2024 IEEE 32nd International Conference on Network Protocols (ICNP) | 979-8-3503-5171-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICNP61940.2024.10858583

Towards Practical Overlay Networks for
Decentralized Federated Learning

Yifan Hua!, Jinlong Pang', Xiaoxue Zhang', Yi Liu', Xiaofeng Shi!, Bao Wangz, Yang Liu', Chen Qian'
"University of California Santa Cruz, >University of Utah
{yhua294, pangl4, xzhan330, yliu634, xshi24, yangliu, cqian12} @ucsc.edu bwang@math.utah.edu

Abstract—Decentralized federated learning (DFL) uses peer-to-
peer communication to avoid the single point of failure problem
in federated learning and has been considered an attractive
solution for machine learning tasks on distributed devices. We
provide the first solution to a fundamental network problem
of DFL: what overlay network should DFL use to achieve fast
training of highly accurate models, low communication, and
decentralized construction and maintenance? Overlay topologies
of DFL have been investigated, but no existing DFL topology
includes decentralized protocols for network construction and
topology maintenance. Without these protocols, DFL cannot
run in practice. This work presents an overlay network, called
FedLay, which provides fast training and low communication cost
for practical DFL. FedLay is the first solution for constructing
near-random regular topologies in a decentralized manner and
maintaining the topologies under node joins and failures. Exper-
iments based on prototype implementation and simulations show
that FedLay achieves the fastest model convergence and highest
accuracy on real datasets compared to existing DFL solutions
while incurring small communication costs and being resilient to
node joins and failures.

I. INTRODUCTION

Training machine learning (ML) models using data collected
by distributed devices, such as mobile and IoT devices, is
crucial for modern ML. Federated learning (FL) [1], [2], [3],
[4], [5], [6], [7] has become a popular ML paradigm that
allows a large number of clients (end systems, edge nodes,
etc.) to train ML models collaboratively without directly
sharing training data. FL uses a central server or cloud to
orchestrate clients for training ML models and iterates the
following procedure: The server creates a global model by
aggregating the local ML models collected from the clients and
then sends it to clients for edge applications; the ML models
are updated at the clients. Compared to collecting raw data
from distributed devices and performing centralized ML, FL
has several main advantages, including saving communication
costs on limited-bandwidth devices, preserving data privacy,
and being compatible with country or organization regulations
that prohibit direct data sharing.

However, the drawbacks of FL are also prominent and
have been studied and widely mentioned in the literature [3],
[8], [9]. For example, the central orchestration server that
frequently exchanges models with clients clearly presents a
bottleneck and becomes a typical single point of failure [3],
[10]. In addition, the server is also a single point of attack:
adversaries can make all clients use tampered ML models by
attacking the server. There is even a risk that the server itself

979-8-3503-5171-2/24/$31.00 ©2024 IEEE

is malicious, which might distribute incorrect global models
or collect sensitive information from the clients.

Decentralized federated learning (DFL) emerged recently
[8], [17], [10] to resolve the above problems of FL, by remov-
ing the involvement of the central server. DFL clients form a
peer-to-peer (P2P) network and keep exchanging their models
using P2P communication. In most cases, the data on different
clients are not identically and independently distributed (non-
iid) [8], [17], [10], hence the trained local ML models are
substantially different from each other. After sufficient model
exchanges, the local models on the clients may converge to
a model that correctly reflects the features of data from all
clients.

This work focuses on a fundamental network problem of
DFL: what overlay network is ideal for DFL in practice? An
overlay network of DFL is a logical network on top of the
physical networks. It specifies which pairs of clients should
exchange their local models: two clients exchange models
if they are overlay neighbors. An ideal overlay network for
DFL needs to satisfy a few requirements [10] including 1) a
decentralized construction protocol that can build the overlay
topology; 2) fast convergence of local models to high accuracy;
3) small node degree that can maintain low bandwidth cost
on clients for exchanging models with a limited number of
neighbors; 4) resilient to client dynamics such as client joins,
leaves, and failures — they are also called as churn.

Table I shows a list of overlay network topologies that have
been studied for DFL. We find that most of these existing
studies do not pay attention to whether the proposed topologies
can be constructed by decentralized protocols and resilient to
churn. These two requirements are common networking/dis-
tributed system problems and might not be the focus for ML
researchers.

DFL cannot work as a practical system without a
decentralized construction protocol for its overlay network.
For example, recent work suggests that Ramanujan graphs
provide fast convergence and accurate models for DFL [18],
[16]. However, the decentralized construction of Ramanujan
graphs is unknown. Centralized construction/maintenance con-
tradicts the main purpose of DFL: avoid the single point of
failure/attack.

We propose a fully decentralized overlay network for DFL,
called FedLay, which achieves all four requirements discussed
above, namely decentralized construction, fast convergence to
accurate models, small communication cost, and resilience to

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

Overlay network Decentralized construction Node degree

Model convergence

Resilience to churn Other comments

Ring [8] Not discussed 2 Slow Not discussed
2D grid [8] Not discussed 4 Slow Not discussed
Complete graph [8] Not discussed N-1 Fast Not discussed
Dynamic chain [11] Not discussed 2 Faster than ring Not discussed
D-Cliques [12] Unknown |C-1 Fast Not discussed Assume global knowledge
Clustering [13] Not discussed |C|-1 Fast Not discussed Bottlenecks exist
Hypercube [14] Not discussed O(log N) Fast Not discussed
Torus [14] Not discussed d Fast Not discussed
Ramanujan [15], [16] Not discussed d Fast Not discussed
Random d-graph [15], [16] Unknown d Fast Not discussed Assume global knowledge
FedLay (this work) Yes d Fast Yes Address device/data heterogeneity

TABLE I: List of overlay network topologies for DFL. NN is the number of clients. d is a small constant for node degree,
usually around 10. |C| is the size of each cluster/clique, usually bigger than values of d. Other than FedLay, only D-Cliques
and [16] discuss its construction algorithm but still assumes global knowledge.

churn. FedLay does not need a centralized server at any stage
and all clients run the same suite of distributed protocols. The
FedLay protocol suite includes two sets of protocols: 1) a set
of Neighbor Discovery and Maintenance Protocols (NDMP)
to build the overlay network and recover it from churn; and
2) a Model Exchange Protocol (MEP) to achieve fast model
convergence for heterogeneous clients and asynchronous com-
munication. The FedLay topology is motivated by the near-
random regular topologies that have been proposed for data
center networks [19], [20]. However, [19] [20] are centralized
protocols for data centers and cannot be applied to DFL.
To our knowledge, FedLay is the first solution for constructing
near-random regular topologies in a decentralized manner
and maintaining the topologies under node joins and failures.
FedLay also considers other practical issues, including non-
iid data and asynchronous communication with heterogeneous
clients.

The contributions of this work are summarized as follows.
We identify three topology metrics related to DFL conver-
gence and evaluate various overlay topologies of DFL. We
find that FedLay outperforms all other topologies. FedLay,
as a decentralized network, has almost identical results on
all three metrics to the best result among the 100 randomly
generated regular graphs (in a centralized way).

