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Abstract
Wedefine amonoidal category! and a closely related 2-
category "!#$% using diagrammatic methods. We show
that "!#$% acts on the category &' ∶= ⨁) TL) −mod
of modules over Temperley–Lieb algebras, with its gen-
erating 1-morphisms acting by induction and restriction.
The Grothendieck groups of! and a third category we
define !∞ are closely related to the Weyl algebra. We
formulate a sense in which ,0(!∞) acts asymptotically
on ,0(&').
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1 INTRODUCTION

A sequence {1) ∣ ) ∈ ℕ} of algebras is called a tower of algebras if it is equipped with algebra
homomorphisms 5-,) ∶ 1- ⊗ 1) → 1-+) satisfying an obvious associativity condition. Tow-
ers of algebras arise quite naturally in representation theory — the prototypical example is the
sequence 78) of group algebras of the symmetric groups. The representation theory of algebras in
a tower ismost naturally studied simultaneously;more precisely, the category ∶= ⨁) 1)−mod
has natural endofunctors induction (Ind) and restriction (Res), both along the maps 5 ∶ 1) →1)+1. The monoidal subcategory of End9:;() generated by induction and restriction tends to be
interesting and deserves careful study.
In the example of the tower of symmetric groups, Khovanov [8] used a diagrammatic construc-

tion to define the Heisenberg category , and proved that there is a monoidal functor , →End9:;(⨁) 8)−mod). An action in this context maps an object < ∈ , to a functor between cat-
egories of symmetric group representations.He proved that theHeisenberg algebra injects into the
Grothendieck group of, and conjectured they were isomorphic — this conjecture was proved
recently in [4].
Other invariants of the Heisenberg category have also been attracting recent attention. First,

recall that the trace of a category  is defined as
Tr() ∶= 7{⊕>End(>) ∣ > ∈ ?@()}{A ◦ g − g ◦A} .

If  is monoidal, then its trace is an algebra, and there is a Chern character (algebra) map,0()→ Tr() sending [>]↦ Id> . In [7], Cautis, Lauda, Licata, and Sussan showed that the trace
of the Heisenberg category is the 1+∞ algebra. This provides an example of a category where
the Chern character map is not an isomorphism; in this example, the trace is a much bigger, more
interesting algebra.
Khovanov’s Heisenberg categorywas deformed to the quantumHeisenberg categoryC8D using

Hecke algebras by Licata and Savage in [9] and this category was generalized further toE8FD,G by
Brundan, Savage, andWebster in [3]. The traces of these categories were computed in [6] and [11],
and in both cases, they are closely related to the elliptic Hall algebra of Burban and Schiffmann
[5]. Finally, in [2], Brundan, Savage, andWebster showed that the Heisenberg categoryE8FD can

 14697750, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70174, W

iley O
nline Library on [29/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 3 of 49

be used to construct 2-representations of Kac–Moody 2-categories, which was an a-priori more
difficult problem.
This history of interesting results involving Heisenberg categories motivates the goal of the

present paper: study symmetries of the representation category of the tower of Temperley–Lieb
algebras TL). Some progress toward this goal was made by Quinn in [12], who gave a partial
diagrammatic description of a monoidal category that acts on &' ∶= ⨁) TL) −mod.
It turns out that the construction of a category acting on &' is more subtle than one might

expect from the Heisenberg category (for reasons we discuss later). Our construction actu-
ally involves three categories: a “universal” monoidal category!, a 2-category "!#$%, and an
“asymptotic” monoidal category!∞. The universal category is used to construct the other two
categories by imposing different sets of relations on endomorphisms of the tensor unit H. In other
words, there are functors from ! to Hom"!#$%(),-) and !∞ that quotient out certain rela-
tions on morphisms. The resulting 2-category acts on &' with its generating 1-morphisms acting
by induction and restriction. We expect that!∞ acts “asymptotically” on &', but we leave the
details of this to future work. In Section 8, we discuss an asymptotic action of this category under
the ,0 functor.
Let !′ be the additive ℂ(D)-linear strict monoidal category generated by the objects /− and/+. Morphisms in !′ are generated by oriented cups and caps, a disoriented cupcap, and

endomorphisms of H given by integer-labeled boxes. Relations in this category are given in
(15)–(24).
A key structural difference between the Heisenberg and Weyl categories is the existence of

idempotent endomorphisms of the monoidal unit of!′ called “idempotent bubbles.” The image
of such an idempotent is a subobject of H in the Karoubi completion — the universal Weyl cat-
egory — denoted as !. These bubbles are expressible in terms of the generating morphisms
in !, but there are no analogous morphisms in the present definition(s) of the Heisenberg
category.

Theorem A (Proposition 4.6). There is an isomorphism in!:

/− ⊗ /+ ≅ (/+ ⊗/−)⊕L0 .
This relation motivates the name for our category, since it is very closely related to the relation<M = M< + 1 in the Weyl algebra.

Remark 1.1. The class of the object L0 is an idempotent [L0] ≠ [H] in the Grothendieck group of!. However, [L0] does not commute with [/+] or [/−]. For example, see Equation (60).
Remark 1.2. Based on the results of the present paper, we expect that there exists an extension of
the Heisenberg category (or, 2-category) that contains idempotent bubbles that act by projection
onto isotypic components — finding the correct definition of this category seems to be an inter-
esting but challenging question that we hope to return to in the future. If we identify 8)−mod
with ,ℂ××ℂ×(Hilb)(ℂ2)), then we expect that these idempotent bubbles should act geometrically
as restriction of sheaves to fixed points. However, it is not clear whether there is a direct relation
between the Heisenberg category and any of the Weyl categories introduced here — Remark 4.5
shows that the standard surjection from the Hecke algebra to the Temperley–Lieb algebra does
not extend to a functor from the Heisenberg category to!.
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Another difference between the Heisenberg category and the category in our construction is
the necessity to use a 2-categorical approach to define an action on a category of modules. In par-
ticular, the relations that naturally appear between morphisms in! have constants that depend
on ) (i.e., they depend onwhich summand of&' = ⨁) TL) −mod themorphisms are acting on).
These constants are encoded into the integer-labeled boxes and act as rational functions whose
denominators vanish for certain values of ), which means that the action of an --labeled box
is only defined when ) is large enough. We therefore construct a 2-category "!#$% before con-
sidering an action on &'. Each morphism category in "!#$% is defined as a quotient of!. Our
first main result is the construction of this 2-category "!#$% that acts on &' via induction and
restriction.

Theorem B (Theorem 6.2). There is a well-defined functor O ∶ "!#$% → End(&') that maps /−
to restriction, /+ to induction, and LG to the projection onto the isotypic simple componentF))−2G
in TL) −mod for each ).
Using this functor, we describe spanning sets and bases of certain endomorphism spaces of

1-morphisms of "!#$%.
We also define a quotient of! called the asymptotic Weyl category!∞. We give a conjectural

description of a subalgebra,0(!∞)′ ⊂ ,0(!∞) generated by the classes of/+,/−, and theLG by
defining an algebra  by generators and relations that surjects onto this subalgebra of ,0(!∞)′
(see Proposition 8.4 for a precise statement).
The monoidal category!∞ is called “asymptotic” because we show that  “acts asymptoti-

cally” on,0(&'). Our notion of an aysmptotic representation is defined as an increasingly-filtered
algebra acting on a decreasingly filtered vector space, which defines an action of an algebra ele-
ment on the )th filtered component as ) → ∞, see Definition 8.8. This action is defined such
that it respects composition in the algebra (see Proposition 8.9). It is in this way that  “acts”
on ,0(&') despite ! and !∞ not admitting actions on &' in the usual sense. We expect that
there is a categorification of this notion of asymptotic representation that lifts to!∞ (or some
subquotient category) acting asymptotically on &'.
There are a number of avenues we intend to pursue in future work. In particular, we would like

to describe the Grothendieck category of the 2-category "!#$%, which will require stronger basis
theorems than we currently provide. We also plan to use skein-theoretic techniques and results
to describe the trace of "!#$%, which we expect to be closely related to Cherednik’s double affine
Hecke algebra for QR2.
We hope to relate!,!∞, and "!#$% to other categories appearing in categorical representa-

tion theory. Since any objectS in a monoidal category generates a tower of algebras as End(S⊗)),
the asymptotic categorical representation theory of these may also be interesting.
An outline of the paper is as follows. We include a table of notation in Section 2. In Section 3,

we provide background results about Temperley–Lieb algebras. We give a graphical description of! in Section 4, and prove some diagrammatic relations. In Section 5, we construct the 2-category"!#$%, and we prove that it acts on &' in Section 6. In Section 7, we prove some basis theorems
for morphisms spaces in! and "!#$%. Finally, in Section 8, we give a conjectural description of
the Grothendieck group of!∞ and show that it acts asymptotically on ,0(&'). The Appendix
contains a summary of some of Quinn’s results from [12].
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 5 of 49

2 TABLE OF NOTATION

Here, we include an index of notation, along with the section where the notation is introduced.

 Box algebra, Section 7.1 T)- Paths in U)+1 graph ending at-,
Section A.1

 Algebra of orthogonal idempotents,
Section 7.2

/+, /− Tensor generators, Section 4

) Algebra of ⌊)∕2⌋ orthogonal
idempotents, Section 7.2

/W Tensor product object, Section 4

),. Section 7.2 /⊕, /⊖ Images of idempotent cupcaps, Rem.
4.4LG Image of idempotent bubble

, Section 4
O Representation "!#$% → End(&'),

Section 6∪Z , ∩Z Cup and cap in TL), Section 3 O′ Precompletion of O, Section 6\],^ Matrix element in TL) −mod,
Section A.1

TL) Temperley–Lieb algebra, Section 3

\Z Idempotent TL) generator, Section 3 &' = ⨁) TL) −mod Section 6\′Z Quasi-idempotent TL) generator,
Section 3

  = ,0(&') Section 8.2

)= Equality in HomEnd(TL)(),−), Rem. 6.1 _] , _̌] Vectors in TL) −mod for ] ∈ T),
Appendix∙= Equality in HomEnd(TL)(),−) for ) ⩾ 0,

Rem. 6.1
! Universal Weyl category, Section 4

A()) Jones–Wenzl idempotent, Section 3 !′ Precompletion of!, Section 4
 Section 8.1 "!#$% Weyl 2-category, Section 5∇ Null object, Section 6 "!#$%′ Precompletion of "!#$%, Section 5T) Paths in U)+1 graph, Section A.1 !∞ Asymptotic Weyl category, Section 8F)- Irreducible representation of TL),

Section A.1

3 THE TEMPERLEY–LIEB ALGEBRA

Fix a formal parameter D and ground field ℂ(D). Let S be the two-dimensional irreducible rep-
resentation of d = dD(QR2) and F = S ∧ S, which is a direct summand of S⊗2. Let TL) =Endd(S⊗)) be the Temperley–Lieb algebra on ) ⩾ 0 strands. The algebra is generated by
quasi-idempotents \′Z for Z = 1,… ,) − 1, where

(\′Z )2 = (D + D−1)\′Z = [2]\′Z , \′Z \′Z±1\′Z = \′Z , (1)

and [2] = D + D−1. More generally, we write [)] for D)−D−)D−D−1 . We denote the idempotent form of
these generators by \Z = \′Z ∕[2], which satisfy \2Z = \Z . The Temperley–Lieb diagram for the gener-
ator \′Z is the cupcap over strands Z and Z + 1. We use the convention that strand 1 is on the right
and strand ) is on the left. For example, the element \1 ∈ TL4 is given in the diagram below.
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6 of 49 HARPER and SAMUELSON

