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1 | INTRODUCTION

Given a knot K, we will use c¢(K) to denote the crossing number of K, which is the smallest number
of crossings over all diagrams that represent K. Crossing numbers are known to be notoriously
intractable. For instance, their behavior under basic knot operations, such as connect sum of knots
and satellite operations, is poorly understood. In particular, the basic conjecture that if K is a
satellite knot with companion C, then ¢(K) > ¢(C) is still open [11, Problem 1.68]. In this direction,
Lackenby [13] proved that we have c(K) > 10713 ¢(C), for any satellite knot K with companion C.
In this note, we prove a much stronger inequality for cables of adequate knots and we determine
the exact crossing numbers of infinite families of such knots. Since alternating knots are known
to be adequate, our results apply, in particular, to cables of alternating knots.

To state our results, for a knot K in the 3-sphere, let N(K) denote a tubular neighborhood of
K. Given coprime integers p, g, let K, , denote the (p, g)-cable of K. In other words, K, ; is the
simple closed curve on dN(K) that wraps p times around the meridian and g-times around the
canonical longitude of K. Recall that the writhe of an adequate diagram D = D(K) is an invariant
of the knot K [14]. We will use wr(K) to denote this invariant.
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Theorem 1.1. For any adequate knot K with crossing number c(K), and any coprime integers p, q,
we have c(K, ;) > q* ¢(K) + 1.

Theorem 1.1, combined with the results of [8], has applications in determining crossing
numbers of prime satellite knots. We have the following.

Corollary 1.2. Let K be an adequate knot with crossing number c(K) and writhe number wr(K). If
p =2wr(K) + 1, then K, , is nonadequate and ¢(K, ,) = 4c(K) + 1.

The proof of Corollary 1.2 shows that when p = 2wr(K) + 1, if we apply the (p, 2)-cabling
operation to an adequate diagram of K, the resulting diagram is a minimum crossing diagram
of the knot ¢(K, ,). It should be compared with other results in the literature, asserting that the
crossing numbers of some important classes of knots are realized by a “special type” of knot
diagrams. These classes include alternating and more generally adequate knots, torus knots,
Montesinos knots [10, 17, 20], and untwisted Whitehead doubles of adequate knots with zero
writhe number [8]. We note that these Whitehead doubles and the cables c(Kp,) of Corol-
lary 1.2 are the first infinite families of prime satellite knots for which the crossing numbers
have been determined. In [1], Baker Motegi and Takata obtained lower bounds for crossing
numbers of Mazur doubles of adequate knots. In particular, they show that if K is an adequate
knot with wr(K) = 0, then the crossing number of the Mazur double of K is either 9c¢(K) + 2
or9c(K) + 3.

We note that a geometric lower bound that applies to crossing number of satellites of hyperbolic
knots is given in [4].

Corollary 1.2 allows us to compute the crossing number of (+1, 2)-cables of adequate knots
that are equivalent to their mirror images (a.k.a. amphicheiral) since such knots are known have
wr(K) = 0. In particular, since for any adequate knot K with mirror image K*, the connect sum
K#K* is adequate and amphicheiral, we have the following.

Corollary 1.3. For any adequate knot K with crossing number c(K) and mirror image K*, let K? : =
K#K*. Then, C(Kil,z) =8c(K) + 1.

Our results also have an application to the open conjecture on the additivity of crossing numbers
[11, Problem 1.68] under connect sums. Lower bounds for the connect sum of knots in terms of the
crossing numbers of the summands that apply to all knots are obtained in [5, 12]. The conjecture
has been proved in the cases where each summand is adequate [10, 17, 20] or a torus knots [3],
and when one summand is adequate and the other an untwisted Whitehead doubles of adequate
knots with zero writhe number [8]. To these, we add the following.

Theorem 1.4. Suppose that K is an adequate knot and let K, := K, ,, where p =2wr(K) +
1. Then, for any adequate knot K,, the connected sum K,#K, is nonadequate and we
have

c(K #K,) = c(K;) + c(K).

It may be worth noting that out of the 2977 prime knots with up to 12 crossings, 1851 are listed
as adequate on Knotinfo [16], and thus, our results above can be applied to them.
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3402 | KALFAGIANNI and MCCONKEY

2 | CROSSING NUMBERS OF CABLES OF ADEQUATE KNOTS
2.1 | Preliminaries

A Kauffman state on a knot diagram D is a choice of either the A-resolution or the B-resolution
for each crossing of D as shown in Figure 1. The result of applying o to D is a collection o(D) of
disjoint simple closed curves called state circles. The all-A (resp. all-B) state, denoted by o 4 (resp.
o), is the state where the A-resolution (resp. the B-resolution) is chosen at every crossing of D.

