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Abstract—Simulation is widely used during different stages of
hardware development. This paper focuses on one specific type
of simulation – cycle-accurate timing simulation, which measures
the number of cycles for a given computation. We propose a
pioneering approach for automatically generating cycle-accurate
timing models of hardware accelerators from their RTL designs
based on dependency analysis and constraint solving, making this
the first technique of its kind in this domain. We demonstrate
the applicability of our approach for six non-trivial designs. We
show that our method achieves a 1.5x-6.9x speedup for cycle-
accurate simulation over RTL models for computation-intensive
accelerators, demonstrating its effectiveness. Our approach pro-
vides a cost-effective way to quickly determine the execution time
of accelerators.

I. INTRODUCTION

Hardware simulation is used in a variety of settings, includ-
ing design development, design space exploration, debugging,
verification/validation, firmware development, etc. This paper
focuses on one specific type of simulation – cycle-accurate
timing simulation, which measures the number of cycles for
a given computation. Cycle-accurate RTL simulation can be
slow, especially for complex designs. Enhancing the per-
formance of simulation would yield substantial cost-benefits
and consequent design quality improvement. Due to the im-
portance of simulation, significant effort has been made to
improve its efficiency. Existing works can be broadly classified
as shown in the quadrant diagram of Figure 1. The lower left
quadrant includes works that speed up general cycle-accurate
RTL simulation. There are several commercial tools (e.g.,
VCS [1]) as well as open-source tools employing different
techniques including exploiting low activity factors [2–5] and
emulation using FPGAs [6] and ASICs [7].The upper right
quadrant represents solutions that manually create different
high-level hardware models [8] using languages such as
Verilog, SystemC, C++, etc. These models describe abstract
hardware behavior and are less accurate than RTL but have
faster simulation times. Depending on the use case, models at
varying abstraction levels may be used. The effort in manually
creating design-specific abstract models can be significant.

However, there are relatively fewer works in the upper
left quadrant that generate abstract models automatically.
Automated approaches greatly minimize the effort involved
in constructing these models. A2T [9] and AutoILA [10]
automatically generate transaction-level models (TLMs) and
functional models, respectively, from RTL designs. These can
be used to validate the correctness of the hardware behavior at

Fig. 1: Categorization of simulation speed-up work. “Abstract”
refers to works that do not perform simulations as complete as
RTL simulations. “Manual” denotes that the speedup is achieved
through manually created models, while “Automatic” signifies that
the speedup is achieved without human intervention. The dashed
line labeled ’Timing Accurate’ distinguishes between works that
preserve exact timing information of instruction sequences (below
the line), from those that lack precise timing details (above the line).
Among the abstract models, only our work keeps the exact timing
information.

different levels. However, no prior work automatically gen-
erates abstract models with timing information, such as the
number of cycles an instruction sequence takes. The dashed
line labeled “Timing accurate” in Fig. 1 distinguishes between
works that preserve exact timing information of instruction
sequences, located below the line, from those that lack precise
timing details, situated above the line. This instruction-specific
timing is the focus of this paper. This is useful for processors
and accelerators, both of which have an instruction-level
interface, and the timing for specific instruction sequences has
several applications as discussed below.

1) Design-space exploration with templates: Hardware de-
sign templates are commonly used to enable the exploration of
hardware designs with varying parameters [11, 12]. Designers
can run simulations to determine the optimal parameters that
lead to the highest performance (fewest cycles). Typically,
these templates undergo rigorous functional verification. As a
result, when exploring the design space through simulation,
verifying the computed result is unnecessary, and timing
information becomes the primary concern. In such cases,



simulation based on a timing model is preferable over full
RTL simulation, as it helps reduce simulation costs.

2) Writing high-performance programs for accelerators:
Once a hardware accelerator is designed, developers typically
need to write high-performance software programs to fully
leverage its computational power. Developers evaluate various
program transformations and fine-tune parameters iteratively
to optimize performance [13]. In cases where the hardware
has not yet been fabricated, performance measurement requires
simulation. Thoughtfully-crafted program transformations and
templates can help ensure the correctness of the transformed
program, obviating the need for results verification during
simulation.

