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1 | INTRODUCTION

A sequence {A, | n € N} of algebras is called a tower of algebras if it is equipped with algebra
homomorphisms ¢, , : A, ® A, = A,,,, satisfying an obvious associativity condition. Tow-
ers of algebras arise quite naturally in representation theory — the prototypical example is the
sequence kS,, of group algebras of the symmetric groups. The representation theory of algebras in
a tower is most naturally studied simultaneously; more precisely, the category A := @, A,—mod
has natural endofunctors induction (Ind) and restriction (Res), both along the maps: : A, —
A, ;- The monoidal subcategory of End,(A) generated by induction and restriction tends to be
interesting and deserves careful study.

In the example of the tower of symmetric groups, Khovanov [8] used a diagrammatic construc-
tion to define the Heisenberg category HX and proved that there is a monoidal functor HX —
Endc,(D, S,—mod). An action in this context maps an object x € HX to a functor between cat-
egories of symmetric group representations. He proved that the Heisenberg algebra injects into the
Grothendieck group of HX and conjectured they were isomorphic — this conjecture was proved
recently in [4].

Other invariants of the Heisenberg category have also been attracting recent attention. First,
recall that the trace of a category C is defined as

K@y End(X) | X € 0b(C)}
C):= .
Tre) Fog—go/}

If C is monoidal, then its trace is an algebra, and there is a Chern character (algebra) map
Ky(C) — Tr(C) sending [X] — Idy.In [7], Cautis, Lauda, Licata, and Sussan showed that the trace
of the Heisenberg category is the W, ,, algebra. This provides an example of a category where
the Chern character map is not an isomorphism; in this example, the trace is a much bigger, more
interesting algebra.

Khovanov’s Heisenberg category was deformed to the quantum Heisenberg category Hés using
Hecke algebras by Licata and Savage in [9] and this category was generalized further to HBiW by
Brundan, Savage, and Webster in [3]. The traces of these categories were computed in [6] and [11],
and in both cases, they are closely related to the elliptic Hall algebra of Burban and Schiffmann
[5]. Finally, in [2], Brundan, Savage, and Webster showed that the Heisenberg category H?SW can
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 3 0f 49

be used to construct 2-representations of Kac-Moody 2-categories, which was an a-priori more
difficult problem.

This history of interesting results involving Heisenberg categories motivates the goal of the
present paper: study symmetries of the representation category of the tower of Temperley-Lieb
algebras TL,. Some progress toward this goal was made by Quinn in [12], who gave a partial
diagrammatic description of a monoidal category that acts on TL := ¢, TL, —mod.

It turns out that the construction of a category acting on TL is more subtle than one might
expect from the Heisenberg category (for reasons we discuss later). Our construction actu-
ally involves three categories: a “universal” monoidal category W, a 2-category 2Weyl, and an
“asymptotic” monoidal category W*. The universal category is used to construct the other two
categories by imposing different sets of relations on endomorphisms of the tensor unit 1. In other
words, there are functors from W to HomZWeyl(n, m) and W that quotient out certain rela-
tions on morphisms. The resulting 2-category acts on TL with its generating 1-morphisms acting
by induction and restriction. We expect that W acts “asymptotically” on TL, but we leave the
details of this to future work. In Section 8, we discuss an asymptotic action of this category under
the K|, functor.

Let W’ be the additive C(g)-linear strict monoidal category generated by the objects Q_ and
Q.. Morphisms in W’ are generated by oriented cups and caps, a disoriented cupcap, and
endomorphisms of 1 given by integer-labeled boxes. Relations in this category are given in
(15)-(24).

A key structural difference between the Heisenberg and Weyl categories is the existence of
idempotent endomorphisms of the monoidal unit of W’ called “idempotent bubbles.” The image
of such an idempotent is a subobject of 1 in the Karoubi completion — the universal Weyl cat-
egory — denoted as W. These bubbles are expressible in terms of the generating morphisms
in W, but there are no analogous morphisms in the present definition(s) of the Heisenberg
category.

Theorem A (Proposition 4.6). There is an isomorphism in W:

Q.®0Q,=(Q,®Q_)®C,.

This relation motivates the name for our category, since it is very closely related to the relation
xy = yx + 1 in the Weyl algebra.

Remark 1.1. The class of the object C,, is an idempotent [C] # [1] in the Grothendieck group of
W. However, [Cy] does not commute with [Q, ] or [Q_]. For example, see Equation (60).

Remark 1.2. Based on the results of the present paper, we expect that there exists an extension of
the Heisenberg category (or, 2-category) that contains idempotent bubbles that act by projection
onto isotypic components — finding the correct definition of this category seems to be an inter-
esting but challenging question that we hope to return to in the future. If we identify S,,—mod
with K& (Hilb, (C2)), then we expect that these idempotent bubbles should act geometrically
as restriction of sheaves to fixed points. However, it is not clear whether there is a direct relation
between the Heisenberg category and any of the Weyl categories introduced here — Remark 4.5
shows that the standard surjection from the Hecke algebra to the Temperley-Lieb algebra does
not extend to a functor from the Heisenberg category to W.

A *S "STOT “0SLLE9YT

:sdny woiy

1[uoy/:sdny) suonipuo) pue sua, 3y 338 *[$70T/L0/6T] U0 Areiqu dunuQ M “pL10L SWIHTT11°01/10p/wod Kaim£.

puE-sULIR) /W0 KM’ £.

ASURDIT suowwo) 2anear) d[qearjdde ayy Aq pauIaa0s aIe SI[O1IE V() (asn JO [N 10§ A1eIqr] auruQ A3[Ip UO (



40f49 | HARPER and SAMUELSON

Another difference between the Heisenberg category and the category in our construction is
the necessity to use a 2-categorical approach to define an action on a category of modules. In par-
ticular, the relations that naturally appear between morphisms in W have constants that depend
on n (i.e., they depend on which summand of TL = §,, TL,, —mod the morphisms are acting on).
These constants are encoded into the integer-labeled boxes and act as rational functions whose
denominators vanish for certain values of n, which means that the action of an m-labeled box
is only defined when 7 is large enough. We therefore construct a 2-category 2Wey] before con-
sidering an action on TL. Each morphism category in 2Weyl is defined as a quotient of W. Our
first main result is the construction of this 2-category 2Wey] that acts on TL via induction and
restriction.

Theorem B (Theorem 6.2). There is a well-defined functor p : 2Weyl — End(TL) that maps Q_
to restriction, Q. to induction, and Cy. to the projection onto the isotypic simple component W7 _,
in TL,, —mod for each n.

k

Using this functor, we describe spanning sets and bases of certain endomorphism spaces of
1-morphisms of 2Weyl.

We also define a quotient of W called the asymptotic Weyl category W. We give a conjectural
description of a subalgebra K,(W*)" C K,(W) generated by the classes of Q,,, Q_, and the C; by
defining an algebra K by generators and relations that surjects onto this subalgebra of K,(W*)’
(see Proposition 8.4 for a precise statement).

The monoidal category W< is called “asymptotic” because we show that K “acts asymptoti-
cally” on K,(TL). Our notion of an aysmptotic representation is defined as an increasingly-filtered
algebra acting on a decreasingly filtered vector space, which defines an action of an algebra ele-
ment on the nth filtered component as n — oo, see Definition 8.8. This action is defined such
that it respects composition in the algebra (see Proposition 8.9). It is in this way that K “acts”
on K,(TL) despite W and W not admitting actions on TL in the usual sense. We expect that
there is a categorification of this notion of asymptotic representation that lifts to W* (or some
subquotient category) acting asymptotically on TL.

There are a number of avenues we intend to pursue in future work. In particular, we would like
to describe the Grothendieck category of the 2-category 2Weyl, which will require stronger basis
theorems than we currently provide. We also plan to use skein-theoretic techniques and results
to describe the trace of 2Weyl, which we expect to be closely related to Cherednik’s double affine
Hecke algebra for 31,.

We hope to relate W, W*, and 2Weyl to other categories appearing in categorical representa-
tion theory. Since any object V in a monoidal category generates a tower of algebras as End(V®"),
the asymptotic categorical representation theory of these may also be interesting.

An outline of the paper is as follows. We include a table of notation in Section 2. In Section 3,
we provide background results about Temperley-Lieb algebras. We give a graphical description of
W in Section 4, and prove some diagrammatic relations. In Section 5, we construct the 2-category
2Weyl, and we prove that it acts on TL in Section 6. In Section 7, we prove some basis theorems
for morphisms spaces in W and 2Weyl. Finally, in Section 8, we give a conjectural description of
the Grothendieck group of W and show that it acts asymptotically on K,(TL). The Appendix
contains a summary of some of Quinn’s results from [12].
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2

| TABLE OF NOTATION

Here, we include an index of notation, along with the section where the notation is introduced.

B Box algebra, Section 7.1 Py Pathsin A, graph ending at m,
Section A.1
C Algebra of orthogonal idempotents, Q,.,Q_ Tensor generators, Section 4
Section 7.2
C, Algebra of |n/2]| orthogonal Q. Tensor product object, Section 4
idempotents, Section 7.2
C,s Section7.2 Qg Qo Images of idempotent cupcaps, Rem.
4.4
Cr Image of idempotent bubble P Representation 2Weyl — End(TL),
@ € End(1), Section 4 Section 6
U;, N; Cup and cap in TL,, Section 3 o Precompletion of p, Section 6
e,,  Matrix element in TL, —mod, TL, Temperley-Lieb algebra, Section 3
Section A.1
e; Idempotent TL, generator, Section 3 TL = @, TL, —mod Section 6
elf Quasi-idempotent TL,, generator, TL =Ky(TL) Section 8.2
Section 3
= Equality in Homggyy,(n, —), Rem. 6.1 v, U, Vectors in TL,, —mod for p € P",
Appendix
= Equality in Homg,grpy(n, —) forn > 0, W Universal Weyl category, Section 4
Rem. 6.1
f™  Jones-Wenzl idempotent, Section 3 w Precompletion of W, Section 4
K Section 8.1 2Weyl Weyl 2-category, Section 5
\% Null object, Section 6 2Weyl’ Precompletion of 2Weyl, Section 5
pr Pathsin A, graph, Section A.1 Wwe Asymptotic Weyl category, Section 8
wr Irreducible representation of TL,,,
Section A.1
3 | THE TEMPERLEY-LIEB ALGEBRA

Fix a formal parameter g and ground field C(q). Let V be the two-dimensional irreducible rep-
resentation of U = U,(8l,) and W =V AV, which is a direct summand of V®2. Let TL, =
End(V®") be the Temperley-Lieb algebra on n > 0 strands. The algebra is generated by
quasi-idempotents elf fori=1,..,n—1, where

N2 -1 ! ! !,/ ! _
() =(q+q e =[2]e;, €18 = ¢> @

n

and [2] = g + q~'. More generally, we write [n] for qq_—;;_-l"

. We denote the idempotent form of

these generators by e; = e/ /[2], which satisfy ei2 = ¢;. The Temperley-Lieb diagram for the gener-
ator elf is the cupcap over strands i and i + 1. We use the convention that strand 1 is on the right
and strand n is on the left. For example, the element e; € TL, is given in the diagram below.
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6 of 49 HARPER and SAMUELSON

/

TL, e} = 2
N

The natural inclusion TL, < TL,; is the m =1 specialization of the structure maps of the
Temperley-Lieb tower of algebras, which are the following algebra maps:

x |~ x ©)

The partial trace operation ptr,, : TL, — TL,_, is defined as the TL,_;-bimodule map

X = X (4)
I

and for x € TL, < TL,,,,, we have e/ xe/ = e/ ptr,(x).
We briefly recall the Jones-Wenzl idempotents. For each n > 0, there exists a unique £ € TL,,
that satisfies the following properties:

. fM 2o,
. f(n) f(n) — f(n)’
s e,fW = fMWe, =0foralli € {1,..,n—1}.

