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Abstract

The SL;-skein algebra Sng (S) of a surface S is a certain deformation of the coordinate
ring of the character variety consisting of flat SL;-local systems over the surface. As a
quantum topological object, Sng (S) is also closely related to the HOMFLYPT polynomial
invariant of knots and links in R3. We exhibit a rich family of central elements in Sng (S) that
appear when the quantum parameter ¢ is a root of unity. These central elements are obtained
by threading along framed links certain polynomials arising in the elementary theory of
symmetric functions, and related to taking powers in the Lie group SL.
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Let GL; denote the general linear group of invertible d-by-d matrices, with entries in
an irrelevant and therefore unspecified field, and let the special linear group SL,; consist
of those matrices that have determinant 1. The SLg-skein module Sng (M) of an oriented
3-dimensional manifold M is a certain deformation of the coordinate ring of the character
variety

Xsp, (M) = {homomorphisms r: 71 (M) — SL4}/GL4,

where GL, acts on the set of group homomorphisms r: 71 (M) — SL; by conjugation. This
quantum deformation depends on a nonzero quantum parameter ¢, and more precisely on a
d-root g a . In its current incarnations, the motivation for this mathematical object arises from
Witten’s topological quantum field theory interpretation of the Jones polynomials and other
knot invariants [22], where the elements of Sg]_d (M) occur as morphisms. In particular, it is
closely related to the HOMFLYPT invariant of knots and links in R3 [20].
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The elements of Sng (M) can be represented by linear combinations of framed links
in M where each component carries an integer weight i € {1,2,...,d — 1}, standing for
the i-th exterior power of the defining representation of the quantum group Uy (sl;). The
relations satisfied by these generators correspond to the full set of relations between tensor
products of these representations in the braided tensor category of representations of Uy (slz),
as determined by Cautis—Kamnitzer—Morrison [4]. When d > 2, these relations are better
expressed in terms of more complicated objects called SL;-webs; see Sect. 1.1.

A special case of interest is the one where M is equal to the thickening S x [0, 1] of
an oriented surface S of finite topological type, in which case the resulting skein module
Sng S = Sng (S x [0, 1]) is endowed with a natural multiplication by superposition,
which also corresponds to the composition of morphisms in the topological quantum field
theory framework; see Sect. 1.2. The viewpoint of [22] involves representations of this algebra
Sng (S) and, if we want these representations to have finite dimension, it is natural to require
that the quantum parameter g be a root of unity.

In the special case where d = 2 and ¢ is a primitive n-root of unity with n odd, Helen
Wong and the first author [2] discovered unexpected central elements in the skein algebra
Sgl_z (S), based on the Chebyshev polynomial of the first type 7,, € Z[e]; see [12] for versions
when n is even. Frohman, Kania—Bartoszynska and Lé [5] later proved that these elements,
together with the more obvious central elements associated to punctures that occur for all ¢,
generate the whole center of SgLZ (S). This, together with a combination of results from [2, 5,
6], led to a classification of “most” irreducible finite-dimensional representations of Sng (S),
in terms of points in a certain finite branched cover of the character variety Xsi, (M).

The current article is devoted to the development of similar central elements in the SL,-
skein algebra Sng (S) with d > 2, still when ¢ is a root of unity. In particular, it provides a
broader context explaining the occurrence of Chebyshev polynomials of the first type in the
case of SL».

The regular functions on SL, that are invariant under conjugation by elements of GL,
form a polynomial algebra generated by the trace function Tr, and the Chebyshev polynomial
T, € Zle] is determined by the property that Tr A" = T, (Tr A) for every A € SL;. For SL,
the algebra of GL,—invariant regular functions on SL; is a polynomial algebra in d — 1
variables, corresponding to the elementary symmetric polynomials E((il), El(iz) s e Ec(ldfl) in
the eigenvalues. These are also related to the coefficients of the characteristic polynomial by
the property that

det(A +1t1dg) = 1 + 19V EP (A) + 19 2EP (A) 4 -+ EVTV(A) + 1

for every A € SL;. An immediate consequence of the elementary theory of symmetric
functions is that, for every n > 1 and for every i € {1,2,...,d — 1}, there is a unique
polynomial P;"‘l) € Zley, e, ..., eq—1] such that

EPam = By (B (), EDA), . ESTV ()

for every A € SLy; see Sect. 3. We call these polynomials 13;"’” the reduced power elemen-
tary polynomials. For instance, when d = 2, there is only one such polynomial f’z(”’l) for
every n, and this polynomial is just the Chebyshev polynomial 7,,. See the Appendix for a
method to explicitly compute the polynomials ﬁd("‘l).

Our new central elements in Sng (S) are based on the threading operation along poly-
nomials that was already at the basis of [2]. For a framed knot L in a 3-manifold M, the
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threading operation along a polynomial

imax . . .
i1 in ig—1
P = Z iyiy..ig_1€ €5 --. €] | €Ller,ea, ..., eq1]
i1,02,000ig—1=0
associates to L the skein

Imax

(P] _ IR o
L - Z al]lz...ldflL 1 er et € SSLd (M)7
01,02,000ig—1=0
i1 ia ld—1
where L1 ¢ €11 ¢ Sng (M) is represented by the union of i; + i» + ...ig—; disjoint

parallel copies of the knot L, taken in the direction of the framing, and with i; of these copies
carrying the weight 1, ip carrying the weight 2, ..., and iy carrying the weightd — 1. A
similar construction applies to links L with several components. See Sect. 2 for details.

