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Cosmological stasis from a single annihilating particle species:
Extending stasis into the thermal domain
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It has recently been shown that extended cosmological epochs can exist during which the abundances
associated with different energy components remain constant despite cosmological expansion. Indeed, this
“stasis” behavior has been found to arise generically in many beyond-the-Standard-Model theories
containing large towers of states, and even serves as a cosmological attractor. However, all previous studies
of stasis took place within nonthermal environments, or more specifically within environments in which
thermal effects played no essential role in realizing or sustaining the stasis. In this paper, we demonstrate
that stasis can emerge and serve as an attractor even within thermal environments, with thermal effects
playing a critical role in the stasis dynamics. Moreover, within such environments, we find that no towers of
states are needed—a single state experiencing two-body annihilations will suffice. This work thus extends
the stasis phenomenon into the thermal domain and demonstrates that thermal effects can also generally
give rise to an extended stasis epoch, even when only a single matter species is involved.
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I. INTRODUCTION

It has recently been observed that many theories of
physics beyond the Standard Model (BSM) give rise to
early-universe cosmologies which potentially contain
extended epochs during which the abundances of different
cosmological energy components (such as matter, radia-
tion, and vacuum energy) remain constant despite cosmo-
logical expansion. This phenomenon has been dubbed
“stasis” [1], and seems to be rather ubiquitous in systems
containing large (or even infinite) towers of increasingly
massive states, such as are known to arise in many BSM
models [1-6]. Indeed, it has been found that matter and
radiation can be in stasis with each other [1-3,6], and
that each of these can also be in stasis with vacuum
energy [4,5]. It has even been found that matter, radiation,
and vacuum energy can all experience a simultaneous triple
stasis [4]. Moreover, stasis is a dynamical attractor within
such cosmologies. Thus, even if these systems do not begin
in stasis, they will naturally flow towards such stasis
configurations. This renders the stasis state essentially
unavoidable in many BSM cosmologies.

All of the BSM cosmologies which have been examined
thus far share certain characteristics. First, they are all
nonthermal. By this, we mean that they do not involve any
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cosmological energy components whose temperatures play
a critical role in the stasis phenomenon. Even in cases for
which the stasis is realized through the Hawking radiation
emitted by primordial black holes [2,3], it is sufficient to
regard the black-hole evaporation process as one which
simply converts matter (in the form of black holes) to
radiation. In such analyses—indeed, in all of the different
stasis scenarios examined thus far—the temperatures that
might happen to characterize particular cosmological pop-
ulations of particles play no essential role in the stasis
dynamics. Secondly, and perhaps even more importantly,
in all of the BSM systems examined thus far the existence
of a bona fide tower of different species ¢, with different
masses m, was critical. Indeed, we have even repeatedly
found that the duration of the resulting stasis epoch is
directly related to the number of species in the tower.
Finally—and a bit more technically—the energy-transfer
mechanisms that drove the stasis phenomenon in each of
the previous cases (such as the decay of matter to radiation
in Refs. [1,2,4], or the transition from overdamped fields to
underdamped fields in Refs. [4,5]) had the property that the
rate of energy transfer depended linearly on the energy
density associated with the original field. More specifically,
the “pumps” P'*) that were required in each of the previous
cases were each proportional to the corresponding energy
density p. This linearity property played a significant role in
establishing the algebraic structure of the resulting stasis.
While suitable for decay processes in which a matter
particle ¢ decays into radiation, thereby leading to a rate

© 2024 American Physical Society


https://orcid.org/0000-0002-5743-4921
https://orcid.org/0000-0001-9106-5229
https://ror.org/03m2x1q45
https://ror.org/047s2c258
https://ror.org/036n0x007
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.123515&domain=pdf&date_stamp=2024-12-10
https://doi.org/10.1103/PhysRevD.110.123515
https://doi.org/10.1103/PhysRevD.110.123515
https://doi.org/10.1103/PhysRevD.110.123515
https://doi.org/10.1103/PhysRevD.110.123515

BARBER, DIENES, and THOMAS

PHYS. REV. D 110, 123515 (2024)

of energy transfer from matter to radiation scaling linearly
with the ¢-particle density n, this linearity property would
seem to preclude processes such as particle annihilation, for
which we would expect a rate that scales as né

Given these observations, one might suspect that each
of these features plays a necessary role in establishing
the stasis phenomenon. However, in this paper, we shall
demonstrate that none of these features are actually
required for stasis. In particular, we shall describe an
explicit thermal scenario which has none of the features
outlined above, but which nevertheless is capable of
producing an epoch of stasis persisting across many
e-folds of cosmological expansion. Indeed, we shall even
show that such a stasis epoch is a cosmological attractor.

As might be imagined, the thermal stasis that we shall
describe in this paper is quite different from the nonthermal
stases that already exist in the literature. Without a tower of
states, and with the stasis driven by particle annihilation
rather than by particles decaying or undergoing phase
transitions, it might seem at first glance that thermal stasis
must emerge in a completely different way. Indeed, even
the pumps that we shall employ in this paper may be more
familiar from studies of thermal freeze-out in weakly-
interacting-massive-particle (WIMP) models of dark matter
than from prior studies of stasis. However, despite these
important differences, we shall nevertheless find that a
stasis likewise emerges within this new context and shares
many critical properties with its nonthermal cousins.

This paper is organized as follows. In Sec. II, we describe
the different cosmological energy components that will be
present in our thermal-stasis framework. We also discuss
the fundamental assumptions regarding the manner in
which they behave. As we shall see, one of these compo-
nents is a population of nonrelativistic particles which are
in kinetic equilibrium with each other. Then, in Sec. III, we
derive the evolution equations not only for the cosmologi-
cal abundances of our energy components but also for the
temperature of this nonrelativistic particle gas. In Sec. IV,
we examine the general forms of the pump terms that arise
in these equations due to the annihilation of our non-
relativistic particles. In Sec. V, we then proceed to identify a
particular combination of our dynamical variables—a
combination which we call “coldness”—which plays a
crucial role in the cosmological dynamics, and we recast
our evolution equations in terms of this new variable.
In Sec. VI we examine the fixed-point solutions to these
equations, and demonstrate that a novel form of stasis
emerges as such a fixed point under certain conditions.
Indeed, we shall find that it is the coldness rather than the
temperature which remains constant during thermal stasis.
In Sec. VII, we demonstrate that this stasis solution is not
merely a local attractor, but actually a global attractor when
these conditions are satisfied. In Sec. VIII, we then identify
a particular mechanism through which these stasis con-
ditions can naturally be realized in a particle-physics

context. Finally, in Sec. IX, we conclude with a summary
of our results and a discussion highlighting possible
directions for future work.

II. ASSUMPTIONS AND ENERGY COMPONENTS

In this paper, our goal is to study the extent to which
stasis can emerge in a thermal environment. Toward this
end, in this section we shall begin by describing the
cosmological energy components present in our frame-
work for establishing such a stasis and the fundamental
assumptions regarding the manner in which they behave.
For sake of generality, we shall keep the discussion as
model independent as possible in what follows. Later, in
Sec. VIII, we shall present an explicit mechanism through
which these conditions can be realized in a particle-
physics context.

Let us start by considering the cosmology associated with
a universe which comprises a nonrelativistic matter species
¢ of mass m which annihilates into an effectively massless
particle y through processes of the form ¢¢ — yy. For
simplicity, we shall assume that ¢» and y are both their own
antiparticles (although our qualitative results would be
unchanged if we were to drop this last assumption).
Thus, such a universe contains not only a matter component
¢ with an energy density p,,, abundance Q,;, and equa-
tion-of-state parameter w,, = 0, but also a radiation
component y with a corresponding energy density p,,
abundance Q,, and equation-of-state parameter w, = 1/3.
For simplicity, we shall assume that ¢ and y are the only
cosmological species present within our universe, and that
the universe is flat and expanding in a manner consistent
with the Friedmann-Robertson-Walker (FRW) metric.