Let f(© denote the empty diagram and set f() to be a single strand. For n > 2, the Jones-Wenzl
idempotents are defined by the recursive relation

1) _ oy _ M ey, )
g = g = L g, o, ®

where f(V € TL,,,, via the inclusion TL,, < TL,, . These idempotents also satisfy the relation

ptr, (f) = %ﬂ"-l). ©)

In some cases, it will be easier for us to use the notation U; and n; to describe Temperley-
Lieb diagrams. For instance, we will consider the TL,, ,-diagram U,, f**n,. Each of U; and n;
indicates a cup or cap over strands i and i + 1. In this way, the first n — 1 strands of f+1 are
to the right of U, and the n + 1st strand of f**1) is to the left of U,, (in the right to left labeling
convention), and similarly for n,,. The expression U, f"+Vn, is equal to e, ,e,.,, f"+ Ve, ., and
may be drawn diagrammatically as

M
Unf(n+1)ﬁn — f(n+1) (7)

e\l
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4 | THE UNIVERSAL WEYL CATEGORY
4.1 | Definition

We define an additive C(q)-linear strict monoidal category W’ as follows. The set of objects is
tensor generated by the objects Q, and Q_. An object in W’ is a finite direct sum of objects Q, =
QE{ R ® Q€1 ,wheree = ¢, - €, € {+, —}’. We denote the unit object by 1, which corresponds
to the empty sequence.

The space of morphisms Homyy,(Q,, Q./) is the C(q)-module generated by diagrams

| S N N\ N ®

k )

for k € Z modulo rel boundary isotopies. Notice that the last diagram| k |has no boundary compo-
nents. We call such elementary diagrams boxes. The other diagram in (9) is called a (disoriented)
cupcap. We refer to the nonsolid components of cupcaps as doubled strands. The orientation at
the endpoints of a diagram in Homy(Q,, Q) must agree with the signs in the sequences ¢ and €/,
where + corresponds to T and — corresponds to |. Composition of morphisms is given by stacking
diagrams. Diagrams without boundary components are endomorphisms of 1.

Before stating the relations in W/, we make the following notational conveniences for k > 0.

= [z]bﬂ © =@ (10)
Q) -

= ‘ (12)
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8 of 49 HARPER and SAMUELSON

] := > := 13)

( k+1 )T:=O— k (14)

Remark 4.1. The local relations we impose are significantly more complicated than in the Heisen-
berg category. We do not have a satisfying explanation for this complexity, but our ansatz for
imposing relations is “relations that hold in the action of the category should hold in the cate-
gory itself.” The relations imposed will hold for both categories we construct from W’ in their
actions on Temperley-Lieb modules.

We impose the following local relations between morphisms in W':

[2P = [2] [Z]Z§ = [2] (15)

and reflections of the relations in (15) across a vertical axis,

2] = 2] j@ =(1-©@) 1)

O:[z] @= ok +1 (|- ]) ®
©),

Il
|
)
=
I
_
+
—
|
)
=
I
)
v‘v
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o|-ole-©)

U

[@=<@+@>[@ 19

QRA ke
OD-5® )| = e
() - ([F) s ® oo @
@‘@[@= 9O @|@\@@@< )
@ @
[z]qu =[2]%+[2]@@ +@|@[@( 2K
(24)
+@@|@ Y _@‘@[@ P
fo @ @li==n)




10 of 49 | HARPER and SAMUELSON

Remark 4.2. We obtain a slightly different, but equivalent, set of relations from (23) by rotating
the diagrams using cups and caps.

o ©

®-OOBE= ®- OO
e ©

The relations in each of (23) and those directly above, together with (19), imply

do @ T
® =© @@( 1))+ Q@|-) + (O

O, ) 0O
® =@®< 1)) fole= Q)+ ()OO

Remark 4.3. Relation (24) is somewhat complicated but we make use of it in the proof of
Proposition 5.5.

Let W be the Karoubi envelope of W’. Thus, the objects of W are pairs (Q,, e), wheree : Q, —
Q. is an idempotent. Morphisms in W are triples (f, e, e’) where f : Q. — Q. is a morphism in
W’ such that f = ¢’ o f = foe. For each k > 0, let C}, be the image of the idempotent @ in
End(1) as an object in W.

Remark 4.4. The second relation in (15) together with the first relation in (17) implies that

by taking the right trace of the former and resolving the counterclockwise circle. This shows that
the cupcap is an idempotent in our category, and similarly for its dual. Let Qg denote the image
of this projection on Q?z as an object in W. The image of the dual cupcap is denoted as Q.
Diagrammatically, we write Qg as the source and target of an isolated “doubled strand.” It is then
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 11 of 49

natural write the projection and inclusion maps between Q?jz and Qg as factors of the cupcap:

A\:Q+®Q+_’Q@ &NJ:QGB_’Q+®Q+

Relations that only involve doubled strands can be expressed as relations on the full subcategory
of W generated by Qg and Qg. In particular, the first relation in (20) and the relation above can
be formulated as

\N
=

Left and right duality between Qg, and Qg follow from left and right duality between Q. and

Q_. For example,

Remark 4.5. The standard surjection from the Hecke algebra H, to TL, defined on standard
generators o; — qi/? —qV Zelf does not determine a functor between the Heisenberg and Weyl
categories }/* — W. Indeed, the relation

= and = (25)

in Hés mapping to

0= g2 O —q )2 T

implies idQ+ =0.
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12 of 49 | HARPER and SAMUELSON

4.2 | Basicisomorphismsin W

There are several isomorphisms in W that follow from single relations together with idempotency
of bubbles. We will suppress the tensor product from the notation to improve readability, that is,
A @ B is written as AB. For example,

CQy =2 QL C B CQLC,, (26)
Qi€ = CQLC & €1 Q4G @7

and similar identities involving Q_ follow from (19) and its rotation, and (21). In addition,
invertiblity of @ from (22), and (18) and (23) imply

CyQ_CyQ,Co = Cy . (28)

The remaining isomorphism, which lends this category its name, is stated as a proposition.

Proposition 4.6. The following isomorphism holds in W:

Q1 =Q,_&C.

Proof. Taking the second relation in (15), adjoining (tracing) the left strands, and reflecting across
a vertical axis, we observe that

Y

[2]2 =[2] = - |©

N

with the second equality coming from the second relation in (16). We isolate the idQ7+ term and

then apply (19) and (23) at k = 0 to obtain the identity

ojn

Y

A
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 13 of 49

Notice that only one term from (19) contributes. The morphisms on the right side of the relation
factor through the objects Q, _ and C, are presented in the diagram below.

T
R

Thus, the equality above can be formulated as 1,0, + 1,0, =1idg . We have py1; =0and p1, =
0 as a consequence of (20). One can check p;; =idg, using (15) as well as p,1, = id, since

@ = 0and @ . @T = 1. This proves the desired isomorphism. O

Remark 4.7. In the Grothendieck group K,(W), the isomorphism in Proposition 4.6 becomes

[Q-1[Q.] = [Q4][Q-]1 = [Col (29)

a loosening of the defining relation of the Weyl algebra where 1 is replaced by a noncentral idem-
potent.

This isomorphism is analogous to one in the quantum Heisenberg categories HBSW

with central
charge k studied by [3] (which specialize to the quantum Heisenberg category of [9] by setting
k = —1). In the Heisenberg categories with nonpositive central charge, there is an isomorphism

Qf, =M @1k, (30)

In the isomorphism of Proposition 4.6, the object C, on the right-hand side is a subobject of 1. In
arough sense, this behavior is “in between” the Heisenberg categories with central charges k = 0
and k = —1.

4.3 | Relations involving bubbles

In this section, we state relations that follow from the defining relations of the universal Weyl
category that primarily involve bubbles or diagrams without boundary components.
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14 of 49 | HARPER and SAMUELSON

Lemma 4.8. For k > 0, we have the equality

X So-Yo

Proof. By definition of the k + 1 labeled bubble

O-00-0

Thus, we obtain the desired result by multiplying the above equalities on the right by the cupcap
and applying the left relation in (20). [l

The identity @ = 0 is consistent with formally applying Lemma 4.8 at k = —1 and noting

the second relation in (20).

Lemma 4.9. We have the following identities:

©=1_@ and ©=1.

Proof. Since [2] is a unit in C(q), each of the desired relations are verified by direct computation:

21( =12l -(O-w

Lemma 4.10. The following identities hold in W:

@=O and @=@fork>0.
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 15 of 49

Proof. In the case k = 0, after expanding the doubled cup and cap, we apply the second relation
in (20) to get zero. For k > 0, we have

o-(E))-00-O

The second equality is a consequence of the first relation in (20) and the last equality is due to
Lemma 4.9. Ol

Remark 4.11. Relations dependent on @ appearingin (18), (17), and Lemma 4.10 are all consistent

with the respective @ independent relations in (18), (17), and Lemma 4.9 via the formal infinite
sum

O-20- 2 =10+(E=2) () -=-0[])
O-30- IO ([=)®-n
G-20-2)-0
O-20-3)-20-

Although the infinite sum identity is not a relation in W, it appears naturally in the categorical
representation of the Weyl category on the direct sum over n of TL,,-modules. On any module, C,

the image of @ in 1 acts as a projection onto certain isotypic simple module components and
the sum over all such projections is the identity on any module. Since there are only finitely many
isomorphism classes of simple modules for a given n, all but finitely many terms in this infinite
sum vanish.
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16 of 49 | HARPER and SAMUELSON

Remark 4.12. In light of the relations

N

: O-

~

from Remark 4.4 and Lemma 4.9, we have the isomorphism Qg = 1in W.