Theorem 1 Suppose that the d-root zﬁ occurring in the definition of skein modules Sng (M)

is such that q%Tn =1, and that g% # 1 for every integer i with2 < i < %. In a thickened

surface S x [0, 1], let L = Ly U Ly U ---U L, be a framed link in which each component
5(n,e)

Lj carries a weight ij € {1,2,...,d — 1}. Then the skein LW ¢ Sng(S) obtained

by threading the reduced power elementary polynomial I/’;n’ij ) € Zley, ez, ...,eq—1] along
each component L j is central in the skein algebra Sng (S) of the surface S.

Theorem 1 is based on a more general property for skein modules Sng (M) of 3-
manifolds which, borrowing terminology from [12], is a certain transparency property for
threading operations along the reduced power polynomial 13:;"‘” € Zlei, e, ..., eq—1].
This property states that, if Lo is a framed link in a 3-manifold M carrying component
weights in {1,2,...,d — 1} and if L is a framed knot disjoint from Lo, then the skein
LoU LIE ¢ S84, (M) obtained by threading ﬁ;”’i) along L is invariant under any isotopy
of L in M that is allowed to cross L.

Theorem 2 Suppose that the d-root qé occurring in the definition of skein modules Sng (M)
is such that qu? =1, and that g% # 1 for every integer i with2 < i < % Then, for every
i=1,72,...,d—1, the threading operation along the reduced power elementary polynomial

I”;("’i) € Zley, ea, ..., eq—1] is transparent in the skein module Sng (M) of any oriented
3-manifold M.

As indicated in Remark 15, the hypothesis in Theorems 1 and 2 that g% # 1 for every
integer i with 2 < i < % is probably unnecessary.
Similar results for G,-skeins, where Gy is the exceptional Lie group of rank 2, appear in

[1].

1 SL4-webs and skein relations

1.1 The SL;-skein module of a 3-dimensional manifold

Throughout the article, SL; will denote the Lie group of d-by-d matrices with determinant 1.

Because the coefficient field of this algebraic group is irrelevant for our purposes, we will
systematically omit it.
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i+ i+ d d
V2N T N A — 1 A — 1
merge vertex split vertex outward stump inward stump

Fig. 1 Vertices of a web

i—k+1 I j+k—1 R R W VEE
i—k Jj+k :Z ikl i+l—m j—1l4+m
m q
|k " l—m
i j i J

Fig.2 A typical skein relation

We are here using the version of SL,-skein modules that uses the webs developed by
Cautis—Kamnitzer—Morrison in [4, 16]. There is another well-known alternative based on
Kuperberg—Sikora spiders [11, 13, 19]. See [17] for the equivalence between the two view-
points.

An SL;-web in an oriented 3-dimensional manifold M is a graph W embedded in M
endowed with additional data satisfying the following conditions:

(1) the graph W is endowed with a ribbon structure consisting of a thin oriented surface
embedded in M that contains W and deformation retracts onto it;

(2) each edge of W carries an orientation and a weighti € {1,2,...,d};

(3) each vertex of W is of one of the following three types:

(a) avertex of type “merge” with two incoming edges of weights i and j and one outgoing
edge of weighti + j, as in the first picture of Fig. ;

(b) a vertex of type “split” with one incoming edge of weight i 4+ j and two outgoing
edges of weights i and j, as in the second picture of Fig. 1;

(c) avertex of type “stump” (also called “tag” in [4]) adjacent to exactly one edge of W,
which carries weight d, as in the last two pictures of Fig. 1;

(4) the only edges that are allowed to carry weight d are those adjacent to a stump;
(5) W can have components that are closed loops, with no vertices, but no component can
be the graph with exactly one edge and two stumps.

Along the components of W that are closed loops, the ribbon structure is equivalent to
the very classical notion of framing, namely the data of a vector field that is everywhere
transverse to the loop (or, equivalently, with a trivialization of the normal bundle of that
loop). In particular, framed (oriented) links where each component carries a weight i €
{1,2,...,d — 1} are fundamental examples of webs.

The SL-skein module Sng (M) of the oriented 3-manifold M is obtained from the vector
space over C (say) freely generated by the set of isotopy classes of SL;-webs in M under a
set of skein relations that are explicitly listed in [4]. Since we will not need most of them,
we are only listing a few in Figs.2-5 and refer to [4] for the full list.
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Fig.3 Another skein relation

i+ 147

Fig.4 Two skein relations involving stumps

J i

= (-1)"q
i J
¥ i

= (-1)Yq"
i J

Fig.5 Braiding relations

In these figures, each skein relation should be seen as occurring in a neighborhood of a
disk embedded in M, in such a way that the ribbon structures of each web represented are
horizontal for the projection to that disk. The sums are over indices m € Z, with the following
conventions:

(1) the sum is limited to those values of m that lead to edge weights in {0, 1, ..., d};
(2) an edge carrying weight 0 and its end vertices should be erased;
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(3) an edge carrying weight d should be split into two edges with stumps, with a convention
that will be more precisely described when we need it in our proof of Lemma 9.

Also, the symbols [;.]q represent the quantum binomials

H I e e i1,
ily Ul i=1,. 121y Ll n = jl,!

with the quantum integers

and the quantum factorials
il =]y i — 1], ... 1214 [1], -

We will not need the skein relation of Fig. 2, which is shown here only to give the flavor
of typical skein relations. However, we will make use of the relations of Figs.3-5.

