loops (light green) is capable of binding the SSAP-MS2 coat protein (MCP) fusion, bringing the SSAP in proxim-
ity to the desired editing site. dCas9 unwinds the target site DNA, making the region accessible for SSAP to orchestrate homology-mediated integration of a
donor sequence (orange).

(b) . phage recombineering makes use of three key proteins to mediate recombination in E. coli: Exo (red), Beta (cyan), and Gam (not pictured). A
recombineering-competent strain of E. coli is transformed with a linear DNA fragment containing a sequence of interest (SOI) and short regions of homology
with the target modification site. Exo binds linear DNA and generates 3' ssDNA overhangs through 5’ to 3’ exonuclease activity. Beta proteins bind ssDNA, pro-
tecting it from degradation and facilitating recombination at the target locus.

(c) The IS710 insertion sequence is a bacterial mobile genetic element that is capable of self-excision from its genomic context and assuming a dsDNA circular
form (right). This circular form constitutes the 1S110 promoter with a ncRNA sequence enabling its expression. This ncRNA (dark blue, below) serves as an RNA
bridge: one of its structural loops binds both strands of the target DNA sequence (red) in the genome, and another binds both strands of the donor DNA (cyan),
aligning the two DNA sites for recombination by the /IS770-encoded recombinase (pink shape, bound as a tetramer to ncRNA). Figure created in part using

BioRender.

deletions, insertions, inversions, and replacements of vari-
able sizes, from single nucleotides to several kilobases.
One such system, lambda red, relies on three lambda bac-
teriophage proteins, Exo, Bet, and Gam, expressed in E.
coli in an inducible manner to catalyze the recombination
between a user-provided linear DNA repair template (typi-
cally delivered into bacterial cells via electroporation) and
the target locus (Figure 6b) (Murphy, 2016). Exo is an exo-
nuclease that processes the dsDNA repair template to pro-
duce recombinogenic ssDNA ends, Bet is a SSAP that
brings together and recombines the template with the tar-
get locus, and Gam keeps endogenous E. coli nucleases in
check to prevent template degradation. As little as 40 bp of
homology at the ends of the DNA repair template is suffi-
cient for Bet to do its job. Recombineering has been suc-
cessfully used to edit phage, bacterial, plant, and animal
DNA in E. coli (Ayadi et al., 2012; Sarov et al., 2006; Zhang
et al., 1998; Zhou et al., 2011), but to our knowledge, no
studies have yet been published that succeeded in imple-
menting recombineering directly in eukaryotes. To date,
recombineering performed in E. coli large transformable
BACs harboring Arabidopsis genomic DNA has been suc-
cessful in making a variety of edits, from single-nucleotide
replacements to multi-gene deletions to reporter integra-
tion (Bitrian et al., 2011; Hu et al., 2019, 2022; Stepanova
et al., 2008; Zhou et al., 2011). The Agrobacterium-
mediated transformation of these constructs could suc-
cessfully deliver and express in Arabidopsis the recombi-
neered transgenes of up to 82 kb total cargo size
(Stepanova et al., 2008; Zhou et al., 2011). What would be
even more exciting, however, is to have the recombineer-
ing technology implemented in planta by integrating an
inducible Bet recombinase and helper proteins directly into
the plant genome. Although it is likely going to be chal-
lenging to get Bet to work effectively in plants due to the
limited accessibility of chromatin-packaged genomic DNA,
the results in mammalian cells using bacteriophage-
derived SSAPs described above are encouraging.
BridgeRNAs are a programmable recombination tool
developed in bacteria that will likely open a new frontier of
genome editing across species. /S7110-family insertion

© 2025 The Author(s).

sequences are bacterial mobile genetic elements that,
when excised from the genome, form a circular DNA struc-
ture capable of expressing a structural non-coding (nc)
RNA and /S710-family recombinase (Durrant et al., 2024;
Hiraizumi et al., 2024). This ncRNA binds to the 1S110
recombinase and contains internal loops that base-pair
with target and donor DNA, ‘bridging’ these DNA sites and
enabling the recombinase-mediated seamless recombina-
tion (Figure 6¢c). Durrant et al. reprogrammed bridgeRNAs
to direct recombinase activity in a plasmid-based recombi-
nation assay to seven different genomic targets with a
13.8-59.5% efficiency in E. coli. This demonstrates the tech-
nology’'s genome editing potential. Recombination was
then demonstrated in the native E. coli genome, with
51.6% of insertions occurring at the target site and the
remaining 48.4% of insertions integrating in other loca-
tions throughout the E. coli genome. Target specificity was
further improved by increasing the number of base-pairing
interactions between the /S7710-associated ncRNA and the
target loop upon the extension of the target sequence from
4 to 7 bp (Durrant et al., 2024). Given the novelty of this
discovery, it remains to be seen if these recombinases can
be applied in plants and other eukaryotes whose DNA is
less accessible due to chromatin. However, given that
other bacterial RNA-associated proteins work well in
eukaryotic cells (Nekrasov et al., 2013), it is reasonable that
after some optimization, these recombinases may facilitate
programmable DNA insertion, excision, or inversion in
plants.

REMAINING CHALLENGES

Despite the development of large DNA modification tech-
nologies, several challenges hinder the practical applica-
tions for model and crop plant species. Given that the
current methods for gene insertion primarily rely on HDR-
based techniques, they are often inefficient because they
depend on the cell’s natural DNA repair processes. This
low efficiency makes it difficult to identify successful edit-
ing events, especially without the use of visual phenotypes
or selectable markers. In fact, most of the technologies dis-
cussed herein that provided a proof-of-concept
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demonstration of their editing capability leveraged
phenotypic changes or included selectable markers in DNA
cargos in gene targeting and insertion experiments. How-
ever, as gene targeting and sequence insertion technolo-
gies advance, one can imagine an expansion of DNA
cargoes to include larger and more complex sequences,
enabling precision gene insertion at safe harbor sites,
multi-gene stacking, or even the introduction of entire bio-
chemical pathways.