5 | THE WEYL 2-CATEGORY

As it is currently defined, the monoidal category W does not act on TL, the sum over n of the
categories of Temperley-Lieb modules. This is because the constants needed to define the action
depend on n in an essential way. This means that to define the action we want, we need to use the
2-categorical point of view. In this section, we define the Weyl 2-category and compare isomor-
phisms that hold in the 2-category but not in the monoidal category. The action on ,, TL,, —mod
is described precisely in the next section.

5.1 | The Weyl 2-category

The 2-category 2Weyl is the Karoubi completion” of a 2-category 2Weyl’ that we define now.

* The set of objects of 2Weyl’ is V L Z,, (V should be thought of as the null object),
* Homyyeyy (n,m) is trivial® if m = Vorn =V,
* Form,n € Z, Hom,yye,y(n, m) is the category defined diagrammatically below.

Definition 5.1. For m,n € Z,,, the additive C(g)-linear strict monoidal 1-category
Hom, e,y (n, m) is defined as follows:

* Objects are Q,, where € = (€., ..., €;) is a finite sequence of + and —, withm = n + Zle €; and
n+ 2{21 ¢; > Oforeach 1 < j < #%. Let 1, denote the tensor unit in Hom,yey (1, 1).
* Morphisms in Hom,y,,y (1, m) are generated by

nyn+l ,n m n, n—1,n /\
u n n-—1 n U ’ n n—1 n

T By the Karoubi completion of a 2-category C, we mean the 2-category with the same objects as C, but whose morphism
categories are the Karoubi completions of those of C.

#The trivial additive 1-category has one object and one morphism.

§In these sums, + and — are considered as 1 and —1, respectively.
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 17 of 49

The rightmost label indicates the source 2-object” and the leftmost region indicates the target
2-object. Region labels for diagrams in 2Weyl’ extend uniquely after the choice of the rightmost
label, and we may use the notation Homyyy,,y (1, —) when the left region label is not specified.
Labeled boxes also appear as morphisms in Homyy,,y (1, 1) via the relations imposed from
W/, but are not considered generators because of relation (33).

* We impose the local relations (15)-(24) on morphisms; these are the same local relations
imposed in W’. As in W/, morphisms are considered up to planar isotopy. We impose the
additional relations on morphisms in 2 Homyyeyy (1, 1,,):

=0if 2k > n, (31)
[n/2]
> (k)=1, (32)
k=0
) i+ k>0
kl= [n+k+2] (33)
0 ifn+k+1<0.

Remark 5.2. The motivation for (33) follows our ansatz, Remark 4.1, that in the representation on
TL, a box should act as multiplication by the scalar [n + k + 1]/[n+ k + 2] if n + k > 0. We
assign the value zero to all other boxes so that Hom,ye,y (1, —) is defined as a quotient of W'. In
this way, no invertible box in W’ is mapped to zero. This assignment of boxes to constants also
eases the description of bases of endomorphism categories.

On the other hand, the bubble @ in region n should act on TL by projecting onto the
W, isotypic component (see the Appendix for a discussion of these modules). If n — 2k <0,
this module is 0. We therefore set such a morphism to 0 as well. While the sum over these
nonzero components is the identity on any module, the sum of nonzero bubbles is 1. See also
Remark 4.11.

We use = to indicate that an equality holds in a morphism category Hom,yeyi(n, m) (or
Homyyyey(n, —) if m is not specified) and we may omit any explicit region labels in the corre-
sponding diagrams. The example (34) below shows an equality of 2-morphisms between objects in
Hom,yyey(n, 1 + 1) as region labeled diagrams and equivalently using 2 to specify the rightmost
region label. The equality itself is determined by (16) in the definition of W':

(2] = n+l |n or equivalently [2] =

(34)

By 2-object, we mean an object of the 2-category 2Weyl’ (which belongs to V LI Z), notan object in one of its morphism
1-categories (which is a sequence €).
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18 of 49 | HARPER and SAMUELSON

For each n >0, let 1, € Hom,yyey(n,n) denote the tensor unit of Hom,yeyi(n,n) and
End,weyi(1,) its algebra of endomorphisms in 2 Hom,yeyi(1,,1,). As a consequence of the
construction of 2Weyl, End,yey1(1,,) is described as the quotient of Endyy(1) by the relations

(31)-(33).

Remark5.3. Forn > 0,letG, : Endw(1) — End,ywey1(1,) be the quotient map determined by the
relations (31)-(33). By definition, End,yey1(1,) = im(G,).

Remark 5.4. Many terms in relation (24) vanish if n — 2k + 2 = 0, leaving the relation

@%@"@@@ et

5.2 | Isomorphisms in Hom,y,,(n, m)

We discuss the isomorphisms that are introduced in the hom-categories Homyyey(n, m) in com-
parison to those of W stated in Section 4.2 and how some isomorphisms in W become trivialized.

The assignment of = {Z:ﬁg for n + k > 0 means that boxes appearing in relations are invert-
ible, and can be used to construct isomorphisms that are not present in W. Relation (31) implies
a number of diagrams that are present in the defining relations of W but vanish in certain

hom-categories of 2Weyl. Many of these follow from the basic relations

)| ®2o ®|®*

Or more simply, it 0 and @ "Z' 0 when n = 2k. In such instances, the corresponding

objects of the Karoubi completion C; are also zero.

For example, relations in Remark 4.2, (18), and (33) imply the isomorphism C}, = C; Q,C; Q_Cy
in Homy,yeyi(n, n) for n > 2k. However, if n = 2k, then C;,Q,C;Q_Cy =0 as @ "Z! 0, but
Ci 2 01in Homyyyey (1, n). At this critical value, boxes that appear in the relevant rela-
tions are also mapped to zero and so the isomorphism fails in this case. If n < 2k, then both C},

and C;.Q,, C;, Q_Cy are zero in Homj,yey1(n, n) and the isomorphism becomes trivial. The various
isomorphisms dependent on the value of n relative to k are summarized in Table 1.

Proposition 5.5. The isomorphisms in Table 1 hold in Hom,yyey (1, —).
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TABLE 1 “Generic” isomorphisms in Hom,yey (1, —) and their modification at critical values.

Above critical values
CQ, =CQ,.C b CQ,.Cpy

Q,C, =CQ.C, ®C,Q,Cy

C,Q_=C,Q_C, ®CQ_Cyyy

Q—Ck =~ CkQ_Ck @ Ck_lQ_Ck

CrQ_CQ,C =Cy
Cr1Q GO G =Gy

Cr = CQ,CQ_Cy

Cp =GR, C,Q Cy
Cin QG0 Cp = Cr1Q,Cry Q. Cy

CQ_Ci1Q_Cryy = CQ_CQ_Cryy

At critical values
CQ, =CQ.C,
00
Q.G = CGQ.Cy
00
C,0_=CQ_C,
00

Q.C, =C,Q.C,
00

00

none’

00

none

00

00

none

00

none

00

Critical values
n=2k-1
n<2k-1
n =2k

n <2k
n=2k+1
n<2k+1
n =2k

n <2k

n <2k
n=2k-1)
n<2k-1)
n =2k

n <2k

n <2k
n=2k

n <2k
n=2k+1)
n<2k+1)

"The relation satisfied by the morphism in (23), which witnesses the isomorphism generically, becomes 0 = 0 when n = 2(k — 1).
Moreover, C,_;Q_C;Q,C,_, = 0and C,_, # 0 and are therefore not isomorphic.

Proof. The most interesting relation in the table is Cj,,1Q,C; Q. Cy = Cy;1Q,C)11Q,Cy, which
we will prove directly for n > 2k. The isomorphism C; ,Q_C,Q_C) = C;,1Q_C;,1Q_C is a
consequence of rotating the diagrams. The proof of other relations in the table is straightforward
to verify from Section 4.2 or the relations from (17), (18), (23), and Remark 4.2 with (33). For the
critical values of k relative to n, certain morphisms will vanish because of (31) and (33).

To prove Cj1Q,.C Q. Cp = Cp Q4 Cy1 Q4 Cy in Homyyyey1(n, 1 + 2) for n > 2k, we show that

the maps

and

witness the desired isomorphism up to a normalization by boxes. By (15), (19), and (24), their

compositions are
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©
SICEC
2 =[z]@ @@=@@@ —2k—1 | ([ -2k )T
®©

) 1@

®

)
z]z@m@%@@@@) 1] (=)
@@ )

The boxes appearing in the simplified expressions are invertible for n > 2k. Thus, the above maps
can be normalized, which proves the isomorphism. If n = 2k, then C,;0Q,C},;Q,C) = 0 and
Cr41Q,CrQ,Cy 2 0. Both objects are isomorphic to 0 if n < 2k. O

Proposition 5.6. The isomorphism Q_, = Q,_ @ C, holds in Hom,yey (1, n) for any n > 0.
Proof. The proof of Proposition 4.6 is unchanged for each n. O

Remark 5.7. In each isomorphism of Table 1, if n is sufficiently large n > 2K, where K is the
largest index of C} in the isomorphism, then the “generic form” of the isomorphism holds in

HomZWeyl(n’ _)-

6 | ACTION OF 2Weyl ON TL

We recall the notion of a 2-categorical representation in the sense of [9]. Let X = @,,,c)s X, be an
M-graded additive category, where M is a monoid. The collection of endofunctors on X naturally
forms a 2-category whose objects are the elements of M, whose 1-morphisms from n to m, for
n,m € M, are the functors from &, to &,,,, and whose 2-morphisms are natural transformations.
Denote such an endofunctor category by End(X). If C is a category, then a functor p : C — End(X)
is called a representation of C on X and we say that C acts on X. In this section, we construct a
representation of 2Weyl on the category of Temperley-Lieb modules TL := TL,—mod,
with the convention that TL_; —mod is a null object denoted as V.

n>-—1
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 21 0f 49

Every (TL,,, TL,)-bimodule M determines a functor
M® — : TL, —mod — TL,, —mod Ve MV (35)

and any homomorphism M; - M, of (TL,,, TL,)-bimodules gives a natural transformation
between the corresponding functors. In this way, a representation of 2Weyl is an assignment
of bimodule maps to diagrams.

Fork,l < n,let  (n), denote TL,, as a (TL,, TL,)-bimodule. Tensoring the bimodules . ;(n + 1),
and ,_,(n), corresponds to induction and restriction functors on TL, respectively.

We now propose a representation o’ : 2Weyl’ — End(TL) that makes the following assign-
ments.

* On objects, p’(n) = nforn > 0and p’(V) = V.

* The functor p’ maps the object 0 in each hom-category to 0. Each 1-morphism Q. €
Hom,yeyi(, 1 + ||€]]) with € =¢,...¢; is mapped by p’ to a sequence of induction and
restriction bimodules, with + mapping to induction and — mapping to restriction.