We design and implement the FedLay protocol suite. To our
knowledge, FedLay is the first DFL overlay network that
provides decentralized protocols for construction, churn
recovery, and model aggregation.

We evaluate FedLay using both prototype implementation
and simulations on real ML datasets. We find that FedLay
achieves the highest average model accuracy and fastest
convergence compared to other DFL methods. It also has
small communication cost and strong resilience to churn.
The rest of this paper is organized as follows. Section II
presents the metrics for selecting DFL overlay topologies
and the details of the topology of FedLay. The design of
FedLay protocol suite, including the topology construction
and maintenance protocols and model aggregation protocol,
is presented in Section III. Section IV shows the evaluation
results of FedLay as well as existing DFL overlay networks
on real ML datasets. We present related work in Section V

2

and conclude this work in Section VI.
II. OVERLAY TOPOLOGY OF FEDLAY

This section presents the topology of FedLay and the
intuition behind using this topology. We first explore what
topology metrics can be used to evaluate the convergence
speed under small node degrees. Then we design the FedLay
topology and use numerical results to show its advantages.
The decentralized construction and maintenance under churn
will be presented in the next section.

A. Three metrics for DFL topologies

A DFL topology can be modeled as an undirected graph
G = (V, E), where each node v € V represents a client in the
DFL system and each link e = (u,v) € E indicates that two
clients v and v will exchange local ML models — v and v are
thus called neighbors. We assume clients have equal roles in
the overlay and similar numbers of neighbors.

1) Expander property and convergence factor.: An impor-
tant notion in DFL, or general decentralized optimization
algorithms, is the mixing matrix M of the graph G. The
i-th row of M denotes the weights used for aggregating
local models of the neighboring nodes to update the model
of the i-th client. Hence the adjacency matrix of an overlay
network and its Metropolis-Hastings matrix are both mixing
matrices [21]. The symmetric property of M indicates that
its eigenvalues are real and can be sorted in non-increasing
order. Let A\;(M) denote the i-th largest eigenvalue of M,
then we have \y(M) =1 > A(M) > --- > Ay(M) > —1
based on the spectral property of the mixing matrix [21]. The
constant A = A(M) := max{|A2(M)|,|A\n(M)|} has been
used to characterize optimization error (a measure of training
loss) and generalization gap (a measure of test accuracy) of
DFL. In particular, it is shown that the optimization error
and generalization gap — for a typical DFL framework, De-
centralized Federated Averaging (DFedAvg) — are bounded,

respectively, by O (ﬁ) and O (2)\2+4)\2 In %+2)\+ﬁ)
— in terms of A [17], [16]. Notice that both ﬁ
207 4+ 4X%Int + 2X + ﬁ are increasing functions of
A€ (0,1).

Per the above discussion, to achieve good convergence
and generalization, a topology needs to have a \ sufficiently

and

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

Node 4 computes random coordinates <0, 0.25>

A is at coor-

A is at coordinate 3 .
i dinate 0.25 in

= 0in Space 1

(a) Virtual space 1 (b) Virtual space 2

Every node computes a random coordinate in each virtual space and finds
the two adjacent nodes in each space as its neighbors in the FedLay overlay.

Fig. 1: An example of FedLay topology

(c) FedLay topology

smaller than 1 and hence achieve a small value of ﬁ and
202 +4X%1In + + 20+ ¢

Ini-
metric, called the convergznce factor of G: cq = ﬁ

Note that when ﬁ is minimized, 2A% +4A?In § +2X+
1n2§ is also minimized. Hence for the sake of simplicity, we
do not need another factor.

2) Network diameter.: The diameter of a network is the
longest length of all shortest paths calculated in the network.
It reflects the network distance between the two most distant
nodes. The intuition of considering this metric is that the
network diameter can represent the maximum latency that the
local model trained on the data of a client can propagate to
all clients in the network.

3) Average length of shortest paths.: The third metric is
the average length of all shortest paths in the network. The
intuition of considering this metric is that the average length
can represent the average latency that a local model can
propagate to a random client.

Thus we define the first topology

B. FedLay topology

Recent theoretical studies show that Ramanujan graphs can
provide small values of the spectral expander property A and
hence achieve ‘optimal’ convergence with a constant node
degree d [16]. However, a large Ramanujan graph cannot be
generated even by centralized construction. Hence, random
regular graphs (RRGs) can be used instead, which are approx-
imately Ramanujan for a large network size n [15]. Note that
RRGs cannot be generated with any deterministic algorithm
either. Hence, near-RRGs are usually used in practice, which
are considered close enough to RRGs [19], [20]. near-RRGs
can achieve ideal values on both the convergence factor and
shortest path lengths.

A practical problem is that all existing near-RRGs are
constructed by centralized methods [19], [20], [22], [16].
FedLay is the first attempt to achieve a near-RGG using
decentralized construction. In FedLay, each node computes a
set of virtual coordinates C, which is an L-dimensional vector
< x1,%2,...,x1, > where each element x; is a random real
number in range [0,1). In practice, z; can be computed as
H(IP,|i) where H is a publicly known hash function and
IP, is x’s IP address.

We define L virtual ring spaces. In the ¢-th ring space, a
node is virtually placed on a ring based on the value of its
i-th coordinate x;. The coordinates of each space are circular,
with 0 and 1 being superposed at the top-most point of the

3

ring and 0.5 being the bottom-most point. If the coordinates
of two different nodes are identical in one space, their orders
on the ring are determined by the values of their IP addresses.
For ease of presentation, we assume all coordinates on a ring
are different. As shown in the example in Fig. 1, there are 8
nodes and each of them computes a set of two-dimensional
random coordinates < x1,xo >. There are two virtual ring
space as shown in Figs. 1 (a) and (b) and every node is on
a position of the ¢-th ring based on its random coordinate x;.
Note, all spaces are virtual and they have no relationship to
the geographic locations of the nodes.

In each virtual space, every node u has two adjacent nodes
on the ring, based on the order of their coordinate values. u
will find the adjacent nodes from all spaces as its overlay
neighbors (by a decentralized protocol described later) for
model exchange. In the example of Fig. 1(c), every node finds
its adjacent nodes in two spaces and forms the FedLay overlay.
So most nodes have four neighbors in the overlay but there
are a few ones, like node B, has only three neighbors because
D is adjacent to B on both rings. Hence, for L spaces, every
node has at most 2L neighbors. L can then be considered as a
parameter for communication and convergence trade-off: with
a bigger L, nodes have more neighbors for model exchanges
but increased communication cost.

The detailed decentralized construction and maintenance
will be discussed in the next section. We now show that the
FedLay topology is close to the optimal choice with a given
node degree d, measured by the three metrics discussed in
Section II-A. We evaluate the FedLay topology by comparing
it with the following existing topologies.

1) Best of 100 randomly generated d-regular graphs
(“Best”). We randomly generate 100 d-regular graphs and
measure them for the three metrics. We obtain the optimal
value among the 100 graphs for each metric. It is then
considered the optimal value of practical topologies.
Chord [23]. Chord is a well-known peer-to-peer overlay
network serving the function of a distributed hash table
(DHT). It has a O(logn) degree and can be constructed
and maintained by decentralized protocols.