Note that the braiding relations of Fig.5 require us to fix a d-root qdl of the quantum
parameter ¢ € C—{0}. As a consequence, the skein module Sng (M) depends on this choice

of qdl in spite of the fact that this is not reflected in the notation, which would otherwise be
too cumbersome.

These skein relations originate from the representation theory of the quantum group
U, (slq). The skeinrelations other than the braiding relations of Fig. 5 describe all the relations
that occur between tensor products of the quantum exterior power representations A;(Cd of
Uy (sly). The braiding relations reflect the braiding of the representation category of U, (sly).
See [4] for details.

1.2 The SL;-skein algebra of a surface

An important special case is provided by the thickening M = S x [0, 1] of an oriented surface
S. In this case the skein module Sg]_d (S x [0, 1]) admits a natural algebra structure where the
multiplication is defined as follows. If [W], [W2] € Sng (S) are respectively represented
by webs Wi, W2 in S x [0, 1], the product [W;] e [W>] is represented by the web W{ U W,
where W{ is obtained by rescaling W inside S x [0, %] and Wé is obtained by rescaling W»
inside S x [%, 1]. In practice if, by projection to S, we represent each W; by the picture of a
possibly knotted graph in S, [W;] e [W;] is obtained by placing W> on top of Wj.

The algebra Sng (S x [0, 1]), denoted as Sng (S) for short, is the SL;-skein algebra of
the oriented surface S.

2 Threading a polynomial along a framed link
Let L be an oriented framed knot in the 3-manifold M, namely a 1-dimensional oriented

closed submanifold of M that is endowed with a nonzero section of its normal bundle. This
framing can also be used to define a ribbon structure along L.
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Given a polynomial

Imax

i1 i id—1
P = Z Airiy.ig_, €)' €5 -..ej_| € Ller, ez, ..., eq-1]
i1,02,...,ig—1=0
in (d — 1) variables ey, e, ..., eq—1 with coefficients a;,;,. i, , € Z, the skein obtained by

threading P along L is defined as the linear combination

Imax

(Pl _ R I
L - Z alllz...ld_lL 12 =1 € SSL(](M)’
i1,i2,eiqg1=0
ll 12 ld_l . . . . . . . .
where L1 ¢ a1l ¢ Sng (M) is represented by the union of i; + i» + ...ig—; disjoint

parallel copies of the knot L, taken in the direction of the framing, and with i; of these copies
carrying the weight 1, ip carrying the weight 2, ..., and iz_ carrying the weight d — 1. In
particular, Lledea il g represented by the empty link.

More generally, if L is an oriented framed link with components L, Lo, ...L., the skein
obtained by threading the polynomials P; along the components L of L is defined as the
disjoint union

LLIPL P Pl L[lpl] U LgPZ] UL LEPc] c Sng(S)

where the parallel copies used to define each LE.Pj I"are chosen in disjoint tubular neigh-
borhoods of the L. Note that, because each L[/.Pj !
of weighted links, the disjoint union LIPt-P2-Fel ¢ Sng (M) is also defined by a linear
combination of disjoint unions of those links.

Threading a polynomial P € Z[ej, e, ...,eq—1] is transparent if, for every oriented
framed knot L in a 3—manifold M and every web W C M that is disjoint from L, the element
of Sng(M ) that is represented by LIP! i W is invariant under any isotopy of the knot L
that allows it to cross W. Because every skein module is spanned by weighted links, this is
equivalent to the version given in the Introduction, where the web W was restricted to be a
weighted link.

is represented by a linear combination

Lemma 3 If threading each of the polynomials Py, P, ..., P, € Zlei, e, ...,eq—1] is
transparent then, for every surface S and every oriented framed link L C S x [0, 1] with
components Ly, Ly, ...L., the skein LIP1P2-P] obtained by threading the polynomials P;
along the components L of L is central in the skein algebra Sng(S).

Proof If [W] € Sng(S) is represented by a web W C § x [%, %], then [LIF1] o [W] is
represented by L[IP] L W where L is obtained by rescaling L inside S x [0, %], while
[W]e[LP1is represented by Lgp] U W with L, obtained by rescaling L inside S x [%, 1].
Applying the transparency property to an isotopy moving L to L shows that [LIP1]e[W] =

[W]e[LIP]]. ]

3 Power elementary polynomials

In the ring Z[A1, A2, ..., A4] of polynomials with integer coefficients in d variables Aj,
A2, ..., Mg, recall that a polynomial is symmetric if it is invariant under all permutations

@ Springer



1 Page8of21 F.Bonahon, V. Higgins

of the variables A1, Aj, ..., A4. Fundamental examples include the elementary symmetric
polynomials

Eg) = Z Ajrhjy oo iy
I<ji<jp<-<ji<d

defined for 1 <i < d. '

There is a well-known connection between the elementary symmetric polynomials Ef;)
and the Lie group GL,. Namely, if A € GL;(K) is a matrix with coefficients in the field K,
with eigenvalues Aq, A2, ..., A4 in the algebraic closure of K, the coefficient of the term of
degree d — i in the characteristic polynomial of A is equal to (—1)’ Et(i'). In this situation, we
will also write

EQ W) =EP M, ha, .. ) €K
A more intrinsic interpretation is that E‘(li) (A) is the trace of the action A’A: A'K? — A'KY

of A on the exterior power A'K?.
If we are interested in the characteristic polynomial of a power A", whose eigenvalues are