* On 2-morphisms, p’ makes the following assignments’ on elementary diagrams:

(N = X®y = xy] (1), y (W = (W
U =[x~ x] gy = (14 Dy (n +1),,,
[x = ptrn+1(x)] : n(n + 1)n+1 (I’l + 1)n - n(n)n,

X = Z Crep,r ® er,px . n(n)n = n(n)n—l (n)n’
p,rep”
Pn=rn

n
[X = xen+1] : n+2(n + 2)n - n+2(n + 2)na

>-C D

where the map x — ptr,;(x) is the right partial trace of x as defined in (4) and ¥, repr c,€),, ®
Pn=rn

e, p is as described in Section A.3.

Remark 6.1. In a slight abuse of notation, we use Z to denote an equality in a hom-category
Homg,g¢rpy(n, —), when it is clear that we are considering an equality of morphisms under o
Its use here is similar to that in 2Weyl where Z indicates the rightmost region label on diagrams
isn and establishes that the equality is between natural transformations of functors whose sources
are TL, —mod. This convention fits with our ansatz in Remark 4.1.

The notation = will typically be reserved for giving an explicit description of an action of a
diagram on TL, —mod. In addition, we will use = ifan equality Z holds for all n > 0. Typically,
this will be used for equalities between the images of diagrams under p’.

Since End(TL) is idempotent complete, the proposed functor p’ extends to a functor p :
2Weyl — End(TL). In Corollary 6.9, each object C; is shown to map to P, the functor that

TWe use a notational shorthand [x ] : X — Y to describe a function f : X — Y defined by a formula f(x) =s.
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22 of 49 | HARPER and SAMUELSON

projects onto the W', isotypic component of any TL,-module. Here, W, is an irreducible
TL,, defined in the Appendix.

Theorem 6.2. The functor p is well defined and determines a representation of 2Weyl on TL.

It is sufficient to prove the claim for p’ by showing that the defining relations on 2-morphisms
in 2Weyl hold when interpreted as maps of Temperley-Lieb bimodules according to the
assignments above. Therefore, the following corollary is a tautological consequence.

Corollary 6.3. The images of Q,, Q_, and C) under p are consistent with the isomorphsisms
described in Table 1 and Proposition 5.6.

Remark 6.4. Corollary 6.3 can also be proven by explicitly computing the induction, restriction,
and projection functors on simple modules in TL, —mod. For an irreducible TL,, representation
an, the functors Ind, Res, and P, act as

Ind(W?) = WL @8, W, (36)
Res(W") = 8, WL @8,,,W', 37
Pk(W:,l,l) = 5m,n—2kW::,l_2k (38)

from Appendix A.l. We use the convention that W,'}1 =0ifm<0, m>n,or m#nmod2. We

write 31- j :=1—2¢;; toemphasize these conventions and to avoid confusion when composing these
functors. With this presentation of induction, restriction, and projection, it is straightforward to
verify the isomorphisms in Table 1 and Proposition 5.6.

It is important to remark that an instance of “none” in the table corresponds to an instance
where the generic isomorphism implies a relation between a zero and a nonzero object, as is the
case in 2Weyl. For example, if n = 2(k — 1) so that n + 1 — 2k = —1, then

P (W =Wy,

P,_joResoPpoInd oPy ;(W])=P;_; 0 Res o P (W) 0.

Hence, there is no isomorphism between P),_; and P;,_; o Res o P, o Ind o P, _;.

We begin the proof of Theorem 6.2 by noting that some relations were proven in [12], see Sec-
tion A.3. These include the isotopy relation and the first relations in (16) and (17). We proceed by
first investigating the action of diagrams that are generated only by Temperley-Lieb generators. In
the representation, it is enough to show that the relations in W’ hold for all choices of rightmost
region labels n > 0. The proof of the theorem is complete once the image of all relations in W’
mapped to Homyyey1(n, m) and interpreted as equalities of bimodule maps (i.e., 2-morphisms in
End(TL)) are verified for all rightmost region labels (i.e., 2-objects in End(TL)).
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 23 of 49

6.1 | Action of Temperley-Lieb generators

The first relation in (15) as applied to , +3(n + 3),, follows from the Temperley-Lieb relation

el e e Similarly, ¢/ e’ e e/ implies the reflection of (15). The second

ni2%ni18ni2 = Cnyar n+1€n426041 = Gl

relation in (15) and its reflection are proven in the lemma below.

Lemma 6.5. The following relations hold under the functor p':

and [2]? = [2]

Il
—_

[\
=

[2]?

Proof. The relations in (A.14) imply the adjunction between induction and restriction. Therefore,
the first relation is equivalent to

Y )

Fix n > 1. Then, the left side of the above maps x® y € ,,,(n +2),(n +1), to xen+1ye
x ptr,1(¥)e) ., which is exactly the image of x ® y under the right morphism.

The second relation is proven directly for n > 0. The left side of the relation determines an
endomorphism of the bimodule ,(n + 2),,, mapping x to ptr,,(xe! +1) w41 Using the Jones
basis of the Temperley-Lieb algebra [13], x = x; + x,e/ __x; for some x;, x,, x5 € TL,, ;. Then
as

n+1

n+1

PUr,yo(xey ey y = (6 Pryyo(er 1) + X5 Pir, (e Xse, ey
= X1y, + X, Ptr, o (Ptr, 1 (x3))e),
= (X1 + X, ptryyy(x3)ey
=(x; + xzen+1x3)e

n+1 xen+1

the claim follows. [l
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24 of 49 | HARPER and SAMUELSON

Remark 6.6. The Temperley-Lieb relation (e”1 +1)2 = e; 4+ implies the diagrammatic relation

It is also implied by Lemma 6.5 by closing the right strand of the diagram and resolving the
counterclockwise oriented circle as [2].

6.2 | Action of bubbles

Before discussing additional relations involving boxes, namely, those in which boxes are intro-
duced, that is, (18), (17), (24), and (23); we must first discuss the action of bubbles @ beginning

with the 0 labeled circle. The latter equality in (16) follows from our definition of @ Since @
appears in the definition of both diagrams in (10) and are related to each other by (12), we com-
pute both of their actions on TL explicitly to show that @ is well defined. Quinn proved in [12,
Prop. 5.2.5] that the left diagram in (10) acts as an idempotent endomorphism of the induction
bimodule (A.15). Indeed, we show that it acts as multiplication by the Jones-Wenzl idempotent
f*Don, 1(n+1),.

Proposition 6.7. In the representation o', the definitions involving @ in (10) are consistent with
the notation introduced in the second equation of (12). That is,

el

and their action on ., (n + 1),, is multiplication by f"+D,

Proof. Quinn showed in Proposition 5.2.5 that

n
[2] =l X=X 2 Crep,reilfzep,r . n+1(n + 1)n - n+1(n + l)n-
p,;reP”
Pn=rp
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Expanding the path r = (+',r,) in the sum, we have

+1] 1
)y Z s —epre;zepr
[m+1] |pp—tp &0 ®
n—1

Osmsn p,rePy,

[] ml m

O<msn pePy,

n
rer 1

f(m+1)l\)fp

n—1
osm<n peP" Pm+1

n
r ePm-+—1

=Y Yo < L yomg o+ f(m+1)> — o0,

0<msn peP?, pEP)
_ f(n+1)
2 2 et
Osm<n pePy,
=1- f(n+1).
This proves

— z (n+1)] -
= |~ [2] - [x =X f ] . n+1(n' + 1)n - n+1(n + 1)11

We use this to compute

@D; lx - X 2 c,ep,rf(")e,,p] = [x - X B [+]1]f(") Do), = (),

p,;reP”?

The counterclockwise circle now acts as a partial trace and we obtain the desired equality below

@D - [x = X ptr,,, <%f@+z)>] =[x x- fO] L+ D), = (4 1),

O

In the above proof, we observed that

@D; [x = X [ [+]1]f(n) : n(n)n - n(n)n' (39)
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The factor 2, which is given by the action of on an n labeled region implies

n
[n+1]°
@:0 L

which is a consequence of (18). Notice that @ acts by f. We will return to this relation after

considering the action of more general bubbles @

Lemma 6.8. In the representation p’, the following relation holds:

Proof. Consider x € ,(n + 2),,. The image of x under the right morphism is e, ;xe,,, which can
be written as e, ,,x’ for some x’ € TL,, & TL,,,, using the Jones basis [13, Prop. 2.3]. Applying
the left morphism to x yields

X > @nyqXey 1 > Py 0 Pty o(€np1Xe, ) B € (P © Pty yo(enpiXensn))en

! /
=€p41 (ptrn+1 ° ptrn+2(en+1x ))en+1 =€n41 (ptrn+1 o ptrn+2(en+1))x €n+1

— ’ — r_
= €1 X €pg1 = €1 X = €pg1 Xl
Thus proving the identity. [

Corollary 6.9. Let M be a TL,,-module and recall that C,, is image of the idempotent @ in2Weyl
Then, p(C\)(M) = P(M) is the projection onto the W isotypic component of M.

Proof. We have already shown that @ acts by f( on TL,-modules, and therefore, is the projec-

tion onto the trivial isotypic component W}'. Thus, we proceed by induction and show that @

actsas ). _p on TL, —mod. By Proposition 6.7 and Lemma 6.8,

Sl

n e
pepn—Zk p
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 27 of 49

It is therefore enough to compute the action of the latter on TL,, —mod. As an endomorphism of
n1(m + 1), it acts via multiplication by

[rn—l + 1] 1 1
[y + 1] jprd | prfestnre
p.repP”? n | rn—ll
SEPIT ok
[n — 2k] ' (n—1—2K) 5
= ———v.e U, + v U
Z,:f [n+1—2k] PP Z v/ P
pepn—zk pepn—z—zk
= Z €pp = Z €p.p:
1 1
PEPT o PEPTT] kst
The second equality follows from Remark A.1 and the claim is proven. O

Consequently, the first relation in (21)

O = (® (40)

is satisfied since projections onto different isotypic components are orthogonal.
The relation (A.3) implies the identities

oofe-@) = [oxor)o

(41)
These can also be inferred directly by considering the above relations as describing isomorphisms
between modules:

Ck o Ind(M) = Ck o Ind Ock(M) @ Ck o Ind oCk_l(M)

Lemma 6.10. The following relations hold under the functor p’:

O-E0+ER) () = O:Eal-)+(E) 6

Proof. For a given n > 0, the action of the clockwise nested circle is multiplication by

[pn—l + 1] 1
[P, +1] P} |

p,reP" sepn-1

Pn=Tn n—1-2k
[n — 2k] [n — 2k]
S D M
- p.p _ _ p.p
pré [n—2k +1] prebr [n—2k —1]
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28 of 49 | HARPER and SAMUELSON

This agrees with the proposed equality, including the cases n — 1 — 2k < 0. For the counterclock-
wise circle, it acts as multiplication by

_ (n+1) 5 [n—2k+2] o
ptr, 1 Z epp|=Ptrni Z v MY, + Z mvpenvp

n+1 n n
PEP T ok PEP, o PEP 1r ok

_ [n -2k + 2] [n -2k + 2]
2 [n—2k+1]elf”er Z [n—2k+3]e”’

n
p EPn+2—2k

as desired. O
Equation (32) together with Lemma 6.10 implies that the relations for the unnested circles in

(17) and (18) hold. See also Remark 4.11.