Creating cycle-accurate timing models manually de-
mands exceptional effort: it requires identifying the logic
that influences the overall timing. For complex designs, this
process not only takes excessive time but is also challeng-
ing in ensuring correctness. In this work, we propose two
techniques for automatically generating RTL-based timing
models for hardware accelerators through dependency analysis
and constraint solving. (While our methods can be applied
to processors, their effectiveness is somewhat limited by
processor architectures, as elaborated in Section IV.) The
generated models are correct by construction, provided that
the implementation of the algorithms is bug-free. Our methods
identify RTL code that is not needed for timing simulation
and remove that code to obtain an RTL-based timing model.
The code to be retained is the computation that will be
needed to determine the timing, e.g., control flow. Our methods
are orthogonal to the other simulation acceleration methods
mentioned previously, allowing our RTL-based timing model
to benefit from the other techniques. The two techniques work
independently, and users need only apply each once.

The key contributions of this work are:

• Automatic generation of instruction-specific timing mod-
els from RTL designs for hardware accelerators, which
to the best of our knowledge is the first of its kind.
Although our method might not produce a timing model
of optimal performance, it does create one with decent
performance at a low cost, requiring little manual inter-
vention.

• A novel Timing-Centric Pruning algorithm for design
simplification based on dependency analysis. Although
it is a natural extension of a dead-code elimination
algorithm, we are the first to propose and demonstrate
that such an algorithm can be surprisingly effective in
simplifying the RTL code of an accelerator for deriving
a timing model.

• Development of a novel Constraint Propagation algo-
rithm for removing RTL code associated with unused
functionality due to specific instruction sequences, result-
ing in further speed up of the timing model.

• Through experimental evaluations, we demonstrate 1.5x-
6.9x speed improvement in cycle-accurate timing simu-
lation over RTL simulation for a range of accelerators.

II. TIMING-CENTRIC PRUNING

In this section, we introduce the Timing-Centric Pruning
(TC-Pruning) algorithm, which prunes the unnecessary RTL
code of an accelerator in order to derive a timing model.
Complete RTL simulation provides more information than
timing alone, such as output values and memory writes. In
cases where only timing information is needed, removing RTL
statements that do not affect timing can lead to performance
gains.

1 module odd_vector_accumulator (...);
2 input clk, reset, run;
3 input [7:0] vectors [0:3];
4 output done, [15:0] result;
5 reg [15:0] result, [1:0] state, [3:0] idx;
6 localparam IDLE=2’b00, CHECK=2’b01, ADD=2’b10;

8 wire last_idx = (idx == 4’b0011);
9 wire is_odd = (vectors[idx] % 2 != 0);

10 // state machine
11 always @(posedge clk) begin
12 if (reset) begin
13 state <= IDLE;
14 result <= 16’h0000;
15 idx <= 4’h0;
16 end
17 else begin
18 case (state)
19 IDLE: begin
20 state <= run ? CHECK : IDLE;
21 end
22 CHECK: begin
23 if (is_odd) begin
24 state <= ADD;
25 end
26 else begin
27 idx <= last_idx ?
28 4’b0000 : idx + 4’b0001;
29 state <= last_idx ? IDLE: CHECK;
30 end
31 end
32 ADD: begin
33 result <= result + vectors[idx];
34 idx <= last_idx ?
35 4’b0000 : idx + 4’b0001;
36 state <= last_idx ? IDLE: CHECK;
37 end
38 endcase
39 end
40 end
41 assign done = (state == IDLE);
42 endmodule

Listing 1: Verilog code for accumulating vectors. Lines 14 & 33 can
be removed without impacting the “done” signal in a timing model.

Listing 1 shows Verilog code for a motivating example. It
takes four input vectors and computes the sum of the vectors
that contain odd numbers. The input vectors are stored in the
array vectors. Each vector is checked in turn in the CHECK
state. If the current vector is odd, its value is added to result
in the ADD state, which requires one cycle. If the vector is
even, the ADD state is skipped and the program proceeds to
check the next vector. The program execution is complete
when all vectors have been processed. While execution time
depends on the values of the vectors, the accumulation step
is not required to determine cycle count. Notably, the done
signal that indicates program completion depends only on



state, not on result. Thus, the code can be simplified
by removing the accumulation code in lines 14 and 33.