Remarkably, we shall demonstrate that such a universe
can give rise to an extended stasis epoch. To do this, we
shall assume that our population of matter particles
comprises only a single species ¢ with a unique mass
m, as noted above. We shall also assume that this species is
stable in the sense that it does not decay within the time
frame relevant for our analysis. Finally, we shall assume
that the ¢ particles are not absolutely cold, but rather are in
thermal equilibrium with each other, possibly as the result
of rapid interactions among them, and constitute an ideal
gas with a nonzero temperature 7.

Note that our assumption that the ¢ particles form an
ideal gas does not imply the existence of a thermal bath
which holds the temperature of this gas constant. Rather,
we shall allow the temperature of our ¢-particle gas to
evolve dynamically along with the rest of the cosmology. In
other words, while we will assume the existence of rapid
interactions amongst the ¢ particles which ensure that they
remain in thermal equilibrium with each other, we are not
assuming that these particles have additional interactions
with any other particle species that might have constituted a
thermal bath.
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Given these assumptions, we see that we must actually
regard our universe as containing three different “fluids.”
The first two fluids are those mentioned above, namely
those associated with matter and radiation, but our matter
fluid really only accounts for the rest-mass energy of our
matter fields. We must therefore now introduce a third fluid,
namely that associated with the kinetic energy of our matter
fields, with corresponding energy density pxg, abundance
Qkg, and equation-of-state parameter wyg. It is important
to note that we cannot consider p,, and pgg as different
contributors to a single common fluid associated with our
gas of ¢ particles with a unique time-independent equation
of state of the form P = wp with a constant w, since (as we
shall demonstrate below) the energy densities associated
with rest mass and kinetic energy have different equations
of state of this form, with w;; # wgg.

Since we are assuming that our ¢ particles constitute a
nonrelativistic ideal gas at temperature 7, it follows that
pxe and T are related to each other via

3T
= — T ~N — -, 2.1
PKE 3 ny 2,0M m (2.1)
where ny; ~ py,/m is the number density of ¢ particles in
the gas. The kinetic-energy abundance is therefore

QKE — %QM Z .
m
Thus, for a given €, we can trade Qgg for 7 and
vice versa.

We can also define an equation-of-state parameter wig
for the kinetic energy of our ¢-particle gas. The ideal gas
law tells us that P = ny, T, where P is the total pressure
associated with this gas. It then follows from Eq. (2.1) that
pxe = 3P/2, which implies that

2
WKE :g

(2.2)

(2.3)

Another way to understand this result is to consider how the
kinetic-energy density of our ¢ particles scales with the
scale factor a. In general, the kinetic-energy density of a
localized population of particles in a FRW universe always
includes a factor a3 due to the expansion of the volume
within which those particles are contained. However,
this kinetic-energy density may also accrue an additional
dependence on a from the manner in which the kinetic
energies of the individual particles are affected by the
redshifting of their momenta. For example, if the particle
is highly relativistic, its kinetic energy is approximately
proportional to its momentum p and therefore scales as a~!.
Thus, the kinetic-energy density of a population of such a
particles—which is essentially equivalent to their total
energy density—scales as a~*. Since we generally have
p ~ a=3+v) for a perfect fluid with a constant equation-of-
state parameter w, we obtain the usual result w = 1/3 for
radiation. By contrast, the kinetic energy associated with a

nonrelativistic particle is proportional to p? and therefore
scales as a~2. Thus, the kinetic-energy density of a
population of nonrelativistic particles scales as a~>. This
corresponds to an equation-of-state parameter w = 2/3,

in accordance with Eq. (2.3).

III. DYNAMICAL EQUATIONS

It is now relatively straightforward to derive the equa-
tions that govern the time evolution of the three abundances
Qy, Q,, and Qg within this cosmology. Each of these
abundances €; is related to the corresponding energy
density p; via

_ 82G
=3
where i€{M,y,KE}, where H=a/a is the Hubble

parameter, and where G is Newton’s constant. It then
follows that

Q, (3.1)

in - 87Z'G 1 dpz
dt 3

Pi dH)

ma CH (3:2)

On the other hand, for our three-component universe, the
Friedmann acceleration equation tells us that

dH 4nG
R & £ . .
L : (;p, + s;pl)
1
= _§H2(2 + Qy +2Q, + 3Qg)

1
= _§H2(4_QM+QKE) (3.3)
where in passing from the second to the third line we have
imposed the constraint Q, + Q, + Qg = 1, as befits our
three-component universe. Substituting Eq. (3.3) into
Eq. (3.2) then yields

dQy  82Gdpy

+ HQy (4 — Qy + Qkg)

dr  3H? dt

dQ, 8zGdp

S T L HO (4 - Q)+ Q
dr 3 dr / v+ k)

dQKE . 872G deE
dt  3H? dt

+ HQgp(4 — Qy + Qkg).  (3.4)

In general, the rates of change dpy/dt, dp,/dt, and
dpgg/dt of the energy densities associated with our three
cosmological components may be written schematically as

dpy ()
“ar o= Py
dp ) )
—L=—4Hp, + Pij, + P,
dp
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where the first term on the right side of each equation
represents the effect of cosmological expansion and where

each of the remaining terms Pl(jf) represents the rate at

which energy-density is transferred from component i to
component j as a consequence of our annihilation process
¢¢ — yy. In general, this annihilation process eliminates ¢
particles and thereby reduces not only the rest-mass energy
density p,, of the ¢-particle gas but also its kinetic energy
density pgg. The fact that this process conserves energy
then implies that any annihilation-induced reductions in py,
and pgg must lead to a corresponding increase in p,.

Note that we have not included similar terms for the
inverse process yy — ¢¢ in Eq. (3.5). However, the
energy-density-transfer rates associated with this process
are generally negligible within our primary regime of
interest. To see this, we begin by noting that since our
gas of ¢ particles is presumed to be highly nonrelativistic,
the energies E, of the y particles produced by ¢¢ — yy
annihilation at any given time are initially sharply peaked
around E, ~ m in the cosmological background frame, with
a width AE, ~ /mT < m where T is the temperature of
the ¢-particle gas at that time. However, these energies
subsequently decrease as a result of cosmological red-
shifting. In situations in which the y particles interact
sufficiently weakly that little redistribution of the E, takes
place after they are produced, these energies quickly fall
below the kinematic threshold for yy — ¢¢ production.
Even in situations in which the y particles are more strongly
interacting and a more significant redistribution of E,
values takes place, only a small (and ever-decreasing)
fraction of y-particle pairs will ultimately have energies
above this threshold. In either case, then, cosmological
redshifting effectively renders the swept-volume rate for
xx — ¢¢ production negligible.

We also note that while the scattering process y¢ — y¢
can in principle affect the distribution of kinetic energies
for the ¢-particle gas, the swept-volume rate for this
process need not be comparable to the swept-volume rate
for ¢p¢p — yy annihilation. For example, if ¢p¢p — yy anni-
hilation were to proceed through an s-channel process
which occurs on resonance while simultaneously y¢ — y¢
were to occur only through #-channel processes, the swept-
volume rate for the former process could be significant
while that for the latter process could be sufficiently small
that its impact on the dynamical evolution of the system
could be neglected. Indeed, as we shall see in Sec. VIII,
there exist scenarios for thermal stasis in which this is in
fact the case. We shall therefore assume in what follows
that the effect of y¢p — y¢ scattering on the kinetic-energy
distribution of the ¢ particles can be neglected.

In general, following Ref. [4], we shall refer to any
process that induces a transfer of energy between two
energy components as a “pump.” Such pumps are asso-
ciated with local particle-physics processes which conserve

energy density, but redistribute it among our different
energy components.