Viceroy [24]. Viceroy is a peer-to-peer overlay network
with a constant degree, inspired by the classic Butterfly
network used for super-computing. Its main objective is
to minimize congestion by overlay routing. It can be
constructed and maintained by decentralized protocols.
Distributed Delaunay Triangulation (DT) [25], [26]. DT
is an overlay network with a constant degree that supports
greedy routing. It can be constructed and maintained by
decentralized protocols.

Waxman network [27]. Waxman is a network that sim-
ulates connections with physical proximity. Nodes with a
close geographic distance are likely to connect. There is
no known decentralized construction of Waxman.

Social network [28]. We use a social network topology of
Facebook users that was collected by [28]. This is a typical
example of overlay networks that rely on information from
other application channels.

2)

3)

4)

5)

6)

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

18
5 @ 16 0 o O Viceroy fg o O Viceroy
g O Chord ¢ Waxman ~8 % ¢ Waxman
£ 4 DT L 14 DT z DT
] 20 { Waxman £12 Social £ Social
=] Social £10 O Chord o6 O Chord
s -4 i w #r FedLay
o0 O Viceroy =g % Fedlay n ¥
g 10 ¥ FedLay A & Best o Best
g * Best 6 &= g - -
2} 4 % % b4 O i #* o

Q 7 -) é #* *

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Degree(d)

(a) Convergence factor

Degree(d)
(b) Network diameter

Degree(d)
(c) Average shortest path length

Fig. 2: Comparisons of network topologies on the three metrics discussed in Sec. II-A.

xchange models
with neighbors

FedLay client FedLay network
Fig. 3: FedLay protocol suite includes two sets of protocols: 1) Neighbor
Discovery and Maintenance Protocols; 2) Model Exchange Protocol.

Fig. 2 shows the empirical results by comparing all the
above-mentioned topologies on the three metrics: the conver-
gence factor, diameter, and average length of shortest paths.
For all metrics, smaller values are more desired. Each network
includes 300 nodes for fair comparisons. We vary the node
degree from 4 to 14 for both “Best” and FedLay. Other
networks do not support flexible node degrees, so the result
of each topology is shown as a single dot in each figure.

We summarize our findings from these results as follows.
“Best” always provides optimal results for every metric. The
results of FedLay are extremely close to “Best”: most points of
FedLay are superposed with those of “Best” with only a few
exceptions. All of topologies are much less optimal compared
to FedLay. The convergence factor of Chord is very high but
the diameter and average shortest path length are low, due to
its high node degree. FedLay achieves the best results on all
three metrics among existing practical overlay topologies.
Definition 1 (A correct FedLay overlay). We define that a
FedLay network is correct, if every node u has a neighbor set
N, such that N, includes the adjacent nodes of u in all L
virtual ring spaces and does not include other nodes. Each
node also knows the virtual coordinates of all its neighbors.

ITI. DESIGN OF FEDLAY PROTOCOLS

A. Overview

As shown in Fig. 3, the FedLay protocol suite is com-
pletely decentralized, running on each client and consisting
of two sets: 1) Neighbor Discovery and Maintenance Pro-
tocols (NDMP); and 2) Model Exchange Protocol (MEP).
The objective of NDMP running on node u is to allow u
to find its correct neighbors during the join of u and maintain
correct neighbors under network dynamics. Hence, NDMP can
be considered as control protocols to construct the correct
FedLay network. The objective of MEP is to decide when

4

to exchange the local models with the neighbors and how to
process the received models. Hence, MEP can be considered
as an application protocol to optimize the model convergence
of DFL. Both NDMP and MEP use TCP with reliable delivery.

B. Neighbor Discovery and Maintenance Protocols (NDMP)

NDMP includes join, leave, and maintenance protocols.
The join protocol is run by each new node joining the FedLay
network. It ensures all nodes will find the correct neighbors
after the node joins the network. The leave protocol is
run by each node that is preparing to leave the network. It
ensures all remaining nodes will keep the correct neighbors
after the leave. The maintenance protocol is run by every
node periodically to detect potential failed neighbors or wrong
neighbors and fix these errors.

1) NDMP join protocol: The join protocol is designed to
achieve the following correctness property: given an existing
FedLay overlay network, a new joining node runs the join
protocol. When the join protocol finishes, the joining node is
guaranteed to find its correct neighbors, i.e., the adjacent nodes
in all virtual spaces. Note that such recursive property is a key
module to ensure the correctness of many P2P overlays such
as Chord [23] and distributed DT graph [25], [26].

FedLay builds upon the concept of random virtual coordi-
nates and circular distance introduced by SpaceShuffle [20], a
centralized solution. This work designs a fully decentralized
topology construction for FedLay. FedLay allows any client to
join the network through any existing node without an admin-
istrator, enhancing scalability and user flexibility. Additionally,
we optimize the NDMP leave protocol to minimize overhead
by ensuring that maintenance operations are only triggered
when necessary, thus reducing resource consumption during
network changes.

When a new node u joins the existing correct FedLay
network, we assume u knows one existing node v in the
overlay, which can be an arbitrary node — this is the minimum
assumption for any overlay network. If u knows no existing
node, it has no way to join any overlay. w first computes a
random coordinate as its position in the first virtual space, say
x{. u will let v sends a message Neighbor_discovery to the
current Fedlay network using greedy routing to the destination
location z%'. Neighbor_discovery also includes u’s IP address.

We first define the concept of circular distance, which is a
metric used in greedy routing of FedLay.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

@ G tells u that it
should have two
,,,,,,,, neighbors G and D.

® Greedy routing arrives at
G that has smallest circular
... distance to 0.15

.«— 0.15 on the

@ u lets ;. ng
any node
runs greedy:
routing to 4
0.15

® u computes
arandom
coordinate
0.15

C 3

(b) After u’s join. u will
then join other spaces
Fig. 4: An example of the FedLay join protocol.

(a) Before u’s join

Definition 2 (Circular distance). The circular distance of two
coordinates x and vy in the same ring space, 0 < x,y < 1, is:
CD(z,y) = minflz —y|,1 — |z —y[}.

For two coordinates « and y on a ring, the circular distance
is the length of the smaller arc between = and y, normalized
by the perimeter of the ring that is 1. We say x is closer to y
than w on a ring space, if CD(z,y) < CD(w,y). If and w
have the same circular distance to y, we always break the tie
to one of x and w with a smaller value of their IP addresses
(considering each IP address is a 32-bit value). Hence, there
is only one node that is closest to a given coordinate x.

Upon receiving Neighbor_discovery, the greedy routing
protocol to the destination location x}' in Space i is executed
by a node v as following:

1) Node v finds a neighbor w, such as w’s coordinate in Space
t, =3, has the smallest circular distance to z} among all
neighbors of v.

If CD(z},z}) > CD(z},z}), v forwards the Neigh-
bor_discovery message to w.