Besides limited editing efficiency, HDR-mediated gene
insertions remain somewhat error-prone and can result in
one-sided HDR events, instances of homologous recombi-
nation in which only one end of the repair template recom-
bines at the target locus and the other end of the repair
template is integrated at the target locus via NHEJ, result-
ing in indels (Puchta, 1998; Puchta & Fauser, 2014).
Researchers have designed strategies to take advantage of
this phenomenon in mammalian systems by using a single
homologous stretch of donor DNA that is repaired using a
combination of NHEJ and HDR repair (Suzuki et al., 2019).
Perhaps further optimization of repair template design,
delivery, and target site modification can increase the effi-
ciency and fidelity of insertions and limit unintended par-
tial HDR events.

One critical factor in further improving gene targeting
is the form of the DNA repair template. Gene
targeting approaches rely on diverse donor template for-
mats, such as ssDNA, ribonucleoprotein (RNP) complexes,
and dsODNs, many of which are incompatible with
Agrobacterium-mediated transformation, necessitating
alternative donor delivery methods such as biolistic deliv-
ery. In the future, the direct delivery of CRISPR-Cas RNP
complexes and donor repair templates instead of DNA-
based delivery systems can help mitigate concerns about
random genomic integration of transgene constructs and
off-target effects of Cas9 in gene targeting experiments,
reducing the need for time-consuming backcrossing or
resource-intensive screening following editing experiments
(Metje-Sprink et al., 2019; Svitashev et al., 2016; Woo
et al., 2015).

Furthermore, machine learning models may soon fill
the gaps in gRNA and repair template design to increase
the efficiency of HDR. Machine learning models are power-
ful tools for designing gRNAs (Chuai et al., 2018; Wang
et al., 2020), predicting off-target effects (Listgarten et al.,
2018) and forecasting editing outcomes (Chen et al., 2019;
Shen et al., 2018). Aside from CRISPR/Cas9-triggered muta-
genesis, O'Brien et al. developed a machine learning
model to determine the optimal gene targeting strategy for
HDR-mediated editing, enabling users to design HDR-
mediated gene targets with 83% higher efficiency than tra-
ditionally designed targets (O’Brien et al., 2019). While
most of these tools have been trained on experimental
data from synthetic contexts or mammalian systems,

findings from these tools can likely be translated to plant
gene editing.

A recent shift in focus towards integrase-based DNA
insertions promises a highly efficient method for
sequence-specific integration (Sun et al., 2024). Current
integrase-based methods in plants remain technically chal-
lenging for most research applications. Additionally, these
methods require the integration of recombinase recogni-
tion sites at the target locus and result in remnant recombi-
nation site ‘scars’ following successful integration. The
development of programmable recombinases, such as
the 1S110 family of recombinases, in plants may open up a
new era of genome editing in which programmable, seam-
less integration of donor DNA at a given locus is achiev-
able (Durrant et al., 2024; Hiraizumi et al., 2024).

Independent of genome editing tools, significant hur-
dles to technology transfer in agriculturally relevant crop
species remain (Hua et al., 2019). Many agriculturally rele-
vant crops are recalcitrant to traditional transformation
methods or plant regeneration (Anjanappa & Gruis-
sem, 2021). These limitations necessitate improvements in
delivery methods to ensure that editing tools and donor
DNA templates reach target cells efficiently.

Beyond delivery challenges, the identification of
genome safe-harbor sites can enable gene stacking (Cec-
con et al., 2020) and ensure stable transgene expression;
however, there are few established methods to identify
genome safe-harbor sites in crop species (Cantos
et al.,, 2014; Sun et al., 2024). More robust computational
pipelines and subsequent validation of genome safe-
harbor sites are needed to support crop engineering
efforts.

Finally, it is important to consider the regulatory land-
scape when designing a gene-targeting experiment. Small,
‘cisgenic’ modifications that consist of minor edits face
much more lenient regulations in the United States
(Ahmad et al., 2023). Transgenic crops, however, still face
tight restrictions globally, often lengthening the time to
market and increasing the cost of crop development
(Ahmad et al., 2023). To mitigate some regulatory and
environmental concerns associated with genetically modi-
fied crops, transgene containment technologies are of par-
amount importance (Stockdale & Millwood, 2023). Crops
that contain larger sequence modifications are currently
subject to the same regulations as traditional GM crops
(Vora et al., 2023). Thus, prior to commercialization, a thor-
ough assessment of transgene contamination risk is
required. Several strategies have been developed to pre-
vent outcrossing with wild relatives and native species,
such as engineered male sterility, maternal inheritance,
genome incompatibility, or delayed flowering (Stockdale &
Millwood, 2023).

In summary, the tremendous progress made in
genome engineering in the past few years has changed the

© 2025 The Author(s).
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manner and scale of genome modifications that are possi-
ble. This review aimed to highlight a few of the key
approaches to enhance the frequency of large modifica-
tions that have been tested in plants, as well as illuminate
some of the groundbreaking strategies that have been
developed in other organisms. Improved transformation
and regeneration techniques, combined with the optimiza-
tion of new and existing technologies, will continue to
improve our ability to generate large, sequence-specific
modifications in a range of plant species.
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