Substituting the expressions in Eq. (3.5) into Eq. (3.4),
we have

dQ
d—;W = HQM(I - QM + QKE) - PM,y

dQ,

F - HQ},(—QM + QKE) + PM,}/ + PKE,}/
dQ

de = HQyg(—1 — Qy + Qkg) — Pxgy» (3.6)

where we have defined
872G )
Pij = 3H2 Pi; : (37)
(p)

Indeed, while the pump term P;;” represents a transfer of
energy density, the corresponding pump term P;; represents
a transfer of abundance. We observe from Eq. (3.6) that
dQy/dt + dQ,/dt + dQgg/dt = 0, which reflects the fact
that Q) +Q, + Qgg = 1 within this three-component
universe. For this reason, we shall henceforth refrain from
writing down explicit expressions for dQ,/dt, as these
expressions can always be determined directly from
dQM/d[ and dQKE/dt

From our result for dQgg/dt in Eq. (3.6) and the relation
in Eq. (2.2), we may also obtain an expression for the
rate of change of the temperature of the ¢ particles. This
expression takes the form

dT 2m QKE
& HT - (P, — B, ). (38
dr 3QM < KE,y QM M,}’> ( )

This result implies that while the pump terms Pgg, and
Py, both serve to decrease the overall energy density
associated with our ¢-particle gas, the former term serves to
decrease its temperature while the latter serves to increase
it. Indeed, we observe that the net effect of the pumps is to
raise 7 when

Pxe,  Puy
Qe Qy

(3.9)

and to lower T if the opposite is true. Interestingly, if both
sides of Eq. (3.9) are equal, these pumps will have no net
effect on 7. Of course, T still decreases as a consequence
of cosmological expansion in this case, as indicated by the
first term on the right side of Eq. (3.8).

IV. PUMP TERMS FOR THERMAL
ANNIHILATION

It is not difficult to obtain explicit expressions for
our pump terms. Within the cosmology we are studying,
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such pumps represent the effects of the two-body annihi-
lations of ¢ particles into radiation. Such process are
familiar from traditional studies of the thermal freeze-out
phenomenon, where one has dny/dt ~ (ov)n3, + ...
where n,, is the matter-particle number density. In this
expression, (ov) denotes the thermally averaged “swept-
volume” rate, i.e., the rate at which volume is swept by
the cross-section ¢ moving with transverse velocity .
Recognizing that ny, = p,,;/m, we see that our correspond-
ing pump is nothing but

, 1
Piy = —{ov)rk. (4.1)

We stress that in writing this relation we have implicitly
assumed that our population of ¢ particles is in thermal
equilibrium with itself. Likewise, the assumption that our
matter is nonrelativistic implies that T < m where 7 is the
temperature of our ideal gas of ¢ particles.

The same annihilation process also acts to decrease the
kinetic-energy density of ¢-particle gas. We find that the
corresponding kinetic-energy pump is given in terms of
the thermally averaged kinetic-energy-weighted cross-
section by

1
P, = L (e, + KBy o )

(4.2)
where KE, and KE, are the kinetic energies of the
annihilating ¢ particles. Inserting the results for the corre-
sponding pumps Py, and Pgg, into Eq. (3.8), we have

dT T
& = 2HT + M (5p) M

dt m m<(KE +KE,,)01}>

(4.3)

In order to evaluate these thermally averaged cross-
sections (ov) and ((KE, + KE)ov), we need to know how
ov depends on the incoming particle momentum as seen
within the center-of-mass (CM) frame. Indeed, since our
population of ¢ particles is assumed to be highly non-
relativistic, the CM frame and the cosmological back-
ground frame approximately coincide. We shall make an
ansatz and assume that ov can be parametrized as

D q
o (Bl
m

where |pem| = |Pa — Pyl is the magnitude of the three-
momentum of either of the two incoming particles ¢, and
¢;, in the CM frame, where ¢ is an arbitrary exponent, and
where C is a momentum-independent and g-independent
coefficient. The ansatz in Eq. (4.4) is not entirely unfa-
miliar; for example, a similar ansatz is often invoked when
discussing thermal freeze-out (see, e.g., Ref. [7-9]), with
the exponent g selecting between s-wave annihilation

(4.4)

(¢ = 0), p-wave annihilation (¢ = 2), d-wave annihilation
(g = 4), and so forth. However, although the value of ¢
naively corresponds to twice the order of the leading
term in the partial-wave expansion, ¢ can actually be more
negative than stated above if our annihilation proceeds
through an s-channel process with a propagator that is in
resonance at low momenta. Furthermore, Sommerfeld
enhancement [10] can also give rise to negative values
of g. For this reason, we will also allow ourselves to
consider values of ¢ which are negative. Indeed, we shall
give an example of a model that satisfies Eq. (4.4) with such
values of ¢ in Sec. VIIL.

Given the ansatz in Eq. (4.4), we can now evaluate our
thermally averaged cross-sections in terms of C and g.
By definition, these cross-sections can be written as

C R - [|Pa—DP o o
=S Jen [ en (PSP rar

(4.5)

and

((KE,+KE;)ov)

=)

(PP i) o

where the normalized thermal (Boltzmann) suppression
factor for each of our two annihilating ¢ particles is

given by
L1 1B
f(p)= (2zmT)3/? exp <_ 2mT )"

We immediately see that we must have ¢ > —3 in order for
the integrals appearing in Egs. (4.5) and (4.6) to be free of
infrared divergences. For values of g which satisfy this
criterion, we may evaluate these integrals in a straightfor-
ward manner by performing a change of variables from p,,
and p, to p, and p_, where p,. = p, & p,. The integral in
Eq. (4.5) evaluates to

(4.7)

(IBeml?) = (mT)9*A(q), (4.8)
where
Alq) = %r(%”) (4.9)

Indeed, the Euler gamma function is formally divergent
for ¢ = —3, and its analytical continuation to smaller
values of ¢ is unphysical, as discussed above. We note
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that for ¢ =2 we have A(2) = 3/2 and thus Eq. (4.8)
reduces to the relation

N 3
(|Peml?) :EmT‘ (4.10)

In terms of A(q), we find that the thermally averaged
cross-sections in Egs. (4.5) and (4.6) are given by

o0y = Pl _ c(1> “a@ @)

m4 m
and

<(KEa + KEb)61)>

- ch+1 [{[Peml®*?) + (|Peml /) (| Peml)]

. c(%) q/zT[A(q +2) + A(q)A(z)}

T\42 (q+6
=C|— T|——)A(qg).
In passing to the final line of Eq. (4.12) we have utilized the

properties of the Euler gamma function. Thus, we find that
our pumps are given by

2 2
P T\ 4/
iy =" (1)" ata)

(4.12)

m

2
oul (g+6 T\ 4/2
Pﬁfgy:#<7>c<Z Alg).  (4.13)

Interestingly, it follows from these relations that

q\ Qe
= (1) G P

(4.14)
This relation between our pumps is essentially a conse-
quence of the thermal distribution of momenta we have
been assuming for our population of ¢ particles—a dis-
tribution which essentially enforces a correlation between
the momenta (and hence the kinetic energies) of these
particles and their masses. We thus find that Eq. (3.9) is true
for all g < 0, indicating that our pumps collectively push in
the direction of increasing the temperature of our ¢-particle
gas for all negative q.

We may also intuitively understand why these pump
effects on the temperature depend so critically on the sign
of g. Given the form of the annihilation cross-section in
Eq. (4.4), we see for g < 0 that it is the more slowly-
moving ¢ particles within our gas that are preferentially
annihilated. The rapid rethermalization of the remaining ¢
particles then results in a temperature for these particles

which is higher than it had previously been. By contrast, for
g > 0, it is the more rapidly-moving ¢ particles that are
preferentially annihilated. Upon rethermalization, the tem-
perature for the remaining ¢ particles is lower than it had
previously been.

V. DYNAMICAL EQUATIONS REDUX
AND THE ROLE OF COLDNESS

Given these pumps, we can now construct the differential
equations that govern the time evolution of our system
within this cosmology. In principle, there are two quantities
whose variations are of interest to us: Q,,; and Q. Indeed,
as is evident from Eq. (2.2), the temperature 7 is simply
related to the quotient Qggp/Q,,. However, p,, remains as
an additional independent quantity within this system
because the expressions in Eq. (4.13) for our energy-
density pumps depend quadratically on p,,. Indeed,
although one of these factors of p,, is converted to Q,,
when constructing our abundance pumps P;; in Eq. (3.7),
the other factor of p,, remains unconverted. Thus, in this
system, our differential equations cannot be reduced to
abundances alone, and the absolute matter energy density
py—or equivalently the Hubble parameter—remains as an
additional degree of freedom. This is a new feature that did
not appear in any of the previous stasis analyses in
Refs. [1,3,4]. However, this feature arises in the present
case as a new consequence of our choice of pump.