The above example highlights that not all RTL statements
are necessary to determine the execution time of an accelerator.
This provides an opportunity to remove unnecessary RTL
code and create a timing model. However, determining which
code is relevant to timing can be a challenge. Our proposed
approach is to work backward from the “commit” signals
(e.g., done in the example) in the accelerator that indicate the
completion of instructions/computation. If an RTL statement
does not affect these commit signals, then it is safe to remove
it. The Timing-Centric Pruning (TC-Pruning) algorithm is
based on this idea. It performs a cone-of-influence dependency
analysis of the commit signals and prunes the signals that
cannot affect them.

Algorithm 1: TC-Pruning Algorithm
Input: List of RTL statements S, where each s ∈ S

has the form: dest = op(src), the set of
commit signals C

Output: The simplified RTL statements S′

// return the dependency set for variable v, E

is the set of variables seen before

1 Function Get_Dependencies(S, v, E):
2 depSet← ∅
3 foreach s ∈ S do
4 if s.dest ∈ E then
5 continue
6 else
7 E ← E ∪ {s.dest}
8 if s.dest == v then
9 foreach u ∈ s.src do

10 depSet← depSet ∪ {u}
11 ∪ Get_Dependencies(S, u,E)

12 return depSet

13 Function Remove_Unrelated(D, S):
14 S′ ← ∅
15 foreach s ∈ S do
16 if s.dest ∈ D then
17 S′ ← S′ ∪ {s}

18 return S′

19 D ← ∅ // entry point of the algorithm

20 E ← ∅ // set of variables seen before

21 foreach c ∈ C do
22 D ← D ∪ Get_Dependencies(S, c, E)

23 S′ ← Remove_Unrelated(D, S)
24 return S′

Algorithm 1 presents the pseudo-code of TC-Pruning. It is
an extension of a standard dead-code elimination algorithm
used in compiler optimization. The algorithm takes two inputs:

the RTL statements S of the design, and a set of commit
signals C. After pre-processing, all RTL statements have the
form: dest = op(src), and control flow is handled through
conditional assignments (e.g., the intermediate representation
in FIRRTL [14] and Yosys [15] are of this form). Here, dest
is the destination variable being assigned, which can be a
wire, register, or memory cell, op is the operator used, and
src is a set of source variables. For example, in line 41
of Listing 1, dest is done, op is ==, src includes state
and IDLE. The function Get_Dependencies returns a
set of variables that a given commit signal depends on.
Remove_Unrelated removes the RTL statements whose
dest are not in the dependence set of any commit signal.
This eliminates all timing-unrelated statements, resulting in
a simplified RTL design for timing modeling.

III. CONSTRAINT PROPAGATION

The TC-Pruning algorithm uses a backward dependency
analysis from the “commit” signals to determine which vari-
ables and their update statements can be removed. We can also
simplify the RTL code by using a forward analysis starting
from the input ports. Our proposed approach is based on
the observation that an accelerator often supports multiple
instructions, but not all of them are needed for a particular
computation (instruction sequence). For example, the deep
learning accelerator VTA [16] supports multiple matrix op-
erations, such as matrix multiplication (matmul), element-
wise matrix Fadd/max/min, etc. Operations like matmul may
require extensive optimizations at both the hardware level
(with design-space exploration) and the software level (by
writing high-performance computing libraries). When running
simulations for optimizing matmul, there is no need to
simulate the other hardware operations, such as element-wise
max/min, since they are not used in this computation. This
optimization opportunity is referred to as low activity factors
in the literature (this includes event-driven simulation) [2, 3].

1 module simple_alu (opcode, a, b, result);
2 input [1:0] opcode;
3 input [7:0] a, b;
4 output reg [7:0] result;

6 wire is_add = opcode == 2’b01;
7 wire is_sub = opcode == 2’b10;
8 wire is_shift = opcode == 2’b11;

10 always @(*) begin
11 if(is_add) result = a + b; // Add
12 else if(is_sub) result = a - b; // Subtract
13 else if(is_shift) result = a << b; //Left shift
14 end
15 endmodule

Listing 2: Verilog code for a simple ALU. If we know opcode !=
2’b01, then is_add must be false, and line 11 can be removed.