* For an oriented knot diagram D, with c(D) crossings, c, (D) and c_(D) are, respectively, the
number of positive crossings and negative crossings of D (see Figure 2). The writhe of D is given
by wr(D) :=c (D) — c_(D).

* The graph G ,(D) (resp. Gg(D)) has vertices the state circles of the all-A (resp. all-B state) and
edges the segments recording the original location of the crossings (see Figure 1). We denote by
v4(D) (resp. vg(D)) the number of vertices of G 4 (D) (resp. G 4(D)).

Definition 2.1. A knotdiagram D = D(K) is called A-adequate (resp. B-adequate) if G 4, (D) (resp.
Gg(D)) has no one-edged loops. A knot is adequate if it admits a diagram D := D(K) that is both
A- and B-adequate [14, 15].

If D := D(K) is an adequate diagram, the quantities c¢(D), ¢, (D), wr(D) are invariants of K [14],
and will be denoted by c(K), c,.(K), gr(K), and wr(K), respectively.

Given aknot K, let Ji(n) denote its nth unreduced colored Jones polynomial, which is a Laurent
polynomial in a variable ¢. The value on the unknot U is given by

B el t—n/2 _ tn/2
Jyn)(®) = (1) Py Ry

forn > 2. Letd, [Jx(n)] and d_[Jg(n)] denote the maximal and minimal degree of Ji(n) in ¢, and
set

dlJg(n)] :=4d, [Jx(n)] —4d_[Tx(n)].

X
N
(T

A-resolution  B-resolution

FIGURE 1 The A- and B-resolution and the corresponding edges of G, (D) and Ggz(D).

A X
+1 ~1

FIGURE 2 A positive crossing and a negative crossing.
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CROSSING NUMBERS OF CABLE KNOTS 3403

For the purposes of this paper, we will assume that the set of cluster points

{In2dlIcm]l}

consists of a single point and denoted by d jg. This number is called the Jones diameter of K. We
recall the following.

Theorem 2.2 [8]. Let K be a knot with Jones diameter d ji and crossing number c¢(K). Then,
djg < 2¢(K),
with equality d j, = 2 c(K) if and only if K is adequate.
In particular, if K is a nonadequate knot admitting a diagram D such that d j; = 2(c(D) — 1),

then we have c¢(D) = c(K).

Next, we recall a couple of results from the literature that give the extreme degrees of the col-
ored Jones polynomials of the cables K, ; in the case where the degrees d_ [Jx(n)] are quadratic
polynomials.

Proposition 2.3 [2, 9]. Suppose that K is a knot such that d, [Jg(n)] = a,n*> + a; n + a, and
d_[Jg(n)] =a; n?+ aj n+ a; are quadratic polynomials for all n > 0. Suppose, moreover, that
a; £0, ai‘ > 0and that £ < 4a,, %p < —4a;‘.

Then, for n large enough, we have

4d, g, (W] =4qayn® +(q4a; +2(q - D(p—4ga))n + 4,
4d_[T, (W] = 4¢*a;n*+(g4al +2(q—1D(p—4qa))n+ A",
where A, A* € Q depend only on K and p, gq.

Proof. The first equation is shown in [9] (see also [2]). To obtain the second equation, note that,

since Kfp,q = (K, 4)", we have d_[JKM(n)] =—d, [JKip,q(”)]' Since d_ [Jg+(n)] = —d_[Jx(n)] =
—a; n?— aj n — ag, the result follows by applying the first equation to K* g O

Now we recall the second result promised earlier.

Lemma 2.4 [2, 9]. Let the notation and setting be as in Proposition 2.3.
If§ > 4a,, then

4d+[Jvaq(n)] = pqn2 + B,

where B € Q depends only on K and p, q.
Similarly, if %p > —4a;, then

4d_[Jg, (m]=pgn’*+B,

where B’ € Q depends only on K and p, q.
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3404 | KALFAGIANNI and MCCONKEY

Proof. The first equation is shown in [9] (see also [2]). As in the proof of Proposition 2.3, to
see the second equation, we use the fact that d_[J Kp’q(n)] =—d,[J Kip,q(”)]- Applying the first
equation toK* . we get4 d+[JKip’q(n)] = —pgn? + B* and hence4d_ [JKM (n)] = pgn* — B*.
Setting B’ := —B*, we obtain the desired result. O

2.2 | Lower bounds and admissible knots

We will say that a knot K is admissible if there is a diagram D = D(K) such that we have
djg = 2(c(D) — 1). Our interest in admissible knots comes from the fact that if K is admissible
and nonadequate, then by Theorem 2.2, D is a minimal diagram (i.e., ¢(D) = c(K)).