We thus have three independent quantities whose time
evolution we wish to study: Q,,, Qg (or equivalently 7),
and p,,. While we could choose to work in terms of these
quantities directly, it turns out that our differential equa-
tions will take their simplest forms if we choose to work in
terms of the quantities €,;, Qxg, and =, where

(5.1)

Because we shall eventually find that our region of interest
has ¢ < 0, we see that E increases as T decreases, and vice
versa. We shall therefore refer to E as a coldness parameter.
Putting all the pieces together, we then find after some
algebra that the system of equations in Eq. (3.6) can be
expressed directly in terms of Q,,, 2, and Qgg:

dQ . -
d—/\ﬁ/ —Q, [1 — Qu + Qe — CA(q)\/:QM}

= _g (2g+3)-C 1+q’—2 A(q)\/EQ

V= 2| ¢ |A@)VEQy
aQ

d—J\Ij-E_QKE|:_1_QM+QKE

- C<1 —|—%>A(q) = M],
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where we have bundled our time-independent constants

together as
A 3
C=4/—mC
V826"

and where we have replaced our time variable ¢ with N/,
where

(5.3)

N = log <i) (5.4)

ap

Through the use of the relation dN = Hdt, we see that N/
is the number of e-folds of cosmological expansion which
have occurred since an early fiducial time at which the scale
factor was ay.

VI. FIXED-POINT SOLUTIONS AND
THERMAL STASIS

Our interest in this paper concerns the fixed-point
solutions to Eq. (5.2), as such solutions might lead to
stasis. Given the dynamical equations in Eq. (5.2), we see
that the conditions for the existence of a nontrivial fixed-
point solution (Qy, =, Qgg) with all components non-
vanishing are

1-— QM + QKE = CA(Q) \/ EQM,
2
—(2¢g+3) = C<1 +%>A(q)\/EQM,
—1-Qy + O = C<1 +Z>A(q)\/EQM.

Since C, A(q), E, and Q,, are all non-negative, we see
from the second line of Eq. (6.1) that no such nontrivial
fixed-point solutions can possibly exist unless 2¢ + 3 < 0,
or g < -=3/2.

Unfortunately, even with ¢ < —3/2, there are no non-
trivial fixed-point solutions in which Q,;, Qxg, and Z are all
nonzero. However, such a solution does exist in the limit
that Qgp < 1 (i.e., the limit in which we treat Qgg as
significantly smaller than the other abundances, or effec-
tively zero). This limit is consistent with our original
assumption that the matter in our theory is nonrelativistic.
Within this limit, we can disregard the third equation within
Eq. (6.1), since the entire right side of the corresponding
equation in Eq. (5.2) is multiplied by Qgg. We then obtain
the nontrivial fixed-point solution given by

6.1)

- 2g+3

Q=14+ —"——,
M +1+q2/6
[
QM é‘A(CI) '

[xn

Interestingly, we see that the fixed-point abundance Q,,
does not depend on the pump prefactor C. This is ultimately
the case because the dynamical equations in Eq. (5.2) are
invariant under the simultaneous transformations E — o=
and C - C/ \/a, where «a is an arbitrary scaling parameter.
This observation is analogous to the observation that the
quantity Q,, in Ref. [1] is independent of Iy, as well as
similar observations in Refs. [3,4].

Note that the restriction ¢ < —3/2 implies that Q,, < 1.
We likewise find that Q,, > 0 provided that ¢ > —6 + 2+/3.
We shall therefore limit our consideration of this fixed-
point solution to values of g within the range

9min < 9 < qmax (63)
where
Gumin = —6 + 23 ~ —2.536
Gmax = _3/2' (64)

Indeed, this is the range within which 0 < Q,, < 1. Note
that the g range in Eq. (6.4) is consistent with the restriction
q > —3 described below Eq. (4.7).

The existence of such a nontrivial fixed-point solution is
only one of the requirements that must be satisfied in order
for a stasis epoch to arise within this system. We must also
require that Q,,, E, and Qg dynamically approach and
remain near this fixed-point solution for an extended time
interval, regardless of initial conditions. In other words, we
must require that our fixed-point solution be a dynamical
attractor, so that the system necessarily evolves toward this
fixed point. Fortunately, as we shall demonstrate below, the
nontrivial fixed-point solution in Eq. (6.2) is indeed an
attractor for all ¢ within the range in Eq. (6.3).

Before continuing, let us also briefly discuss the “trivial”
fixed-point solutions of Eq. (5.2)—i.e., solutions wherein
Q,; = 0 and/or 2 = 0. Such solutions are trivial in the
sense that their fixed-point behavior for €, and = does not
rely on the delicate simultaneous cancellations of the terms
within each of the corresponding square brackets within the
top two lines in Eq. (5.2). It turns out that there are three
such trivial fixed-point solutions:

(i) Q) =0, Z=0. This solution is not an attractor,

however.

(i) Q) =0, Z arbitrary. This is a solution only for
q = —3/2. However, this solution also fails to be an
attractor.

(iii) Q) =1, 2 =0. It turns out that this solution is a

repellor for ¢ < —3/2, but an attractor for g > —3/2.

Due to its occasional behavior as an attractor, the third

trivial fixed-point solution itemized above will also play a
role in our analysis of this system.

Thus, to summarize, we find that our system has only

one fixed-point solution which is also an attractor for any
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FIG. 1. The stasis abundance Q,, (blue) and coldness Z (red),

plotted as functions of ¢ within the allowed range g, < ¢ <
Gmax> With C = 1. The abundance curve is plotted relative to the
axis along the left edge of the frame, while the coldness is plotted
relative to the axis along the right edge. We see that Q,, varies
between 0 and 1 within this range, as expected, while E — co as
q = Gmin a0d E = 035 ¢ = Gax-

q > qmin- FOT ¢ < @max, this attractor is the nontrivial fixed-
point solution given in Eq. (6.2). This solution will be our
primary focus in this paper. However, for ¢ > ¢, the
third trivial fixed-point solution itemized above becomes
our attractor.

In Fig. 1, we plot the nontrivial fixed-point abundance
Q,, in Eq. (6.2) as a function of g within the range in
Eq. (6.3). We also plot the fixed-point coldness = in
Eq. (6.2) as a function of ¢, taking C = 1 as a reference
value. We see that Q,, varies between 0 and 1 within this

-1
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[1]
=
e
I

[1|

N =

0.8

0.6 1

Qum

0.4 1

0.2 1 100
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N

range, as expected, while = asymptotes to zero for larger g
and diverges as ¢ approaches the lower limit of the
allowed range.

In Fig. 2, we plot the time evolution of ), and Z as a
function of the number N of e-folds of cosmological
expansion which have occurred relative to an early fiducial
time. The different curves in each panel correspond to
taking a variety of different initial conditions. For both
panels we have taken ¢ = —2 and C = 1 as benchmark
values within the range specified in Eq. (6.3). The curves in
the left panel have the same initial coldness Z(® but

different initial abundance 953), whereas the curves in

the right panel have different initial coldness Z(© but the

same initial abundance QES). Most importantly, we observe

that in all cases the different curves within each panel
eventually begin to exhibit stasis, with an essentially
unchanging matter abundance Q,, persisting across many
e-folds of cosmological expansion. Indeed, we find that
Q,, = 0.4 in each panel, which we see from Eq. (6.2) is
consistent with our chosen benchmark value g = -2.
We also note that the colors of these plots (i.e., the
corresponding values of the coldness Z) also evolve
toward a fixed value = which also persists across many
cosmological e-folds. These plots also provide evidence
that our nontrivial fixed-point solution in Eq. (6.2) is
indeed an attractor, with all curves eventually approach-
ing this fixed-point solution regardless of the particular
initial conditions assumed.

We thus conclude that our system necessarily evolves
into an extended stasis epoch, regardless of its initial
conditions pertaining to either the initial matter (or radi-
ation) abundance or the initial coldness. This is therefore a

-1

[1]

1.0

P
Qf =30y

10!