M, A%, ..., A, it makes sense to consider, forn > 1 and 1 < k < d, the power elementary
symmetric polynomials
(n,i) _ nan n
E; = > Ajhjy oA

ISji<ja<-<ji<d
obtained from EC(;') by replacing each occurrence of the variable A; with its power A"l. For

instance, the case n = 1 gives the original elementary symmetric polynomial Et(il’i) = Eg),
while the case i = 1 corresponds to the well-known family of power sum polynomials

(n,1) d
EmD =4 o

Lemma 4 There exists a unique polynomial Pd(n’i) € Zley, e, ..., eq] such that Elgn‘i) €
Z[A1, A2, ..., gl is obtained from P;n’l) by replacing each variable e with the elementary
symmetric polynomial E((/) € Z[A1, A2, ...y Mgl

Proof This is an immediate consequence of the very classical property that the subring
of symmetric polynomials in Z[X{, X2, ..., Ag4] is itself isomorphic to the polynomial ring

Zley, ea, ..., eq], by an isomorphism sending each elementary symmetric polynomial E‘(j)
to the variable e;. See for instance [14, Sect. 1.2]. O

We call these Pé"”) € Zley, ea, ..., eq] the power elementary polynomials, not to be
confused with the closely connected but formally different power elementary symmetric
polynomials Et(i”’i) € Z[A1, A2, ..., Aq], which involve different variables.

Simple considerations show that P;l’[) = ¢; whenn = 1, and P;n’d) = e"‘l wheni =d.
See Proposition 19 in the Appendix for a method to explicitly compute the power elementary
polynomials P;"") € Zley, ez, ..., eql.

We are interested in the Lie group SL, rather than GL,. For a matrix A € SL;(K) with
eigenvalues A, A2, ..., Ag in the algebraic closure of the field K, we have that

EPA) = EP O, Ay oo hg) = Mda o hg = det A = 1.

It is therefore natural to specialize the polynomial P;"‘i) € Zley, ea, ..., eq] by setting eg =

1, and to consider the reduced power elementary polynomial i’}"’i) € Zler, ez, ..., eq—1]
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defined by

i’:i(n’i)(el,ez, ceesld—1) = Pén’i)(el, €, ... ed—1, 1).

Lemma5 The power elementary polynomial P;”’i) is the unique polynomial in Zley, e3, . . .,
eq] such that

j Ni 1 2 d
EP @ = P (B ), EP @), . ES W)

for every A € GLg4, where Et(ii)(A) is the i-th elementary symmetric polynomial in the
eigenvalues of A.

The reduced power elementary polynomial I?;"'i) is the unique polynomialinZley, e, . . .,
eq—1] such that

[ Hn,i 1 2 d—1
fO} every Ae SLd

Proof If amatrix A € GL, has eigenvalues A1, A2, ..., A4, its n-th power A" has eigenvalues

A, A%, ..., Alj. The fact that P‘;"’i) and i’}”’i) satisfy the relations indicated then follows

from their definitions, noting that E[(Id) (A) = 1 forevery A € SL,;. The uniqueness property

immediately follows from the fact that the polynomials E((il) , E[(lz), ooy E((jd) are algebraically
independent in Z[A1, Az, ..., A4] (see [14, Sect. 1.2]). O

For future reference, we note the following elementary homogeneity property of the power
elementary polynomials P\"" € Zley, ea, ..., eq].

Lemma 6 For an additional variable 6,
P"D(Be, 0%, ..., 0%0) = 0" PV (e, en, ..., eq)

as polynomials in 7.0, e, e, . . ., eq).

Proof This is an immediate consequence of the property that each elementary symmetric

polynomial EC(II) € Z[A1, A2, . .., Aq] is homogeneous of degree i, while the power elemen-

tary symmetric polynomial Ec(ln’i) is homogeneous of degree ni. O

The following result is much less natural, but it will play an essential role in the proof of
the main result of this article.

Proposition 7 Given commuting variables x1, x, ..., xq—1 with xq_1 invertible, define

oo JFain =
T et x if2<j<d -1

Then, for every n and every i with 1 < i < d — 1, we have the following equality
i B il P
P;n D01 y2r s ya1) = xdj'lP;’ii D1, %2, - Xao1) + P;fi)(xl,xz, e Xd—1)

of Laurent polynomials in Z[x1, x2, ..., Xd—2, xj_ll ].
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1 Page100f21 F.Bonahon, V. Higgins

Proof The proof should make the statement less mysterious. Consider the ring homomor-
phism

@1 Zlx1, X2, . Xa—2, X1 = ZIAg, Aoy oo g/ (M hg = 1)

sending each x; to the elementary symmetric polynomial EC(L) | € Z[A1, A2, ..oy Ag—1] in
the first d — 1 variables, and sending xd_ll to A4. Note that ¢ is well-defined since, in the
target space,

o ) == ra g = BV = oan Tl

Using the fact that the E((;l] are algebraically independentin Z[A1, A, ..., Ag—1],asimple
argument shows that ¢ is injective. To prove the proposed relation, we therefore only need
to show that the two sides have the same image under ¢.