Theorem 2.5. Let K be an adequate knot and let c(K), c,(K) and wr(K) be as above.

(a) For any coprime integers p, q, we have

(K, ) = q° c(K). €9)

(b) The cable K, , is admissible ifand only if g = 2 and p = qwr(K) + 1.
Proof. Since K is adequate, we have
4d [Jx(m)] =2c, (K) n’* 4+ 0(n) and 4d_[Jx(n)] = —2c_(K)n? + O(n),
and hence,
4d,[Jg(n)] —4d_[Jx(n)] = 2c¢(K) n® + O(n), )

for every n > 0 [14]. We distinguish three cases.

Case 1. Suppose that § <2c¢,(K)and %p < 2c_(K). Then, d_ [Jx(n)] satisfies the hypothesis of
Proposition 2.3 with4 a, = 2¢,(K) > 0 and d_[Jg(n)] = —d, [Jg-(n)], where d_ [J(n)] satisfies
that hypothesis of Proposition 2.3 with —4 a3 = 2 ¢, (K*) = 2c_(K). The requirements that a; <0
and aj > 0 are satisfied since for adequate knots, the linear terms of the degree of J(n) are mul-
tiples of Euler characteristics of spanning surfaces of K. Indeed, a, (resp. aj) is equal to (resp. the
opposite of) the Euler characteristic of a surface bounded by K. See [9, Lemmas 3.6, 3.7] or [6, 7].
Now Proposition 2.3 implies that, for sufficiently large n, the quadratic coefficient of d_ [J Kpq (n)]
(respd_[J KM(")]) is equal to 4a, = 2¢,(K) (resp. 4a; = —2c_(K)). Hence, the Jones diameter
of K, is

dj,, =2 c(K). 3)

Now by Theorem 2.2, we get c(K, ;) > g? c(K) which proves part (a) of Theorem 2.5 in this case.

For part (b), we recall that a diagram D, 4 of K, ; is obtained as follows: Start with an adequate
diagram D = D(K) and take g parallel copies to obtain a diagram DY. In other words, take the
g-cabling of D following the blackboard framing. To obtain D, , add t-twists to D9, where t :=
p — qwr(K) as follows: If t < 0, then a twist takes the leftmost string in D9 and slides it over the
q — 1strings to the right; then we repeat the operation |¢|-times. If ¢ > 0, a twist takes the rightmost
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CROSSING NUMBERS OF CABLE KNOTS 3405

(y)

FIGURE 3 Three positive (left) and three negative (right) twists on four strands.

string in D7 and slides it over the g — 1 strings to the left; then we repeat the operation |¢|-times.
See Figure 3. Now

¢(Dpq) =g c(K) +1tl(g—1) = ¢° c(K) + |p — gwr(K)| (g = 1),
while dep,q = 2q*c(K). Nowssetting 2¢(D,, o) — 2 = djg, we get |p — gwr(K)| (g — 1) = 1 which
gives that ¢ = 2 and p = gwr(K) + 1. Similarly, if we set p = gwr(K) + 1 and q = 2, we find that
2 c(Dp’q) —-2=d ijq must also be true. Hence, in this case, both (a) and (b) hold.
Case 2. Suppose that § > 2¢,(K). Then, by Lemma 2.4,

4d,[Jg, (m]=pgn®+0(n). )

Since § > 2¢, (K), multiplying both sides by g2, we get

pq>2q°c (K). (5)

On the other hand, since %p < 0, we clearly have _q—p < 2c¢_(K), and Proposition 2.3 applies to
give

4d_[Jg, (] =-2c_(K) n? + 0(n). (6)
By Equations (4) and (6), we obtain
4d, [Jg(m)] —4d_[Tx(m)] = (pq +2¢*c_(K)n* + O(n). ™
Now by Equations (7) and (5), we have
djg,, =pq+2q°c_(K)>2q°c,(K)+2¢*c_(K) = 2¢° c(K), ®)

which finishes the proof for part (a) of the theorem in this case.
Next we argue that in this case, we do not get any admissible knots: First, note that