0.0 + T T T T T T T
0 5 10 15 20 25 30 35 40

N

FIG. 2. The matter abundance €, plotted as a function of the number A of e-folds of cosmological expansion which have occurred
since an early fiducial time. At each moment the color of the curve indicates the corresponding value of the coldness E. For all plots, we
have taken benchmark values ¢ = —2 and C=1and simply adjusted either the initial abundance €2, or the initial coldness Z, as shown
in the figures. Indeed, both quantities eventually begin to exhibit stasis, with constant values persisting across many e-folds of

cosmological expansion.
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direct demonstration that the stasis phenomenon can be
extended into the thermal domain, with a prolonged period
of stasis experienced not only by the energy abundances but
also by thermodynamic quantities—such as coldness—
which involve the temperature of the matter prior to
annihilation.

At first glance it might seem that this is not a true thermal
stasis because we have approximated Qg < 1 in deriving
this nontrivial fixed-point solution. Phrased somewhat
differently and more precisely, the fixed-point solution
has Qg = 0, thus suggesting that the temperature at that
point is zero. However, while this is true, we must
remember that in general our system does not spend the
many e-folds of stasis (such as those shown in Fig. 1)
sitting at the fixed-point solution. Instead, strictly speaking,
this time is spent in approaching the fixed-point solution
more and more closely. This is true for all of the stasis
situations studied in the literature. Moreover, in the present
case, we have not only a nonzero Qg at all points along this
evolution, but also a nonzero temperature. Thus, we have a
true thermal situation throughout this time period, and our
pumps are operating at all points along this trajectory.

This stasis epoch can therefore be characterized as
follows:

(i) Our annihilation pumps transfer matter to radiation
and serve to counteract the tendency of the matter
(radiation) abundance to increase (decrease) due to
cosmological expansion. In this way, the abundances
€2y, and Q, are kept essentially constant at nontrivial

values which depend on ¢ but not on C.

(ii) While this is happening, the actual matter energy
density p,, of the ¢-particle gas is dropping rapidly
due to the combined effects of cosmological ex-
pansion and ¢-particle annihilation.

(iii) Likewise, the temperature T of the ¢-particle gas is
also dropping. This occurs due to cosmological
expansion [as evident from the first term on the
right side of Eq. (4.3)], but this effect is partially
mitigated by our pumps since g < 0 [as discussed
in Eq. (4.14)].

(iv) Even though both p,, and T are dropping throughout
the stasis epoch, they are dropping in such a bal-
anced way as to hold the coldness E = Tp,,/mi**
fixed at a nontrivial value which depends on both ¢
and C.

(v) The fact that the temperature of the ¢-particle gas is
dropping during the stasis epoch implies that Qg is
also dropping, thereby justifying setting Qg = 0
when deriving our nontrivial limiting fixed-point
solution. Moreover, the fact that Qgg quickly be-
comes negligible during the approach to the fixed
point is responsible for the fact that we can approxi-
mate €, ~ 1 — €2y, as we approach stasis along this
trajectory, which is why a constant €, implies a
constant €2, as well.

Given this state of affairs, it is natural to wonder how this
stasis is able to persist across so many e-folds of cosmo-
logical expansion—a concern heightened by the fact that
only a single matter species is involved. Ultimately, this
feature is tied to the unique form of our pump. As we have
seen, our ¢-particle annihilation pumps for both energy
density and kinetic-energy density scale as

PP ~p2 = P~pyQy. (6.5)
Indeed, we see that even our abundance-transferring pumps
P have a factor which scales with p;, rather than with Q.
However, p,, is dropping to zero throughout our stasis
epoch. Thus, as the energy density associated with our
single matter species ¢ slowly disappears from our system,
the corresponding pump also slowly turns off. Indeed, our
pumps always operate in direct proportion to the remaining
energy density. Our stasis therefore remains in balance even
as we proceed further and further out along the tail of the
phase-space distribution of our slowly vanishing popula-
tion of ¢ particles. We emphasize that this feature did not
appear in any previous stasis discussions in the literature
since the pumps P that were utilized in the previous cases
were all linear in py;, implying that P ~ Q,, ~ constant as
far as their dependence on energy densities is concerned.
We thus see that the stasis we have derived here has a very
different phenomenology and operates in a fundamentally
different fashion.

Of course, in writing Eq. (6.5) we have disregarded the
temperature dependence of our pumps. From Eq. (4.13)
we see that

Py, ~ T2, Pyg,, ~ T, (6.6)
Thus, while Py, always scales inversely with T as the
temperature of our ¢-particle gas drops, we see that Pgg,
scales inversely with T only for ¢ > —2. Indeed, for smaller
g we find that both Pgg, and the temperature T drop
together—an effect that lies beyond the energy-density
scaling effect discussed above and which tends to further
suppress the activity of this pump as our ¢-particle gas
cools and dissipates.

VII. THERMAL STASIS AS A GLOBAL
ATTRACTOR

It is straightforward to demonstrate that the nontrivial
fixed-point solutions for (Q,,Z) in Eq. (6.2) are also
global attractors. We have already seen evidence of this
attractor behavior in Fig. 2. As a first step, we note that for a
given value of g, we may assess whether the corresponding
fixed-point solution is a local attractor by evaluating the
2 x 2 Jacobian matrix for our dynamical equations for
dQy/dN and d2/dN and then examining the signs of its

two eigenvalues A at that fixed point. In Fig. 3, we present
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FIG. 3. Parametric plot of the Jacobian eigenvalues (1,,4_) as

the parameter g is varied. In all cases these eigenvalues are
evaluated for a given fixed-point solution. The red curve indicates
the combinations of these eigenvalues associated with the non-
trivial fixed point in Eq. (6.2), while the blue horizontal line
indicates the eigenvalues associated with the trivial fixed point
described in item (iii) of the itemized list below Eq. (6.4). Thus,
we see that not only are Q,, and = independent of ¢ for this trivial
fixed point, but A_ is as well. As discussed in the text, the
nontrivial fixed point is an attractor throughout the entirety of the
range —6 + 2+/3 < g < —3/2, while the trivial fixed point is an
attractor only for ¢ > —3/2. Note that these fixed points are
attractors only when both eigenvalues 1. are negative and hence
lie within the yellow shaded region. The corresponding lines are
then shown as solid rather than dashed. Interestingly, the red and
blue curves intersect precisely at ¢ = —3/2, where they both
correspond to the solution (Q,,, Z) = (0, 1). The fact that the red
and blue curves intersect at only one point ensures that there is
never more than one attractor solution as ¢ crosses the ¢ = —3/2
boundary. Thus, as g increases from g = —6 + 2+/3, our attractor
solution follows the red curve until reaching the ¢ = —3/2 point
and then switches to the solid blue line for g > —3/2.

a parametric plot of these eigenvalues as ¢ is varied within
the range gnin < ¢ < ¢max fOr which our nontrivial fixed-
point solution exists. These eigenvalues trace out the red
solid curve. Within this g-range, we see that both eigen-
values lie within the yellow-shaded region wherein both 4,
and A_ are negative. Thus, we may conclude that across this
entire range of ¢, the nontrivial fixed-point solution within
this range is indeed a local attractor.

Within Fig. 3 we have also plotted the eigenvalues
associated with the trivial fixed-point solution indicated in
item (iii)) of the itemized list in the paragraph below
Eq. (6.4). These eigenvalues fill out the blue horizontal
line. When ¢ < gn. = —3/2, we see that 4, is positive,
telling us that this solution is not an attractor for such values
of ¢g. However, as ¢ increases beyond ¢q,,,,, We pass across
into the yellow-shaded region within which both eigenval-
ues are negative and within which this trivial fixed-point
becomes an attractor. Interestingly, the blue line associated

with our trivial fixed-point solution intersects the red curve
associated with our nontrivial fixed-point solution precisely
at ¢ = gmax = —3/2. Indeed, as ¢ increases through the

point ¢ = —3/2, our nontrivial fixed-point solution ceases
to be an attractor and our trivial fixed-point solution
becomes an attractor. Thus ¢ = —3/2 marks a continuous

boundary between these two different solutions. Indeed,
even the corresponding solutions for €, and Z are
continuous across this boundary.