6.3 | Action of bubbles with Temperley-Lieb generators

We prove that relations involving both Temperley-Lieb generators and bubbles hold in the image

of 2Weyl’ under ©’. This will include the last of the defining relations from W’, thus proving
Theorem 6.2. The first of these is the second relation in (20), which states

© =0.

This is indeed the zero map on ,,,,(n + 2),, and it is multiplication by f"+e,, = 0.
To prove relation (24) holds in the action of 2Weyl’ on TL, we first prove the following two
lemmas.

Lemma 6.11. The following identity holds:

®
[2]%' @@@( —2k )_1 +@®@ —2k +1

Proof. The left side of the equality acting on TL,, —mod is the endomorphism of , , ,(n + 2),, given
via multiplication by

/ _ (n+1-2k) 1 (n+1-2k).y
2 €p.pln+16rr = Z vpf 1S Up
PIEPIT] o PEP) 5

[n+2-2k]\’ (n+2—2k) y
+ Z (m Up Unpo ok f Np42-2k Vp -

n
PrEP ok
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 29 of 49

The resulting expression is equivalent to that obtained from the right side of the equality. O

Remark 6.12. Lemma 6.11 is a generalization of the Jones-Wenzl recursion. Using (41) in the case
k = 0, one has the relation

@
2 | [o]- 0O -OE®
©

This implies the equality of multiplicative actions on ,,,,(n + 2),;:

[n]
T 1]f(n+1)e:l+1f(n+1) = fID p(0) _ p(n42) p(nt) p(n) = p(n+D) _ n42)

Lemma 6.13. The following identities hold in End(TL)

2 =2 @—@@@ 2k—1

2] = 12 @—@@@ k-1

Proof. Since these relations are mirror images of each other across a horizontal axis, their proofs
are also related by reversing the order of multiplication. Therefore, we only write the computation
for the first relation. The left side of the equality acting on TL,, —mod is the endomorphism of
ne2(n + 2), multiply by

’ _ [n — 2k] ’ ’ (n+1-2k) %
Z €p.pCns1rr = Z [n+1—2K] Upeh_akCni1—akd Up

n+1 ep"
PEP, T ke PEL 2k
n+1
VEPn+1_2k

[n—-2kl [n—2k \’ (n-20) ;
= 2 [l’l 41— zk] Upen—ZkUPen+1—2k - 2 [n +1-— zk] UP Un—2k f " nn_Zk Up :
PEP] 5
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30 of 49 | HARPER and SAMUELSON

This is the same expression obtained from the right side of the equality. [l

The following can now be determined from the above lemmas and (41).

©
@ | @] +2®
© ;g ®

©)
'm@%@@@ e @ @(EE=)s

(42)

Corollary 6.14. The identity

@) ©
[2]% F%)Hz@ +@@@( oy )T

oo @EmE® @ oE=nle @ @)

holds in the action of 2Weyl’ on TL given by p’.

Proof. The relation follows from applying (41) to the left side of the proposed equality, followed
by relations in Lemmas 6.11 and 6.13 and Equation (42). O

Note that applying any of @ @ or @ in the appropriate region to Corollary 6.14

recovers the relations given in Lemmas 6.11 and 6.13 and (42).
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 310f49

Lemma 6.15. The identities hold

do io) .
®@®=® —~ @@@=@@< -2k +1 ) :

Proof. Fixn > 0andletx € ,(n +1),.Ifn + 1 — 2k < 0, then both claims follow from (31) as each
diagram is the zero morphism. We prove the first claim, and the other is proven similarly. The left
side of the proposed equality maps x to

Terw 3 oap T e T 3o 3 e

n n+1 n n+1
rePn_zk pEP 12k seP rePn_2k t,pepn+172k seP
— t
- Z Xplrp>
n+1
t’pEPn+1 2k

lp-1=Pp-1=N— —2k

n+1

where coefficients x/, € C(q) satisfy xv), ZreP”“ x pu forallpe Pt .

While on the right side, x maps to

[n—2k + 1]
m—2k+2] 2 € Py | X Z €p.p Z €s,s
re€P pE Zﬁ 2%k SEP) 1ok
[n—2k + 1] ¢
“h—2k+2] ptry g 2 err z Xp€ip Z €s,s
r€P, t,peP:ﬂ 2% SEP) 1ok
_[n—2k+1] Z [n+2 2k] Z .
" [n=2k +2] < [n+1—2k] £ 58
ep" sep
L n+1-2k n+1-2k
lhy—1=Pp-1=n— 2k
— t
= 2 X,e p-
LPEPIT o
tp_1=py_1=n—2k
Thus, equality holds. Ol

7 | BASIS STATEMENTS

We describe bases for Endyy (1) and certain subalgebras of morphism spaces of Hom,yyey (1, —).
The arguments for proving these results rely on the action of 2Weyl on End(TL).
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320f49 | HARPER and SAMUELSON

7.1 | The box algebra
We first describe the subalgebras generated by boxes. This discussion is relevant for understanding
a basis of the subalgebra generated by boxes in W. It does not apply to 2Weyl where boxes have

been identified with scalars.

Definition 7.1. Let 3 denote the unital commutative algebra over C(q) with generators b, for
k > 0 and relations b, ; b, = [2]b;,; — 1. We call B the box algebra.

Introduce the notation by, = biby_; -+ by_,, € B for k >0 and 0 <m < k. Recall that
nonnegative quantum integers may be defined recursively by

[m] = [2][m — 1] = [m — 2] (43)
with [1] = 1 and [0] = 0, and where [2] = g+ q~!
Lemma 7.2. Fixk > 0, and 0 < m < k. Then, the equality

b[k;m] = [m + l]bk - [m]

holds in B.
Proof. We give a proof by induction on m for any given k > 0. We can easily see that the case
m = 0 holds. Assume that the lemma holds for all pairs k’,m € Z such that 0 < kK’ < k and 0
m < k'. Fix m with 0 < m < k. Then, by, 117 = bbp_1,m]- Since biby_; = [2]b — 1, the claim

now follows by induction:

bim+1] = bkbp—1,m) = be(lm + 1]by_y — [m]) = [m + 1]([2]b — 1) — [m]by

=[m+2]b, — [m +1]. O
Lemma 7.3. Fixk > 0, and 0 < m < k. Then the equality

L (m + 11b + [m —11by_,, — [m]).

holds in B.

Proof. By Lemma 7.2,

[m +11by — [m] = by} = bjiym—11Pk—m = ([mlb = [m —1Dby_, -
The claim follows by expanding the above and isolating b, by _,,,. I

Lemma 7.4. Let m > —1 and p > 0 be integers. Then,

<[ [m] ]>p — qp(l Zm)pz <1+P > 21(m+1).
m+1
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 33 0of 49

Proof. Write

m e q(g*™ — 1) SEp
[ ] — L — — q(l _ q2m) Z q21(m+1)'
[m + 1] qgntl —gq (m+1) q2(m+1) -1 par
Recall that the exponentiation of a geometric series is given by the series (Z;’io ri)p =
Yoo (’;‘i _11)ri. The desired formula now follows by taking r = g2("+1, O
For any integers n and k such that n + k + 2 > 0, the identity
m+k+u_ [n+k]  [n+k] _[ﬂm+k+ﬂ—m+k+ﬂ_{ﬂm+k+ﬂ_l
[n+k+2] [n+k+1] [n+k+2] [n+k+2] [n+k + 2]
(44)
holds. Thus, for n > —1, there are algebra homomorphisms
on : B—C(Q)
[n+k+1] (45)
by ———.
[n+k + 2]

Observe that if n > 0, then no generator is mapped to zero. However, this map is not an injection
for any n.

Proposition 7.5. There is a basis of B over C(q) spanned by
{1}u {bﬁ tkez,,pe Z>0}.

Proof. We determine that {1} U {bi k€Z,y,peEZy } is a spanning set by Lemma 7.3, which

shows that the product of any two distinct b, and b, can be expressed as a C(q)-linear combination
of b, by, and 1.

To prove this spanning set is a basis, suppose that there is a linear dependence Zk,p ak’pbi =
0, where all but finitely many a; , € C(q) are nonzero. Assume all a; , € C[q] by first clearing
denominators then multiplying by some power of g. Let a; , denote the coefficient of 1 € B. The

p
image of this relation under g, as in (45) implies Zk’p Ay p < {Z:i:g ) =0foralln > —-2.

By Lemma 7.4, this relation becomes

< i+p—1 .
Z a ,qP (1 — gAr e Dyp z‘ ( li ) ) G+ — o
k.p i\ P

Set al’cp = i pqP and x = x(n) = ¢*". Thus,

o0 .
Z a, (1 xgk+p Z <z +p-— 1>q2i(k+2)xi —0.
k,p P i=0 p-1
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In this way, the coefficient of x/ must be zero for all j > 0. We compute

< (i+p=1\ o .
J’k,p(x, q) :=1- xqz(k+1)))p Z ( pli ) >q21(k+2)x1
i=0

oo min(i,p) i .
— Z ( Z <P> (l —J+Dp— 1>(_1)jq2i(k+2)—2j>xi.
i=o \ j=o \J t=J

Let P (and K) be the maximum value of p (and k) among all nonzero al’( » in the relation. Set
L= maxk,p(degq(al’{’p)) and ¢ = maxp(degg(a;{’p)).

For a given k and p, the coefficient of x' in the power series yk,p(x, q) is a C-linear combina-
tion of g2ik+2) g2ilk+2)-2 " 2i(k+2)-2p For each i, suppose that there exist k # K and j, p such
that degq(al’{’pqm(k“)‘zf) > degq(gf +2i(K+2)) = ¢ 4 2i(K + 2). In which case degq(al’{’pq‘zf‘f ) >
2i(K — k) > 2i. Since degq(a,’( pq‘zl ~%)is independent of i and is at most L, our above supposition

fails for i > L. Thus, only terms in the expansion of some a%’p, Yk, can cancel the gt TUE+D

3 /!
term in @ yg -

As degq(a;{’p) < ¢ for all p, let a, be the coefficient of q’ in a;gp for each p. Comparing coef-

ficients of g/ *2K+2)x! in the relation, that is, k = K and j = 0, we determine Y » dp(”‘;_l) =0
foralli > L.
Let P be the largest p such that @, is nonzero. Consider i = L + P. By the binomial coefficient

identity (”:J) = (”fl:_I) + (’tﬁ;l),we have

(L+P)+p-1
022%( L+P >

p<P

L+P)+p-2 L+P-1
_ dp<( ) Ap >+de ( A)
= L+P ~

and iterating on this
L+P)+p-P L+
0=2&p<( L)+15p >:Zap<L+ll;>:Ap'
p<P p<P

Thus, we have reached a contradiction as we have assumed dp # 0. Hence, there are no relations
among the proposed basis elements. [l

Proposition 7.6. The map 1, 5 : B — Endy(1) that sends by to the box labeled k is an injection.