Previous optimizations [2, 3] that exploit low activity factors
skip unused operations dynamically during simulation. If
the inputs of a subset of circuits do not change, then the
subset can be skipped. Although the dynamic approach can
effectively skip many unnecessary circuits, it introduces a
run-time overhead since the simulator must monitor which



circuits need to be simulated. In this work, we introduce
a static approach that augments the dynamic approach. We
statically determine a subset of circuits that will never be
simulated for specific instructions and remove them from the
RTL design. For example, if a simulation only runs matmul,
the element-wise max operation will never be executed, so it
can be removed. Note that we are not replacing the dynamic
approach with the static approach. Instead, the simplified RTL
may further benefit from the dynamic approaches (since our
static approach may not find all opportunities), and run-time
overhead is reduced thanks to the simplification. Similar to
TC-Pruning, Constraint Propagation is predominantly effective
for accelerators rather than processors, due to substantial
circuit sharing among processor instructions.

1 input vld, clk, rst;
2 reg [1:0] op_reg;
3 always @(posedge clk) begin
4 if(rst) op_reg <= 2’b00;
5 else if (vld) op_reg <= opcode;
6 end

8 wire is_add = op_reg == 2’b01;
9 ...

Listing 3: Partial Verilog code for another ALU with an internal
register.

A. Example of Constraint Propagation

To identify irrelevant circuits for a specific instruction
sequence, we propose a constraint propagation algorithm,
which is conceptually similar to the widely-used constant
propagation algorithm [17]. However, instead of propagating
constant values, constraints of values are propagated, starting
from the input ports.

The values on the input ports are constrained by the ex-
cluded instructions. These constraints are then propagated to
the internal signals. In certain cases, constraints propagated
to internal signals can simplify the design. For example,
consider the simple ALU design in Listing 2, where different
computations are done for the two inputs based on the input
opcode value. If the input instructions of interest exclude
the Add instruction, we can add the constraint opcode !=
2’b01 for excluding Add. By propagating this constraint to
the assign statement for is_add, we can infer that:

opcode ! = 2′b01 ∧ is add ≡ (opcode == 2′b01)

=⇒ is add = false
(1)

Since is_add is inferred as false, we can safely remove the
“result = a + b” branch since it will never be executed.
This technique can be especially effective in inferring Boolean
variables (e.g., is_add) with propagated constraints. Once
their values are determined to be true or false, they can be used
to further simplify the RTL code using constant propagation.
We use a Satisfiability Modulo Theory (SMT) solver [18] to
automate inference.

For accelerators with well-defined instructions that are fed
to the input ports for just a single cycle (although they

may require multiple cycles to execute), formulating input
constraints is straightforward. In such scenarios, users simply
need to identify the encoding for unused instructions (e.g.,
by reading the manual of the design) and then formulate
constraints to effectively exclude them. For these accelerators,
our algorithm works pretty well. We recognize that devising
input constraints for every accelerator can be challenging.
In certain cases, an accelerator’s instruction might involve a
sequence of inputs, complicating the constraint formulation.
Developing a simpler method for writing input constraints and
checking their correctness are left to future work.

B. Constraint Propagation Algorithm

Algorithm 2 presents the pseudo-code for our Constraint
Propagation (CP) algorithm. In addition to the RTL statements
of the design, the user must provide a set of constraints for
the inputs that specify the opcodes of excluded instructions.
These constraints initialize the set of constraints C, e.g., in
the example above, the constraint opcode != 2’b01 is
provided by the user. We maintain a worklist W of variables
with a constraint. For each constrained variable v, we ex-
amine every RTL statement where v is utilized as a source
variable (line 17). Two operations are performed for those
RTL statements: (1) propagate the constraints through the RTL
statements (line 22-28), and (2) check the unsatisfiability of the
RTL statement under constraint set C (line 18-19). If the result
of an RTL statement can be inferred as always true or false,
its destination variable is assigned the corresponding constant
and used in a final constant propagation pass (line 29). The
following subsections discuss the details of the two operations.