D > 2qc (K) > qgwr(K).
As in Case 1, we get a diagram D, , of K, , with

¢(Dpg) = q° c(K) + (p — qwr(K)) (g — 1),
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3406 | KALFAGIANNI and MCCONKEY

while dj Jr,, =Pa+ 2g?c_(K). Now setting 2¢(Dpg)—2=dj Jk, , and after some straightfor-
ward algebra we find that in order for K, ; to be adm1531b1e we must have

2(¢* —q@c_(K)+2qc,(K)+p(g—2)—2=0

However, since p, c(K) > 0 and q > 2, above equation is never satisfied.
Case 3. Finally, suppose that qp > 2c¢_(K) > 0. By Lemma 2.4,

4d_[Jg, (m]=pgn®+0(n). ©)

Since =2 > 2¢_(K) > 0, we conclude that

-pq> 2q2 c_(K). (10)

Since § < 0, we clearly have § < 2¢,(K), and Proposition 2.3 applies to give

4d, [T, (W] =2c,(K) n? + o(n). (1)
By Equations (9) and (11), and using (10), we obtain
djg,, =20, (K)-pa>2¢*c,(K) +2¢°c_(K) = 2¢” c(K), (12)

which finishes the proof for part (a) of the theorem. An argument similar to this of Case 2 above
shows that we do not get any admissible knots in Case 3 as well. O

Remark 2.6. In [18], inequality (1) is also verified, for some choices of p and g, using cross-
ing number bounds obtained from the ordinary Jones polynomial in [19] and also from the
2-variable Kauffman polynomial. Theorem 1.1 shows that the colored Jones polynomial and the
results of [8] provide better bounds for crossing numbers of satellite knots, allowing in particular
exact computations.

3 | NONADEQUACY RESULTS

To prove the stronger version of inequality (1), stated in Theorem 1.1, we need to know that the
cables K, , are not adequate. This is the main result in this section.

Theorem 3.1. Let K be an adequate knot with crossing number c¢(K) > 0 and suppose that § <
2¢,(K) and P < 2¢_(K). Then, the cable K, 4 is nonadequate.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Let K be an adequate knot with crossing number c¢(K) > 0 and suppose that § <
2¢,(K) and P < 2c_(K). IfK is adequate, then c(Kp,q) = g c(K).

“$T0T ‘0TIT69P1

a‘tl

:sdny woiy

AsuR0IT suownoy) aanear)) ajqeardde ayy £q pauIaA0S 218 SI[ONIE V() (38N JO I[N 10§ K1e1qIT AuI[uQ £J[IA\ UO (SUOHIPUOI-pUE-SULI)/ WO L)1 Kreaqijaut[uo//:sdny) suonipuo)) pue swa ], ayl 23S *[$70T/L0/67] uo Areiqry aurjuQ £[1A “OF 1€ 1 SWIA/ZT 1 "0 1/10p/wod K31 A:



CROSSING NUMBERS OF CABLE KNOTS 3407

FIGURE 4 A diagram of the (—1,2)-cable of the figure eight knot and its all-B state graph.

Proof. By Proposition 2.3, for n large enough,
4d, [k, (M) =4d_[Ig, (] =d,n* +dyn+dy,

with d; € Q. By Proposition 2.3, and the discussion in the beginning of the proof of Theo-
rem 2.5, we compute d, = g% (4a, — 4 ay) =2 q* c(K). Now if K, ; is adequate, since by applying
Equation (2) to K, gives d, =2 c(Kp’q), we must have c(Kp’q) = g2 c(K). O

We now give the proof of Theorem 3.1.

Proof. First,weletK, p,and g such thatt :=p — qwr(K) <O0.
Recall that if K has an adequate diagram D = D(K) with ¢(D) = c.(D) + c_(D) crossings and
the all-A (rep. all-B) resolution has v, = v4(D) (resp. vz = vg(D)) state circles, then

4d_[Jx(n)] = =2c_(D)n? + 2(c(D) — v4(D)) n + 2v,4(D) — 2¢c,.(D), (13)

4d, [Jx(n)] =2c,(D)n? +2(vg(D) — c(D)) n + 2 c_(D) — 2 vx(D). (14)

Equation (13) holds for A-adequate diagrams D = D(K). Thus, in particular, the quantities
c_(D),v4(D) are invariants of K (independent of the particular A-adequate diagram). Similarly,
Equation (14) holds for B-adequate diagrams D = D(K), and hence, c, (D), vgz(D) are invariants
of K. Recall also that ¢(D) = ¢(K) since D is adequate.