Since the Jacobian analysis we have presented above
characterizes only the local behavior of our system—i.e.,
its behavior within the vicinity of the fixed point—it still
remains to be seen whether these fixed points are in fact
global attractors toward which our system dynamically
flows regardless of its initial conditions. However, within
the ¢ ranges we have been discussing, it turns out that this
is indeed the case. We can verify this by examining the
trajectory along which the system described in Eq. (5.2)
dynamically evolves in the (,,,E) plane, given an
arbitrary initial configuration within that plane. In Fig. 4
we show a number of such trajectories for the benchmark
value ¢ = —2. We find that regardless of the initial location
of our system within this plane, our system is inevitably
drawn toward our nontrivial fixed-point solution, indicating
that this fixed point is not only an attractor but also global
rather than merely local.

It is also instructive to examine what happens when
we choose ¢ outside the range specified in Eq. (6.3).
The behavior of our system ultimately depends on whether
q < Gmin OF ¢ > Gmax- Both behaviors are shown in Fig. 5.
In the left plot, we consider a situation with ¢ < g,- In
this case, our flow lines all tend towards small values of Q,,
with ever-increasing values of E. Indeed, no fixed-point
solution is ever reached. By contrast, for ¢ > g, all of
our flow lines are pulled toward the trivial fixed point at
(£,Q,) = (0,1), as anticipated. Thus even our trivial fixed
point is a global attractor for ¢ > —3/2.

VIII. A PARTICLE-PHYSICS MECHANISM
FOR ACHIEVING THERMAL STASIS

In the previous section, we demonstrated that an
extended epoch of matter/radiation stasis can emerge in
a thermal context, and with only a single matter species ¢,
provided not only that this species annihilate into radiation
via a2 — 2 process of the form ¢¢p — yy, but also that the
thermally averaged cross-section for this annihilation
process take the form given in Eq. (4.4) with ¢ within
the range in Eq. (6.3). In this section, we outline how these
conditions can be realized in a particle-physics context.

As one might imagine, the principal challenge in
constructing a particle-physics model of thermal stasis
along these lines is to ensure that the swept-volume rate
ov for matter-particle annihilation takes the form in
Eq. (4.4) with a value of ¢ within the desired range in
Eq. (6.3). Indeed, as we shall discuss below, typical
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FIG. 4. Attractor behavior for our thermal stasis when ¢ lies within the allowed stasis range in Eq. (6.3). These trajectories within
the (8,Q,,) plane correspond to the time evolution of the cosmological system described in Eq. (5.2), with chosen benchmark
values ¢ = -2 and C = 1. The central red dot towards which all flow lines tend is our corresponding stasis solution with
(2,Qy) = (9/40,2/5). We note that this plot was made assuming a relatively small initial value for Qgg, but similar plots arise

regardless of the initial value of Qgg.
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Time evolution of our cosmology when ¢ is outside the stasis range ¢uin < ¢ < ¢max i Eq. (6.3), with either ¢ < g, (left

panel) or g > g, (right panel). The left and right panels shown correspond to the benchmark values g = —2.7 and ¢ = —1.3
respectively, with C = 1. Note that = can either increase or decrease if ¢ < ¢,y but can only decrease if ¢ > ¢yax. FOr ¢ < @pmin» OUT
system has no fixed point, and all of the flows proceed toward small €, but ever-increasing coldness E. By contrast, for ¢ > ¢,.x, Our

system is attracted to the trivial fixed point at (E,Q,) = (0, 1).

particle-physics models that one can construct along
these lines lead to values of ¢ which are either above
or below this range. Such models therefore do not yield a
stasis epoch. However, as we shall now demonstrate,
there do exist particle-physics mechanisms which lead to
suitable values of ¢. In what follows, we describe one

such mechanism—one which leads specifically to a value
q = —2 for this parameter. This mechanism rests on
fundamental ideas in quantum field theory and can be
realized within a broad variety of particle-physics con-
texts. We shall therefore keep the following discussion as
model independent as possible.
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N
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FIG. 6. Feynman diagram for the s-channel annihilation proc-
ess through which two ¢ particles annihilate into radiation
through a mediator X, complete with a one-loop radiative
correction for my. Here the ¢ particles constitute the matter in
our model and are indicated in blue, while the resulting radiation
is indicated in green and the mediator particle X is indicated in
red. The one-loop correction for the propagator (shown in gray)
comprises loops of matter or radiation.

We focus on the case in which the annihilation process
¢¢ — yyx proceeds primarily through an s-channel media-
tor X, as illustrated in Fig. 6. For concreteness, we take ¢, y,
and X all to be scalar fields in what follows, though we note
that this mechanism can be realized for certain other
combinations of spin assignments as well. We shall let
my denote the mass of X and continue to let m denote the
mass of ¢. In the CM frame, the incoming ¢ particles have
the four-momenta

P1= (E7ﬁCM>7

p2 = (E.—Pcm). (8.1)
where +pcy are the three-momenta of our incoming
particles as seen in the CM frame and where we assume
that each of these incoming particles is on shell. Thus, for
an s-channel propagator in the CM frame, the total four-
momentum flowing through the X particle is

px=pi+p2=(2E.0), (8.2)
from which we deduce that
Px = 4E* = 4(|peu[* +m?). (8.3)
The tree-level propagator is then given by
Alpx) ~
Px)~ 5%
p% —mi
B i
A(|Peml +m?) — mg
: (8.4)

B 4|13(:M|2 - M2 ’

where

w=my —4m?. (8.5)
It should be noted that we are not assuming that my = 2m
(for which we would have ¢ = 0), and thus u appears as a
new free parameter. In general, we see from Eq. (8.5) that
u? can have either sign.

If |4?| < 4|peml?, then A~ 1/|pem|?s which leads to
g = —4. By contrast, if |u?| > 4|pcy|*, we find that A
becomes independent of |pcy| and thus g = 0. In all other
cases, ¢ will vary between —4 and 0. However, we will
never have a nonzero range of |pcy| values for which ¢ is
effectively constant and lies within the desired stasis
range —6 +2v/3 < g < —3/2.

We now investigate what happens when we include the
one-loop radiative correction to the X propagator. In
particular, we shall let ITy(p%) denote the one-loop con-
tribution to the self-energy of the mediator, which corre-
sponds to the one-particle irreducible (1PI) “bubble” within
the X propagator in Fig. 6. Our propagator will then take
the form

i

A(px) ~ :
X px — mx +Ix(p%)

(8.6)
Despite the fact that Tly(p%) is a one-loop radiative
correction, we shall find this term can nevertheless become
dominant if we are near a resonance in the propagator.

The mediator self-energy Iy (p%) depends on the spe-
cific model under study and is in general a complex-valued
function. Since the real part of I1y(p%) can be absorbed
by a redefinition of my, the X propagator may be written
in the form

i

A(px) ~ — : (8.7)
px —mx + imxI'x(p%)
where we have defined
= oy | 2
FX(pX) =—Im HX(pX)' (8.8)
my

In what follows, we shall refer to this quantity as the
“off-shell width” of the mediator. Despite this choice of
terminology, however, we emphasize that T'x(p%) is in
general a nontrivial function of p%, and is not in general
equal to the proper decay width of X.

For any model which gives rise to an s-channel anni-
hilation diagram of the form depicted in Fig. 6, T'(p%)
receives contributions from two processes: one with a pair
of y particles running in the loop and one with a pair of ¢
particles running in the loop. We shall denote these
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contributions ['y_,,(p%) and Ty_,4(p%), respectively.
Thus, in general, we have
fX - f‘X—)}(){ + fx_,(/)(/, (89)
Since our regime of interest for stasis is that in which our
population of ¢ particles is highly nonrelativistic, we are
particularly interested in how Iy (p%) behaves as a function
of |pem| when |pey| is small. Within this regime, we may
obtain a reliable approximation for I'y (p%) by expanding
this function as a Taylor series in |pcy| around |pey| = 0
and retaining only the leading terms. With only minor
assumptions about the model, it can be shown that the
| Pem|-independent term and the term linear in |pcy| are
both necessarily nonzero. Thus, within our regime of
interest, I'y is well approximated by an expression of
the form
Ly ~ ¢+ ¢1|peul (8.10)
where ¢, and c¢; are arbitrary nonzero, model-dependent

constants.
Substituting this expression into Eq. (8.7), we obtain

i

A(px) ~ = : -
X 4Pem|* — 1* + imx(co + ¢1|Peml)

i - g 27 -1
= a+iﬂ|pCM|+4|pCl\£{|
m m

i 1
am?® e + ixy + x>’

(8.11)

where in passing from the second to the third line we
have defined

iCOmX my
2 5 ﬂ: Cl_’

m m

2

a=- (8.12)
m

and where in passing from the third to the fourth line we

have expressed the complex coefficient & in terms of its
modulus « and complex phase €, whence

- \/Z|I3CM| P
X =1/ , y=——.
a m Via

Our original question was to determine the circum-
stances under which the propagator A might scale as
|pem|™!, since this would lead to amplitudes with the
desired scaling with ¢ = —2. Given the above results, we
are now in a position to answer this question. Defining
f(x)=1/]e? + ixy + x?|, we find

(i) f(x) ~ constant for x < 1/y;

() f(x)~1/xfor 1/y <x<y; and

(i) f(x)~1/x% for x> y.

