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Abstract
The SLd -skein algebra Sq

SLd
(S) of a surface S is a certain deformation of the coordinate

ring of the character variety consisting of flat SLd -local systems over the surface. As a
quantum topological object, Sq

SLd
(S) is also closely related to the HOMFLYPT polynomial

invariant of knots and links inR3.We exhibit a rich family of central elements in Sq
SLd

(S) that
appear when the quantum parameter q is a root of unity. These central elements are obtained
by threading along framed links certain polynomials arising in the elementary theory of
symmetric functions, and related to taking powers in the Lie group SLd .

Keywords Skein algebras · Skein modules

Mathematics Subject Classification 17K10 · 17K16 · 20G42 · 57R56
Let GLd denote the general linear group of invertible d-by-d matrices, with entries in

an irrelevant and therefore unspecified field, and let the special linear group SLd consist
of those matrices that have determinant 1. The SLd -skein module Sq

SLd
(M) of an oriented

3-dimensional manifold M is a certain deformation of the coordinate ring of the character
variety

XSLd (M) = {homomorphisms r : π1(M) → SLd}//GLd ,

where GLd acts on the set of group homomorphisms r : π1(M) → SLd by conjugation. This
quantum deformation depends on a nonzero quantum parameter q , and more precisely on a
d-root q

1
d . In its current incarnations, the motivation for this mathematical object arises from

Witten’s topological quantum field theory interpretation of the Jones polynomials and other
knot invariants [22], where the elements of Sq

SLd
(M) occur as morphisms. In particular, it is

closely related to the HOMFLYPT invariant of knots and links in R3 [20].

This work was developed under the auspices of the Research Training Grant DMS-2135960, RTG: Algebraic
and Geometric Topology at Michigan State, from the U.S. National Science Foundation.

B Francis Bonahon
fbonahon@usc.edu; bonahonf@msu.edu

Vijay Higgins
higgi231@msu.edu

1 Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532,
USA

2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-024-03559-9&domain=pdf


1 Page 2 of 21 F. Bonahon, V. Higgins

The elements of Sq
SLd

(M) can be represented by linear combinations of framed links
in M where each component carries an integer weight i ∈ {1, 2, . . . , d − 1}, standing for
the i-th exterior power of the defining representation of the quantum group Uq(sld). The
relations satisfied by these generators correspond to the full set of relations between tensor
products of these representations in the braided tensor category of representations of Uq(sld),
as determined by Cautis–Kamnitzer–Morrison [4]. When d > 2, these relations are better
expressed in terms of more complicated objects called SLd -webs; see Sect. 1.1.

A special case of interest is the one where M is equal to the thickening S × [0, 1] of
an oriented surface S of finite topological type, in which case the resulting skein module
Sq
SLd

(S) = Sq
SLd

(
S × [0, 1]

)
is endowed with a natural multiplication by superposition,

which also corresponds to the composition of morphisms in the topological quantum field
theory framework; see Sect. 1.2. The viewpoint of [22] involves representations of this algebra
Sq
SLd

(S) and, if we want these representations to have finite dimension, it is natural to require
that the quantum parameter q be a root of unity.

In the special case where d = 2 and q is a primitive n-root of unity with n odd, Helen
Wong and the first author [2] discovered unexpected central elements in the skein algebra
Sq
SL2

(S), based on the Chebyshev polynomial of the first type Tn ∈ Z[e]; see [12] for versions
when n is even. Frohman, Kania–Bartoszyńska and Lê [5] later proved that these elements,
together with the more obvious central elements associated to punctures that occur for all q ,
generate the whole center of Sq

SL2
(S). This, together with a combination of results from [2, 5,

6], led to a classification of “most” irreducible finite-dimensional representations of Sq
SL2

(S),
in terms of points in a certain finite branched cover of the character variety XSL2(M).