(2)

The natural inclusion TL) ↪ TL)+1 is the - = 1 specialization of the structure maps of the
Temperley–Lieb tower of algebras, which are the following algebra maps:

(3)

The partial trace operation ptr) ∶ TL) → TL)−1 is defined as the TL)−1-bimodule map
(4)

and for < ∈ TL) ↪ TL)+1, we have \′)<\′) = \′) ptr)(<).
We briefly recall the Jones–Wenzl idempotents. For each ) ⩾ 0, there exists a uniqueA()) ∈ TL)

that satisfies the following properties:∙ A()) ≠ 0,∙ A())A()) = A()),∙ \ZA()) = A())\Z = 0 for all Z ∈ {1, … ,) − 1}.
Let A(0) denote the empty diagram and set A(1) to be a single strand. For ) ⩾ 2, the Jones–Wenzl

idempotents are defined by the recursive relation

A()+1) = A()) − [)][) + 1]A())\)A()), (5)

where A()) ∈ TL)+1 via the inclusion TL) ↪ TL)+1. These idempotents also satisfy the relation
ptr)(A())) = [) + 1][)] A()−1) . (6)

In some cases, it will be easier for us to use the notation ∪Z and ∩Z to describe Temperley–
Lieb diagrams. For instance, we will consider the TL)+2-diagram ∪)A()+1)∩). Each of ∪Z and ∩Z
indicates a cup or cap over strands Z and Z + 1. In this way, the first ) − 1 strands of A()+1) are
to the right of ∪) and the ) + 1st strand of A()+1) is to the left of ∪) (in the right to left labeling
convention), and similarly for ∩). The expression ∪)A()+1)∩) is equal to \)+2\)+1A()+1)\)+1 and
may be drawn diagrammatically as

(7)

 14697750, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70174, W

iley O
nline Library on [29/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 7 of 49

4 THE UNIVERSALWEYL CATEGORY

4.1 Definition

We define an additive ℂ(D)-linear strict monoidal category !′ as follows. The set of objects is
tensor generated by the objects /+ and /−. An object in!′ is a finite direct sum of objects /W =/W" ⊗⋯⊗/W1 , where W = W" ⋯ W1 ∈ {+,−}" . We denote the unit object by H, which corresponds
to the empty sequence.
The space of morphisms Hom!′(/W,/W′) is the ℂ(D)-module generated by diagrams

(8)

(9)

for G ∈ ℤmodulo rel boundary isotopies. Notice that the last diagram G has no boundary compo-
nents. We call such elementary diagrams boxes. The other diagram in (9) is called a (disoriented)
cupcap. We refer to the nonsolid components of cupcaps as doubled strands. The orientation at
the endpoints of a diagram inHom!(/W,/W′)must agree with the signs in the sequences W and W′,
where+ corresponds to ↑ and− corresponds to ↓. Composition of morphisms is given by stacking
diagrams. Diagrams without boundary components are endomorphisms of H.
Before stating the relations in!′, we make the following notational conveniences for G ⩾ 0.

(10)

(11)

(12)
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8 of 49 HARPER and SAMUELSON

(13)

(14)

Remark 4.1. The local relations we impose are significantly more complicated than in the Heisen-
berg category. We do not have a satisfying explanation for this complexity, but our ansatz for
imposing relations is “relations that hold in the action of the category should hold in the cate-
gory itself.” The relations imposed will hold for both categories we construct from !′ in their
actions on Temperley–Lieb modules.

We impose the following local relations between morphisms in!′:

(15)

and reflections of the relations in (15) across a vertical axis,

(16)

(17)

(18)
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 9 of 49

(19)

(20)

(21)

(22)

(23)

as well as

(24)
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10 of 49 HARPER and SAMUELSON

Remark 4.2. We obtain a slightly different, but equivalent, set of relations from (23) by rotating
the diagrams using cups and caps.

The relations in each of (23) and those directly above, together with (19), imply

Remark 4.3. Relation (24) is somewhat complicated but we make use of it in the proof of
Proposition 5.5.

Let! be the Karoubi envelope of!′. Thus, the objects of! are pairs (/W, \), where \ ∶ /W →/W is an idempotent. Morphisms in! are triples (A, \, \′) where A ∶ /W → /W′ is a morphism in!′ such that A = \′ ◦A = A ◦ \. For each G ⩾ 0, let LG be the image of the idempotent inEnd(H) as an object in!.

Remark 4.4. The second relation in (15) together with the first relation in (17) implies that

by taking the right trace of the former and resolving the counterclockwise circle. This shows that
the cupcap is an idempotent in our category, and similarly for its dual. Let /⊕ denote the image
of this projection on /⊗2+ as an object in !. The image of the dual cupcap is denoted as /⊖.
Diagrammatically, we write/⊕ as the source and target of an isolated “doubled strand.” It is then
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 11 of 49

natural write the projection and inclusion maps between /⊗2+ and /⊕ as factors of the cupcap:

Relations that only involve doubled strands can be expressed as relations on the full subcategory
of! generated by /⊕ and /⊖. In particular, the first relation in (20) and the relation above can
be formulated as

(25)

Left and right duality between /⊕ and /⊖ follow from left and right duality between /+ and/−. For example,

Remark 4.5. The standard surjection from the Hecke algebra j) to TL) defined on standard
generators kZ ↦ D1∕2 − D−1∕2\′Z does not determine a functor between the Heisenberg and Weyl
categoriesC8D → !. Indeed, the relation

inC8D mapping to

implies id/+ = 0.

 14697750, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70174, W

iley O
nline Library on [29/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



12 of 49 HARPER and SAMUELSON

4.2 Basic isomorphisms in!
There are several isomorphisms in! that follow from single relations together with idempotency
of bubbles. We will suppress the tensor product from the notation to improve readability, that is,1⊗ E is written as 1E. For example,

LG/+ ≅ LG/+LG ⊕ LG/+LG−1 (26)

/+LG ≅ LG/+LG ⊕ LG+1/+LG (27)

and similar identities involving /− follow from (19) and its rotation, and (21). In addition,
invertiblity of 0 from (22), and (18) and (23) imply

L0/−L0/+L0 ≅ L0 . (28)

The remaining isomorphism, which lends this category its name, is stated as a proposition.

Proposition 4.6. The following isomorphism holds in!:

/−+ ≅ /+− ⊕ L0 .
Proof. Taking the second relation in (15), adjoining (tracing) the left strands, and reflecting across
a vertical axis, we observe that

with the second equality coming from the second relation in (16). We isolate the id/−+ term and
then apply (19) and (23) at G = 0 to obtain the identity
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 13 of 49

Notice that only one term from (19) contributes. The morphisms on the right side of the relation
factor through the objects /+− and L0 are presented in the diagram below.

Thus, the equality above can be formulated as 51O1 + 52O2 = id/−+ . We have O251 = 0 and O152 =0 as a consequence of (20). One can check O151 = id/+− using (15) as well as O252 = idL0 since
and 0 ⋅ 0 † = 1. This proves the desired isomorphism. □

Remark 4.7. In the Grothendieck group ,0(!), the isomorphism in Proposition 4.6 becomes

[/−][/+] − [/+][/−] = [L0] (29)

a loosening of the defining relation of the Weyl algebra where 1 is replaced by a noncentral idem-
potent.
This isomorphism is analogous to one in the quantumHeisenberg categoriesE8FD,G with central

charge G studied by [3] (which specialize to the quantum Heisenberg category of [9] by settingG = −1). In the Heisenberg categories with nonpositive central charge, there is an isomorphism
/j−+ ≅ /j+− ⊕ H(−G). (30)

In the isomorphism of Proposition 4.6, the object L0 on the right-hand side is a subobject of H. In
a rough sense, this behavior is “in between” the Heisenberg categories with central charges G = 0
and G = −1.
4.3 Relations involving bubbles

In this section, we state relations that follow from the defining relations of the universal Weyl
category that primarily involve bubbles or diagrams without boundary components.
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14 of 49 HARPER and SAMUELSON

Lemma 4.8. For G ⩾ 0, we have the equality

Proof. By definition of the G + 1 labeled bubble

Thus, we obtain the desired result by multiplying the above equalities on the right by the cupcap
and applying the left relation in (20). □

The identity is consistent with formally applying Lemma 4.8 at G = −1 and noting
the second relation in (20).

Lemma 4.9. We have the following identities:

Proof. Since [2] is a unit in ℂ(D), each of the desired relations are verified by direct computation:

□

Lemma 4.10. The following identities hold in!:
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 15 of 49

Proof. In the case G = 0, after expanding the doubled cup and cap, we apply the second relation
in (20) to get zero. For G > 0, we have

The second equality is a consequence of the first relation in (20) and the last equality is due to
Lemma 4.9. □

Remark 4.11. Relations dependent on appearing in (18), (17), andLemma 4.10 are all consistent
with the respective independent relations in (18), (17), and Lemma 4.9 via the formal infinite
sum

as shown in the equalities below. For the relations in (18) and (17), we have

Between Lemmas 4.9 and 4.10,

Although the infinite sum identity is not a relation in!, it appears naturally in the categorical
representation of theWeyl category on the direct sum over ) of TL)-modules. On any module, LG
the image of in H acts as a projection onto certain isotypic simple module components and
the sum over all such projections is the identity on anymodule. Since there are only finitely many
isomorphism classes of simple modules for a given ), all but finitely many terms in this infinite
sum vanish.
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16 of 49 HARPER and SAMUELSON

Remark 4.12. In light of the relations

from Remark 4.4 and Lemma 4.9, we have the isomorphism /⊖⊕ ≅ H in!.

5 THEWEYL 2-CATEGORY

As it is currently defined, the monoidal category ! does not act on &', the sum over ) of the
categories of Temperley–Lieb modules. This is because the constants needed to define the action
depend on ) in an essential way. This means that to define the action we want, we need to use the
2-categorical point of view. In this section, we define the Weyl 2-category and compare isomor-
phisms that hold in the 2-category but not in themonoidal category. The action on⨁) TL) −mod
is described precisely in the next section.