The key property underlying the whole result is that, for2 < j < d — 1,

) . ,
00 = oyt +xp) = EYVna + EY,

= > MyAiy o hip > Aihiy A
l<i1<<~'<ij_1<d71 1§i1<'-~<l’j<d71

= Y iy =EY

I<ii<<ij<d

A similar argument shows that ¢ (y1) = El(il).
Then, for the left-hand side of the proposed equality,

(P (31, 2o ya-1) = B (001, 902), - 9 (1))
= PO, ED, L S
_ pIEW, ED | YD )
_ pI(EW, gD YD gy g
using the properties that ¢ is a ring homomorphism and that E[(Jd) = AiA2... g = linthe

target space of ¢.
For the right-hand side,

_ i1 Ki
¢(xdf1PC§'ii )(xl,xz,-~-,xd—1)+P[§'ii)(x1,x2,--~,xd—1))
_ i—1
= oG D P T (9, 9(x2), - 9(xa—1))
+ PPV (0, 9(2), L 9(xa-1))

_ (n,i—=1) (1) (2) (d-1) (n,i) (1) (2) d—1)
=dqPyy (E l EgZy By )+ P (Bl By Eg )
_ (n,i—1) i)
=By T HES
— n n n n n n n
=Aq > Mj Ay e A > MMy e A

IS i< <ji-1<d—1 1<) < <ji <d—1

= > o =EMD =B 5y, va )
Iji<-<jisd

Since ¢ is injective, this concludes the proof. O
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OB

Fig.6 A few webs, representing the elements I, T, X ; € Sng (A)io

.J .J .
L; el Ljel

Fig.7 The skeins L; € Sg; (A). [ eL; €S (AoandL; el €Sg (Ao

4 Computations in the annulus

Inspired by earlier constructions of Morton [15], L& [12] and Queffelec-Wedrich [18], we
let A = S' x [0, 1] be the annulus with two marked points xg = (x,0) and x; = (x, 1)
on the boundary (for an arbitrary x € S'). Let Sg]_d (A)o be the vector space generated by
webs in A with boundary {x, x1}, where the edges containing these boundary points carry
the weight 1 and are oriented inward at xo and outward at x1, and quotiented by the skein
relations of [4]. (The subscript io stands for “in-out”.)

Figure 6 offers a few examples of webs representing elements of Sng (A)jp in A. In
particular, let I € Sng (A)jo be represented by the arc x x [0, 1] of the first picture of Fig. 6,
endowed with weight 1, and let the rwist element T € Sng (A)jo be the arc of the second
diagram if Fig. 6, also endowed with weight 1. A more elaborate element X ; € Sng (Aios
with 1 < j <d — 2, is represented by the third web of Fig. 6.

The space Sng (A);jo comes with a multiplication

o 1 S&, (Ao ® S& (A)io > 8§ (Aio

by concatenation, where the skein Wi o W5 is defined by placing Wy in § L% [0, %] and W,
in S x [, 1].

It also comes with left and right actions of the usual skein algebra Sng (A) by superposition
where, if [Wy] € Sng (A) and [Wq] € Sng (A)io, [Wo] e [W]] is obtained by placing
[Wo] below [W1] and [W]] e [Wy] is obtained by placing [Wp] on top of [W;]. We are
particularly interested in the elements / e Lj and L e I € Sng (A)jo illustrated in the last
two pictures of Fig.7, where L; € Sng (A) is represented by a simple loop L = §' x {%}
going counterclockwise around the annulus and carrying weight j.
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1 Page120f21 F.Bonahon, V. Higgins

d—j

=(-1)y"¢7

Fig.8 The proof of Lemma 9 when2 < j <d —2

The following lemma states that the elements I, T, I @ L; and L; e I are central in
Sng (A)jo, for the multiplication by concatenation o.

Lemma8 Forevery X € Sng (Ao,

Xol=1lo0oX=X XoT =ToX
Xo(leLj)=UeLj)oX Xo(Ljel)=(Ljel)oX.

Proof These properties are easily checked by elementary isotopies in the thickened annulus
A x [0, 1]. O

A less immediate relation between the skeins of Figs. 6—7 is provided by the skein relations
of Sect. 1.1.

Lemma9 Forl1 < j<d-—1,

g T T —qiX, ifj=1
TeLj={(—1)iq"F X, 10T +(~1)ig 4X; if2<j<d—2

(—1)42qi Xy 20T +q T ifj=d—1

¢ T—qixX iri=1
Liel=1(—1)g' "X, 10T+ (~1)igiX; if2<j<d—2

(~)2q X0 T+ T T ifj=d—1

where T~ is the inverse of T for the composition operation o (which is also its mirror image).

Proof This follows from an application of the braiding relations of Fig.5, which express
L;jeland] eL;asalinear combination of two webs.

When2 < j < d— 2, the computation for / e L; is illustrated in Fig. 8. On the right hand
side of the equation, the webs represented each have one edge carrying weight O (represented
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Fig.9 The proof of Lemma 9 when j =d — 1

by a dotted line in the pictures) which must be erased by the conventions stated in Sect. 1.1.
The first web is easily seen to be isotopic to X ;1 o T, while the second web is isotopic to
X;.

]When j =1, the first web occurring in the same computation now has two edge weights
equal to 0. After erasing the corresponding two edges, the resulting web is isotopic to 7. The
second web is still isotopic to X7.

When j = d — 1, the first web is still Xy_» o T but the second web has an edge weight
equal to d. We now need to use the conventions of [4] for this case, which we had skipped
in our discussion in Sect. 1.1. These involve a two-step process, first splitting the weight d
edge into two stumps and then flipping the resulting inward stump to the other side of the
split vertex at which it is attached (see the top of Page 358 of [4]). After applying the second
and third skein relations of Fig.4 followed by an isotopy, we obtain the mirror image of T,
which is also 77! in Sng (A)io- See Fig.9.