(8.13)

Indeed, these results hold for all y and all §. We thus see
that we can indeed achieve the desired inverse linear scaling
for our propagator across a significant interval of momenta
|Peum| so long as

y>1, I/y<<x<y. (8.14)

However, as discussed previously, we also know that our
incoming ¢ particles must be nonrelativistic (so that they
can be interpreted as matter rather than radiation). This then
implies the additional constraint

x << \/4/a. (8.15)

The cosmological implications of the criterion in
Eq. (8.14) for stasis can be understood as follows. Let
us assume, as we did in Sec. II, that additional scattering
processes in the theory serve to maintain kinetic equilib-
rium among the population of ¢ particles, and that this
population of particles can be characterized by a temper-
ature 7. At values of T for which the phase-space
integrals in (ov) and ((KE, + KE,)ov) are each domi-
nated by the contribution from particles with | pcy;| within
the range specified in Eq. (8.17), these thermal averages
are well approximated by the expressions in Eq. (4.12)
with ¢ = —2. Thus, at such temperatures, the universe
evolves toward stasis. By contrast, at values of 7 for
which these phase-space integrals receive sizable con-
tributions from particles with |pcy| outside this range,
(ov) and ((KE, + KE,)ov) do not exhibit the appropriate
scaling behavior with 7 and the system does not evolve
toward stasis.

In order to obtain an estimate of the range of 7" within
which our system is indeed attracted toward stasis, we can
associate a given value of 7 with a “typical” value of
|Pcm|—i-e., a value near the peak in the Maxwell-
Boltzmann distribution—via the relation

T ~|peml*/m. (8.16)

where in making this identification we have disregarded
O(1) factors. Since the constraint in Eq. (8.14), expressed
in in terms of |pcyl, is

S <<|13CM|<<gm, (8.17)

p 4
it therefore follows that the temperature window wherein

the stasis attractor is the solution to the coupled evolution
equations in Eq. (3.6) is

maxs (8.18)
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where we have defined

(,12

Tmax = ﬁ m,
ﬁ2
Tmin EEm (819)

As long as T remains within the rough window in
Eq. (8.18), the universe continues to evolve toward stasis.
However, as time goes on and the temperature of the
¢-particle gas decreases, eventually 7 drops below T,
and the stasis attractor ceases to be the solution to the
coupled evolution equations in Eq. (3.6). Indeed, when T
falls below this threshold, (¢v) no longer increases as the
kinetic-energy density of the ¢ particles decreases. As a
result, ¢¢ — yy annihilation becomes inefficient and
Q,, increases until the rest-mass-energy density of the
¢-particle gas dominates the total energy density of the
universe. This, then, is the manner in which stasis
naturally ends in models which make use of this mecha-
nism, with the universe subsequently becoming domi-
nated by massive matter.

Of course, any particle-physics model which gives rise
to an annihilation process of the form illustrated in Fig. 6
necessarily also gives rise to a number of scattering
processes which can in principle impact the cosmological
dynamics of our system. Two such processes are ¢p¢p — ¢p¢p
scattering and yy — yy scattering, which, if efficient, can
serve to establish and maintain kinetic equilibrium among
the cosmological populations of ¢ and y particles, respec-
tively. However, it turns out that within the particle-physics
models that are capable of achieving thermal stasis via the
mechanism described above, ¢p¢p — ¢p¢p scattering is typ-
ically efficient whereas yy — yy scattering typically is not.
This is because this mechanism can only give rise to a stasis
epoch with a significant duration when 7T, << T, and
the condition in Eq. (8.18) is therefore satisfied across a
broad range of T. This typically requires that the ¢
particles couple to the mediator X with a far greater
strength than do the y particles [11]. As a result, the
population of ¢ particles remains in kinetic equilibrium in
stasis models of this sort, whereas the population of y
particles produced by ¢¢ — yy annihilation typically
never attains kinetic equilibrium and therefore possesses
a highly nonthermal phase-space distribution.

A third process which necessarily arises in particle-
physics models of this sort is y¢ — y¢ scattering—a
process which facilitates the transfer of kinetic energy
from radiation to matter. Scattering processes of this sort
can potentially have a significant impact on the manner in
which the temperature of a cosmological population of
nonrelativistic particles evolves over time in scenarios with
nonstandard expansion histories. For example, the manner
in which a population of cold dark-matter particles kineti-
cally decouples from the radiation bath during an early

matter-dominated era (EMDE) can be very different from
the manner in which such a population of particles
decouples during a radiation-dominated era. In particular,
due to the continuous injection of radiation from the heavy
decaying particles which dominate the energy density of
the universe during the EMDE, this decoupling process can
include a lengthy quasidecoupling phase wherein the
temperature of the matter particles evolves in a nonstandard
manner [12]. One might therefore worry that a process like
x¢$ — y¢ scattering could alter the manner in which T
evolves with time in our thermal-stasis scenario such that
the system does not in fact gives rise to stasis at all.

The impact that y¢p — y¢ scattering has on the evolution
of T within any particular particle-physics model in which
our mechanism for achieving thermal stasis is realized
depends sensitively on the details of the model. In what
follows, we summarize the qualitative manner in which
this process affects the cosmological dynamics. A more
detailed, quantitative analysis, performed within the con-
text of a minimal such model, is provided in Ref. [11]. It
turns out that y¢p — y¢ scattering modifies the evolution of
T in thermal-stasis scenarios of this sort by giving rise to an
Q,,-dependent correction to the coefficient of the first term
in Eq. (3.8). In particular, in the presence of such scattering,
this equation is modified to

dT (1-Qy)?
—=—|2—~——""¢|HT
dt [ 3Qy ¢

2m QKE
- m <PKE,;/ - Q—MPMy> s (820)

where € is a constant factor which depends on the couplings
involved. This correction term leads in turn to a correction
term in the dynamical equation for E in Eq. (5.2).

Since y¢ — y¢ scattering proceeds through a #-channel
process and therefore does not receive the sizable resonant
enhancement that ¢)¢p — yy annihilation receives, it is often
the case that ¢ is extremely small. Indeed, one finds that the
correction term in Eq. (8.20) is often negligible within the
parameter-space regions of interest in thermal-stasis models
of this sort and can therefore be ignored. Interestingly,
however, it also turns out that the structure of this correction
term is such that stasis emerges in this system and remains a
global dynamical attractor even when ¢ is sufficiently large
that this term cannot be neglected. Indeed, this term simply
leads to a modification of the resulting stasis values
and Z. Thus, while y¢ — y¢ scattering enriches the
cosmological dynamics in such model realizations of
thermal stasis, it does not impact our qualitative results.

IX. CONCLUSIONS AND DIRECTIONS
FOR FUTURE RESEARCH

In all of its realizations, cosmological stasis is ultimately
a consequence of processes which transfer energy density
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from one cosmological component to another in a way
which counteracts the effects of Hubble expansion. A variety
of processes, including particle decay [1,4], Hawking
radiation [2,3], and the overdamped/underdamped transition
of homogeneous scalar-field zero modes [5] give rise to
pumps which can accomplish this feat. However, the pump
rate associated with each of these processes depends only on
the intrinsic properties (e.g., masses or decay widths) of
individual objects—individual particles, black holes, etc.—
within the system, or on the dynamical variables Q; and H,
or on ¢ itself. In other words, the pump rate was independent
of the external environment in which these constituent
objects found themselves.