If CD(z¥,z¥) < CD(z¥, z}), Neighbor_discovery
stops at v. From v’s two adjacent nodes, v finds the adjacent
node p such that z¥ is on v, p, the smaller arc between v
and p. Then v sends a message to u to tell w that v and p
are u’s adjacent nodes on this virtual ring and let v add v
and p to u’s neighbor set.

2)

3)

The greedy routing presented above will make each node
forward Neighbor_discovery to its neighbor that has the short-
est circular distance to the destination location zj'. When a
node v cannot find a neighbor that is closer to z}' than v itself,
v must be the node that has the shortest circular distance to
x;* among all nodes in FedLay (will be formally proved later).
Hence, v and one of its adjacent nodes p will be u’s neighbors.

We show an example of FedLay join in Fig. 4. u joins
FedLay and it knows an existing node H in the network.
u computes a random coordinate 0.15 and asks H to run
greedy routing of Neighbor_discovery to 0.15. H will forward
Neighbor_discovery to B, which is closest to 0.15 in the space
among all H’s neighbors. Eventually, the message arrives at G,
the node that is closest to 0.15 in the space and G tells u to add
G and D as neighbors. Note greedy routing has much smaller
hop-count than traveling nodes one after another through the
ring because there are many shortcuts like the link H B.

We have the following property.

Lemma 1. In a ring space of a correct FedLay network and

5

O G tells its two neighbors @ 4 and D add each other as

4 and D that they will be neighbors. So do F and C, D’s

adjacent nodes in this space neighbors in another space.
sand do so for every space.

C [3

(b) After G’s leave

(a) Before G’s leave
Fig. 5: An example of the FedLay leave protocol.

a given coordinate x, if a node v is not the node that has
the smallest circular distance to x in the space, then v must
have an adjacent node w on the ring such that CD(x,z") >
CD(x,x"), where xV is v’s coordinate.

The proof can be found in [29].

Note that every adjacent node of v is its neighbor in a
FedLay network. This lemma tells that if v is not the node
that is closest to the destination coordinate x}’, then the
greedy routing algorithm must execute Step 2 and forwards
the message to a neighbor. So we have,

Theorem 1. In a FedLay network, when Neighbor_discovery
to the destination coordinate x stops at a node v, v must be
the node that has the smallest circular distance to z.

The Neighbor_discovery message will stop at the node v
closest to z;' and v must be an adjacent node to the joining
node u, because no other node is closer to u’s coordinate x.
v also knows the other adjacent node w of u, because w is
a current adjacent node of v. v will send a message to u by
TCP including the information of v and w. u will then add v
and w to its neighbor set.

The joining node w can find all its neighbors by running
the above join protocol in all spaces. Therefore, if w joins
a correct FedLay network, the new FedLay network after
this join is also correct.

In some extreme cases, there could be multiple nodes
joining the network simultaneously. This situation will be
handled by both the join and maintenance protocols.

2) NDMP leave protocol: The leave protocol of NDMP is
quite straightforward. When a user wants to leave and closes
the client program of FedLay, for every virtual space, the
leaving node sends messages to its two adjacent nodes and
tells them to add each other to their neighbor sets. As shown
in Fig. 5, node G wants to leave the network and tells its
two adjacent nodes A and D about its leaving. Then A and
D will consider each other as adjacent nodes and neighbors.
In another space, G’s two adjacent nodes F' and C will also
add each other to their neighbor sets. Hence, the new FedLay
network after a node leave is also correct.

3) NDMP maintenance protocol: An overlay network may
experience node failures due to various reasons such as an
Internet service outage and end system failures. A failed node
disappears without notice. In order to detect and fix these
situations, each node in FedLay also runs the maintenance
protocol.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

When detecting
G’s failure, 4
sends a message
using greedy
routing in the e
counterclock- .
wise direction.

A and D will find each other
by greedy routing of the
discovery message.

When detecting
G’s failure, D also
sends a discovery
“... . Message in the
(e} clockwise
~direction.

5

(a) A and D run the mainten- (b) A and D become neigh-
ance protocol independently. bors after G’s failure.

Fig. 6: An example of the maintenance protocol.

The maintenance protocol requires every node to send
each of its neighbors a heartbeat message periodically. Sup-
pose the time period between two heartbeat messages is 7.
If a node p has not received any heartbeat message from a
neighbor u for 37" time, it considers that u has failed. p then
sends a Neighbor_repair message by greedy routing in the
opposite direction of u on the virtual space ¢ where u and
p are adjacent nodes. In the example of Fig. 6(a), node A
detects the failure of G. Since G is an adjacent node of A on
A’s clockwise side, A sends a Neighbor_repair message by
greedy routing in the counterclockwise direction (the opposite
direction of GG). By “counterclockwise direction”, it requires
that all hops of such greedy routing, A — E — B — D in this
example, should follow the counterclockwise order.

We give a formal description of the counterclockwise di-
rection: Upon receiving Neighbor_repair to i in Space i, a
node v runs the following algorithm:

1) Node v considers a subset of its neighbors, such that for
every neighbor w in the subset, w’s coordinate in Space ¢,
x’, satisfies z}’ < a7 or x}’ > x;'. From the above subset,
node v finds a neighbor w’, such that w’’s coordinate in
Space 4, ", has the smallest arc length L(z', z*) among
all neighbors in the subset.

If L(zV,z%) > L(x¥', z%), v forwards Neighbor_repair to
w.

If L(zV,2¥) < L(z¥',z%), Neighbor_repair stops at v. v
then tells p that v is p’s adjacent nodes on this virtual ring
and let p add v to p’s neighbor set.

2)

3)

When Neighbor_repair stops, it arrives at another adjacent
node of GG before GG’s failure (stated in a later theorem). Then
G’s previous two adjacent nodes can be connected.

In Fig. 6(a), node D also detects G’s failure, independent
of A’s detection. Then D sends a Neighbor_repair message to
the clockwise direction and the message will travel on a path
D — F — A. The algorithm to forward Neighbor_repair in the
clockwise direction can be specified in a similar way.
Theorem 2. Consider a correct FedLay network and a node u
fails. When a node p detects the failure of its adjacent node u
in Space i, it sends Neighbor_repair to the destination coordi-
nate ' in the opposite direction of u. When Neighbor_repair
stops at a node q, q is another adjacent node of u in Space 1
before u’s failure.

The proof can be found in [29].

Based on the theorem, in every virtual space, the two

6

adjacent nodes of the failed u can find and connect each other.
Hence, if a node fails in a correct FedLay network, after
the node failure FedLay is still correct.

Neighbor repair for concurrent joins and failures. Note
the above property cannot be proved for multiple failures
that happen at the same time, called concurrent failures. For
concurrent joins and failures, we allow each node u to peri-
odically send two Neighbor_repair messages with destination
x}' to both counterclockwise and clockwise directions in every
virtual space ¢, even without detecting any neighbor failure.
For each node v in u’s neighbor set, if they are indeed adjacent
in a virtual space, v will receive a Neighbor_repair message
that stops at v. The Neighbor_repair stops at a node w that is
not in u’s neighbor set, w and u will add each other to their
neighbor sets. We conduct experiments of extreme concurrent
joins and failures and the above method always allows the
network to recover to a correct FedLay.