This completes the proof of the statement of Lemma 9 for I e L ;. The proof for L e I is
essentially identical. O

Lemma 10 Forevery X € Sng(A)io and every jwithl < j <d -2,
XoX;=XjoX.

Proof By induction on j, the formulas of Lemma 9 show that, for the multiplication by
concatenation o, the skein X; € Sng(A)io can be expressed as a polynomial in the skeins

I, T and L; e I. Since these skeins are central in Sng (A)jo by Lemma 8, sois X ;. O

In the annulus A = S* x [0, 1], let L = S! x {%} be the loop that we used to define the
skeins L; € 8§y (A).

Proposition 11 Suppose that the d-root qﬁ occurring in the braiding relations of Fig. 5 is

a 2n—root of unity, and let 13\5"’1-) € Zley, ea, ..., eq—1] be the reduced power elementary
polynomial of Sect. 3. Then, for the framed link L C A and the skein I € Sng (A)io of Fig. 7,

L o1 = 1o LI,

Proof Consider Sng(A)io as a ring for the multiplication by concatenation o. Then, the
commutativity property of Lemma 10 shows that there is a unique ring homomorphism

Vi Zxi, X, xa2. X3 ] = S& (Ao

such that ¢ (xg—1) = q%T_1 and ¥ (x;) = (—l)jquj forevery j with1 < j <d —2.
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If we set
o xd_ll+x1 ifj=1
Y  aoag! bxy if2<j<d—1
as in Proposition 7, the first batch of computations in Lemma 9 show that ¥ (y;) = L; e [
for every j. Applying the ring homomorphism v to both sides of the conclusion
ﬁ;”’i)(yl, V2o s Ya—1) = X" Pyi’i_l)(xl,m, R P;’i’?(m,m, e Xd—1)
of Proposition 7, we conclude that

PUO(Lyel,Lyel,....Ly_1el)
n(l—d) . 1 2 d—1
=g T T o P ITV (=g X1, +qi1Xa, .., (=1 T X)
i 1 2 _q d-l
+P;i’i)(—qul,-i—quz,--.,(—1)d 'q°T Xa-1)

. n(i—d) i —
= (=)"Dg T T o PYTV (X, Xay L Xat)

+ (=) g TP (X, Xa, ., Xa),s

using the specialization of Lemma 6 at 0 = —q5 for the second equality.

When evaluating a polynomial on elements of Sng (A)io, we used the multiplication by
concatenation o. However, in the case of the skeins L; e I, this evaluation is also closely
related to the multiplication by superposition e and to the threading operation. Indeed, by
inspection of the definitions,

P(Liel,Lyel,....Lg_1el)=L"1er

for every polynomial P € Z[ey, e3, . .., eq—1]. In particular, we now conclude that

n(i—d)
1

=(n,i) . i
LY Ve = (1" =D 77" 170 PV (X0, X, o, Xat)

+(=1)"q T P D (X1, Xa, o Xa),
If we now use the second batch of computations in Lemma 9, where g is replaced by ¢ !,
the same arguments show that

Hn.k . n(i—d P
JeLlfa'l = (—1)”(’71)q7 ' T" o Pyii 1)(X], Xo, ..., del)

+ (=g P;’f{)(xl, X2, ..., Xa1).

. 1. . .
We are now ready to use our hypothesis that g @ is a 2n—root of unity, which means that

n n . pn,i) pn,i)
g = g~ . The above computations then show that LI%¢ "1 e [ = 1 & LIFa "1, o

5 Central and transparent skeins from power elementary polynomials

We now use Proposition 11 to construct transparent elements in the skein module Sé’Ld (M).
The following lemma will enable us to limit our argument to web edges that carry weight 1.

Lemma 12 Let W be a web in the 3-manifold M, and let B C M be a ball meeting W along
an arc contained in the interior of an edge e of W carrying weight i € {1,2,...,d — 1}.
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B i _ 1 1 Lifl B

Fig. 10 The proof of Lemma 12

Suppose that g*/ # 1 for every j € {2,3,...,i}, so that the quantum factorial [i1,!is
nonzero. Then there exists a web W' in M such that
1 W] = ﬁ[W/] in the skein module Sng (M);
!
(2) every point of B N\ W’ is contained in a weight 1 edge of W',
(3) W’ is contained in an arbitrarily small neighborhood of W.

Proof The skein relation of Fig. 3 gives us the relation of Fig. 10. The result then follows by
repeated application of this property. O

Theorem 13 Suppose that the d-rootcﬁ occurring in the definition of skein modules SgL y (M)
is such that qzzTn = 1, and that g*/ # 1 for every integer j with 2 < j < %. Then, for
everyi = 1,2, ..., d — 1, threading the reduced power elementary polynomial ﬁ;"’l) €

Zleyi, ea, ..., eq—1] is transparent in the skein module Sng (M) of any oriented 3—manifold
M.

Proof Let W be a web in a oriented 3-manifold M, and let L and L, be two framed knots
in M that are disjoint from W and isotopic to each other by an isotopy that is allowed to

plni) plni) )

cross W. We want to show that L[1 @y W and Lg Ty W represent the same element in
Sdp, (M).

By decomposing the isotopy into little steps, we can clearly restrict attention to the case

where it crosses W in exactly one point, located in an edge of W carrying weight i. If i > 75,

we can use the second skein relation of Fig.4 to replace i by d — i; we can therefore assume
thati < % and in particular that [i],! # 0 by our hypotheses on g. Then, applying Lemma 12
to a small ball around the crossing point enables us to restrict attention to the case where the
isotopy crosses W transversely in one point contained in an edge e with weight 1.