1) Propagate Constraints: The propagation of constraints
starts from the constrained inputs (e.g., opcode in Listing 2).
Then constraints are added for the variables that depend on
those constrained inputs (lines 24 and 27). The rules for adding
constraints for different types of variables are provided below.
The constraints are then further propagated. A worklist is used
to track which variables are constrained (lines 25 and 28). If
a variable is proven to be a constant by the unsatisfiability
check (discussed in the next subsection), its constraint is
not propagated further (line 21), since the constant value is
enough to simplify the code. The constraint propagation rules
for wires, registers, and memories are as follows:

a) Wires: If all the source variables of a wire’s statement
are constrained (or constant), the wire is also constrained
(line 23). A new constraint is added to the constraint system
for the wire (s.dest) that has the same expression as the RTL
statement s (line 24), with the assignment replaced by ≡. The
wire is also added to the work list (line 25). However, no
constraint is added if some of the source variables are not
constrained/constant for two reasons. First, doing otherwise
would add almost all the wires to the constraint system,
resulting in a long SMT-solving time. Second, constraints with
free variables are less likely to be useful.

b) Registers: Consider the ALU design in Listing 3,
where a register op_reg is used. A register can take any of
the values it is assigned depending on when the “enable” signal



(vld) is true. All the assigned values have the same constraint
as the assignment signal (opcode). Further, the register can
also take an implicit reset value. Thus, the constraint added
for the register (line 27) is as follows: it is equal to either its
“update” (e.g., opcode) or the reset value (reset(s.dest)).
Example: The constraint for op_reg is as follows:

op reg == opcode || op reg == 2′b00 (2)

Algorithm 2: Constraint Propagation (CP) Algorithm
Input: RTL statements: S, each s ∈ S has the form:

dest = op(src); a set of mappings from an
input v to its constraint ϕ(v):
C = {v → ϕ(v)}. The constraint ϕ(v) excludes
unused instruction opcodes for v.

Output: Optimized RTL statements
// check if the destination of s is always true

or false, with the constraints C

1 Function Check_Bool(s, C):
2 result ← check(s.dest == true, C)
3 if result is UNSAT then
4 s.dest← false

5 result ← check(s.dest == false, C)
6 if result is UNSAT then
7 s.dest← true

8 return s.dest

// entry point. C.keys are the keys of map C

9 Initialize work list: W ← {v | v ∈ C.keys}
10 E ← ∅ // set of variables seen before

11 while W ̸= ∅ do
12 v ←W.pop()
13 if v ∈ E then
14 continue // skip variables seen before

15 else
16 E ← E ∪ v

17 foreach s : s ∈ S ∧ v ∈ s.src do
18 if (s.op is ==) or (s.op is ̸=) then
19 s.dest← Check_Bool(s, C)

20 if is const(s.dest) then
21 continue

// add to the constraint set & work list

22 if is wire(s.dest) then
23 if s.src ⊂ {constant, C.keys} then
24 C ← C ∪ {s.dest→ s}
25 W ←W ∪ {s.dest}

// s.update is a source variable of s,

which is used to update the register

26 else if s.update ∈ C.keys then
27 C ← C ∪ {s.dest→ {s.dest ==

s.update || s.dest == reset(s.dest)}}
28 W ←W ∪ {s.dest}

29 return constant propagation pass(S) // the pass

can come from an existing tool like Yosys [15]

c) Memories: Memories are treated similarly to registers
since logically they are just arrays of registers. However,
instead of adding constraints separately for each memory cell,
we add constraints only for the memory output. The memory
output has the same constraints as the memory data input,
irrespective of the memory cell being accessed. Like registers,
the memory output can also be the reset value. Hence, the
constraint added for the memory follows the same rule as those
for registers (line 27).