C. Model Exchange Protocol (MEP)

One key challenge of DFL is that there is no central server
to evaluate the quality of models from different clients. In P2P
model exchanges, a client with low-quality local models can
‘infect’ its neighbors with high-quality models and these errors
may be further propagated in the overlay. MEP is designed to
limit the impact of low-quality models and amplify the impact
of high-quality models in a decentralized way. We consider
two practical issues in DFL systems. 1) Data heterogeneity
[8], [10], [16]. It is well known that the local data of different
clients are usually non-iid due to geographic and environmen-
tal diversity. Hence, their models have different accuracy. 2)
Client heterogeneity [30], [31], [32]. Clients of DFL could
have different bandwidth and computing capacities. They may
have different model exchange frequencies.

1) Asynchronous model exchange: Previous work assumes
synchronous, round-based communication, in which all clients
use the same time period to exchange models with neighbors
[8], [11], [12], [14], [15], [16]. However, due to client hetero-
geneity, some low-resource clients may become ‘“‘stragglers”
that will fail to perform model exchanges in the given time
period, while powerful or newly joined clients prefer shorter
time period (or higher frequency) of model exchanges.

MEP uses asynchronous communication and allows each
client v to use a different communication time period 7.
T, can be set in two ways: 1) Coarse-grained settings.
Each client may configure a period based on their device
and communication types, for example, Server-LAN, PC-LAN,
Laptop-WLAN, Phone-LTE, and IoT-WLAN. These values are
pre-specified in the client program. 2) Fine-grained settings.
Based on the monitoring of available bandwidth and comput-
ing resources, client u estimates the minimum time duration
T, min to produce an updated ML model and transmit it to all
neighbors. Then its communication period T3, = 1T}, min for
constant 1 > 1.

For two neighbors with periods T, and 7,, their model
exchange period is set to max(Ty,T,). Hence, a client may
have different exchange periods to different neighbors.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

» 1.0 » 1.0 v
g g § 30
508 \’ 3 £o08 =
(5 . <
& ; > & H o
5 0.6 | =% d=12 5 0.6 %
o d=10 o 220
230.4 5 2304 @
] d=8 2]
2.0.2 . 4= 2.0.2 £
o - o o
F o0 F oo w10
0 2000 4000 6000 8000 0 2000 4000 6000 200 300 400 500
Time(ms) Time(ms) Number of clients

(a) Correctness for concurrent joins

(b) Correctness for concurrent fails

(c) Message cost

Fig. 7: Topology correctness under churn & message cost

2) Set confidence parameters: One key innovation in MEP
is to introduce confidence parameters. Each node has a set of
confidence parameters that present its self-evaluation of the
local model accuracy.

We define the data divergence fonﬁdence cq on a client u:
U

Cqg =

exp(DK L(Djoc||Dsta))

where DK L() is the Kullback-Leibler divergence [33] to
evaluate the statistical distance between two probability dis-
tributions P and @, Dj,. denotes the local data distribution,
and D,;4 denotes the estimated iid distribution of the dataset.
The uniform distribution is widely used [34], [35] to estimate
the iid data because the majority of publicly-available datasets
for classification follow uniform distributions, such as MNIST
[36] and CIFAR-10 [37]. The Kullback-Leibler divergence can
effectively represent the richness of a local dataset. ¢4 € (0, 1]
and a higher value represents a higher quality of local data
and local models.

In addition, we define the communication confidence c. on
a client u: ¢} = T% The intuition of using c. is that when a
client has more frequent model exchanges with its neighbors,
its models are more likely to have higher qualities.

Hence, the overall confidence of client u is
U U

u Cd Cc
ad max(cq) e max(c.)

c

where max(cq) and max(c.) are the maximum values of ¢4
and c. respectively, from all u’s neighbors. oy and «. are
two constants to balance the weights of the two confidence
parameters. The specific values of ay and «, can just be 0.5
and 0.5. We try a variety of combinations of o,y and ., and in
all cases, FedLay achieves fast model convergence on different
nodes.

The models from u’s neighbors are aggregated as follows:
2 jeN Ufuy ¢
> jeNUfur @

u __

w

The above aggregation will be computed once every local
time period T, and the models from each neighbor are always
the most updated ones from the neighbor. In this way, clients
with low confidence in their model accuracy will have less
impact on other clients. In this work, we do not consider
the situation where a client might intentionally set a large
confidence value to mislead other clients.

7

IV. PERFORMANCE EVALUATION

A. Evaluation methodology

1) Three types of evaluation: We conduct three types of
evaluation of FedLay for different scales of DFL networks.

1) Real experiments. We conduct experiments with real
packet exchanges and data training. We deploy 16 instances
to public clouds (we used both Oracle OCI and Amazon EC2),
each with a 2GHz CPU and 2GB RAM. Each instance is
connected to the Internet and runs a FedLay client. Each client
sends and receives NDMP and MEP messages using TCP.
Clients train ML models on their local datasets with Pytorch
[38] and exchange the models with active neighbors. There is
no central server for any purpose, and the system is completely
decentralized. The purpose of this type of experiment is to
present a prototype and demonstrate that FedLay can run with
real ML data training in practice.

2) Medium-scale emulation with real data training.
In this type of experiment, we use real data training and
simulated packet exchanges as discrete events to evaluate
networks with up to 100 clients. The simulation and real
data training and testing run on a machine with an NVIDIA
GeForce RTX3080 graphic card for training acceleration. The
purpose of this type of experiment is to evaluate the overlay
construction/maintenance, model accuracy, convergence speed,
and message cost of FedLay and other DFL methods.

3) Large-scale simulation with trained models. For more
than 100 clients, conducting all data training on a few ma-
chines takes very long time. For networks with 200 to 1000
nodes, we re-use the models trained from the above two types
of experiments and assign them to the simulated clients. Packet
exchanges are simulated as discrete events.

2) ML datasets and models: We evaluate the performance
of FedLay for three ML tasks, including 1) Multilayer Per-
ceptron (MLP) for digit classification on the MNIST dataset
[39]. 2) Convolutional Neural Networks (CNN) for image
classification on the CIFAR-10 dataset [37]. 3) Long Short-
Term Memory (LSTM) for role forecasting on the Shakespeare
dataset [40] built from The Complete Works of William Shake-
speare. All three are standard datasets for FL benchmarks [40].