Proof. Suppose that 1 B(Zk,p ak,pbi ) = 0, where all but finitely many a; , € C(g) are nonzero.
For each n >0, recall the homomorphisms G, : Endw(1) = 2 Hom,yyey (1, 1) defined in
Remark 5.3. Recall the maps ¢ and p defined in (45) and preceding Theorem 6.2, respectively.
Let p, be the restriction of p to Endy/(1) with target End(TL,, —mod). There is a commutative
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 35 of 49

diagram

B —2 % Endy(1)

in/ l/pnoG,,

C(q) SEECEN End(TL,, —mod)

[n+k+1]
[n+k+2]
collection of maps ¢, distinguishes all elements of B. That is, for all b € 13 such that b # 0, then

there exists n such that ¢,(b) # 0. Thus, all a; , are zero and therefore ¢, 5 is an injection. [

that maps b, to the endomorphism that multiplies by . As shown in Proposition 7.5, the

7.2 | Endomorphism algebras
We give a description of Endy/(1) and EndZWeyl(Qfsn) as algebras.

Definition 7.7. Let C denote the commutative algebra of orthogonal idempotents (cy,cy, =+ |
cxep = Sjcy) over C(q). Let C,, be the subquotient generated by ¢y, ¢y, ..., ¢| o) With the additional
relation 1 = ¢y + ¢y + =+ + €| 2)-

Proposition 7.8. The natural map ¢ ¢, : C, = Endywey1(1,) is an injection.

Proof. To prove that ., is injective, assume that ¢, - ,(3’) axc,) = 0 where each a;, € C(q).
Since ¥ ¢ , is @ homomorphism to Hom,yyey(1, 1), we consider the composition of ¥, ¢ , with
py- Then, each ¢, acts as the projection onto the isotypic component of type WZ—zk according to
Corollary 6.9. Since k < |n/2], the generators ¢y, ¢;, ..., €|, /2| act by nonzero projections onto dis-
tinct simple summands. Therefore, they act linearly independently on the direct sum of modules
@}:g“ W _,.- It now follows that the coefficients a; must all be zero. O
Corollary 7.9. Let, - : C — Endy (1) be the map that sends c;, to the bubble labeled k. Then, 1, .
is an injection.

Proof. The proof is similar to that of Proposition 7.8. By composing 9, » with pg o Gg, with Gg
as defined in Remark 5.3, for K sufficiently large, the generators ¢, act linearly independently on
the TLg-module EBEZ)ZJ WE o O

Proposition 7.10. The map ¥,  , is an isomorphism.

Proof. It remains to show that %,C,n is a surjection. Any endomorphism of 1, is a C(q)-linear
combination of products of bubbles @ and oriented trivalent graphs without boundary points.
Each edge of each graph is either solid or doubled, and each vertex joins two solid segments with
the same orientation and one doubled segment with the opposite orientation. Here, orientation
means outward or inward with respect to the vertex. Each region in the complement of a graph
contains at most one bubble @ by (21).
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Notice that each connected component of a solid (nondoubled strand) in a graph is a closed
curve with an even number of vertices (possibly zero). Consider such a component that also con-
tains no solid curves in the region it bounds. Resolve any closed doubled curves on its interior
according to Lemma 4.9 and evaluate any resulting boxes according to (33). If the solid curve has
any doubled segments on its interior, consider a region bounded by the solid curve and a doubled
edge that has no other doubled edges on its interior. There may be an even number of vertices on
the boundary of this region, at each such vertex there is a doubled segment on the exterior of the
region. These vertices may be removed in pairs using (15). Now apply (16), and Lemma 4.8 if nec-
essary, to reduce the number of doubled edges in the region bounded by the solid curve. Repeat
until there are no such edges remaining. Relation (15) may be applied to remove any remaining
pairs of exterior doubled edges from the solid closed curve. The solid curve has been reduced to a
C(q) multiple of an oriented circle, which can be further simplified using (17) and (18).

Apply the above to remove all solid curves from the graph. The resulting diagram may contain
closed doubled curves that can be simplified using (20). The resulting diagram is now a linear
combination of products of bubbles. Products may be simplified using (21), by (31) only bubbles
with sufficiently small index are nonzero, and by (32) sums of bubbles may be simplified to 1.
Thus, ¥, is a surjection. O

Corollary 7.11. Themap, 5 ® Py : B ® C — Endw(1)is an isomorphism of commutative alge-
bras.

Proof. The proof is identical to that of Proposition 7.10 with the exception that boxes are not
evaluated as constants, but are instead moved to the unbounded region of any given diagram
using (21). O

Definition 7.12. For n > 0, write C,, ; to denote the unital commutative algebra generated by c; ;
for0<i< [(n+j)/2] and 0 < j < s with relations

[(n+))/2]

Ci’jcl’j = 5ilci C"~ =1 (46)

2
i=0

8js0Cij = ¢€i,j(Cijo1 + iy j1)s 8csCij = (Cijr1 + Cig,j41)Ci js (47)

where ¢; ; is assumed to be zero ifi <O ori > [(n+ j)/2].

Foreach0 < j < s, thereisaninclusionof C,,, ; & C, ; that maps the generator ¢; to ¢; ;. Indeed,
this map is an inclusion, as

5—J
¢ j= H Citk,j+k + (terms with some factor ¢ where each |i’ — j'| < |i — j]).
k==j

In this way, we may present C,, s as C,,, ® - ® C,;; ® C,, together with the relations in (47).

Lemma 7.13. A basis of C,, ¢ given by sequences

{cp = Chyys " Chy1Ckg0 - 0 <k < [(n +7)/2] ,kjq € {kjk; + 13
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA 37 of 49

For example, for 0 < i < |n/2], we may express ¢; o¢; , € C,, 3 in this basis as

CioCi2 = CinCip = [(Ci+1,3 +¢i3)cin(e + Ci—1,1)] [(Ci+1,1 + Ci,l)ci,o] = (Cip1,3 €3¢ 2Ci1Ci0
= Ci+1,3€i2€1,1€1,0 T €i3€i2€1,1Ci 00
where in the second equality, we applied the relations (47).

Definition 7.14. Let TL;(n) be a C(q)-algebra with generators e} and Cr.i forl<j<s—1,0<
k < |[(n+j)/2],and 0 < i < s. Each respective set of generators is subject to relations such that
they generate TL and C,, ; as subalgebras. The other defining relations are

eieri = i€ fori#j (48)

I

’r ’
Ck,j—1€} = Ci+1,j+1Ck,j—1€] = Cic41,j+1€;5 (49)

[n — 2k] [n— 2k + 4]
€[Cli = Cloy1,it1Ch+1,Ch,in1 <e{ Ti—zk+1] + O i1Ch—1,iCk—-1i-1( € — n—2k+3] (50)

[n— 2k + 2] [n — 2k + 2]

+ ck+1,i+1ck,ick,i—1—[n ok +1] * Chi+1Ck,iCh-1,i-1 [n—2k+3]

The relation

, , [n -2k + 2] [n—2k+2]\ ,
ecpi€, = | Ckqimi———— Tt Chimir————— ¢ 51
Pl (kl’ll[n—2k+3] Kl 2k +1]) 5D
is readily verified using (50), ¢41,141(Chs1 + Chi)Ch i1 = Cr1,i+1C%,i—1» and (])* = [2]e].
The Jones basis of TL, for nonidentity elements consists of words

/ = I , cee / / , cee / cee / I cee /
€ = (€),¢j 11 € ey € 4y ey ) (e € e ), (52)
where s> j; > j, > - > j, >0 and s> k; >k, > --- >k, >0 [13, Prop. 2.3]. We write the
identity element as e/, .

Proposition 7.15. There is a basis of TL} (n) consisting of products ckelfj where ¢ is a basis vector
of C, s asin Lemma 7.13 and elfj is a basis vector of TL as in (52) with the additional constraints:

. ife;elfj = [2]elfj, thenk,,, =k,_; +1,
. . . / / /

*ifn+j—2i=0and iy j42C 116 jCk = Cko then € 1%; # [Z]eij.

Proof. The defining relations in TL} give a rule to present any element of TL} in the desired form.
The additional constraints are due to (49) and the exceptional form of (50), see also Remark 5.4.
It remains to show that any ambiguities in applying these rules can be resolved in the sense of
Bergman’s diamond lemma [1]. The ambiguities arising from relations that relate one monomial
to another are easily resolved. Ambiguities for the relation involving elf Cy ;> namely, the conflu-
ence conditions for (e/)*cy ;, efe!,  elcy e{ci,i, and efcy ;(€y 141 + Ci1,i21) are resolved by short

A i+l
computations. |
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38 of 49 | HARPER and SAMUELSON

Let Qfsn denote the object Q% € Homyyey (1, 1 + 5). Write EndZWeyl(QfSn) for the algebra
of endomorphisms of this object. The assignment of diagrams to elements of TL(n) naturally
determines an algebra map ¢, : TLY(n) — EndZWeyl(Qf,Sn). Recall that strands are labeled so
that strand 1 is on the right and strand s is on the left. For generators indexed by 0 < i <'s, 9,
makes the following assignments:

e; — disoriented cupcap over positions i and i + 1, (53)
Cri P @ on (or immediately to the left of) the top of strand i, (54)
Cro P @ right of strand 1. (55)

Multiplying on the left in TLs+(n) corresponds to stacking upwards in diagrams under ; ,,. The
existence of this map can be verified by comparing the defining relations of TL;f(n) to the relations
on EndZWeyl(Q?f’Sn) C HomZWeyl(n, n+s).

Proposition 7.16. The map ¥, , is a surjection.

Proof. Any diagram in EndZWeyl(Q?’sn) can be reduced to a diagram in a standard form. Any closed
subgraph in a diagram may be simplified to a linear combination of bubbles by Proposition 7.10.
A bubble that appears directly below a disoriented cupcap may be moved above it and have the
cupcap resolve according to (24). The result is a linear combination of Temperley-Lieb diagrams
with at most one bubble in each region across the top of the complement of the diagram (including
its sides). If there are no bubbles in these regions, we introduce a sum of bubbles into the rightmost
region (any region is fine) using (32). We then use (19) to guarantee that each region across the
top of the complement of the diagrams has a bubble. It is now easy to determine an element of
TL;r (n) that maps to this linear combination of diagrams. O

Conjecture 7.17. The map ), is an injection.