2) Check Unsatisfiability: For statements with Boolean
results, we use an SMT solver to determine if the result is
always true or false. A constant result can further simplify
the RTL in a constant propagation pass. We only consider
statements where the Boolean result is from the relational
operators “equal” and “not equal” (defined in lines 1-8 and
used in line 19). We do not check statements with Boolean
results for other relational operators (e.g., >, <). This is
because the input constraints of excluded opcodes are simple
“unequal” constraints, and it is unlikely that we will obtain an
UNSAT result for the other relational constraints. For example,
if the excluded opcode constraint is a ̸= 2, it is unlikely to
help determine whether the result of a comparison a > 1 in an
RTL statement is true or false. Therefore, we choose to skip
these checks to minimize the number of SMT solver calls.
Example: in Eq. 1, the result of the assertion is_add ==
true is UNSAT, so we can conclude is_add is always false.

IV. EXPERIMENTAL EVALUATION

We implemented the TC-Pruning algorithm on top of the
FIRRTL compiler [14] of the Chisel language [12]. Chisel,
as a high-level hardware description language (HDL), shares
essential similarities with Verilog, demonstrating that TC-
Pruning could be adapted for other HDLs such as Verilog. This
pass takes a Chisel design and a list of user-provided “commit”
signals and optimizes the code based on Algorithm 1. It is
based on the Dead-Code Elimination (DCE) pass provided by
FIRRTL, which already performs most of the optimizations
we need but misses some optimization opportunities. For
instance, modules with no outputs should be removed, and if
memory has a constant input, its output can be replaced with
that constant value. We added these missing optimizations.
Constraint Propagation is implemented as a pass in Yosys [15].
We use Yosys to parse the RTL code and convert it to an
Abstract Syntax Tree (AST). The CP algorithm (Algorithm 2)
is implemented by traversing the AST, where we use the SMT
solver Z3 [18] to check assertions. All the abstract models are
finally translated to Verilog and simulated with the Verilator
simulator [20].

A. TC-Pruning: Evaluation

We conducted experiments on six non-trivial hardware
designs to verify the effectiveness of TC-Pruning, as shown
in Table I. All six designs have been developed in Chisel,
enabling the application of our FIRRTL-based TC-Pruning. As
there is no existing work in this field, we undertook the task of
independently sourcing hardware designs for our experiments.



Designs LoC LoC-
pruning

LoC-
manual

Code
Size %

Algo. Time
(sec)

Verilator
(sec)

TC-Pruning
(sec)

TC-pruning
+ Algo. Time (sec)

Manual Model
(sec) Speedup

AES 87416 346 341 0.4% 6 3620 515 521 508 6.95
VTA 19833 8310 N/A 41.9% 17 3502 889 906 N/A 3.87
FPU 772 339 320 43.9% < 1 3663 2095 2095 2073 1.75

CORDIC 260 67 67 25.8% < 1 3611 1036 1036 1033 3.49
CMAC 8221 4899 N/A 59.6% 1.4 3588 873 874 N/A 4.11

RV-MINI 1964 1926 N/A 98% < 1 3564 3551 3551 N/A 1.00

TABLE I: Results for TC-Pruning. The “LoC” column indicates the number of lines of Verilog code after compiling the Chisel designs to
Verilog. “LoC-pruning” indicates the code size after applying the TC-Pruning. “LoC-manual” shows the code size of manually-made models
(“N/A” means manually making models is too challenging due to design complexity). “Code Size %” displays the ratio of the size of the
optimized code to the original code. “Algo. Time” reports the runtime of our algorithm. “Verilator” indicates the simulation time for the
complete RTL code with Verilator, set to around 1 hour (3600 seconds) through the provision of ample input stimuli. It’s important to
note that the simulation time can be extended by supplying additional input stimuli. “TC-Pruning” reports the simulation time of the
abstract models obtained with TC-Pruning. “TC-Pruning + Alg. Time” reports the total time of “TC-Pruning” and “Algo. Time”. “Manual
Models” reports the simulation time of manually-made models. “Speedup” illustrates the speedup of timing simulation with the generated
models. It is calculated as: Speedup = Verilator / (TC-Pruning + Algo. Time).

Automatic & Abstract Automatic & Complete Manual & Abstract

This work A2T [19],
AutoILA [10] Verilator [20], etc. Loosely-timed

models [21], etc.