By transversality, we can further choose the isotopy so that, for the standard annulus A,
there is an embedding of A x [0, 1] in M such that:

(1) the intersection of the edge e with A x [0, 1] is equal to I x % for the arc I of Fig. 6, and
the ribbon structure near e is horizontal for the projection to A;

(2) shortly around the time when the isotopy crosses e, the link is contained in A x [0, 1],
its projection to A is equal to the knot L of Fig.7, and its ribbon structure is horizontal;

(3) the knotis contained in A x [%, 1] shortly before the isotopy crosses W, and in A x [0, %]
shortly after that.

See Fig. 11. Restricting the isotopy to times near the crossing time, we can even assume that
the knot L stays as in (2) throughout the isotopy, that L is contained in A x [0, %], and that

L, is contained in A X [%, 1]
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@AXO | NI@ 6
before crossing at crossing time after crossing

Fig. 11 The link L crossing the web W

(n i)
We can then apply Proposition 11 to conclude that the intersections of L] ] U W and

[’P:d(nt)]

L, LW with A x [0, 1] differ by a sequence of isotopies and skein relations supported in

(n,i) (n i)
the interior of A x [0, 1]. Since L[lp" ] U W and L[2 ] U W coincide outside of A x [0, 1],

nz)] [Pd(nt)]

we conclude that [L uWwl=I[L, U Wlin S(S]Ld (M). m]

Applying Lemma 3, an immediate corollary is that Theorem 13 provides central elements
in the skein algebra Sng (S).

Corollary 14 Suppose that the d-root qﬁ occurring in the definition of the skein algebra
Sng (M) is such that q%n = 1, and that g* # 1 for every integer i with2 < i < %. Ina
thickened surface S x [0, 1], let L = L1ULyU- - -U L be aframed link in which each compo-

Hin,e)
nent L carries aweighti; € {1,2,...,d — 1}. Then the skein LIPd 1 e Sng (8S) obtained
by threading the reduced power elementary polynomial i’}n’lj) € Zley, e, ..., eq—1] along
each component L j is central in the skein algebra Sng (S) of the surface S. O

Remark 15 1In the statements of Theorem 13 and Corollary 14, the condition that g% # 1 for
every i with2 < i < % is an artifact of our use of Lemma 12 in the proof, and is probably
unnecessary.

6 Two conjectures

We conclude with two conjectures.
The first conjecture is the obvious one regarding the center of the skein algebra Sng (S).In

addition to the elements exhibited in this article, the center of Sng (S) admits more obvious

elements associated to the punctures of the surface S. Indeed, if [ P;] € Sng (S) is represented
by a small loop going around one of the punctures of the surface S, endowed with a weight
iefl,2,...,d— 1}, asimple isotopy shows that [ P;] in central in Sng (S), and this for any
value of ¢g.

1
Conjecture 16 Suppose that the d-root q occurring in the definition of the skein algebra
2
Sng (S) is such that q 4 is a primitive n-root of unity. Then, for every oriented surface S of
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finite topological type, the center of Sng (S) is generated (as a subalgebra) by the skeins

B0
[ Pi] associated to punctures as above, as well as by the skeins L4 ) obtained by threading
reduced power elementary polynomials P;"‘l) around framed knots L C S x [0, 1].

See [5] for a proof of this conjecture in the case where d = 2.
The second conjecture is the full SL; analogue of the main statement underlying the
Hn.i
results of [2] for Sng (S). Tt essentially asserts that the central skeins LIFa ] IS Sng S,
obtained by threading reduced power elementary polynomials along framed knots, satisfy
the skein relations corresponding to (ﬁ =1.

Conjecture 17 Let S be an oriented surface of finite topological type. If the d-root zﬁ occur-
ring in the definition of the SL4-skein algebra is a root of unity of order n coprime with 2d,

1
and if the commutative skein algebra Sled (S) is defined with the convention that 14 = 1,
there exists an algebra homomorphism

®: Sy, (S) —> S& (5
with central image such that, for every skein [L] € Sled (S) represented by a framed knot L

carrying weighti € {1,2,...,d — 1}, the image CD([L]) = L[ﬁ{;"-i)] is obtained by threading

the reduced power elementary polynomial }A’;"’i) € Zley, ea, . ..,e4—1] along L, in the sense
defined in Sect. 2.

Remark 18 1t easily follows from the skein relations that the algebra SéLd (S) is generated by
knots carrying aweighti € {1, 2, ..., d—1}. Sothe homomorphism ®: S;Ld(S) — Sng ()
is unique if it exists.

The case d = 2 of this Conjecture 17 was proved in [2] when 7 is odd. See also [2, 12]

for related statements with other conditions on q%. These properties played a fundamental
role in the study of the finite-dimensional representation theory [2, 5, 6] of Sng (S).

See [8] for a proof of Conjecture 17 when d = 3.

For general d, the homomorphism predicted by Conjecture 17 is likely to be the Frobenius
homomorphism & : SSIL3(S) — S'S]L3(S) constructed for d = 3 in [7] (see also [10] for
d = 2), and conjectured to exist for all d. See [21] for an explicit construction of this
Frobenius homomorphism when the surface has nonempty boundary, and [9] for a related
construction. Also see [3, 6] for more general developments.