5.1 TheWeyl 2-category

The 2-category "!#$% is the Karoubi completion† of a 2-category "!#$%′ that we define now.∙ The set of objects of "!#$%′ is ∇ ⊔ ℤ⩾0 (∇ should be thought of as the null object),∙ Hom"!#$%′(),-) is trivial‡ if- = ∇ or ) = ∇,∙ For-,) ∈ ℤ⩾0, Hom"!#$%′(),-) is the category defined diagrammatically below.
Definition 5.1. For -,) ∈ ℤ⩾0, the additive ℂ(D)-linear strict monoidal 1-categoryHom"!#$%′(),-) is defined as follows:∙ Objects are /W, where W = (W" , … , W1) is a finite sequence of + and −, with- = ) +∑"Z=1 WZ and) +∑mZ=1 WZ ⩾ 0 for each 1 ⩽ m ⩽ "§. Let H) denote the tensor unit in Hom"!#$%′(),)).∙ Morphisms in Hom"!#$%′(),-) are generated by

† By the Karoubi completion of a 2-category , we mean the 2-category with the same objects as , but whose morphism
categories are the Karoubi completions of those of .‡ The trivial additive 1-category has one object and one morphism.
§ In these sums, + and − are considered as 1 and −1, respectively.
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 17 of 49

The rightmost label indicates the source 2-object† and the leftmost region indicates the target
2-object. Region labels for diagrams in "!#$%′ extend uniquely after the choice of the rightmost
label, and we may use the notationHom"!#$%′(),−)when the left region label is not specified.
Labeled boxes also appear as morphisms in Hom"!#$%′(),)) via the relations imposed from!′, but are not considered generators because of relation (33).∙ We impose the local relations (15)–(24) on morphisms; these are the same local relations
imposed in !′. As in !′, morphisms are considered up to planar isotopy. We impose the
additional relations on morphisms in 2Hom"!#$%′(H), H)):

(31)

(32)

(33)

Remark 5.2. The motivation for (33) follows our ansatz, Remark 4.1, that in the representation on&', a box G should act as multiplication by the scalar [) + G + 1]∕[) + G + 2] if ) + G ⩾ 0. We
assign the value zero to all other boxes so thatHom"!#$%′(),−) is defined as a quotient of!′. In
this way, no invertible box in!′ is mapped to zero. This assignment of boxes to constants also
eases the description of bases of endomorphism categories.
On the other hand, the bubble in region ) should act on &' by projecting onto theF))−2G isotypic component (see the Appendix for a discussion of these modules). If ) − 2G < 0,

this module is 0. We therefore set such a morphism to 0 as well. While the sum over these
nonzero components is the identity on any module, the sum of nonzero bubbles is 1. See also
Remark 4.11.

We use )= to indicate that an equality holds in a morphism category Hom"!#$%(),-) (orHom"!#$%(),−) if - is not specified) and we may omit any explicit region labels in the corre-
sponding diagrams. The example (34) below shows an equality of 2-morphisms between objects inHom"!#$%(),) + 1) as region labeled diagrams and equivalently using )= to specify the rightmost
region label. The equality itself is determined by (16) in the definition of!′:

(34)

† By 2-object, wemean an object of the 2-category "!#$%′ (which belongs to∇ ⊔ ℤ⩾0), not an object in one of itsmorphism
1-categories (which is a sequence W).
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18 of 49 HARPER and SAMUELSON

For each ) ⩾ 0, let H) ∈ Hom"!#$%(),)) denote the tensor unit of Hom"!#$%(),)) andEnd"!#$%(H)) its algebra of endomorphisms in 2Hom"!#$%(H), H)). As a consequence of the
construction of "!#$%, End"!#$%(H)) is described as the quotient of End!(H) by the relations
(31)–(33).

Remark 5.3. For ) ⩾ 0, leto) ∶ End!(H)→ End"!#$%(H)) be the quotient map determined by the
relations (31)-(33). By definition, End"!#$%(H)) = im(o)).
Remark 5.4. Many terms in relation (24) vanish if ) − 2G + 2 = 0, leaving the relation

5.2 Isomorphisms inpqr"!#$%(s,t)
We discuss the isomorphisms that are introduced in the hom-categoriesHom"!#$%(),-) in com-
parison to those of! stated in Section 4.2 and how some isomorphisms in! become trivialized.
The assignment of G )= [)+G+1][)+G+2] for ) + G ⩾ 0means that boxes appearing in relations are invert-
ible, and can be used to construct isomorphisms that are not present in!. Relation (31) implies
a number of diagrams that are present in the defining relations of ! but vanish in certain
hom-categories of "!#$%. Many of these follow from the basic relations

Or more simply, and when ) = 2G. In such instances, the corresponding
objects of the Karoubi completion LG are also zero.
For example, relations in Remark 4.2, (18), and (33) imply the isomorphismLG ≅ LG/+LG/−LG

in Hom"!#$%(),)) for ) > 2G. However, if ) = 2G, then LG/+LG/−LG ≅ 0 as , butLG ≇ 0 inHom"!#$%(),)). At this critical value, boxes −2G − 1 that appear in the relevant rela-
tions are also mapped to zero and so the isomorphism fails in this case. If ) < 2G, then both LG
and LG/+LG/−LG are zero inHom"!#$%(),)) and the isomorphism becomes trivial. The various
isomorphisms dependent on the value of ) relative to G are summarized in Table 1.
Proposition 5.5. The isomorphisms in Table 1 hold inHom"!#$%(),−).
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 19 of 49

TABLE 1 “Generic” isomorphisms in Hom"!#$%(),−) and their modification at critical values.
Above critical values At critical values Critical valuesLG/+ ≅ LG/+LG ⊕ LG/+LG−1 LG/+ ≅ LG/+LG−1 ) = 2G − 10 ≅ 0 ) < 2G − 1/+LG ≅ LG/+LG ⊕ LG+1/+LG /+LG ≅ LG/+LG ) = 2G0 ≅ 0 ) < 2GLG/− ≅ LG/−LG ⊕ LG/−LG+1 LG/− ≅ LG/−LG ) = 2G + 10 ≅ 0 ) < 2G + 1/−LG ≅ LG/−LG ⊕ LG−1/−LG /−LG ≅ LG/−LG ) = 2G0 ≅ 0 ) < 2GLG/−LG/+LG ≅ LG 0 ≅ 0 ) < 2GLG−1/−LG/+LG−1 ≅ LG−1 none† ) = 2(G − 1)0 ≅ 0 ) < 2(G − 1)LG ≅ LG/+LG/−LG none ) = 2G0 ≅ 0 ) < 2GLG ≅ LG/+LG−1/−LG 0 ≅ 0 ) < 2GLG+1/+LG/+LG ≅ LG+1/+LG+1/+LG none ) = 2G0 ≅ 0 ) < 2GLG/−LG+1/−LG+1 ≅ LG/−LG/−LG+1 none ) = 2(G + 1)0 ≅ 0 ) < 2(G + 1)

†The relation satisfied by the morphism in (23), which witnesses the isomorphism generically, becomes 0 = 0when ) = 2(G − 1).
Moreover, LG−1/−LG/+LG−1 ≅ 0 and LG−1 ≇ 0 and are therefore not isomorphic.

Proof. The most interesting relation in the table is LG+1/+LG/+LG ≅ LG+1/+LG+1/+LG, which
we will prove directly for ) > 2G. The isomorphism LG+1/−LG/−LG ≅ LG+1/−LG+1/−LG is a
consequence of rotating the diagrams. The proof of other relations in the table is straightforward
to verify from Section 4.2 or the relations from (17), (18), (23), and Remark 4.2 with (33). For the
critical values of G relative to ), certain morphisms will vanish because of (31) and (33).
To proveLG+1/+LG/+LG ≅ LG+1/+LG+1/+LG inHom"!#$%(),) + 2) for) > 2G, we show that

the maps

witness the desired isomorphism up to a normalization by boxes. By (15), (19), and (24), their
compositions are
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20 of 49 HARPER and SAMUELSON

The boxes appearing in the simplified expressions are invertible for ) > 2G. Thus, the above maps
can be normalized, which proves the isomorphism. If ) = 2G, then LG+1/+LG+1/+LG ≅ 0 andLG+1/+LG/+LG ≇ 0. Both objects are isomorphic to 0 if ) < 2G. □

Proposition 5.6. The isomorphism /−+ ≅ /+− ⊕ L0 holds inHom"!#$%(),)) for any ) ⩾ 0.
Proof. The proof of Proposition 4.6 is unchanged for each ). □

Remark 5.7. In each isomorphism of Table 1, if ) is sufficiently large ) > 2,, where , is the
largest index of LG in the isomorphism, then the “generic form” of the isomorphism holds inHom"!#$%(),−).
6 ACTION OF "!#$% ON &'
We recall the notion of a 2-categorical representation in the sense of [9]. Let = ⨁-∈v - be anv-graded additive category, wherev is a monoid. The collection of endofunctors on  naturally
forms a 2-category whose objects are the elements of v, whose 1-morphisms from ) to -, for),- ∈ v, are the functors from ) to -, and whose 2-morphisms are natural transformations.
Denote such an endofunctor category byEnd(). If is a category, then a functorO ∶  → End()
is called a representation of  on  and we say that  acts on  . In this section, we construct a
representation of "!#$% on the category of Temperley–Lieb modules &' ∶= ⨁)⩾−1 TL)−mod,
with the convention that TL−1 −mod is a null object denoted as ∇.
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 21 of 49

Every (TL-, TL))-bimodulev determines a functorv ⊗− ∶ TL) −mod→ TL- −mod S ↦ v ⊗S (35)

and any homomorphism v1 → v2 of (TL-, TL))-bimodules gives a natural transformation
between the corresponding functors. In this way, a representation of "!#$% is an assignment
of bimodule maps to diagrams.
For G, w ⩽ ), let G())w denoteTL) as a (TLG, TLw)-bimodule. Tensoring the bimodules )+1() + 1))

and )−1())) corresponds to induction and restriction functors on &', respectively.
We now propose a representation O′ ∶ "!#$%′ → End(&') that makes the following assign-

ments.∙ On objects, O′()) = ) for ) ⩾ 0 and O′(∇) = ∇.∙ The functor O′ maps the object 0 in each hom-category to 0. Each 1-morphism /W ∈Hom"!#$%(),) + ‖W‖) with W = W" … W1 is mapped by O′ to a sequence of induction and
restriction bimodules, with +mapping to induction and −mapping to restriction.∙ On 2-morphisms, O′ makes the following assignments† on elementary diagrams:

where the map < ↦ ptr)+1(<) is the right partial trace of < as defined in (4) and∑],^∈T)])=^) x^\],^ ⊗\^,] is as described in Section A.3.
Remark 6.1. In a slight abuse of notation, we use )= to denote an equality in a hom-categoryHomEnd(&')(),−), when it is clear that we are considering an equality of morphisms under O′.
Its use here is similar to that in "!#$% where )= indicates the rightmost region label on diagrams
is ) and establishes that the equality is between natural transformations of functorswhose sources
are TL) −mod. This convention fits with our ansatz in Remark 4.1.
The notation )= will typically be reserved for giving an explicit description of an action of a

diagram on TL) −mod. In addition, we will use ∙= if an equality )= holds for all ) ⩾ 0. Typically,
this will be used for equalities between the images of diagrams under O′.
Since End(&') is idempotent complete, the proposed functor O′ extends to a functor O ∶"!#$% → End(&'). In Corollary 6.9, each object LG is shown to map to TG, the functor that

†We use a notational shorthand [< ↦∗] ∶ > → z to describe a function A ∶ > → z defined by a formula A(<) =∗.
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22 of 49 HARPER and SAMUELSON

projects onto the F))−2G isotypic component of any TL)-module. Here, F))−2G is an irreducibleTL) defined in the Appendix.
Theorem 6.2. The functor O is well defined and determines a representation of "!#$% on &'.
It is sufficient to prove the claim for O′ by showing that the defining relations on 2-morphisms

in "!#$% hold when interpreted as maps of Temperley–Lieb bimodules according to the
assignments above. Therefore, the following corollary is a tautological consequence.

Corollary 6.3. The images of /+, /−, and LG under O are consistent with the isomorphsisms
described in Table 1 and Proposition 5.6.