Timing accurate? Yes No Yes No
Complete computation

results?
No Yes Yes Yes for some

Use cases

Rapidly obtaining the
timing of instruction
sequences to measure

performance

Rapidly computing
the results of

instruction sequences

Complete simulation
of RTL

Simulation at the
system-level

TABLE II: Comparison of different simulation models. The definition of “Automatic”, “Abstract” and “Manual” can be found in Fig. 1.

These designs have been sourced from a diverse range of
repositories on GitHub, each representing hardware tailored
for distinct applications. AES [22] is an accelerator for the
encoding and decoding of the Advanced Encryption Standard
(AES) algorithm. VTA [16] is a programmable hardware
accelerator designed for deep learning applications. FPU [23]
is an accelerator for fused multiply-add operations of floating-
point numbers. CORDIC [24] is a module that implements
the efficient Cordic algorithm, capable of computing various
functions such as the logarithmic function. CMAC [25] is a
module for the inference of the convolution layers in neural
networks. For these designs, the “commit signals” are simply
the “valid” signals indicating the output results, which can be
easily identified by referring to the RTL code or the design
manual. RV-MINI [26] is a RISCV core with three pipeline
stages. We conducted all experiments using an Intel Core i7
CPU and 32GB of memory.

The results are presented in Table I. We evaluate the simula-
tion time of our abstract model against that of a complete RTL
simulation using Verilator [20], one of the fastest open-source
simulators available. The column of “Verilator” shows the
simulation time of Verilator-based simulation. “TC-pruning”
show the simulation time of abstract models obtained with
TC-Pruning. “Manual Model” shows the time for manually-
made timing models only for small designs, as for more com-
plex designs manually creating the models is excessively
challenging. The table shows that the code size for the first 5

designs has been reduced to less than 60% of the original and
the simulation is 1.75x-6.95x times faster than complte RTL
simulation with Verilator. The only exception is RV-MINI (See
Section IV-A3 for analysis). For all designs except RV-MINI,
the automatically generated timing models facilitate a speedup
in simulation. TC-Pruning takes less than 17 seconds for all
designs, demonstrating its cost-effectiveness.

Source of Simplification: We found that the majority of the
code reduction occurred in circuits where the number of con-
trol steps, i.e., cycles, was not dependent on the computation
results. These are circuits with pure data flow, i.e., data flow
that does not determine any control flow. Next, we proceed
with a detailed case analysis of three representative designs.

1) AES: AES supports two instructions: encryption and
decryption. The two instructions are executed independently
in two data paths. After the optimization, all the RTL code for
the compute blocks for both encryption and decryption are re-
moved. Only the control logic remains. Since the computation
logic is very complex, only 0.4% of the code is retained after
the optimization.

2) VTA: Unlike AES, VTA is a more flexible design with
versatile instructions, including load, store, and multiple ma-
trix computations. In the timing model, not only the arithmetic
modules but also all the pure data-flow code is removed. For
example, the internal memories for storing the data are all
removed. However, the internal memories/buffers for storing
instructions are retained.



Designs Code
Size %

Algo.
(sec)

Sim
(sec)

Sim-opt
(sec) Speedup

1 AES: no dec 50.2% 1 603 274 2.20
2 AES: no enc 52.6% 1 603 337 1.79

3 VTA: no ALU 91.7% 12 583 389 1.50
4 VTA: no GEMM 41.4% 8 583 105 5.57

5 RV-MINI: no shift 99.6% 3 594 592 1.00

6 FIXED: no div 52.4% 1 603 339 1.78

TABLE III: Results for Constraint Propagation. The column “Code
Size %” indicates the percentage of code size remaining after simplifi-
cation. “Algo.” reports the runtime of Constraint Propagation. “Sim”
reports the simulation time of the original RTL, while “Sim-opt”
indicates the simulation time after Constraint Propagation. “Speedup”
shows the speedup in simulation time. No manually made timing
models due to complexity of these designs.