Proving that1); , is injective is equivalent to showing that its kernel is generated by the relations
of TLY (n) given in Definition 7.14. This proof requires studying the action of TL; on Q%®S, which
we discuss briefly in the next section.

7.3 | Action of TL, on Q%

It follows from the first relation in (15) that the identification of idempotent Temperley-Lieb gen-
erators e; with the disoriented cupcap over strands i and i + 1 (numbered right to left) defines a
homomorphism TL; — EndW(Q?S ). Similarly, by rotating diagrams, there is a homomorphism
TL, — Endyw(Q®%).

Now each idempotent in TL, defines an object in the idempotent complete category W. These
include the projections onto irreducible representations discussed in Section A.1, among which
the Jones-Wenzl idempotent ) is a special case. The simplest of these idempotents and their
complements are e;,1 —e; € TL,.
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 39 of 49

The action of Q Ck on a TL,-module is to project onto the W” ., component and induct
: ; 2 ~ Yht+2 n+2 n+2
twice. Fr.om Sectlon A.2, Ind (WZ—zk) Wn+2 @ 2Wn e @ W ok Set m._ n — 2k. Then,
v € W} is mapped to the following direct sum of diagrams under the isomorphism:

v v v
|| ] e e
Fome) ’ [m + 1] VN [m+2] flmtD) {7\ [m + 2]

(m)
S T

(56)

The action ofe; € TL, on Q?ick determines an endomorphism of Indz(Wr’;l) under p, namely,
multiply by e, ,. Under this action, both the first and last summands vanish as capping a
Jones-Wenzl idempotent yields zero and vf™ =v € W . This observation is consistent with

. . . . . . . n+2 — n+2 .
the relation in Lemma 4.8, which implies a projection onto the Wi 2es1) =W}, isotypic
component. The images of these vectors are both nonzero multiples of

~ )
(57)
(rn)

Note that the complement 1 — e; of this idempotent endomorphism on Q® does not act as
a projection onto the complementary summands W”E ) WZ+§ o+ This is because 1 — e,
is nonzero on the WZf;k summands of Indz(WZ_zk). Further investigation of the interaction
between the images of idempotents in TL, under p and the idempotents C; requires a more careful

treatment.

Remark 7.18. The affine Temperley-Lieb algebra also acts on Q?s. In future work, we use this
action to compute Tr(W).

8 | THE ASYMPTOTIC WEYL CATEGORY AND ITS GROTHENDIECK
RING

For each n,m > 0, we defined the morphism categories Hom,yy,y(n, m) of 2Weyl, as a quotient

of W in which bubbles @ =0 for 2k > nand |k |= 0 for n + k + 1 < 0. The asymptotic Weyl
category is a monoidal category that should be interpreted as a n — oo version of the categories
Hom,yyey1(n, m). In this category, no bubbles are assumed to be zero and all boxes are invertible.

Definition 8.1. The asymptotic Weyl category W is the quotient of the universal Weyl category
W by the relations

([« )T=( k >_1forallk€Z. (58)
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Given that W® is a quotient of W, the isomorphisms given in Section 4.2 hold. Moreover, the
“Above critical values” (large n) isomorphisms in Table 1 hold in W*. Indeed, no bubbles or boxes
vanish among the morphisms witnessing the isomorphisms on objects given in the table. It is in
this sense that we may also consider W* a n — oo version of the categories Homyyyey1 (1, m).

Proposition 8.2. The isomorphisms in Section 4.2 and the large n relations in 5.2 hold in the full
subcategory of W generated by Q,, Q_, and C fork > 0.

8.1 | Grothendieck ring

Recall that the Grothendieck group of an additive category C is abelian group K,(C) with gen-
erators X for X € Ob(C) and relations [Z] = [X] + [Y] whenever Z =~ X @ Y. The Grothendieck

group is endowed with the structure of a ring with multiplication defined such that [X][Y] =

XQ®Y].

Definition 8.3. Let K be the algebra generated by x, y and ¢, for k > 0 with relations

yx =xy+¢p CkCr = ks (59)

cx = cpx(e, +cp_q) xc, = (¢ + Cpp1)xcy (60)
ey = cy(c + Cyq) Yo = (¢ + cx1)ye (61)
Che1 XCXCl = Cy1 XChe1 XCc CkYCh1YCh1 = CkYCicYCht (62)
CLYCXCl = Ci Cr—1YCiXCr_1 = Cr—1 (63)
CkXCrYCk = Ck CkXC—1YCk = Cic (64)

YORX = Cp +Cy +CXYCy + C 1 XY, XCY = Cp + Cppq F CXYChyy F ey XY (65)

c_;=0 YCoX = Cg. (66)

The relations of K are determined from the image of the isomorphisms in Proposition 8.2 under
the K, functor. We expect these to be a complete set of relations between the classes of these objects
in W, see Conjecture 8.5.

We do not claim that [Q, ], [Q_], and [C} ] form a complete set of generators for K,(W*). For
example, the Jones-Wenzl idempotents that act on Q% determine objects in W* and therefore
generators of K,(W®), see Section 7.3. However, we do not consider them here.

Proposition 8.4. Let KO(W°°)' be the subalgebra of Ky(W*) generated by [Q, ], [Q_], and [C,].
The homomorphism K — KO(W°°)' determined by x — [Q, ], y — [Q_], ¢; = [C}] is well defined.

Conjecture 8.5. The map defined in Proposition 8.4 is an isomorphism.
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THE TEMPERLEY-LIEB TOWER AND THE WEYL ALGEBRA | 41 of 49

Remark 8.6. We expect that there is a categorical version of “asymptotic representation” that
applies to W acting asymptotically on TL, the notion is defined here for algebras and vector
spaces in Definition 8.8. Such an action would imply K,(W) acts on K,(TL). Mapping K to
K,(W*)" and applying the argument of Lemma 8.14 would prove Conjecture 8.5.

8.2 | Asymptotic action

Assign a degree to each of the generators of K, deg(x) = deg(y) = 1 and deg(c;) = Oforall k > 0.
For a,b € K, set deg(a - b) = deg(a) + deg(b). We filter K by vector subspaces according to this
degree, defining K, = {a € K|deg(a) < n}.

Recall that TL is the direct sum over n of TL,, —mod. Then, 7L := K,(TL) is the abelian group
with generators the classes of simple modules {{W) | : 0 < m < n,m = nmod 2}. By Remark 6.4,
the functors Ind, Res, and P; determine endomorphisms of 7L:

[Ind] - [W,] = [WiHL ]+ Wit ] (67)
[Res]- [Wp]=[WE AT+ [Wh] (68)
[Pk] : [an] = 5m,n—2k [W:}n] (69)

with the convention that [W] | = 0 whenever m < 0,n < m, or m # nmod 2.
Let 7L ; be the subspace generated by {[W] ||n > m > j}. This determines a filtration of 7£
with 7L, CTLjand TL_; = TL, = TL. Now

Remark 8.7. For [W} ] € TL;, [Pi]-[W) 1= 6y oW, ] If [P] - [W), ] is nonzero, then n >
j+2k.

Definition 8.8. An asymptotic representation of a filtered algebra i, : A, < A,,; acting on a
filtered vector space j,,; : V11 < V,, is a collection of linear maps f,,, : 4, ®V,, =V, _,
for m > n > 0 satisfying the following axioms:

fn+1,m+1 ° (in ® ideH) = jm—n+1 ° fn,m+l 1A, ® Vm+1 =V, (M)
fn,m ° (idAn ®jm+1) = jm—n+1 ° fn,m+1 A, ® Vm+1 = Vin, (72)
fn+l,m ° (:ul,n ® ide) = fl,m—n ° (idA[ ®fn,m) : Al ® An ® Vm - Vm—n—l s (73)

wherem > n+land y;, : A ® A, — A, is the multiplication map. These axioms are referred
to as algebra coherence, vector space coherence, and composition, respectively.

Proposition 8.9. The assignment x — [Ind], y — [Res], ¢, — [P,] defines an asymptotic
representation of K on TL.
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Proof. Formally, the collection of maps f, , : K, ® TL,, » TL,,_, are determined from the
axioms by the assignments:

fO,m : ICO ® TEm - T[“m {ck ® [W,}:ln] = 5m,n—2k[WZ_2k]

fl,m : ]CI ® T[’m - Tﬁm—l

{x ® W] WL ] + [wiH ]

y®IWple 8, Wi i1+ Wl

The axioms (71) and (72) of Definition 8.8 hold trivially. The composition axiom (73) determines
S n.m by expressing each element of K, as a word written in the generators of K. It remains to
check that two words in K, that are equivalent under the relations of £ have the same action
under f, .

The relations (60)-(65) are determined by classes of functors in the “generic” isomorphisms
of Table 1. As noted in Remark 5.7, these isomorphisms hold in Hom,yey(n, —), provided that
n > 2k, where k is an index of a functor C;, appearing in a given isomorphism. In particular,
we are concerned with avoiding instances where a “generic” isomorphism fails, namely, those
which are labeled “none” in the table. The corresponding words in such relations belong to &C,.
By Remark 8.7, if W' € TL, and [Py ] - [W} ] # 0, then n > 2k + 2 > 2k. Thus, the relations are
indeed respected by the action. The remaining relations in K are considered generic and are easily
verified to hold under the asymptotic action. [

8.3 | Structure of

Here, we discuss additional relations and bases for certain subalgebras of K. For later use, observe
that there is an antiautomorphism ¢ : £ — K that exchanges x and y.