The current article is devoted to the development of similar central elements in the SLd -
skein algebra Sq

SLd
(S) with d ! 2, still when q is a root of unity. In particular, it provides a

broader context explaining the occurrence of Chebyshev polynomials of the first type in the
case of SL2.

The regular functions on SL2 that are invariant under conjugation by elements of GL2
form a polynomial algebra generated by the trace function Tr, and the Chebyshev polynomial
Tn ∈ Z[e] is determined by the property that Tr An = Tn(Tr A) for every A ∈ SL2. For SLd ,
the algebra of GLd–invariant regular functions on SLd is a polynomial algebra in d − 1
variables, corresponding to the elementary symmetric polynomials E (1)

d , E (2)
d , …, E (d−1)

d in
the eigenvalues. These are also related to the coefficients of the characteristic polynomial by
the property that

det(A + t Idd) = td + td−1E (1)
d (A)+ td−2E (2)

d (A)+ · · · + t E (d−1)
d (A)+ 1

for every A ∈ SLd . An immediate consequence of the elementary theory of symmetric
functions is that, for every n ! 1 and for every i ∈ {1, 2, . . . , d − 1}, there is a unique
polynomial P̂(n,i)

d ∈ Z[e1, e2, . . . , ed−1] such that

E (i)
d (An) = P̂(n,i)

d

(
E (1)
d (A), E (2)

d (A), . . . , E (d−1)
d (A)

)

for every A ∈ SLd ; see Sect. 3. We call these polynomials P̂(n,i)
d the reduced power elemen-

tary polynomials. For instance, when d = 2, there is only one such polynomial P̂(n,1)
2 for

every n, and this polynomial is just the Chebyshev polynomial Tn . See the Appendix for a
method to explicitly compute the polynomials P̂(n,i)

d .
Our new central elements in Sq

SLd
(S) are based on the threading operation along poly-

nomials that was already at the basis of [2]. For a framed knot L in a 3-manifold M , the
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threading operation along a polynomial

P =
imax∑

i1,i2,...,id−1=0

ai1i2...id−1e
i1
1 e

i2
2 . . . eid−1

d−1 ∈ Z[e1, e2, . . . , ed−1]

associates to L the skein

L [P] =
imax∑

i1,i2,...,id−1=0

ai1i2...id−1L
[ei11 e

i2
2 ...e

id−1
d−1 ] ∈ Sq

SLd
(M),

where L [ei11 e
i2
2 ...e

id−1
d−1 ] ∈ Sq

SLd
(M) is represented by the union of i1 + i2 + . . . id−1 disjoint

parallel copies of the knot L , taken in the direction of the framing, and with i1 of these copies
carrying the weight 1, i2 carrying the weight 2, …, and id−1 carrying the weight d − 1. A
similar construction applies to links L with several components. See Sect. 2 for details.

Theorem 1 Suppose that the d-root q
1
d occurring in the definition of skein modules Sq

SLd
(M)

is such that q
2n
d = 1, and that q2i %= 1 for every integer i with 2 " i " d

2 . In a thickened
surface S × [0, 1], let L = L1 & L2 & · · · & Lc be a framed link in which each component

L j carries a weight i j ∈ {1, 2, . . . , d − 1}. Then the skein L [P̂(n,•)
d ] ∈ Sq

SLd
(S) obtained

by threading the reduced power elementary polynomial P̂
(n,i j )
d ∈ Z[e1, e2, . . . , ed−1] along

each component L j is central in the skein algebra Sq
SLd

(S) of the surface S.

Theorem 1 is based on a more general property for skein modules Sq
SLd

(M) of 3-
manifolds which, borrowing terminology from [12], is a certain transparency property for
threading operations along the reduced power polynomial P̂(n,i)

d ∈ Z[e1, e2, . . . , ed−1].
This property states that, if L0 is a framed link in a 3-manifold M carrying component
weights in {1, 2, . . . , d − 1} and if L is a framed knot disjoint from L0, then the skein

L0 & L [P̂(n,i)
d ] ∈ Sq

SLd
(M) obtained by threading P̂(n,i)

d along L is invariant under any isotopy
of L in M that is allowed to cross L0.