Remark 6.4. Corollary 6.3 can also be proven by explicitly computing the induction, restriction,
and projection functors on simple modules in TL) −mod. For an irreducible TL) representationF)-, the functors Ind, Res, and TG act as

Ind(F)-) ≅ F)+1-+1 ⊕ {-,0F)+1-−1, (36)

Res(F)-) ≅ {-,)F)−1-+1 ⊕ {-,0F)−1-−1, (37)

TG(F)-) ≅ {-,)−2GF))−2G (38)

from Appendix A.1. We use the convention that F)- = 0 if - < 0, - > ), or - ≢ )mod 2. We
write {Zm ∶= 1 − {Zm to emphasize these conventions and to avoid confusionwhen composing these
functors. With this presentation of induction, restriction, and projection, it is straightforward to
verify the isomorphisms in Table 1 and Proposition 5.6.
It is important to remark that an instance of “none” in the table corresponds to an instance

where the generic isomorphism implies a relation between a zero and a nonzero object, as is the
case in "!#$%. For example, if ) = 2(G − 1) so that ) + 1 − 2G = −1, then

TG−1(F)0 ) ≅ F)0 ,TG−1 ◦ Res ◦TG ◦ Ind ◦TG−1(F)0 ) ≅ TG−1 ◦ Res ◦TG(F)+11 ) ≅ 0 .
Hence, there is no isomorphism between TG−1 and TG−1 ◦ Res ◦TG ◦ Ind ◦TG−1.
We begin the proof of Theorem 6.2 by noting that some relations were proven in [12], see Sec-

tion A.3. These include the isotopy relation and the first relations in (16) and (17). We proceed by
first investigating the action of diagrams that are generated only by Temperley–Lieb generators. In
the representation, it is enough to show that the relations in!′ hold for all choices of rightmost
region labels ) ⩾ 0. The proof of the theorem is complete once the image of all relations in!′
mapped toHom"!#$%(),-) and interpreted as equalities of bimodule maps (i.e., 2-morphisms inEnd(&')) are verified for all rightmost region labels (i.e., 2-objects in End(&')).
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 23 of 49

6.1 Action of Temperley–Lieb generators

The first relation in (15) as applied to )+3() + 3)) follows from the Temperley–Lieb relation\′)+2\′)+1\′)+2 = \′)+2. Similarly, \′)+1\′)+2\′)+1 = \′)+1 implies the reflection of (15). The second
relation in (15) and its reflection are proven in the lemma below.

Lemma 6.5. The following relations hold under the functor O′:

Proof. The relations in (A.14) imply the adjunction between induction and restriction. Therefore,
the first relation is equivalent to

Fix ) ⩾ 1. Then, the left side of the above maps < ⊗ M ∈ )+2() + 2))() + 1)) to <\′)+1M\′)+1 =< ptr)+1(M)\′)+1 which is exactly the image of < ⊗ M under the right morphism.
The second relation is proven directly for ) ⩾ 0. The left side of the relation determines an

endomorphism of the bimodule )+1() + 2)), mapping < to ptr)+2(<\′)+1)\′)+1. Using the Jones
basis of the Temperley–Lieb algebra [13], < = <1 + <2\′)+1<3 for some <1,<2,<3 ∈ TL)+1. Then
as

ptr)+2(<\′)+1)\′)+1 = (<1 ptr)+2(\′)+1) + <2 ptr)+2(\′)+1<3\′)+1))\′)+1= <1\′)+1 + <2 ptr)+2(ptr)+1(<3))\′)+1= (<1 + <2 ptr)+1(<3))\′)+1= (<1 + <2\′)+1<3)\′)+1 = <\′)+1
the claim follows. □
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24 of 49 HARPER and SAMUELSON

Remark 6.6. The Temperley–Lieb relation (\′)+1)2 = \′)+1 implies the diagrammatic relation

It is also implied by Lemma 6.5 by closing the right strand of the diagram and resolving the
counterclockwise oriented circle as [2].

6.2 Action of bubbles

Before discussing additional relations involving boxes, namely, those in which boxes are intro-
duced, that is, (18), (17), (24), and (23); we must first discuss the action of bubbles beginning
with the 0 labeled circle. The latter equality in (16) follows from our definition of . Since
appears in the definition of both diagrams in (10) and are related to each other by (12), we com-
pute both of their actions on &' explicitly to show that is well defined. Quinn proved in [12,
Prop. 5.2.5] that the left diagram in (10) acts as an idempotent endomorphism of the induction
bimodule (A.15). Indeed, we show that it acts as multiplication by the Jones–Wenzl idempotentA()+1) on )+1() + 1)).
Proposition 6.7. In the representation O′, the definitions involving in (10) are consistent with
the notation introduced in the second equation of (12). That is,

and their action on )+1() + 1)) is multiplication by A()+1).
Proof. Quinn showed in Proposition 5.2.5 that
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 25 of 49

Expanding the path ^ = (^′, ^)) in the sum, we have
∑

0⩽-⩽)
∑

],^∈T)-
[^)−1 + 1][- + 1] 1

|T)−1^)−1 |\],^\′)\],^
= ∑

0<-⩽)
∑
]∈T)-^′∈T)-−1

[-][- + 1] 1
|T)−1-−1|_]A(-)\′-A(-)_̌] + ∑

0⩽-<)
∑
]∈T)-^′∈T)-+1

1
|T)−1-+1|_]A(-+1)_̌]

= ∑
0⩽-⩽)

∑
]∈T)- _]

( [-][- + 1]A(-)\′-A(-) + A(-+1))_̌] − ∑
]∈T)) _]A()+1)_̌]= ∑

0⩽-⩽)
∑
]∈T)- \],] − A()+1)

= 1 − A()+1).
This proves

We use this to compute

The counterclockwise circle now acts as a partial trace and we obtain the desired equality below

□

In the above proof, we observed that

(39)
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26 of 49 HARPER and SAMUELSON

The factor [)][)+1] , which is given by the action of −1 on an ) labeled region implies

which is a consequence of (18). Notice that acts by A()). We will return to this relation after
considering the action of more general bubbles .

Lemma 6.8. In the representation O′, the following relation holds:

Proof. Consider < ∈ )() + 2)). The image of < under the right morphism is \)+1<\)+1, which can
be written as \)+1<′ for some <′ ∈ TL) ↪ TL)+2 using the Jones basis [13, Prop. 2.3]. Applying
the left morphism to < yields

< ↦ \)+1<\)+1 ↦ ptr)+1 ◦ ptr)+2(\)+1<\)+1)↦ \)+1(ptr)+1 ◦ ptr)+2(\)+1<\)+1))\)+1= \)+1(ptr)+1 ◦ ptr)+2(\)+1<′))\)+1 = \)+1(ptr)+1 ◦ ptr)+2(\)+1))<′\)+1= \)+1<′\)+1 = \)+1<′ = \)+1<\)+1.
Thus proving the identity. □

Corollary 6.9. Letv be a TL)-module and recall thatLG is image of the idempotent in "!#$%.
Then, O(LG)(v) = TG(v) is the projection onto theF))−2G isotypic component ofv.

Proof. We have already shown that acts by A()) on TL)-modules, and therefore, is the projec-
tion onto the trivial isotypic componentF)) . Thus, we proceed by induction and show that
acts as∑]∈T))−2G \],] on TL) −mod. By Proposition 6.7 and Lemma 6.8,
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 27 of 49

It is therefore enough to compute the action of the latter on TL) −mod. As an endomorphism of)+1() + 1)), it acts via multiplication by
∑

],^∈T).∈T)−1)−1−2G
[^)−1 + 1][^) + 1] 1

|T)−1^)−1|\],^\.,.\′)\^,]
= ∑

]∈T))−2G
[) − 2G][) + 1 − 2G]_]\′)_̌] + ∑

]∈T))−2−2G _]A()−1−2G)_̌]= ∑

]∈T)+1)−1−2G
\],] = ∑

]∈T)+1)+1−2(G+1)
\],].

The second equality follows from Remark A.1 and the claim is proven. □

Consequently, the first relation in (21)

(40)

is satisfied since projections onto different isotypic components are orthogonal.
The relation (A.3) implies the identities

(41)
These can also be inferred directly by considering the above relations as describing isomorphisms
between modules:

LG ◦ Ind(v) ≅ LG ◦ Ind ◦LG(v)⊕LG ◦ Ind ◦LG−1(v)Ind ◦LG(v) ≅ LG ◦ Ind ◦LG(v)⊕LG+1 Ind ◦LG(v) .
Lemma 6.10. The following relations hold under the functor O′:

Proof. For a given ) ⩾ 0, the action of the clockwise nested circle is multiplication by
∑

],^∈T)])=^)
∑

.∈T)−1)−1−2G
[])−1 + 1][]) + 1] 1

|T)−1])−1 |\],^\.,.\^,]
= ∑

],^∈T))−2G
[) − 2G][) − 2G + 1]\],] + ∑

],^∈T))−2−2G
[) − 2G][) − 2G − 1]\],] .
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28 of 49 HARPER and SAMUELSON

This agrees with the proposed equality, including the cases ) − 1 − 2G < 0. For the counterclock-
wise circle, it acts as multiplication by

ptr)+1 ⎛⎜⎜⎝ ∑

]∈T)+1)+1−2G
\],]⎞⎟⎟⎠ = ptr)+1 ⎛⎜⎜⎝ ∑

]∈T))−2G _]A()+1)_̌] +
∑

]∈T))+2−2G
[) − 2G + 2][) − 2G + 3]_]\)_̌]⎞⎟⎟⎠

= ∑
]∈T))−2G

[) − 2G + 2][) − 2G + 1]\],] + ∑
]∈T))+2−2G

[) − 2G + 2][) − 2G + 3]\],]
as desired. □

Equation (32) together with Lemma 6.10 implies that the relations for the unnested circles in
(17) and (18) hold. See also Remark 4.11.

6.3 Action of bubbles with Temperley–Lieb generators

We prove that relations involving both Temperley–Lieb generators and bubbles hold in the image
of "!#$%′ under O′. This will include the last of the defining relations from !′, thus proving
Theorem 6.2. The first of these is the second relation in (20), which states

This is indeed the zero map on )+2() + 2)), and it is multiplication by A()+2)\)+1 = 0.
To prove relation (24) holds in the action of "!#$%′ on &', we first prove the following two

lemmas.

Lemma 6.11. The following identity holds:

Proof. The left side of the equality acting on TL) −mod is the endomorphism of )+2() + 2)) given
via multiplication by

∑

],^∈T)+1)+1−2G
\],]\′)+1\^,^ = ∑

]∈T))−2G _]A()+1−2G)\′)+1A()+1−2G)_̌]
+ ∑

],^∈T))+2−2G
( [) + 2 − 2G][) + 3 − 2G])2_] ∪)+2−2G A()+2−2G) ∩)+2−2G _̌] .
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 29 of 49

The resulting expression is equivalent to that obtained from the right side of the equality. □

Remark 6.12. Lemma 6.11 is a generalization of the Jones–Wenzl recursion. Using (41) in the caseG = 0, one has the relation

This implies the equality of multiplicative actions on )+2() + 2)):[)][) + 1]A()+1)\′)+1A()+1) = A()+1)A()) − A()+2)A()+1)A()) = A()+1) − A()+2) .
Lemma 6.13. The following identities hold in End(&')

Proof. Since these relations are mirror images of each other across a horizontal axis, their proofs
are also related by reversing the order of multiplication. Therefore, we only write the computation
for the first relation. The left side of the equality acting on TL) −mod is the endomorphism of)+2() + 2)) multiply by

∑

]∈T)+1)+1−2(G+1)^∈T)+1)+1−2G
\],]\′)+1\^,^ = ∑

]∈T))−2G
[) − 2G][) + 1 − 2G]_]\′)−2G\′)+1−2GA()+1−2G)_̌]

= ∑
]∈T))−2G

[) − 2G][) + 1 − 2G]_]\′)−2G_̌]\′)+1−2G − ∑
]∈T))−2G

( [) − 2G][) + 1 − 2G])2_] ∪)−2G A()−2G) ∩)−2G _̌] .
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30 of 49 HARPER and SAMUELSON

This is the same expression obtained from the right side of the equality. □

The following can now be determined from the above lemmas and (41).