Learning with non-iid data. We generate non-iid MNIST
and CIFAR-10 datasets by selecting limited labels for the
local training sets using the sharding method. Each shard
contains only one label, and each local dataset includes a
limited number of shards, resulting in a non-iid distribution
and heterogeneity among clients’ local datasets.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

0.9
08 05 0.4
2’07 EOA g 3
206 FedLay(8) 3 03 FedLay(8) 2 0.3 iL*' O FedLay(8)
=] FedLay(6) QY. FedLay(6) [} FedLay(6)
<05 [] FedLay(4) < 3 [] FedLay(4) < 02| & f’ [] FedLay(4)
04| £ { Gaia 0.2 £ { Gaia / O Gaia
N ’\J DFL-DDS DFL-DDS 0.1 ! DFL-DDS
0 50 100 150 0 500 1000 0 500 1000 1500
Time(mins) Time(mins) Time(mins)
(a) MNIST. Accuracy vs time (mins) (b) CIFAR-10. Accuracy vs time (mins) (c) Shakespeare. Accuracy vs time (mins)
§1.00 §1.00 §1.00
g Degree g Degree g Degree
£ 075 — ¢-8 £ 075 — ¢-8 £ 0.75 — d=8
i) d=6 2 a=6 i) d=6
2050 2050 2050
Z d=4 Z d=4 Z d=4
Il Kl Kl
= 0.25 = 0.25 = 0.25
- - -
O 0.00, - © 0.00 © 0.00
0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6
Accuracy Accuracy Accuracy

(d) MNIST. CDF of Accuracy

(e) CIFAR-10. CDF of Accuracy

(f) Shakespeare. CDF of Accuracy

Fig. 8: Model accuracy from 16-client real experiments in Amazon EC2.

Client heterogeneity. We also assumed that clients have
different computation and communication resources. We set
3 tiers of clients. For the 16-client real-world experiments,
we set 10 medium-capacity, 3 high-capacity, and 3 low-
capacity clients. For simulations, each experiment includes
60% medium-, 20% high-, and 20% low-capacity clients.
The training time and communication time period of a high-
capacity client are 2/3 of those of a medium-capacity user, and
those of a low-capacity client are 2x of those of a medium-
capacity user.

3) Performance metrics: Besides the topology metrics dis-
cussed in Sec. II-A, we use the following metrics to evaluate
FedLay and other methods.

Model accuracy: We evaluate the individual accuracy and
average accuracy of local ML models based on separate test
datasets that are different from the training datasets.

Topology correctness: It is defined as the number of correct
neighbors of all nodes over the total number of neighbors.
Hence correctness equal to 1 means a correct FedLay.

Communication Cost: We count the number of NDMP
messages sent by each client and the total size of the models
sent by each client in bytes.

4) Methods for comparison: There is no existing DFL
topology that allows decentralized construction and mainte-
nance. Hence we compare FedLay with the following methods:
1) Gaia [41] is an ML method for geo-distributed clouds and
still uses central servers. Hence it is not DFL. It runs server-
based ML in each region and lets servers from different regions
connect as a complete graph. It includes no aggregation
method to handle non-iid data. 2) DFL-DDS [42] is a DFL
method without a fixed topology. Instead, it simulates mobile
nodes in a road network and considers two geographically
close nodes as neighbors. 3) Chord [23]. 4) FedAvg [1] is
a standard centralized FL method. We use its accuracy as
the upper bound of DFL model accuracy because the central
server knows all models from the clients.

8

B. Evaluation of FedLay topology

Fig. 7a shows the topology correctness under an extreme
situation when 100 new clients join a 400-client FedLay at the
same time (10ms in the timeline). The average network latency
is set to 350ms. We find the correctness can quickly converge
to 1 after 8 seconds in FedLay with degree d = 6,8, 10, 12.
Fig. 7b shows the topology correctness under another extreme
situation when 100 clients failed from a 400-client FedLay net-
work at the same time (10ms in the timeline). The correctness
quickly drops to 64.3%. The remaining clients run NDMP and
quickly recover to a correct 300-client FedLay network in 8
seconds. In both situations, NDMP is effective in constructing
and maintaining a correct FedLay network. In Fig. 7c, we plot
the number of messages sent per client to construct FedLay
networks with different sizes. With as many as 500 clients,
each client only sends around 30 messages on average.

C. DFL model accuracy

Fig. 8 shows the model accuracy of different methods in
6 subfigures, based on real experiments in Amazon EC2. In
Figs. 8a-8c we find that FedLey achieves higher accuracy
and faster convergence than Gaia and DFL-DDS, even with
d = 4. Note one communication period for medium-capacity
clients is set to 40 minutes in Shakespeare hence there are not
many times of model exchanges before convergence. Figs. 8d-
8f show the cumulative distribution of the accuracy of all
clients at convergence time (150 minutes for MNIST and 1500
minutes for others). We can see that nodes are with similar
accuracy levels without any ‘stragglers’.

We evaluate the accuracy of FedLay (d = 10), FedAvg,
Gaia, and DFL-DDS using medium-scale experiments with
100 clients and show the results in Fig. 9. FedAvg achieves
the best accuracy as a centralized FL, which we consider as the
upper bound for DFL. The accuracy of FedLay with 10 degrees
is only 1.2%, 2.5%, and 0.9% lower than FedAvg on MNIST,
CIFAR-10, and Shakespeare, respectively. Other methods have
lower accuracy but the differences are not significant. We list

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

I
v

iz 0.5 -

> 0.4 >0.4

E FedAvg E 2 FedAvg

8 o FedLay 8 0.3 FedLay % o FedLay

é Gaia é Gaia ;:’ 0.3 Gaia
Chord 0.2 Chord Chord
DFL-DDS DFL-DDS DFL-DDS

0.2 01l 0.2
’ 100 200 300 400 500 0 500 1000 1500 2000 0 1000 2000 3000
Time(mins) Time(mins) Time(mins)

(a) MNIST. Accuracy vs. Time

(b) CIFAR-10. Accuracy vs. Time

(c) Shakespeare. Accuracy vs. Time

Fig. 9: Model accuracy from 100-client medium-scale experiments. FedAvg is centralized and considered the upper bound.

1.00
04 05 =) Shard
. -20.75 -
& 20.4 A s=12
£03 FedAvg g w s=8
2 © Fedlay 203 Gaia ; 0.50 B
o] o] - i] s=4
< 0.2 Chord < © Fedlay =
. DFL-DDS 0.2/ Chord g 0.25
Gaia I3 DFL-DDS O
0.1 01k 0.00
0 500 1000 1500 2000 0 500 1000 1500 2000 0.3 0.4 0.5 0.6
Time(mins) Time(mins) Accuracy

(a) 4 shards per client

(b) 12 shards per client

(c) Accuracy distribution

Fig. 10: Accuracy under different non-iid levels for CIFAR-10.

Task FedlLay | FedAvg | Gaia | Chord | DFLDDS
MNIST | 90.2% 92.1% | 89.2% | 88.9% 87.4%
CIFAR | 50.3% 528% | 48.6% | 49.2% 49.4%
Shakes | 45.9% 46.9% | 44.0% | 44.5% 442%

TABLE II: Accuracy comparison at convergence. We regard
the accuracy of FedAvg as the centralized baseline.

accuracy at convergence time in Table II, along with the default
centralized method FedAvg as the baseline.