Now we start with a knot K that has an adequate diagram D. Since wr(D) = wr(K), we have
c,.(D) = c_(D) + wr(K). Since D is B-adequate and ¢ < 0, the cable D, , is a B-adequate diagram

of K, 4, with vB(Dp,q) =qug(D)andc, (D) ) = q? ¢, (D). See Figure 4. Furthermore, since as said
above these quantities are invariants of K, ;, they remain the same for all B-adequate diagrams of
K,

P4

Now assume, for a contradiction, that K D is adequate: Then, it has a diagram D that is both
A and B-adequate. By above observation, we must have vg(D) = vp(Dpq) = qup(D) and c,(D) =
¢, (Dyq) = q*c, (D).

By Lemma 3.2, ¢(D) = c(K,, o) = q* ¢(K). Write

4d, [T, (m)]= xn’+yn+z,

for some x,y,z € Q.
For sufficiently large n, we have two different expressions for x,y,z. On the one hand,
because D is adequate, we can use Equation (14) to determine X, y, z. On the other hand, using

“$T0T ‘0TIT69P1

a‘tl

:sdiy wouy

3y) SUOIIPUOD) PUE SWIAL 3} 338 “[SZOZ/L0/6T] U0 ATeIqrT SuIuQ AT “OF €1 SWI/ZT [ 1°01/10p/wod Kajim .

2
Z
g
&
<}
]
2
g
g
&
g
&
&
S
S
g
Z
S
g
5
&
s
5
g
£
g
]
g
2
g
ES
g
o)
>
=
g
2
M
l
1
]
2
]
E|
g
2
g
S
s
=
=1
A
=
&
aQ
g
a
o)
5
El
E]
]
oo
5
g
Z
g



3408 | KALFAGIANNI and MCCONKEY

4d,[J Kipq(”)]’ x,y,z can be determined using Proposition 2.3 with a, and a; coming from
Equation (14).
We will use these two ways to find the quantity y. Applying Equation (14) to D, we obtain

y = 2(vg(D) — ¢(D)) = 2q vg(D) — 2 ¢* (D). (15)

On the other hand, using Proposition 2.3 with a, and a; coming from Equation (14), we have:
4a, =2c (D) =c(D)+wr(K). Also, we have 4 a; = 2vg(D) — 2c(D). We obtain

y=q@a)—2q(@—-1)(4ay)+2(g-1p

=2qug(D)—2g°c(D)+2(g—1) p—2q(g — Dwr(K). (16)

For the two expressions derived for y from Equations (15) and (16) to agree, we must have
2q((g—1)2wr(K) + p) — 2 p = 0. However, this is impossible since g > 1 and p, q are coprime.
This contradiction shows that K, ; is nonadequate.

To deduce the result for K, ,, with ¢(K, p,q) := p —qwr(K) > 0, let K* denote the mirror
image of K. Note that (K, ,)* = Kfp’ q and since being adequate is a property that is preserved
under taking mirror images, it is enough to show that K* b isnonadequate. Since t(K*, —p,q) :=

—p — qwr(K*) = —t(K, p, q) < 0, the later result follows from the argument above. O

Now we are ready to give the proofs of Theorem 1.1 and Corollary 1.2 which we restate for the
convenience of the reader.

Theorem 1.1. For any adequate knot K with crossing number c¢(K), and any coprime integers p, q,
we have ¢(K, ) > q* ¢(K) + 1.

Proof. By Theorem 2.5, we have c(K, ;) > q? c(K). We need to show that this inequality is actually
strict. Following the proof of of Theorem 2.5, we distinguish three cases.

Case 1. Suppose that § <2c¢,(K)and _?p <2c_(K). Then, by Equation (3), we have djx =
2g?c(K). By Theorem 3.1, K p,q 1s nonadequate and hence by Theorem 2.2 again we have
2¢(Kpq)>d ij,q, and the strict inequality follows.

Case 2. Suppose that § > 2c,(K). Then, by Equation (8), we have c(K p,q) > g° c(K), and the
result follows in this case

Case 3. Suppose that _Tp > 2c¢_(K). Then, by Equation (12) again, we have c¢(K, ;) > q* c(K),
as desired. O

Next we discuss how to deduce Corollary 1.2.

Corollary 1.2. Let K be an adequate knot with crossing number c(K) and writhe number wr(K). If
p =2wr(K) + 1, then K, is nonadequate and c¢(K, ;) = 4c(K) + 1.