(42)

Corollary 6.14. The identity

holds in the action of "!#$%′ on &' given by O′.
Proof. The relation follows from applying (41) to the left side of the proposed equality, followed
by relations in Lemmas 6.11 and 6.13 and Equation (42). □

Note that applying any of , , or in the appropriate region to Corollary 6.14

recovers the relations given in Lemmas 6.11 and 6.13 and (42).
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 31 of 49

Lemma 6.15. The identities hold

Proof. Fix ) ⩾ 0 and let < ∈ )() + 1)). If ) + 1 − 2G < 0, then both claims follow from (31) as each
diagram is the zero morphism.We prove the first claim, and the other is proven similarly. The left
side of the proposed equality maps < to

∑
^∈T))−2G \^,^ ⋅ < ⋅

∑

]∈T)+1)+1−2G
\],] ∑

.∈T))−2G \.,. =
∑

^∈T))−2G \^,^
∑

|,]∈T)+1)+1−2G
<|]\|,] ∑

.∈T))−2G \.,.= ∑

|,]∈T)+1)+1−2G|)−1=])−1=)−2G
<|]\|,],

where coefficients <|] ∈ ℂ(D) satisfy <_] = ∑|∈T)+1)+1−2G <|]_| for all ] ∈ T)+1)+1−2G.
While on the right side, < maps to

[) − 2G + 1][) − 2G + 2] ∑
^∈T))−2G \^,^ ptr)+1

⎛
⎜
⎜⎝
< ⋅

∑

]∈T)+1)+1−2G
\],]⎞⎟⎟⎠ ∑

.∈T))+1−2G \.,.
= [) − 2G + 1][) − 2G + 2] ptr)+1 ⎛⎜⎜⎝ ∑

^∈T))−2G \^,^
∑

|,]∈T)+1)+1−2G
<|]\|,]⎞⎟⎟⎠ ∑

.∈T))+1−2G \.,.
= [) − 2G + 1][) − 2G + 2] ∑

|,]∈T)+1)+1−2G|)−1=])−1=)−2G
<|] [) + 2 − 2G][) + 1 − 2G]\|′,]′ ∑

.∈T))+1−2G \.,.
= ∑

|,]∈T)+1)+1−2G|)−1=])−1=)−2G
<|]\|,].

Thus, equality holds. □

7 BASIS STATEMENTS

We describe bases for End!(H) and certain subalgebras of morphism spaces of Hom"!#$%(),−).
The arguments for proving these results rely on the action of "!#$% on End(&').
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32 of 49 HARPER and SAMUELSON

7.1 The box algebra

We first describe the subalgebras generated by boxes. This discussion is relevant for understanding
a basis of the subalgebra generated by boxes in!. It does not apply to "!#$% where boxes have
been identified with scalars.

Definition 7.1. Let  denote the unital commutative algebra over ℂ(D) with generators @G forG ⩾ 0 and relations @G+1@G = [2]@G+1 − 1. We call  the box algebra.

Introduce the notation @[G;-] = @G@G−1⋯ @G−- ∈  for G ⩾ 0 and 0 ⩽ - ⩽ G. Recall that
nonnegative quantum integers may be defined recursively by

[-] = [2][- − 1] − [- − 2] (43)

with [1] = 1 and [0] = 0, and where [2] = D + D−1.
Lemma 7.2. Fix G ⩾ 0, and 0 ⩽ - ⩽ G. Then, the equality

@[G;-] = [- + 1]@G − [-]
holds in .
Proof. We give a proof by induction on - for any given G ⩾ 0. We can easily see that the case- = 0 holds. Assume that the lemma holds for all pairs G′,- ∈ ℤ such that 0 ⩽ G′ ⩽ G and 0 ⩽- < G′. Fix - with 0 ⩽ - < G. Then, @[G;-+1] = @G@[G−1;-]. Since @G@G−1 = [2]@G − 1, the claim
now follows by induction:

@[G;-+1] = @G@[G−1;-] = @G([- + 1]@G−1 − [-]) = [- + 1]([2]@G − 1) − [-]@G= [- + 2]@G − [- + 1]. □

Lemma 7.3. Fix G ⩾ 0, and 0 < - ⩽ G. Then the equality
@G@G−- = 1[-] ([- + 1]@G + [- − 1]@G−- − [-]).

holds in .
Proof. By Lemma 7.2,

[- + 1]@G − [-] = @[G;-] = @[G;-−1]@G−- = ([-]@G − [- − 1])@G−- .
The claim follows by expanding the above and isolating @G@G−-. □

Lemma 7.4. Let- > −1 and ] ⩾ 0 be integers. Then,
( [-][- + 1])] = D](1 − D2-)] ∞∑

Z=0
(Z + ] − 1] − 1 )D2Z(-+1) .
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 33 of 49

Proof. Write

[-][- + 1] = D- − D−-D-+1 − D−(-+1) = D(D2- − 1)D2(-+1) − 1 = D(1 − D2-) ∞∑
Z=0 D2Z(-+1).

Recall that the exponentiation of a geometric series is given by the series
(∑∞Z=0 ^Z)] =∑∞Z=0 (Z+]−1]−1 )^Z . The desired formula now follows by taking ^ = D2(-+1). □

For any integers ) and G such that ) + G + 2 > 0, the identity
[) + G + 1][) + G + 2] ⋅ [) + G][) + G + 1] = [) + G][) + G + 2] = [2][) + G + 1] − [) + G + 2][) + G + 2] = [2] [) + G + 1][) + G + 2] − 1

(44)

holds. Thus, for ) ⩾ −1, there are algebra homomorphisms
}) ∶  → ℂ(D)

@G ↦ [) + G + 1][) + G + 2] . (45)

Observe that if ) ⩾ 0, then no generator is mapped to zero. However, this map is not an injection
for any ).
Proposition 7.5. There is a basis of  over ℂ(D) spanned by

{1} ∪ {@]G ∶ G ∈ ℤ⩾0,] ∈ ℤ>0}.
Proof. We determine that {1} ∪ {@]G ∶ G ∈ ℤ⩾0,] ∈ ℤ>0} is a spanning set by Lemma 7.3, which
shows that the product of any two distinct @G and @w can be expressed as aℂ(D)-linear combination
of @G, @w, and 1.
To prove this spanning set is a basis, suppose that there is a linear dependence∑G,] ~G,]@]G =0, where all but finitely many ~G,] ∈ ℂ(D) are nonzero. Assume all ~G,] ∈ ℂ[D] by first clearing

denominators then multiplying by some power of D. Let ~0,0 denote the coefficient of 1 ∈ . The
image of this relation under }) as in (45) implies∑G,] ~G,] ( [)+G+1][)+G+2])] = 0 for all ) > −2.
By Lemma 7.4, this relation becomes

∑
G,] ~G,]D](1 − D2()+G+1))] ∞∑

Z=0
(Z + ] − 1] − 1 )D2Z()+G+2) = 0 .

Set ~′G,] = ~G,]D] and < = <()) = D2). Thus,
∑
G,] ~′G,](1 − <D2(G+1)))] ∞∑

Z=0
(Z + ] − 1] − 1 )D2Z(G+2)<Z = 0 .
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34 of 49 HARPER and SAMUELSON

In this way, the coefficient of <m must be zero for all m ⩾ 0. We compute
MG,](<, D) ∶= (1 − <D2(G+1)))] ∞∑

Z=0
(Z + ] − 1] − 1 )D2Z(G+2)<Z

= ∞∑
Z=0

(min(Z,])∑
m=0

(]m)(Z − m + ] − 1Z − m )(−1)mD2Z(G+2)−2m)<Z .
Let T (and ,) be the maximum value of ] (and G) among all nonzero ~′G,] in the relation. SetC = maxG,](degD(~′G,])) and " = max](degD(~′,,])).
For a given G and ], the coefficient of <Z in the power series MG,](<, D) is a ℂ-linear combina-

tion of D2Z(G+2), D2Z(G+2)−2, … , D2Z(G+2)−2]. For each Z, suppose that there exist G ≠ , and m,] such
that degD(~′G,]D2Z(G+2)−2m) ⩾ degD(D"+2Z(,+2)) = " + 2Z(, + 2). In which case degD(~′G,]D−2m−") ⩾2Z(, − G) ⩾ 2Z. Since degD(~′G,]D−2m−") is independent of Z and is at most C, our above supposition
fails for Z > C. Thus, only terms in the expansion of some ~′,,]′M,,]′ can cancel the D"+2Z(,+2)<Z
term in ~′,,]M,,].
As degD(~′,,]) ⩽ " for all ], let ~̂] be the coefficient of D" in ~′,,] for each ]. Comparing coef-

ficients of D"+2Z(,+2)<Z in the relation, that is, G = , and m = 0, we determine∑] ~̂](Z+]−1Z ) = 0
for all Z > C.
Let T̂ be the largest ] such that ~̂] is nonzero. Consider Z = C + T̂. By the binomial coefficient

identity
(Z+mZ ) = (Z+m−1Z ) + (Z+m−1Z−1 )

, we have

0 = ∑

]⩽T̂ ~̂]
((C + T̂) + ] − 1C + T̂ )

= ∑

]⩽T̂ ~̂]
((C + T̂) + ] − 2C + T̂ ) +

!!!!!!!!!!!!!∑

]⩽T̂ ~̂]
((C + T̂ − 1) + ] − 1C + T̂ − 1 )

and iterating on this

0 = ∑

]⩽T̂ ~̂]
((C + T̂) + ] − T̂C + T̂ ) = ∑

]⩽T̂ ~̂]
(C + ]C + T̂) = ~̂T̂.