Theorem 2 Suppose that the d-root q
1
d occurring in the definition of skein modules Sq

SLd
(M)

is such that q
2n
d = 1, and that q2i %= 1 for every integer i with 2 " i " d

2 . Then, for every
i = 1, 2, …, d − 1, the threading operation along the reduced power elementary polynomial
P̂(n,i)
d ∈ Z[e1, e2, . . . , ed−1] is transparent in the skein module Sq

SLd
(M) of any oriented

3-manifold M.

As indicated in Remark 15, the hypothesis in Theorems 1 and 2 that q2i %= 1 for every
integer i with 2 " i " d

2 is probably unnecessary.
Similar results for G2-skeins, where G2 is the exceptional Lie group of rank 2, appear in

[1].

1 SLd-webs and skein relations

1.1 The SLd-skeinmodule of a 3-dimensional manifold

Throughout the article, SLd will denote the Lie group of d-by-d matrices with determinant 1.
Because the coefficient field of this algebraic group is irrelevant for our purposes, we will
systematically omit it.
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Fig. 1 Vertices of a web
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Fig. 2 A typical skein relation

We are here using the version of SLd -skein modules that uses the webs developed by
Cautis–Kamnitzer–Morrison in [4, 16]. There is another well-known alternative based on
Kuperberg–Sikora spiders [11, 13, 19]. See [17] for the equivalence between the two view-
points.

An SLd -web in an oriented 3-dimensional manifold M is a graph W embedded in M
endowed with additional data satisfying the following conditions:

(1) the graph W is endowed with a ribbon structure consisting of a thin oriented surface
embedded in M that contains W and deformation retracts onto it;

(2) each edge of W carries an orientation and a weight i ∈ {1, 2, . . . , d};
(3) each vertex of W is of one of the following three types:

(a) a vertex of type “merge”with two incoming edges ofweights i and j and one outgoing
edge of weight i + j , as in the first picture of Fig. 1;

(b) a vertex of type “split” with one incoming edge of weight i + j and two outgoing
edges of weights i and j , as in the second picture of Fig. 1;

(c) a vertex of type “stump” (also called “tag” in [4]) adjacent to exactly one edge ofW ,
which carries weight d , as in the last two pictures of Fig.1;

(4) the only edges that are allowed to carry weight d are those adjacent to a stump;
(5) W can have components that are closed loops, with no vertices, but no component can

be the graph with exactly one edge and two stumps.

Along the components of W that are closed loops, the ribbon structure is equivalent to
the very classical notion of framing, namely the data of a vector field that is everywhere
transverse to the loop (or, equivalently, with a trivialization of the normal bundle of that
loop). In particular, framed (oriented) links where each component carries a weight i ∈
{1, 2, . . . , d − 1} are fundamental examples of webs.

The SLd -skein module S
q
SLd

(M) of the oriented 3-manifold M is obtained from the vector
space over C (say) freely generated by the set of isotopy classes of SLd -webs in M under a
set of skein relations that are explicitly listed in [4]. Since we will not need most of them,
we are only listing a few in Figs. 2–5 and refer to [4] for the full list.
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Fig. 3 Another skein relation

Fig. 4 Two skein relations involving stumps

Fig. 5 Braiding relations

In these figures, each skein relation should be seen as occurring in a neighborhood of a
disk embedded in M , in such a way that the ribbon structures of each web represented are
horizontal for the projection to that disk. The sums are over indicesm ∈ Z, with the following
conventions:

(1) the sum is limited to those values of m that lead to edge weights in {0, 1, . . . , d};
(2) an edge carrying weight 0 and its end vertices should be erased;
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(3) an edge carrying weight d should be split into two edges with stumps, with a convention
that will be more precisely described when we need it in our proof of Lemma 9.