Proof. 1f ¢ =2 and p = qwr(K) * 1, then, by Theorem 2.5, K, ; is admissible. Thus, by Theo-
rem 2.2, the diagram DP’2 constructed in the proof of Theorem 2.5 is minimal. That is, ¢(K p,2) =
c(Dp,) =4c(K) + 1. O
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4 | COMPOSITE NONADEQUATE KNOTS

In this section, we prove Theorem 1.4.
Given a knot K, such that for n large enough the degrees of the colored Jones polynomials of K
are quadratic polynomials with rational coefficients, we will write

4d, [Jg(m)] —4d_[Tg(n)] = d)(K) n? +d;(K)n + dy(K).

Lemma 4.1. Let K be a nontrivial adequate knot, p = 2wr(K) + 1 and let K, := K, ,. Then, for
any adequate knot K,, the connected sum K, #K, is nonadequate.

Proof. The claim is proven by applying the arguments applied to K; =K, in the proofs of
Lemma 3.2 and Theorem 3.1 to K; #K, and properties of the degrees of colored Jones polynomial
[8, Lemma 5.9].

First, we claim that if K; #K, were adequate, then we would have

c(K #K,) = 4c(K) + c(K,). 17)

Note that as p = 2wr(K) + 1, we have % <2c¢,(K)and _TP < 2c¢_(K). Hence, Proposition 2.3
applies to K;. Now write

4d, Uy i, (W] = 4d_g, e, (W] = dy(Ky #K) 12 + dy (K #EK) 1 + do (K, #K).

Since we assumed that K; #K, is adequate, we have d,(K; #K,) = 2 c¢(K; #K,) and by [8, Lemma
5.9], dy(K #K,) = dy(K;) + dy(K,) = 24 c¢(K) + 2 ¢(K,), which leads to (17).

Case 1. Suppose that p —2wr(K) = -1 < 0.

Start with D = D(K) an adequate diagram and let D; := D, , be constructed as in the proof of
Theorem 2.5. Also let D, be an adequate diagram of K,. As in the proof of Theorem 3.1, conclude
that D, #D, is a B-adequate diagram for K; #K, and that the quantities vgz(D,#D,) = 2vg(D) +
vg(D,) —1and c (D, #D,) = 4c, (D) + c.(D,) are invariants of K; #K,.

Let D be an adequate diagram. Then,

vg(D) = vg(D; #D,) = 2vE(D) + vg(D,) — 1 and ¢, (D) = 4c, (D) + c.(D,).

Next, we will calculate the quantity d; (K, #K,) in two ways: First, since we assumed that D is
an adequate diagram for K; #K,, applying Equation (14), we get

d, (K #K,) = 2 (vg(D) — c¢(D)) = 2(2vg(D) + vg(D,) — 1 — 4¢(D) — c(D,)).

Second, using by Proposition 2.3, we get d; (K;) = 2 (2 vg(D) — 4c(D) + p + 2wr(K)). Thus, we
get

Now note that in order for the two resulting expressions for d, (K;#K,) to be equal, we must

have (p — 2wr(K)) = 0 that contradicts our assumption that p — 2wr(K) = —1. We conclude that
K, #K, is nonadequate.
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Case 2. Assume now that p — 2wr(K) = 1. Since (Kp,z)* = Kfp , and being adequate is pre-
served under taking mirror images, it is enough to show that K*_p ,#K is nonadequate. Since
—p —2wr(K*) = —(p —2wr(K))) = —1, the later result follows from Case 1. O

Now we give the proof of Theorem 1.4, which we also restate here.

Theorem 1.4. Suppose that K is an adequate knot and let K, := K, ,, where p = 2wr(K) + 1.
Then, for any adequate knot K,, the connected sum K, #K, is nonadequate and we have

(K #K,) = c(K;) + c(K>).

Proof. Note thatif K is the unknot, then sois K, , and the result follows trivially. Suppose that K is
a nontrivial knot. Then, by Lemma 4.1, we obtain that K, #K, is nonadequate. By Part (b) of The-
orem 2.5, we have djg, =2 (c(D412)—1) and djg, = 2¢(D,) = 2¢(K) where D, is an adequate
diagram for K,. Hence, djg 4k, = 2(c¢(D#D,) — 1), where D; = D, , and by Theorem 2.2,

c(K 1 #K;) = ¢(D,#D,) = c(Dy) + ¢(D,) = c(Ky) + c(K5),
where the last equality follows since, by Corollary 1.2, we have c¢(K;) = ¢(D,) = c(Dp’z). O
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