We evaluate FedLay under different non-iid levels. Each
client has a limited number of shards. When each client has
fewer shards, the level of non-iid becomes more significant.
The default setting is 8 shards per client as shown in previous
results such as Fig. 9b, Fig. 10a and Fig. 10b show the
accuracy comparison for 4 shards per client and 12 shards
per client respectively for CIFAR-10. We find that all DFL
methods have slower convergence under more non-iid data
(Fig. 10a) but eventually FedLay still achieves similar accuracy
as FedAvg, while Gaia and DFL-DDS have lower accuracy.
We also show the distribution of accuracy of all clients at the
time 2000 in Fig. 10c. When there are 4 shards per client, the
distribution is more uneven.

Evaluation of data with biased distribution and locality.
In this set of experiments, 100 clients are divided into 10
groups evenly, and each group possesses 6 out of the total 10
labels in the CIFAR-10 dataset. Each group only has 1 label
that is different from the neighboring groups. For example,
group 1 has labels 1 to 6; group 2 has labels 2 to 7, etc.
and the last group has labels 10, 1, 2, 3, 4, 5. For each
client, we sampled 2000 images for each label evenly from
the original CIFAR-10 dataset. In Fig.12, we show FedLay
has an average of 37.01% improvement over Chord on varying
degrees. It also demonstrates FedLay is only 2.0% lower than
the theoretical upper bound, a fully connected network. In
Fig.13, we show the comparison of the accuracy of FedLay
and Chord versus time. Again, FedLay shows much better

9

convergence compared to Chord.

D. Evaluation of other considerations

Asynchronous communication. We also compare Fed-
Lay with synchronous and asynchronous communication in
Fig. 11. We find for all three datasets, asynchronous com-
munication can improve both the accuracy and convergence
speed, because high-capacity clients do not need to wait for
low-capacity ones.

Confidence parameters. Fig. 14 and Fig. 15 shows the
accuracy of FedLay with and without confidence parameters
for MNIST, compared to simple average. We set a,g = 0.5 and
a. = 0.5. The results show that FedLay slightly improves the
simple average in accuracy.

Accuracy under churn. We show the model accuracy
under extreme churn: 50 new clients join a 50-client FedLay
network. In Fig. 16, the curves with triangle markers show the
accuracy of the initial 50 nodes and the curves with square
markers show the accuracy of 50 newly joined nodes. We find
that the accuracy of the new nodes quickly converges to a high
level due to the high-confidence models from existing nodes.
Fig. 17 show that at the join time, the newly joined nodes
have very low accuracy and all clients achieve high accuracy
eventually.

Computation Cost. In the experiment of 100 nodes training
on MNSIT dataset, To reach the accuracy of 88%, The relative
computation cost of FedLay is 1.33, compared to 1.53 for
Gaia, 2.47 for Chord, and 2.76 for DFL-DDS, with the
baseline FedAvg normalized to 1.

E. Scalability

We use large-scale simulations to evaluate the scalability of
FedLay, as shown in Fig. 18b. We find that even with up to
1000 clients, FedLay has stable performance in all datasets.
In Fig. 18d, we compared the communication cost per client
(in MBs) to reach the convergence of FedLay to those of
FedAvg, DFL-DDS, and Gaia. Gaia has poor scalability in
communication.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

o
wn

0.9 0.5
0.8 04
206 203 3
o o <9 0.3
< 0.5 < 0.2 ~ Async <
0.4 S
J .y e 024
0 100 200 300 400 500 0 500 1000 1500 2000 0 1000 2000 3000
Time(mins) Time(mins) Time(mins)
(a) Accuracy for MNIST. (b) Accuracy for CIFAR-10. (c) Accuracy for Shakespeare
Fig. 11: Model accuracy with synchronous and asynchronous communication.
0.7 0.7 0.92
0.6 0.6 B o | 052
g 05 505 Yo 2 8
504 £o4) 2 Gogo| U o g 0.50
5 0.3 Fully-Connected g 03| o7 < =8 <
002 , FedLay <o2] 7 A FedLay o d6 \/—o 0.48
g'é Chord 01 Chord 200 400 600 800 1000 ©7200 400 600 800 1000
6 8 10 00—, 100 200 300 400 500 Number of Clients Number of Clients
Degree Time(mins) (a) MNIST (b) CIFAR-10
Fig. 12: Converged Accuracy Fig. 13: Accuracy vs Time(d = 8) @10 —
>0.46 E Fedavg - d
21.0 § a b 2 = O Fedlay
E Conf Avg 54 d=12 8 10° | ¢ DFL-DDS
A ;j 0.44 A dim E
(] Smp Avg E -8 g
x N 2 0.5 o d=6 \e—/‘e\@ 5
: 5 104
i = 200 400 600 800 1000 O 200 400 600 800 1000
<05 (S‘”“fli“g g Number of Clients Number of Nodes
0.4]4 mpAve 3o 9 (c) Shakespeare (d) Shakespeare: Comm. cost
0 200 400 80 0.85 0.50 0.95 1.00 Fig. 18: Results of simulations for large-scale networks
Time(mins) Accuracy
Fig. 14: Accuracy for MNIST, ag = Fig. 15: Accuracy distribution for such as Chord [23]. DHTs are proposed to achieve data
0.5,0c =0.5 MNIST searching in a decentralized network. Distributed Delaunay
.09 100 triangulation (DT) [25], [26] is designed to achieve greedy
5 Time(mins)o
ggg BO75| —— Daowet.oin) } routing guarantees and Viceroy [24] is designed for mini-
o 0. () . . b : :
byt Chene Zos0 ::guﬂ-mn) mizing 'congestlon by ove.rlay routing. Near-random regu!ar
305 & Initial 2025 topologies have been studied for data center networks with
N New Join . .
5000 f/ centralized construction [19], [20].
0 100 200 300 400 700 02 04 06 08 10
Time(mins) Accuracy VI. CONCLUSION

Fig. 16: Accuracy under churn.
churn.

V. RELATED WORKS

Decentralized Federated Learning (DFL). Federated
learning (FL) [1] is an attractive solution for large-scale ML
that allows many clients to train ML models collaboratively
without directly sharing training data. However, the central
server in FL is a single point of failure and attack. Decentral-
ized Federated Learning (DFL) has been proposed to remove
the central server [8], [17], [10]. The overlay network of DFL
is a fundamental problem. He et al. [8] suggest a few overlay
topologies including ring, 2D grid, and complete graph, which
either are unable to be constructed in a decentralized way
or cause too much communication. GADMM [11] uses a
dynamic chain topology and other methods apply clustering-
based topologies [13] [12]. Vogels et al. [14] analyze model
convergence in theory on different topologies including hy-
percube, torus, binary tree, and ring. Recently Hua et al.
suggest applying Ramanujan graphs for DFL [16]. Recently,
[43], [44] suggest to utlize Blockchain enhance the security
and verifiability of DFL.

Other overlay topologies. Overlay topologies have been
extensively studied for P2P networks. A well-known category
of overlay networks is called distributed hash tables (DHTSs),

Fig. 17: Accuracy distribution under

10

This work presents FedLay, the first overlay network for
DFL that achieves all the following properties: 1) decentralized
construction, 2) fast convergence to accurate models, 3) small
node degree, and 4) resilience to churn. We present the de-
tailed designs of the FedLay topology, neighbor discovery and
maintenance protocols (NDMP), and model exchange protocol
(MEP). We prove that NDMP can guarantee the correctness of
a decentralized overlay for node joins and failures. Evaluation
results show that FedLay provides the highest model accuracy
among existing DFL methods, small communication costs, and
strong resilience to churn. In particular, it provides significant
model accuracy advantages compared to other decentralized
protocols such as Chord, when data are distributed with
locality and bias.