In this paper, by contrast, we have demonstrated that a
pump with the properties appropriate for stasis can also
arise from a wholly different class of physical process—
processes in which this rate depends on additional dynami-
cal variables which characterize the extrinsic properties of a
cosmological population of particles, black holes, or other
individual objects. In other words, in such cases, the pump
rates depend not only on the intrinsic properties of these
constituent objects, but also on their external cosmological
environment. We have shown, for example, that the
annihilation of a gas consisting of a single species of
nonrelativistic matter particle into radiation—a process
whose rate depends not only on the overall abundance
Q,, of these matter particles, but also on their temperature
T—can, under the certain conditions, give rise to such a
pump. Notably, unlike in all realizations of stasis which
have previously been identified in the literature, stasis
emerges in this context in a manner which does not require
a tower of states. Moreover, we have shown that stasis
nevertheless emerges as a dynamical attractor in systems
wherein these conditions are satisfied.

The principal such condition is that the swept-volume
rate ov for the annihilation process must scale in an
appropriate manner with the momenta of the annihilating
matter particles in the CM frame. While this condition is a
nontrivial one, we have detailed a particle-physics mecha-
nism through which such a momentum dependence can be
achieved.

Several additional comments are in order. First, as we
have already noted, thermal stasis—unlike its nonthermal
cousins—involves thermal effects in an intrinsic way,
i.e., as part of the pump that establishes and sustains the
resulting stasis. That said, we find it remarkable that this
stasis does not simply keep the temperature of our
¢-particle gas constant, as might naively been anticipated.
Such a result, of course, would have rendered a thermal
realization of stasis challenging to realize in an expanding
universe, since additional dynamics would be required in
order to maintain this temperature at a constant value in
such a context. However, what we find is that our thermal
stasis also has a continually dropping temperature. That
said, the rate at which the temperature drops is modified

during thermal stasis, due to the manner in which annihi-
lation affects different parts of the phase-space distribution
of the ¢ particles. In particular, the universe cools slightly
more slowly than one would expect as a result of expansion
alone. Indeed, what we have a discovered is that there is an
entirely new thermodynamic quantity, the coldness E,
which remains fixed during stasis. This observation also
suggests that it is coldness, rather than temperature, which
may be a more fundamental dynamical variable as far as
stasis is concerned.

Second, despite the absence of a tower of states, the
realization of thermal stasis that we have described in
Sec. VIII comes with its own graceful exit. In tower-based
realizations of stasis, the stasis epoch stretches across a
time interval during which the action of the pump
incrementally proceeds toward the lower portions of
the tower [1,4,5]. The exit from the stasis epoch then
arises once we reach the bottom of the tower. As a result,
once stasis ends, the universe subsequently becomes
dominated by that cosmological component which par-
ticipates in the stasis dynamics and which has the highest
equation-of-state parameter. For thermal stasis, by con-
trast, there is no tower. We nevertheless continue to
have an extended stasis epoch, and this in turn ends
through a different mechanism: once the temperature of
our ¢-particle gas eventually drops below the temperature
T min in Eq. (8.19), (ov) no longer increases as the kinetic-
energy density of the ¢ particles decreases. As a result,
¢¢ — yy annihilation becomes inefficient and Q,
increases until the ¢-particle gas (i.e., the component
with the lowest equation-of-state parameter) ultimately
comes to dominate the energy density of the universe.
Thus, in this scenario, stasis ends not with a bang, but
with a WIMP-er. Clearly the graceful exits for thermal
and tower-based realizations of stasis are qualitatively
quite different. We nevertheless see that each of our stasis
epochs comes with its own intrinsic exit.

On a final note, we observe that the manner in which QM
varies with ¢ across the range specified in Eq. (6.3)
suggests that this stasis window can be viewed as inter-
polating between a regime wherein our population of ¢
particles annihilates completely and a regime wherein this
population of particles effectively freezes out. It is straight-
forward to understand why this is the case. In Fig. 7,
we have schematically indicated a range of ¢ values that
not only includes the window —6 4 2v/3 < ¢ < =3/2 in
which stasis emerges (shaded in pink), but also extends
beyond this window in each direction (blue and green). We
can then discuss what happens within each region in turn.

For values of g below this stasis window (i.e., within the
blue-shaded region), the swept-volume rate ov remains
sufficiently high for arbitrarily small |pcy|—and thus
at arbitrarily large distance scales—that the population
of ¢ particles annihilates completely. As a result, there
is no stasis in the blue-shaded region: the pump is
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FIG. 7. The stasis abundance €, plotted as a function of ¢
within the range —6 + 2v/3 < ¢ < —3/2 (pink background) for
which thermal stasis can be achieved. For ¢ < —6 + 24/3 (blue
background), the swept-volume rate ov remains sufficiently high
for arbitrarily small |pcy|—and thus at arbitrarily large distance
scales—that the population of ¢ particles annihilates completely.
By contrast, for ¢ > —3/2 (green region), this swept-volume rate
becomes sufficiently small for small | pcy| that ¢ particles cannot
find each other at late times and therefore effectively freeze out.
Thermal stasis may thus be interpreted as a phenomenon which
interpolates between these two regimes, with a swept-volume rate
that decreases sufficiently rapidly with increasing | pcy| that total
annihilation is avoided, and yet not so rapidly that a relic
population of ¢ particles freezes out at low temperatures.

overwhelmingly effective for such values of ¢, and Q,,
simply falls to zero.

At the opposite extreme, for values of g above the stasis
window (i.e., within the green-shaded region), cv becomes
sufficiently small for small |pcy| that ¢ particles cannot
find each other at late times. A situation then develops
which is in many ways similar to the situation that arises
when a WIMP freezes out. While there are of course salient
differences between the freeze-out mechanics of a WIMP
and the freeze-out mechanics of our ¢-particle gas—for
example, the ¢ particles are never in thermal equilibrium
with the radiation particles into which they annihilate—the
qualitative result is the same: a relic population of ¢
particles is left over once these particles effectively cease
annihilating with each other, and this population of ¢
particles comes to dominate the energy density of the
universe at late times, with Q,, becoming effectively unity.
Thus once again no stasis is possible. Indeed, we note that
this phenomenon is precisely how the graceful exit from
stasis discussed earlier comes to pass: below T i, the value
of g is effectively no longer ¢ = —2 but instead ¢ = 0, and
thus our population of matter particles freezes out.

Finally, between these two extremes lies our stasis
window (shaded in pink). For ¢ within this window, cv
decreases with increasing |pcy| sufficiently rapidly that
total annihilation is avoided, but not so rapidly that a relic
population of ¢ particles freezes out at low temperatures.
Thus a bona fide stasis emerges, with corresponding values
of Q,, that interpolate between the two extremes, as
illustrated in Fig. 7. It is noteworthy—and even somewhat
remarkable—that this transition between the two extremes
outlined above does not occur abruptly at some critical
value of ¢, but rather over a nonzero range of g values, with
stasis emerging for all values of ¢ within this window and
with the corresponding stasis abundance of the ¢-particle
gas varying smoothly over the entire allowed range
0<Q, <1 as we traverse this window. Indeed, we see
that the balancing inherent in stasis can be achieved for any
q value within the stasis window, with the resulting stasis
abundance Q,, varying with the specific value of ¢.

Given our results, many avenues are now open for future
research. For example, in Sec. VIII we have developed a
particle-physics mechanism for achieving a swept-volume
rate of the form in Eq. (4.5) with ¢ = —2. However, it
nevertheless remains to construct a concrete particle-
physics model in which this mechanism is realized in a
self-consistent way. Of course, any concrete model along
these lines must not only yield the desired momentum
dependence for ov across a significant range of | pcy| values,
but must also satisfy a number of additional self-consistency
conditions and observational constraints. First steps toward
the construction of such a model can be found in Ref. [11]. It
will also be interesting to determine the specific observa-
tional signatures to which a thermal stasis epoch might lead.
Work in all of these directions is underway.
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