Thus, we have reached a contradiction as we have assumed ~̂T̂ ≠ 0. Hence, there are no relations
among the proposed basis elements. □

Proposition 7.6. The map �0, ∶  → End!(H) that sends @G to the box labeled G is an injection.
Proof. Suppose that �0,(∑G,] ~G,]@]G ) = 0, where all but finitely many ~G,] ∈ ℂ(D) are nonzero.
For each ) ⩾ 0, recall the homomorphisms o) ∶ End!(H)→ 2Hom"!#$%(),)) defined in
Remark 5.3. Recall the maps } and O defined in (45) and preceding Theorem 6.2, respectively.
Let O) be the restriction of O to End!(H) with target End(TL) −mod). There is a commutative

 14697750, 2025, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70174, W

iley O
nline Library on [29/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 35 of 49

diagram

that maps @G to the endomorphism that multiplies by [)+G+1][)+G+2] . As shown in Proposition 7.5, the
collection of maps }) distinguishes all elements of . That is, for all @ ∈  such that @ ≠ 0, then
there exists ) such that })(@) ≠ 0. Thus, all ~G,] are zero and therefore �0, is an injection. □

7.2 Endomorphism algebras

We give a description of End!(H) and End"!#$%(/⊗.+,)) as algebras.
Definition 7.7. Let  denote the commutative algebra of orthogonal idempotents ⟨x0, x1,⋯ ∣xGxw = {GwxG⟩ overℂ(D). Let ) be the subquotient generated by x0, x1, … , x⌊)∕2⌋ with the additional
relation 1 = x0 + x1 +⋯ + x⌊)∕2⌋.
Proposition 7.8. The natural map �0,,) ∶ ) → End"!#$%(H)) is an injection.
Proof. To prove that �0,,) is injective, assume that �0,,)(∑G ~GxG) = 0 where each ~G ∈ ℂ(D).
Since �0,,) is a homomorphism to Hom"!#$%(),)), we consider the composition of �0,,) withO). Then, each xG acts as the projection onto the isotypic component of typeF))−2G according to
Corollary 6.9. Since G ⩽ ⌊)∕2⌋, the generators x0, x1, … , x⌊)∕2⌋ act by nonzero projections onto dis-
tinct simple summands. Therefore, they act linearly independently on the direct sum of modules⨁⌊)∕2⌋Z=0 F))−2Z . It now follows that the coefficients ~G must all be zero. □

Corollary 7.9. Let�0, ∶  → End!(H) be themap that sends xG to the bubble labeled G. Then,�0,
is an injection.

Proof. The proof is similar to that of Proposition 7.8. By composing �0, with O, ◦o, , with o,
as defined in Remark 5.3, for , sufficiently large, the generators xG act linearly independently on
the TL,-module⨁⌊,∕2⌋G=0 F,,−2G. □

Proposition 7.10. The map �0,,) is an isomorphism.
Proof. It remains to show that �0,,) is a surjection. Any endomorphism of H) is a ℂ(D)-linear
combination of products of bubbles and oriented trivalent graphs without boundary points.
Each edge of each graph is either solid or doubled, and each vertex joins two solid segments with
the same orientation and one doubled segment with the opposite orientation. Here, orientation
means outward or inward with respect to the vertex. Each region in the complement of a graph
contains at most one bubble by (21).
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36 of 49 HARPER and SAMUELSON

Notice that each connected component of a solid (nondoubled strand) in a graph is a closed
curve with an even number of vertices (possibly zero). Consider such a component that also con-
tains no solid curves in the region it bounds. Resolve any closed doubled curves on its interior
according to Lemma 4.9 and evaluate any resulting boxes according to (33). If the solid curve has
any doubled segments on its interior, consider a region bounded by the solid curve and a doubled
edge that has no other doubled edges on its interior. There may be an even number of vertices on
the boundary of this region, at each such vertex there is a doubled segment on the exterior of the
region. These vertices may be removed in pairs using (15). Now apply (16), and Lemma 4.8 if nec-
essary, to reduce the number of doubled edges in the region bounded by the solid curve. Repeat
until there are no such edges remaining. Relation (15) may be applied to remove any remaining
pairs of exterior doubled edges from the solid closed curve. The solid curve has been reduced to aℂ(D)multiple of an oriented circle, which can be further simplified using (17) and (18).
Apply the above to remove all solid curves from the graph. The resulting diagram may contain

closed doubled curves that can be simplified using (20). The resulting diagram is now a linear
combination of products of bubbles. Products may be simplified using (21), by (31) only bubbles
with sufficiently small index are nonzero, and by (32) sums of bubbles may be simplified to 1.
Thus, �0 is a surjection. □

Corollary 7.11. Themap�0, ⊗�0, ∶ ⊗  → End!(H) is an isomorphismof commutative alge-
bras.

Proof. The proof is identical to that of Proposition 7.10 with the exception that boxes are not
evaluated as constants, but are instead moved to the unbounded region of any given diagram
using (21). □

Definition 7.12. For ) > 0, write ),. to denote the unital commutative algebra generated by xZ,m
for 0 ⩽ Z ⩽ ⌊() + m)∕2⌋ and 0 ⩽ m ⩽ . with relations

xZ,mxw,m = {ZwxZ,m , ⌊()+m)∕2⌋∑
Z=0 xZ,m = 1 (46)

{m>0xZ,m = xZ,m(xZ,m−1 + xZ−1,m−1), {m<.xZ,m = (xZ,m+1 + xZ+1,m+1)xZ,m , (47)

where xZ,m is assumed to be zero if Z < 0 or Z > ⌊() + m)∕2⌋.
For each 0 ⩽ m ⩽ ., there is an inclusion of )+m ↪ ),. thatmaps the generator xZ to xZ,m . Indeed,

this map is an inclusion, as

xZ,m = .−m∏
G=−m xZ+G,m+G + (terms with some factor xZ′,m′ where each |Z′ − m′| < |Z − m|) .

In this way, we may present ),. as )+. ⊗⋯⊗ )+1 ⊗ ) together with the relations in (47).
Lemma 7.13. A basis of ),. given by sequences

{x� = xG. ,.⋯ xG1,1xG0,0 ∶ 0 ⩽ Gm ⩽ ⌊() + m)∕2⌋ , Gm+1 ∈ {Gm , Gm + 1}}.
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 37 of 49

For example, for 0 ⩽ Z ⩽ ⌊)∕2⌋, we may express xZ,0xZ,2 ∈ ),3 in this basis asxZ,0xZ,2 = xZ,2xZ,0 = [(xZ+1,3 + xZ,3)xZ,2(xZ,1 + xZ−1,1)][(xZ+1,1 + xZ,1)xZ,0] = (xZ+1,3 + xZ,3)xZ,2xZ,1xZ,0= xZ+1,3xZ,2xZ,1xZ,0 + xZ,3xZ,2xZ,1xZ,0,
where in the second equality, we applied the relations (47).

Definition 7.14. Let TL+. ()) be a ℂ(D)-algebra with generators \′m and xG,Z for 1 ⩽ m ⩽ . − 1, 0 ⩽G ⩽ ⌊() + m)∕2⌋, and 0 ⩽ Z ⩽ .. Each respective set of generators is subject to relations such that
they generate TL. and ),. as subalgebras. The other defining relations are

\′mxG,Z = xG,Z\′m , for Z ≠ m (48)

xG,m−1\′m = xG+1,m+1xG,m−1\′m = xG+1,m+1\′m , (49)

\′Z xG,Z = xG+1,Z+1xG+1,ZxG,Z−1(\′Z − [) − 2G][) − 2G + 1]) + xG,Z+1xG−1,ZxG−1,Z−1(\′Z − [) − 2G + 4][) − 2G + 3]) (50)

+ xG+1,Z+1xG,ZxG,Z−1 [) − 2G + 2][) − 2G + 1] + xG,Z+1xG,ZxG−1,Z−1 [) − 2G + 2][) − 2G + 3] .
The relation

\′Z xG,Z\′Z = (xG−1,Z−1 [) − 2G + 2][) − 2G + 3] + xG,Z−1 [) − 2G + 2][) − 2G + 1])\′Z (51)

is readily verified using (50), xG+1,Z+1(xG+1,Z + xG,Z)xG,Z−1 = xG+1,Z+1xG,Z−1, and (\′Z )2 = [2]\′Z .
The Jones basis of TL. for nonidentity elements consists of words\′�� = (\′m1\′m1+1⋯ \′G1 )(\′m2\′m2+1⋯ \′G2 )⋯ (\′m^ \′m^+1⋯ \′G^ ), (52)

where . > m1 > m2 > ⋯ > m^ > 0 and . > G1 > G2 > ⋯ > G^ > 0 [13, Prop. 2.3]. We write the
identity element as \′00.
Proposition 7.15. There is a basis of TL+. ()) consisting of products x�\′�� where x� is a basis vector
of ),. as in Lemma 7.13 and \′�� is a basis vector of TL. as in (52) with the additional constraints:∙ if \′"\′�� = [2]\′��, then �"+1 = �"−1 + 1,∙ if ) + m − 2Z = 0 and xZ+1,m+2xZ,m+1xZ,mx� = x�, then \′m+1\′�� ≠ [2]\′��.
Proof. The defining relations in TL+. give a rule to present any element of TL+. in the desired form.
The additional constraints are due to (49) and the exceptional form of (50), see also Remark 5.4.
It remains to show that any ambiguities in applying these rules can be resolved in the sense of
Bergman’s diamond lemma [1]. The ambiguities arising from relations that relate one monomial
to another are easily resolved. Ambiguities for the relation involving \′Z xG,Z , namely, the conflu-
ence conditions for (\′Z )2xG,Z , \′Z \′Z±1\′Z xG,Z , \′Z x2G,Z , and \′Z xG,Z(xG,Z±1 + xG±1,Z±1) are resolved by short
computations. □
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38 of 49 HARPER and SAMUELSON

Let /⊗.+,) denote the object /⊗.+ ∈ Hom"!#$%(),) + .). Write End"!#$%(/⊗.+,)) for the algebra
of endomorphisms of this object. The assignment of diagrams to elements of TL+. ()) naturally
determines an algebra map �.,) ∶ TL+. ())→ End"!#$%(/⊗.+,)). Recall that strands are labeled so
that strand 1 is on the right and strand . is on the left. For generators indexed by 0 < Z < ., �.,)
makes the following assignments:

\Z ↦ disoriented cupcap over positions Z and Z + 1, (53)

(54)

(55)

Multiplying on the left in TL+. ()) corresponds to stacking upwards in diagrams under �.,). The
existence of thismap can be verified by comparing the defining relations ofTL+. ()) to the relations
on End"!#$%(/⊗.+,)) ⊂ Hom"!#$%(),) + .).
Proposition 7.16. The map �.,) is a surjection.
Proof. Any diagram inEnd"!#$%(/⊗.+,)) can be reduced to a diagram in a standard form.Any closed
subgraph in a diagram may be simplified to a linear combination of bubbles by Proposition 7.10.
A bubble that appears directly below a disoriented cupcap may be moved above it and have the
cupcap resolve according to (24). The result is a linear combination of Temperley–Lieb diagrams
with atmost one bubble in each region across the top of the complement of the diagram (including
its sides). If there are no bubbles in these regions, we introduce a sumof bubbles into the rightmost
region (any region is fine) using (32). We then use (19) to guarantee that each region across the
top of the complement of the diagrams has a bubble. It is now easy to determine an element ofTL+. ()) that maps to this linear combination of diagrams. □

Conjecture 7.17. The map �.,) is an injection.
Proving that�.,) is injective is equivalent to showing that its kernel is generated by the relations

of TL+. ()) given in Definition 7.14. This proof requires studying the action of TL. on /⊗.+ , which
we discuss briefly in the next section.