Appendix A. Power elementary polynomials

(n.i)

Recall that the power elementary symmetric polynomial E € Zlr, A2y ..y Mgl 18
obtained from the elementary symmetric polynomial
(@)
Edl = Z Ajihjy - e hji

I<ji<jp<-<ji<d
by replacing each variable A ; by its power )J}, and that the power elementary polynomial

P;"’i) € Zlei, ea, ..., eq] is the unique polynomial such that

i) _ poni) () @) @
ESD =PI ED ED, L EY)
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in Z[A1, A2, ...y Adl.
The following generating series property gives a method to explicitly compute the poly-
(n.i)

nomials P, € Zlei,ea,...,eq]. As a consequence, it also provides an algorithmic
computation of the reduced power elementary polynomials 13‘5"’[) € Zlei,ea, ..., eq—1]
that play a critical role in this article, since these are defined by

P,;n’l)(el,ez, sy ld—1) = P;”'Z)(eh €, ... ed—1, 1).
Proposition 19 For every i = 1, 2, ..., d, the power elementary polynomial P;"’i) S
Zley, ea, ..., eq] is the coefficient of t' in the expansion of the power series

exp(Z(—l)-’“’*” o Ay z-’) € Zler. ez, ... eqlllt]]
j=1

i1+2ip++dig=jn
01,102,000 20

where

)i1+i2+---+id—1n(ll tiattia =D s

Ailiz...id = (_1 16 ---€4-

il .. ig!

In particular, considering the coefficient of the term of degree 1 yields the following
well-known expression of the n—th power sum symmetric polynomial in terms of elementary
symmetric polynomials.

Corollary 20

1) _ o iindeig LD+ Fig = DG i
PV =" Y (=D PP I el eld.

i1+2ir+-+dig=n
i1,12,00, 1020

]
Remark 21 Proposition 19 shows that the power series expansion of the exponential that
occurs there is finite, which reflects hidden relations between the coefficients of the mono-
mials A;;,..i,. It is possible that similar relations can be used to simplify the formula of
Proposition 19. As is, this statement is already reasonably effective for computations.
Proof of Proposition 19 Consider the generating series

d d
SO@) =1+ Y ESPY =[]0+ € Zlh, ha. ... dau 1],
j=1 i=1

obtained from the classical generating series (see for instance [14, Sect. 1.2])

d d
W0 =1+ EPY =[]a +nn)
j=1 i=1

for elementary symmetric polynomials by replacing each A; with 7.
As a preliminary computation, let us expand

i

d ) o) (_l)i_l d )
loe M) =log | 1 EV | = R EW¢
g2 (1) = log +j§_1 d ;_1: ; JZ_I d
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(=it i! Wi @) Dja  j1+2jp+td
— Y EPNEPR B4

i1, i
Jit+jpttja=i Jin Jd

M

Z (—1)J1Hittia=] Girtjp+-+ja—D!
Jiljpl. o ja!

M

k

1 ji+2ja+-+dja=k
Mj1 =22 d)ja k
E; 7 E;7 . E;

o0
i 2)i d)i .
= Z Z aili2~..i,1E[(j Vit E((i I Ef, did 4
J=lit2i+tdig=j
with

G+ Fig— D!
ilin!. . ig! '

Qiiy..ig = (=11

To compute the generating series % (1), let w € C be a primitive n-root of unity, and let
6 € C be any number such that 6" = —1. Then,

d d
s =[]a+ao=]]a-arem

i=1 i=1
d n n

=TITT(1 - w/aen) = ] =D (~wlorn).
i=1j=1 j=1

Using our earlier computation,
n o
log =™ (1) = Z log =M (- w'017)
i=1

n o0
Diy ()i d)i i ijnj.d
= Z Z Z Aiyiy...ig E((i o Et(1 " te E((i )ld(_l)le'/ejf"
i=1 j=lii+2ir++dig=j

o0
Di 2)i d)i
=ny. Yoo G B ESR B (— kgt
k=1 iy +2ip++dig=kn
o0
Di 2)i d)i j j
:”Z Z ailiZ...idEt(i )”Et(i " E((i )ld(_l)J(”H)f'/

Jj=1i1+2ir4+dig=jn
since, as w is a primitive n—root of unity,

E o' =

=

- n if n divides j
0 otherwise

and 0" = —1.
As a consequence,

o0
1)i 2)i d)i 1 i
Jj=1i142ir++dig=jn
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in Z[ 1, A2, ..., Ag]l[t]], and

d o0
14+ Z P;"‘Z)t’ =exp|n Z Z iriy...ig€)' €5 ... e’dd(—l)]("ﬂ)t]
i=1 j=1i12ir+-+dig=jn

inZley, ea, ..., eqll[t]]. This proves the statement of Proposition 19, by setting

TN ) D id
Ajjiy.cig = NAiyiy.ig€) €3 ---€4 -

Finally, the following elementary symmetry property is probably worth mentioning.

Proposition 22 For every i,

(n.d—i) (i), —1 -1 B
P, (e1,e2,...,eq-1,eq) = ey P, (e eq_1,e; eq_2,...,e; e1,e; ).

Proof 1f one replaces each A ; by )L;l, the power elementary symmetric polynomial E[(I"’i)
gets replaced by

-1 . —n .
(n,d) (n,d—i) (d) (n,d—i)
(Ed ) Ed = (Ed ) E,

and, in particular, each Ec(li) gets replaced by (Efll)_1 E‘(ld_[). The property follows. O
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