Lemma 8.10. Let0< [, <1, <l;andn,m > 0. Then,

CI0m

 my LY
G

n m _
Clsx Clzx Cll =

Proof. Let kg, ky,...,k,,,, be any sequence such that k;; € {k;, k; + 1}, k, =1;, k,, = 1,, and
k,4m = 15. It follows from both (60) and (62) that

m—1 m+n—1
¢ x"Me, = m e H xc ¢ . x"e, = H xc
L L L—1 ki ki > I3 ) I, — l Kyym ki >

i=0

4 m+n—1
n+m
¢ X", = Cre I I XCy. -
3 1 1, —1 n+m i
301 i=0

Then,

n m min-l (1 nl )(1 ml )
372 274
B <13 - lz> <lz )c"“m 11 X6 = o

l3_ll
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Remark 8.11. Lemma 8.10 readily implies an integral basis for the subalgebra generated
by {clzx’”cl1 : I;,1,,m > 0}. This basis is spanned by “divided powers elements” x(2h) :=

G l)

) x(l4,n+m,ll)‘
)

¢, x™c, with [, + m > I, > I, which multiply according to the rule xamls)y(l2mh) =

Introduce the notation
n
xPt =) xi¢_,x"! and [x]] = xte,_x"7F.
1 1—i -1
i=1

It is then easy to verify that

{3 = X" + ) - x and e = x" e+ [x]! - x. (74)

Lemma 8.12. For nonnegative integers | and n, the following identity holds in K:
yex™ = epxye_, + ¢ X yey + e{xd T+ e [x]7

Proof. We give a proof by induction on n. The claim is immediately verified in the case n = 0. We
then compute by the inductive hypothesis

1
yex™t = (exyei_, + ey X ye +ofxd] T 4+ [x]) ) x

}n—l

n n n n
= (e x"cip + X"y xyei_p_q) + (X" g + e X ey xye) +ofx} T - x

+opq[x]f T x

1
= X" ye g + e X ye + el + e [x0]

In the second equality, we use that ¢;x"c,_,,_; = ¢;_;x"¢; = 0. The third equality is due to the rela-
tions ¢;x"¢;_,XyCi_,_1 = X" yei_,_1, ¢y X" xye; = ¢j_1x"*1yc;, and those in (74). Thus,
proving the claim. ]

Lemma 8.13. Foreachk > 1 > 0, ¢, Kc, is spanned by

- kI
Sk = {epxkHme, o xk=lyme, | m e Z0}-

Proof. Fix k > 0. For each word w € K, let Z(w) be the length of w (not necessarily a reduced
word). We give an inductive proof on the length of w and a downward induction on [. For a
given word w, observe that if k — I > #(w), then ¢, ;wc, = 0 and if kK — [ = £(w), then ¢, wc;
is nonzero exactly when w = x*~!, The base case for a word of length 1 is immediate.

Assume for any word w of length at most n and any k — n > [ > 0 that c,wc; € span(Sy ). Fixa
word w of length n + 1. The base case of the downward induction is I = k — (n + 1) as described
above. Now fix that ¢, wc; € span(Sy ;). We now show that c,wc;_; € span(Sy ;_;). We proceed in
cases, assuming that w = w,w’ where w;, € {¢;_;,x,y}and #(w’) = n.

The case w; = ¢,_; is the simplest as c,wc;_; = c,w’c;_; and belongs to span(S;_;) by the
inductive hypothesis. Note that if w; is equal to any other c, then c,wc;_; = 0.
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Next, suppose w; = x. Then,
cwei_; = cxw’e_y = exew’e_y + epxe_w'ey

Z a,,cxe Xk me, 4 2 a cpxe_1x*lyme
m m

+ Z b,cpxce_xK e+ 2 b cpxex Hlyme
m m

for some coefficients, a,,, aj,, b,,, b/, € C(q). The resulting (finite) sums may be expressed in the
desired basis by first writing ¢, x¥ ~Flyme, | = ¢k ~1+1
terms, then applying Lemma 8.10 to all four sums.

Finally, consider w, = y. We have

cpy™c,_, for the sums involving y™

! ! !
CWC_ = QYW €1 = CYCW Cp_q + CYC W €1y

k—l+1+m / k—1+1
Z A Y Cr X €1+ Z a,, CrYCrx Yoo
m m

k—l+2+m l k—14+2,,m
+ Z by yCi1x €1+ Z b, Cryci1x yoe
m m

for some coefficients, a,,, a;n, b,., b;n € C(q). The claim follows from Lemmas 8.12 and 8.10. []
Lemma 8.14. Foreach k > 1 > 0, S ; is a basis for ¢, Kc;.

Proof. Let § =k —1>0. We prove that S;; is a linearly independent set. Assume for a
contradiction that there is a linear dependence

d= Z e X2tMe; + b x°yMe; = 0
m
for some coefficients a,,,b,, € C(q). Let M be the largest m such that a,, and b,, are nonzero.

Thus, d € K,,, s and we may consider its action on 7L, s since K acts asymptotically on 7L.

Consider [W) 5] € 7Ly, so that

I+m
ckx5+mcl X [WM+k+l] — ckx6+m . [WM+k+l] — < >[WM+2k+m]

M+68 M+k—1 1 M+m
5.,,m M+k+1y _ ) m M+k+17 _ ) M—-m+k+17 _ M+2k—m
ax e - Wy sl = axay™e - Wy BTl = ax® - Wy 001 = Wy 5

Since each term in d maps [Wﬁig”] to a unique nonzero vector in 7L, the linear dependence
must be the trivial one. O

Remark 8.15. By applying the antiautomorphism ¢ that switches x and y, there is a basis of ¢; K¢,
fork > 1> 0givenby S, = foyk=brme eyk=lxme, | m € Z,}

For integers k, I, m > 0, define

Xm - k—1

Ckxm+(k—l)cl/(m+(k—l)) k>
kl - 1>

l
, X" =X
cxylke, K Lk k.l
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The choice of asymmetric normalization is intentional.

Lemma 8.16. Fora,b > 0andn, m € Z, the multiplication map ¢, Kc; ® ¢;Kc;, — ¢, Kcy satisfies

n m n+m
X1 ® X = X

Proof. The proof is a direct computation for choicesk > lorl>k,n>0o0rn <0,and m > 0 or
m < 0. We include one such computation. Assume k < I and m, n > 0. Then,

m+l—k

noym _ nyl-k, . m+l—k
X X =ax"yrex c,/( I—k

) = ¢ x"c Y Fex! TFe xMey, = ¢ xexMey = X,’(l’ltm .

O

Corollary 8.17. Foreachk > 0, ¢, Kcy, is isomorphic to a Laurent polynomial algebra in thevariable
Xk k.

APPENDIX: RESULTS FROM QUINN

We recall key statements and main results from [12] which we use in this paper. Namely, the
structure of the representation categories of Temperley-Lieb algebras, the action of induction and
restriction functors, and relations in the precursor to the universal Weyl category. The reader is
referred there and references therein for additional details. Unless stated otherwise, results given
here are proven in [12]. Some notation is changed in this paper.

A.1 | Representations of Temperley-Lieb algebras

The set of isomorphism classes of irreducible TL,, representations are in bijection with nonneg-
ative integers m < n such that m = n mod 2. We denote such an irreducible representation W7 .
Vectors in these representations may be presented as (m, n)-Temperley-Lieb diagrams w such
that w = wf. This implies that W is the trivial representation. We assume that W) = 0is m
is negative, exceeds n, or has different parity from n.

A basis for these representations is given using a path algebra approach. Equivalently, there
is a Young tableaux description of basis vectors given in [10], for example. Let P" denote the set
of paths of length n starting from the vertex labeled 1 on the type A, ; graph whose vertices are
labeled 0,1, 2, ..., n. A path of length n is notated by a sequence p = (py, ps, ---, P,,) of nonnegative
integers such that p; = 1 and p;;; = p; + 1 for i < n. A basis for W}, is in bijection with P}’ the
set of paths in P" that end at vertex m, that is, p, = m. For a given path, the corresponding basis
element is constructed inductively from a single strand. Suppose that v, is the (p;, k)-Temperley—
Lieb diagram constructed from a path of length k ending at p,. If the path continues to the right
(increases), then

Uky1 | = 1 (A1)
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46 of 49 | HARPER and SAMUELSON

and if the path continues to the left (decreases), then
111
[pk] Uk
U1 | = /= A2
V [P +1] | A2)

is required for orthonormality in the following sense. If p € P},

[Pl
[pr+1]
corresponds to v » € W,’}q, then the reflection of v p OVer a horizontal axis is the corresponding dual

basis vector U, in the sense that U,(v,) = &, ., where § = 1 if p = r and is zero otherwise. Write
e, for the matrix element v, 0, provided p,r € P, .

The normalization factor

Remark A.l. We observe that ) pept €pp € TL,, is an idempotent corresponding to the projection
onto an. Moreover,

[m+1] I (m).
Z epp = z [m 2] vee,_ U + 2 v, ",
PEPy, repr-l repnl

A.2 | Induction and restriction for Temperley-Lieb modules
For any TL,-module V, the induction functor may be defined as the functor

Ind : TL, —mod — TL,,; —mod Vi, an+1), 0V (A3)

or informally as adding an additional string to the diagram. Restriction is instead given by the
functor

Res : TL,, —mod — TL,_; —mod Vi .10, V, (A4)

which in some sense forgets the nth string in the diagram.
Quinn provides a formula for the restriction of (nonzero) simple modules W, in terms of simple

modules Res(W} ) = W:’njrll ® W,’:l__ll. The isomorphism is witnessed by the maps:

U
Res(W}) — W/, @ Wi, - L= T (A5)

Wrr:z:.l1 ® W::Z—_ll — Res(W}) : < , ) — + “ (A6)

f(rn)
L

; ~ n+1 n+l P :
Quinn also proves that Ind(W), ) = Wi @w, . The maps for this isomorphism are not

explicitly given, but can be inferred from [12, Props. 3.3.1, 3.4.1]. Here, x € TL,,; and v, w are
vectors in the indicated simple module:
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1 1.
Ind(Wp) = Wit @ Wit .

m+1

-w
WL @ W S Ind(WE) ( > > + 1/ [m] | |
m+ m [m+1] fm

That the image of the last homomorphism belongs to Ind(W, ) is a consequence of [12, Prop. 3.4.1].

Remark A.2. The vectors appearing in the image of (A.7), together with their dual vectors, agree
with the decomposition of ) pep €pp given in Remark A.1. Our previous observation is there-
fore an expression of the projection onto W in terms of projections through components of
Ind(W1) and Ind(W" ).

A3 | Diagrammatic calculus

In Chapter 5, Quinn initiates the definition of the Weyl category. An important difference in our
notation is that Quinn’s crossing is replaced by [2] times the cupcap. It acts by multiplication by
e/, the preidempotent Temperley-Lieb generator, on the two induced strands. Quinn defines an
abstract category that acts on TL,,-modules in the following way:

(N = X®Y = xy] & o)y (W = (s (A.9)

\ N 2 [x = x] 1 g0y = w0+ Dy (4 1), (A.10)

I =[x ptr, (0] 1+ Dy (n+ 1), = (1), (A11)

U i X = Z Crep,r ®er,px : n(n)n - n(n)n—l(n)rn (A.IZ)
e

2 [x g xen+1] : n+2(n + 2)n - n+2(n + 2)n’ (A13)

where the map x — ptr,,;(x) is the right partial trace of x as defined in (4), ¢, , and e, , are the
[rp_q+1] 1

matrix units defined here in Section A.1, and ¢, = ERSTRTNE

1
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48 of 49 | HARPER and SAMUELSON

Quinn showed that these generators satisfy the following relations for any n > 0 in the action
on TL, —mod. The proof of (A.14) is given in [12, Theorem 4.2.14].

= ;U\ == (A14)

[2] = [2]2 = [z]éﬂ [212§ = mj:’

(A.15)

A
Y

ep| | = el | = 2 Qé 21

(A.16)

Y

A
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