7.3 Action of &'� on �⊗�+,s
It follows from the first relation in (15) that the identification of idempotent Temperley–Lieb gen-
erators \Z with the disoriented cupcap over strands Z and Z + 1 (numbered right to left) defines a
homomorphism TL. → End!(/⊗.+ ). Similarly, by rotating diagrams, there is a homomorphismTL. → End!(/⊗.− ).
Now each idempotent in TL. defines an object in the idempotent complete category!. These

include the projections onto irreducible representations discussed in Section A.1, among which
the Jones–Wenzl idempotent A(.) is a special case. The simplest of these idempotents and their
complements are \1, 1 − \1 ∈ TL2.
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 39 of 49

The action of /⊗2+,)LG on a TL)-module is to project onto the F))−2G component and induct
twice. From Section A.2, Ind2(F))−2G) ≅ F)+2)+2−2G ⊕ 2F)+2)−2G ⊕F)+2)−2−2G. Set - = ) − 2G. Then,_ ∈ F)- is mapped to the following direct sum of diagrams under the isomorphism:

(56)

The action of \1 ∈ TL2 on/⊗2+,)LG determines an endomorphism of Ind2(F)-) under O, namely,
multiply by \)+2. Under this action, both the first and last summands vanish as capping a
Jones–Wenzl idempotent yields zero and _A(-) = _ ∈ F)-. This observation is consistent with
the relation in Lemma 4.8, which implies a projection onto the F)+2)+2−2(G+1) =F)+2)−2G isotypic
component. The images of these vectors are both nonzero multiples of

(57)

Note that the complement 1 − \1 of this idempotent endomorphism on /⊗2+,) does not act as
a projection onto the complementary summandsF)+2)+2−2G ⊕F)+2)−2−2G. This is because 1 − \)+2
is nonzero on the F)+2)−2G summands of Ind2(F))−2G). Further investigation of the interaction
between the images of idempotents inTL. under O and the idempotentsLG requires amore careful
treatment.

Remark 7.18. The affine Temperley–Lieb algebra also acts on /⊗.+ . In future work, we use this
action to compute Tr(!).
8 THE ASYMPTOTICWEYL CATEGORY AND ITS GROTHENDIECK
RING

For each ),- ⩾ 0, we defined the morphism categoriesHom"!#$%(),-) of "!#$%, as a quotient
of! in which bubbles for 2G > ) and G = 0 for ) + G + 1 ⩽ 0. The asymptotic Weyl
category is a monoidal category that should be interpreted as a ) → ∞ version of the categoriesHom"!#$%(),-). In this category, no bubbles are assumed to be zero and all boxes are invertible.
Definition 8.1. The asymptotic Weyl category!∞ is the quotient of the universal Weyl category! by the relations

(58)
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40 of 49 HARPER and SAMUELSON

Given that!∞ is a quotient of!, the isomorphisms given in Section 4.2 hold. Moreover, the
“Above critical values” (large )) isomorphisms in Table 1 hold in!∞. Indeed, no bubbles or boxes
vanish among the morphisms witnessing the isomorphisms on objects given in the table. It is in
this sense that we may also consider!∞ a ) → ∞ version of the categories Hom"!#$%(),-).
Proposition 8.2. The isomorphisms in Section 4.2 and the large ) relations in 5.2 hold in the full
subcategory of!∞ generated by /+, /−, and LG for G ⩾ 0.
8.1 Grothendieck ring

Recall that the Grothendieck group of an additive category  is abelian group ,0() with gen-
erators > for > ∈ Ob() and relations [�] = [>] + [z] whenever � ≅ > ⊕ z. The Grothendieck
group is endowed with the structure of a ring with multiplication defined such that [>][z] =[> ⊗ z].
Definition 8.3. Let be the algebra generated by <, M and xG for G ⩾ 0 with relations

M< = <M + x0 xGx" = {G"xG (59)

xG< = xG<(xG + xG−1) <xG = (xG + xG+1)<xG (60)

xGM = xGM(xG + xG+1) MxG = (xG + xG−1)MxG (61)

xG+1<xG<xG = xG+1<xG+1<xG xGMxG+1MxG+1 = xGMxGMxG+1 (62)

xGMxG<xG = xG xG−1MxG<xG−1 = xG−1 (63)

xG<xGMxG = xG xG<xG−1MxG = xG (64)

MxG< = xG + xG−1 + xG<MxG−1 + xG−1<MxG <xGM = xG + xG+1 + xG<MxG+1 + xG+1<MxG (65)

x−1 = 0 Mx0< = x0. (66)

The relations of are determined from the image of the isomorphisms in Proposition 8.2 under
the,0 functor.We expect these to be a complete set of relations between the classes of these objects
in!∞, see Conjecture 8.5.
We do not claim that [/+], [/−], and [LG] form a complete set of generators for ,0(!∞). For

example, the Jones–Wenzl idempotents that act on /.+ determine objects in !∞ and therefore
generators of ,0(!∞), see Section 7.3. However, we do not consider them here.

Proposition 8.4. Let ,0(!∞)′ be the subalgebra of ,0(!∞) generated by [/+], [/−], and [LG].
The homomorphism → ,0(!∞)′ determined by < ↦ [/+], M ↦ [/−], xG ↦ [LG] is well defined.
Conjecture 8.5. The map defined in Proposition 8.4 is an isomorphism.
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 41 of 49

Remark 8.6. We expect that there is a categorical version of “asymptotic representation” that
applies to !∞ acting asymptotically on &', the notion is defined here for algebras and vector
spaces in Definition 8.8. Such an action would imply ,0(!∞) acts on ,0(&'). Mapping  to,0(!∞)′ and applying the argument of Lemma 8.14 would prove Conjecture 8.5.
8.2 Asymptotic action

Assign a degree to each of the generators of, deg(<) = deg(M) = 1 and deg(xG) = 0 for all G ⩾ 0.
For ~, @ ∈ , set deg(~ ⋅ @) = deg(~) + deg(@). We filter  by vector subspaces according to this
degree, defining) = {~ ∈ | deg(~) ⩽ )}.
Recall that &' is the direct sum over ) of TL) −mod. Then,  ∶= ,0(&') is the abelian group

with generators the classes of simple modules {[F)-] ∶ 0 ⩽ - ⩽ ),- ≡ )mod 2}. By Remark 6.4,
the functors Ind, Res, and TG determine endomorphisms of :

[Ind] ⋅ [F)-] = [F)+1-+1] + [F)+1-−1] (67)

[Res] ⋅ [F)-] = [F)−1-+1] + [F)−1-−1] (68)

[TG] ⋅ [F)-] = {-,)−2G[F)-] (69)

with the convention that [F)-] = 0 whenever- < 0, ) < -, or- ≢ )mod 2.
Let m be the subspace generated by {[F)-]|) ⩾ - ⩾ m}. This determines a filtration of 

with m+1 ⊂ m and −1 = 0 = . Now
[Ind] ⋅ m ⊂ m−1, [Res] ⋅ m ⊂ m−1, [TG] ⋅ m ⊂ m . (70)

Remark 8.7. For [F)-] ∈ m , [TG] ⋅ [F)-] = {-,)−2G[F)-]. If [TG] ⋅ [F)-] is nonzero, then ) ⩾m + 2G.
Definition 8.8. An asymptotic representation of a filtered algebra Z) ∶ 1) ↪ 1)+1 acting on a
filtered vector space m)+1 ∶ S)+1 ↪ S) is a collection of linear maps A),- ∶ 1) ⊗ S- → S-−)
for- ⩾ ) ⩾ 0 satisfying the following axioms:

A)+1,-+1 ◦ (Z) ⊗ idS-+1) = m-−)+1 ◦A),-+1 ∶ 1) ⊗ S-+1 → S-−) , (71)

A),- ◦ (id1) ⊗m-+1) = m-−)+1 ◦A),-+1 ∶ 1) ⊗ S-+1 → S-−) , (72)

A)+w,- ◦ (�w,) ⊗ idS- ) = Aw,-−) ◦ (id1w ⊗A),-) ∶ 1w ⊗ 1) ⊗ S- → S-−)−w , (73)

where- ⩾ ) + w and �w,) ∶ 1w ⊗ 1) → 1)+w is the multiplication map. These axioms are referred
to as algebra coherence, vector space coherence, and composition, respectively.

Proposition 8.9. The assignment < ↦ [Ind], M ↦ [Res], xG ↦ [TG] defines an asymptotic
representation of on .
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42 of 49 HARPER and SAMUELSON

Proof. Formally, the collection of maps A),- ∶ ) ⊗ - → -−) are determined from the
axioms by the assignments:

A0,- ∶ 0 ⊗ - → - {xG ⊗ [F)-]↦ {-,)−2G[F))−2G]
A1,- ∶ 1 ⊗ - → -−1

{< ⊗ [F)-]↦ [F)+1-+1] + [F)+1-−1]M ⊗ [F)-]↦ {),-[F)−1-+1] + [F)−1-−1].
The axioms (71) and (72) of Definition 8.8 hold trivially. The composition axiom (73) determinesA),- by expressing each element of ) as a word written in the generators of . It remains to
check that two words in ) that are equivalent under the relations of  have the same action
under A),-.
The relations (60)–(65) are determined by classes of functors in the “generic” isomorphisms

of Table 1. As noted in Remark 5.7, these isomorphisms hold in Hom"!#$%(),−), provided that) > 2G, where G is an index of a functor LG appearing in a given isomorphism. In particular,
we are concerned with avoiding instances where a “generic” isomorphism fails, namely, those
which are labeled “none” in the table. The corresponding words in such relations belong to 2.
By Remark 8.7, ifF)- ∈ 2 and [TG] ⋅ [F)-] ≠ 0, then ) ⩾ 2G + 2 > 2G. Thus, the relations are
indeed respected by the action. The remaining relations in are considered generic and are easily
verified to hold under the asymptotic action. □

8.3 Structure of
Here, we discuss additional relations and bases for certain subalgebras of. For later use, observe
that there is an antiautomorphism � ∶  →  that exchanges < and M.
Lemma 8.10. Let 0 ⩽ w1 ⩽ w2 ⩽ w3 and ),- ⩾ 0. Then,

xw3<)xw2<-xw1 =
( )w3−w2)( -w2−w1)()+-w3−w1) xw3<)+-xw1 .

Proof. Let G0, G1, … , G)+- be any sequence such that GZ+1 ∈ {GZ , GZ + 1}, G0 = w1, G- = w2, andG)+- = w3. It follows from both (60) and (62) that

xw2<-xw1 = ( -w2 − w1
)xG- -−1∏

Z=0 <xGZ , xw3<)xw2 = ( )w3 − w2
)xG)+- -+)−1∏

Z=- <xGZ ,
xw3<)+-xw1 = () +-w3 − w1

)xG)+- -+)−1∏
Z=0 <xGZ .

Then,

xw3<)xw2<-xw1 = ( )w3 − w2
)( -w2 − w1

)xG)+- -+)−1∏
Z=- <xGZ ⋅ xG- -−1∏

Z=0 <xGZ
= ( )w3 − w2

)( -w2 − w1
)xG)+- -+)−1∏

Z=0 <xGZ =
( )w3−w2)( -w2−w1)()+-w3−w1) xw3<)+-xw1 . □
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Remark 8.11. Lemma 8.10 readily implies an integral basis for the subalgebra generated
by {xw2<-xw1 ∶ w1, w2,- ⩾ 0}. This basis is spanned by “divided powers elements” <(w2,-,w1) ∶=1( -w1−w2)xw2<-xw1 with w1 +- ⩾ w2 ⩾ w1, which multiply according to the rule <(w4,),w3)<(w2,-,w1) ={w3,w2<(w4,)+-,w1).
Introduce the notation

{<})w = )∑
Z=1 <Zxw−Z<)−Z and [<])w = )∑

Z=1 <Zxw−1<)−Z .
It is then easy to verify that

{<})+1w = <)+1xw−)+1 + {<})w ⋅ < and [<])+1w = <)+1xw−1 + [<])w ⋅ <. (74)

Lemma 8.12. For nonnegative integers w and ), the following identity holds in:
Mxw<) = xw<)Mxw−) + xw−1<)Mxw + xw{<})−1w + xw−1[<])−1w .