3) RV-MINI: The decision of whether to take a branch
instruction is based on the result from the Arithmetic Logic
Unit (ALU). Consequently, even the ALU can affect the
timing and cannot be optimized away. Fortunately, branching
instructions are not commonly found in hardware accelerators
for computation-intensive applications, which are usually the
focus of timing models due to their long simulation times.

B. Constraint Propagation: Evaluation

The objective of the Constraint Propagation algorithm is
to eliminate hardware circuits associated with instructions
that are not used for simulating the desired functionality. For
this experiment, only the AES, VTA, and RV-MINI designs
from the previous experiment were considered suitable, as
they could be partitioned into distinct components that serve
different instructions. They are compiled into Verilog, enabling
the application of the implemented Constraint Propagation
pass. Each of the other three designs uses all instructions
for any meaningful simulation. We included another design,
FIXED, which is a module for performing multiple fixed-point
computations such as addition, multiplication, and division. In
the experiment, our goal was to eliminate the division logic
when it is not utilized. We could not apply TC-Pruning to
FIXED because it is implemented in Verilog, and our TC-
Pruning is implemented for Chisel designs.

The results are shown in Table III. As explained in Sec-
tion III, our Constraint Propagation algorithm is conservative,
checking only the “equal” and “not equal” expressions, leading
to fast optimization runtimes. Speedup has been achieved
for all designs, except for the RV-MINI processor. This is
primarily due to the fact that a single arithmetic operation
constitutes only a small fraction of the overall logic. We did
not manually make timing models for these designs because
they are too complex.

C. Comparison with other models

In Table II, we compare the features of our work with
other models mentioned in Fig. 1. The primary distinction
of our work from other abstract models is its unique and
pioneering focus on speeding up the timing simulation of

hardware instructions. Therefore, comparing the speedup with
other abstract models is not meaningful because they simulate
varying aspects of hardware behavior and cater to different
use cases.

V. RELATED WORK

Acceleration of RTL simulations. There are many com-
mercial RTL simulators [1] as well as open-source simulators.
One interesting line of work [2–5] focuses on leveraging low
activity factors through coarse and conditional executions. An-
other direction is acceleration with hardware, e.g., using FPGA
emulation [6], ASICs [7], and GPUs [27]. FireSim [6] deploys
FPGA-based emulation on public-cloud platforms, achieving
high scalability for large designs. MantiCore [7] utilizes a
specific hardware architecture for parallel simulation. GPUs
have also been used for accelerating RTL simulations [27, 28].
Our timing models can be translated to Verilog. Therefore,
they can further benefit from all the acceleration techniques
above.

Abstract hardware models. Hardware models at differ-
ent levels of abstraction are utilized during the design pro-
cess [8, 29]. These models include Functional models [30],
Loosely-timed (LT) models [21], Approximate-timed models
(AT) [31], etc. These models are manually constructed and
do not provide accurate timing information. In contrast, our
generated timing model provides the same cycle-accurate
timing as RTL models.

Automatic generation of hardware models. A2T [9]
developed algorithms to generate transaction-level models
from RTL designs. The algorithm converts RTL to Extended
Finite-State Machine and then merges the hardware state for
simplification. The process of merging states alters the timing,
thus making the algorithm unsuitable for generating timing
models. The resulting transaction-level models can be used for
high-level simulation. AutoILA [10] introduced a methodology
for the automatic generation of architecture-level models. This
approach employs LLVM optimizations to remove implemen-
tation specifics, preserving only the essential architecture-
level behaviors. Its concept parallels that of TC-Pruning:
both methodologies employ code optimization algorithms to
simplify RTL designs, yet they diverge in their specific target
objectives. The automatically generated models produced by
A2T and AutoILA can be used for system-level evaluation,
such as functional simulation and firmware development, just
like the manually created versions. But neither of these works
preserves the precise timing information.

VI. CONCLUSIONS

In this work, we propose an automatic approach for gener-
ating instruction-specific timing models from RTL designs of
accelerators. Two algorithms, based on dependency analysis of
the completion signals and instruction-based constraint solv-
ing, are proposed to remove the code irrelevant to the timing
model. Experiments show that our approach can generate high-
quality timing models with simulation speedups for a range of
accelerators.
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