ACKNOWLEDGEMENT

We thank our shepherd Yong Liu and the anonymous
reviewers for their suggestions and comments. Hua, Pang,
Zhang, Yi Liu, and Qian were partially supported by the Na-
tional Science Foundation (NSF) under Grants CNS-2322919,
CNS-2420632, and CNS-2426031. Wang was partially sup-
ported by NSF 2436344 and 2219956, and DOE SC0023490
and SC0025589. Yang Liu was partially supported by NSF
under Grants I11S-2007951, I1S-2143895 and IIS-2416896.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4

=

[5

=

[6]

[7]

[8]
[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

(23]

[24]

[25]

REFERENCES

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. of PMLR AISTATS, 2017.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in Proc. of ICML, 2020.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

R. Pathak and M. J. Wainwright, “Fedsplit: An algorithmic framework
for fast federated optimization,” arXiv preprint arXiv:2005.05238, 2020.
S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konecny,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

R. Zhou, J. Pang, Z. Wang, J. C. Lui, and Z. Li, “A truthful procurement
auction for incentivizing heterogeneous clients in federated learning,”
in 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). 1EEE, 2021, pp. 183-193.

D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,” in
Proc. of ICLR, 2021. [Online]. Available: https://openreview.net/forum?
id=B7v4QMR6Z9w

L. He, A. Bian, and M. Jaggi, “Cola: Decentralized linear learning,”
Proc. of NIPS, 2018.

T. Wang, Y. Liu, X. Zheng, H.-N. Dai, W. Jia, and M. Xie, “Edge-based
communication optimization for distributed federated learning,” IEEE
Transactions on Network Science and Engineering, vol. 9, no. 4, pp.
2015-2024, 2021.

E. T. M. Beltran et al., “Decentralized federated learning: Fundamentals,
state-of-the-art, frameworks, trends, and challenges,” IEEE Communica-
tions Surverys and Tutorials, 2022.

A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Com-
munication efficient framework for decentralized machine learning,” in
Proc. of IEEE CISS, 2020.

A. Bellet, A.-M. Kermarrec, and E. Lavoie, “D-cliques: Compensating
for data heterogeneity with topology in decentralized federated learning,”
in Proc. of IEEE SRDS, 2022.

M. S. Al-Abiad, M. Obeed, M. J. Hossain, and A. Chaaban, “Decentral-
ized aggregation for energy-efficient federated learning via overlapped
clustering and d2d communications,” arXiv preprint arXiv:2206.02981,
2022.

T. Vogels, H. Hendrikx, and M. Jaggi, “Beyond spectral gap:
The role of the topology in decentralized learning,” arXiv preprint
arXiv:2206.03093, 2022.

Y.-T. Chow, W. Shi, T. Wu, and W. Yin, “Expander graph and
communication-efficient decentralized optimization,” in Proc. of IEEE
ASILOMAR, 2016.

Y. Hua, K. Miller, A. L. Bertozzi, C. Qian, and B. Wang, “Efficient and
reliable overlay networks for decentralized federated learning,” SIAM
Journal on Applied Mathematics, vol. 82, no. 4, pp. 1558-1586, 2022.
T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,” I[EEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.
——, “Stability and generalization of decentralized stochastic gradient
descent,” in Proc. of AAAI, 2021.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. of USENIX NSDI, 2012.

Y. Yu and C. Qian, “Space Shuffle: A Scalable, Flexible, and High-
Bandwidth Data Center Network,” in Proc. of IEEE ICNP, 2014.

S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM review, vol. 46, no. 4, pp. 667-689, 2004.

Y. Yu and C. Qian, “Space Shuffle: A Scalable, Flexible, and High-
Bandwidth Data Center Network,” IEEE Transactions on Parallel and
Distributed Systems, 2016.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of ACM SIGCOMM, 2001.

D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Proc. of ACM PODC, 2002.
D.-Y. Lee and S. S. Lam, “Efficient and accurate protocols for distributed
delaunay triangulation under churn,” in Proc. of IEEE ICNP, 2008.

11

[26]

[27]
(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. S. Lam and C. Qian, “Geographic Routing in d-dimensional Spaces
with Guaranteed Delivery and Low Stretch,” in Proceedings of ACM
SIGMETRICS, 2011.

B. M. Waxman, “Routing of multipoint connections,” IEEE journal on
selected areas in communications, vol. 6, no. 9, pp. 1617-1622, 1988.
J. McAuley and J. Leskovec, “Learning to discover social circles in ego
networks,” in Proc. of NIPS, 2012.

Y. Hua, J. Pang, X. Zhang, Y. Liu, X. Shi, B. Wang, Y. Liu, and
C. Qian, “Towards practical overlay networks for decentralized federated
learning,” arXiv preprint arXiv:, 2024.

S. Zehtabi, S. Hosseinalipour, and C. G. Brinton, “Decentralized event-
triggered federated learning with heterogeneous communication thresh-
olds,” in Proc. of IEEE CDC, 2022.

J. Cao, Z. Lian, W. Liu, Z. Zhu, and C. Ji, “Hadfl: heterogeneity-aware
decentralized federated learning framework,” in Proc. of IEEE DAC,
2021.

J. Pang, J. Yu, R. Zhou, and J. C. Lui, “An incentive auction for
heterogeneous client selection in federated learning,” IEEE Transactions
on Mobile Computing, 2022.

S. Kullback and R. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, 1951.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘“Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

F. Sattler, S. Wiedemann, K.-R. Miiller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp- 3400-3413, 2019.

Y. LeCun, C. Cortes, and C. Burges, “MNIST hand-
written digit database,” ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, vol. 2, 2010.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech Report, 2009.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” Tech Report, 2017.

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141-142, 2012.

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
2019.

K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed machine learning
approaching LAN speeds,” in Prof. of USENIX NSDI, 2017.

D. Su, Y. Zhou, and L. Cui, “Boost decentralized federated learning
in vehicular networks by diversifying data sources,” in Proc. of IEEE
ICNP, 2022.

X. Zhang, Y. Hua, and C. Qian, “Secure decentralized learning with
blockchain,” in 2023 IEEE 20th International Conference on Mobile Ad
Hoc and Smart Systems (MASS). 1EEE, 2023, pp. 116-124.

M. Xu, Z. Zou, Y. Cheng, Q. Hu, D. Yu, and X. Cheng, “Spdl: A
blockchain-enabled secure and privacy-preserving decentralized learning
system,” IEEE Transactions on Computers, vol. 72, no. 2, pp. 548-558,
2022.

Authorized licensed use limited to: The University of Utah. Downloaded on July 29,2025 at 18:26:28 UTC from IEEE Xplore. Restrictions apply.