Proof. We give a proof by induction on ). The claim is immediately verified in the case ) = 0. We
then compute by the inductive hypothesis

Mxw<)+1 = (xw<)Mxw−) + xw−1<)Mxw + xw{<})−1w + xw−1[<])−1w )<= (xw<)xw−) + xw<)xw−)<Mxw−)−1) + (xw−1<)xw−1 + xw−1<)xw−1<Mxw) + xw{<})−1w ⋅ <+ xw−1[<])−1w ⋅ <= xw<)+1Mxw−)−1 + xw−1<)+1Mxw + xw{<})w + xw−1[<])w .
In the second equality, we use that xw<)xw−)−1 = xw−1<)xw = 0. The third equality is due to the rela-
tions xw<)xw−)<Mxw−)−1 = xw<)+1Mxw−)−1, xw−1<)xw−1<Mxw = xw−1<)+1Mxw, and those in (74). Thus,
proving the claim. □

Lemma 8.13. For each G ⩾ w ⩾ 0, xGxw is spanned by
8G,w = {xG<G−w+-xw, xG<G−wM-xw ∣ - ∈ ℤ⩾0} .

Proof. Fix G ⩾ 0. For each word � ∈ , let "(�) be the length of � (not necessarily a reduced
word). We give an inductive proof on the length of � and a downward induction on w. For a
given word �, observe that if G − w > "(�), then xG+w�xG = 0 and if G − w = "(�), then xG+w�xG
is nonzero exactly when � = <G−w. The base case for a word of length 1 is immediate.
Assume for any word� of length at most ) and any G − ) ⩾ w ⩾ 0 that xG�xw ∈ span(8G,w). Fix a

word � of length ) + 1. The base case of the downward induction is w = G − () + 1) as described
above. Now fix that xG�xw ∈ span(8G,w). We now show that xG�xw−1 ∈ span(8G,w−1). We proceed in
cases, assuming that � = �1�′ where �1 ∈ {xw−1,<, M} and "(�′) = ).
The case �1 = xw−1 is the simplest as xG�xw−1 = xG�′xw−1 and belongs to span(8G,w−1) by the

inductive hypothesis. Note that if �1 is equal to any other x., then xG�xw−1 = 0.
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44 of 49 HARPER and SAMUELSON

Next, suppose �1 = <. Then,xG�xw−1 = xG<�′xw−1 = xG<xG�′xw−1 + xG<xG−1�′xw−1
∑
- ~-xG<xG<G−w+1+-xw−1 +∑

- ~′-xG<xG−1<G−wM-xw−1
+∑

- @-xG<xG−1<G−w+-xw−1 +∑
- @′-xG<xG<G−w+1M-xw−1

for some coefficients, ~-,~′-, @-, @′- ∈ ℂ(D). The resulting (finite) sums may be expressed in the
desired basis by first writing xG′<G′−w+1M-xw−1 = xG′<G′−w+1xG′M-xw−1 for the sums involving M-
terms, then applying Lemma 8.10 to all four sums.
Finally, consider �1 = M. We havexG�xw−1 = xGM�′xw−1 = xGMxG�′xw−1 + xGMxG+1�′xw−1

∑
- ~-xGMxG<G−w+1+-xw−1 +∑

- ~′-xGMxG<G−w+1M-xw−1
+∑

- @-xGMxG+1<G−w+2+-xw−1 +∑
- @′-xGMxG+1<G−w+2M-xw−1

for some coefficients, ~-,~′-, @-, @′- ∈ ℂ(D). The claim follows from Lemmas 8.12 and 8.10. □

Lemma 8.14. For each G ⩾ w ⩾ 0, 8G,w is a basis for xGxw .
Proof. Let { = G − w ⩾ 0. We prove that 8G,w is a linearly independent set. Assume for a
contradiction that there is a linear dependence� = ∑

- ~-xG<{+-xw + @-xG<{M-xw = 0
for some coefficients ~-, @- ∈ ℂ(D). Let v be the largest - such that ~- and @- are nonzero.
Thus, � ∈ v+{ and we may consider its action on v+{ since  acts asymptotically on .
Consider [Fv+G+wv+{ ] ∈ v+{ so that

xG<{+-xw ⋅ [Fv+G+wv+{ ] = xG<{+- ⋅ [Fv+G+wv+G−w ] = (w +-w )[Fv+2G+-v+- ]
xG<{M-xw ⋅ [Fv+G+wv+{ ] = xG<{xwM-xw ⋅ [Fv+G+wv+G−w ] = xG<{ ⋅ [Fv−-+G+wv−-+G−w ] = [Fv+2G−-v−- ].

Since each term in � maps [Fv+G+wv+{ ] to a unique nonzero vector in , the linear dependence
must be the trivial one. □

Remark 8.15. By applying the antiautomorphism � that switches < and M, there is a basis of xGxw
for G ⩾ w ⩾ 0 given by 8w,G = {xwM(G−w)+-xG, xwMG−w<-xG ∣ - ∈ ℤ⩾0}.
For integers G, w,- ⩾ 0, define

>-G,w ∶= {xG<-+(G−w)xw∕(-+(G−w)G−w ) G ⩾ wxG<-Mw−Gxw w ⩾ G , >−-w,G ∶= �(>-G,w) .
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The choice of asymmetric normalization is intentional.

Lemma 8.16. For~, @ ⩾ 0 and),- ∈ ℤ, themultiplicationmap xGxw ⊗ xwxG → xGxG satisfies
>)G,w ⊗ >-w,G ↦ >)+-G,G .

Proof. The proof is a direct computation for choices G ⩾ w or w ⩾ G, ) ⩾ 0 or ) ⩽ 0, and - ⩾ 0 or- ⩽ 0. We include one such computation. Assume G ⩽ w and-,) ⩾ 0. Then,
>)G,w>-w,G = xG<)Mw−Gxw<-+w−Gxw∕(- + w − Gw − G ) = xG<)xGMw−Gxw<w−GxG<-xG = xG<)xG<-xG = >)+-G,G .

□

Corollary 8.17. For each G ⩾ 0, xGxG is isomorphic to a Laurent polynomial algebra in the variable>G,G .
APPENDIX: RESULTS FROMQUINN
We recall key statements and main results from [12] which we use in this paper. Namely, the
structure of the representation categories of Temperley–Lieb algebras, the action of induction and
restriction functors, and relations in the precursor to the universal Weyl category. The reader is
referred there and references therein for additional details. Unless stated otherwise, results given
here are proven in [12]. Some notation is changed in this paper.

A.1 Representations of Temperley–Lieb algebras
The set of isomorphism classes of irreducible TL) representations are in bijection with nonneg-
ative integers - ⩽ ) such that - ≡ )mod 2. We denote such an irreducible representationF)-.
Vectors in these representations may be presented as (-,))-Temperley–Lieb diagrams � such
that � = �A(-). This implies thatF)) is the trivial representation. We assume thatF)- = 0 is -
is negative, exceeds ), or has different parity from ).
A basis for these representations is given using a path algebra approach. Equivalently, there

is a Young tableaux description of basis vectors given in [10], for example. Let T) denote the set
of paths of length ) starting from the vertex labeled 1 on the type U)+1 graph whose vertices are
labeled 0, 1, 2, … ,). A path of length ) is notated by a sequence ] = (]1,]2, … ,])) of nonnegative
integers such that ]1 = 1 and ]Z+1 = ]Z ± 1 for Z < ). A basis forF)- is in bijection with T)- the
set of paths in T) that end at vertex-, that is, ]) = -. For a given path, the corresponding basis
element is constructed inductively from a single strand. Suppose that _G is the (]G, G)-Temperley–
Lieb diagram constructed from a path of length G ending at ]G. If the path continues to the right
(increases), then

(A.1)
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46 of 49 HARPER and SAMUELSON

and if the path continues to the left (decreases), then

(A.2)

The normalization factor
√ []G][]G+1] is required for orthonormality in the following sense. If ] ∈ T)-

corresponds to _] ∈ F)-, then the reflection of _] over a horizontal axis is the corresponding dual
basis vector _̌] in the sense that _̌](_^) = {],^, where { = 1 if ] = ^ and is zero otherwise. Write\],^ for the matrix element _]_̌^ provided ], ^ ∈ T)-.
RemarkA.1. We observe that∑]∈T)- \],] ∈ TL) is an idempotent corresponding to the projection
ontoF)-. Moreover,

∑
]∈T)- \],] = ∑

^∈T)−1-+1
[- + 1][- + 2]_^\′)−1_̌^ + ∑

^∈T)−1-−1
_^A(-)_̌^.

A.2 Induction and restriction for Temperley–Lieb modules
For any TL)-module S, the induction functor may be defined as the functorInd ∶ TL) −mod→ TL)+1−mod S ↦ )+1() + 1)) ⊗ S (A.3)

or informally as adding an additional string to the diagram. Restriction is instead given by the
functor

Res ∶ TL) −mod→ TL)−1−mod S ↦ )−1())) ⊗ S, (A.4)

which in some sense forgets the )th string in the diagram.
Quinnprovides a formula for the restriction of (nonzero) simplemodulesF)- in terms of simple

modules Res(F)-) ≅ F)−1-+1 ⊕F)−1-−1. The isomorphism is witnessed by the maps:

(A.5)

(A.6)

Quinn also proves that Ind(F)-) ≅ F)+1-+1 ⊕F)+1-−1. The maps for this isomorphism are not
explicitly given, but can be inferred from [12, Props. 3.3.1, 3.4.1]. Here, < ∈ TL)+1 and _,� are
vectors in the indicated simple module:
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THE TEMPERLEY–LIEB TOWER AND THEWEYL ALGEBRA 47 of 49

(A.7)

(A.8)

That the image of the last homomorphismbelongs to Ind(F)-) is a consequence of [12, Prop. 3.4.1].
Remark A.2. The vectors appearing in the image of (A.7), together with their dual vectors, agree
with the decomposition of ∑]∈T)- \],] given in Remark A.1. Our previous observation is there-
fore an expression of the projection onto F)- in terms of projections through components ofInd(F)−1-+1) and Ind(F)−1-−1).
A.3 Diagrammatic calculus
In Chapter 5, Quinn initiates the definition of the Weyl category. An important difference in our
notation is that Quinn’s crossing is replaced by [2] times the cupcap. It acts by multiplication by\′, the preidempotent Temperley–Lieb generator, on the two induced strands. Quinn defines an
abstract category that acts on TL)-modules in the following way:

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

where the map < ↦ ptr)+1(<) is the right partial trace of < as defined in (4), \],^ and \^,] are the
matrix units defined here in Section A.1, and x^ = [^)−1+1][^)+1] 1

|T)̂)−1 | .
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48 of 49 HARPER and SAMUELSON

Quinn showed that these generators satisfy the following relations for any ) ⩾ 0 in the action
on TL) −mod. The proof of (A.14) is given in [12, Theorem 4.2.14].

(A.14)

(A.15)

(A.16)
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