Also, the symbols
[i
j

]
q
represent the quantum binomials

[
i
j

]

q
=

[i]q [i − 1]q . . . [i − j + 1]q
[ j]q [ j − 1]q . . . [2]q [1]q

= [i]q !
[ j]q ! [n − j]q !

with the quantum integers

[i]q = qi − q−i

q − q−1

and the quantum factorials

[i]q ! = [i]q [i − 1]q . . . [2]q [1]q .

We will not need the skein relation of Fig.2, which is shown here only to give the flavor
of typical skein relations. However, we will make use of the relations of Figs. 3–5.

Note that the braiding relations of Fig. 5 require us to fix a d-root q
1
d of the quantum

parameter q ∈ C−{0}. As a consequence, the skein module Sq
SLd

(M) depends on this choice

of q
1
d in spite of the fact that this is not reflected in the notation, which would otherwise be

too cumbersome.
These skein relations originate from the representation theory of the quantum group

Uq(sld). The skein relations other than the braiding relations of Fig. 5 describe all the relations
that occur between tensor products of the quantum exterior power representations "i

qCd of
Uq(sld). The braiding relations reflect the braiding of the representation category of Uq(sld).
See [4] for details.

1.2 The SLd-skein algebra of a surface

An important special case is provided by the thickeningM = S×[0, 1] of an oriented surface
S. In this case the skein module Sq

SLd
(S× [0, 1]) admits a natural algebra structure where the

multiplication is defined as follows. If [W1], [W2] ∈ Sq
SLd

(S) are respectively represented
by webs W1, W2 in S × [0, 1], the product [W1] • [W2] is represented by the web W ′

1 ∪ W ′
2

where W ′
1 is obtained by rescaling W1 inside S × [0, 1

2 ] and W ′
2 is obtained by rescaling W2

inside S × [ 12 , 1]. In practice if, by projection to S, we represent each Wi by the picture of a
possibly knotted graph in S, [W1] • [W2] is obtained by placing W2 on top of W1.

The algebra Sq
SLd

(S × [0, 1]), denoted as Sq
SLd

(S) for short, is the SLd -skein algebra of
the oriented surface S.

2 Threading a polynomial along a framed link

Let L be an oriented framed knot in the 3-manifold M , namely a 1-dimensional oriented
closed submanifold of M that is endowed with a nonzero section of its normal bundle. This
framing can also be used to define a ribbon structure along L .
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Given a polynomial

P =
imax∑

i1,i2,...,id−1=0

ai1i2...id−1e
i1
1 e

i2
2 . . . eid−1

d−1 ∈ Z[e1, e2, . . . , ed−1]

in (d − 1) variables e1, e2, …, ed−1 with coefficients ai1i2...id−1 ∈ Z, the skein obtained by
threading P along L is defined as the linear combination

L [P] =
imax∑

i1,i2,...,id−1=0

ai1i2...id−1L
[ei11 e

i2
2 ...e

id−1
d−1 ] ∈ Sq

SLd
(M),

where L [ei11 e
i2
2 ...e

id−1
d−1 ] ∈ Sq

SLd
(M) is represented by the union of i1 + i2 + . . . id−1 disjoint

parallel copies of the knot L , taken in the direction of the framing, and with i1 of these copies
carrying the weight 1, i2 carrying the weight 2, …, and id−1 carrying the weight d − 1. In
particular, L [e01e02 ...e0d−1] is represented by the empty link.

More generally, if L is an oriented framed link with components L1, L2, …Lc, the skein
obtained by threading the polynomials Pj along the components L j of L is defined as the
disjoint union

L [P1,P2,...,Pc] = L [P1]
1 & L [P2]

2 & · · · & L [Pc]
c ∈ Sq

SLd
(S)

where the parallel copies used to define each L
[Pj ]
j are chosen in disjoint tubular neigh-

borhoods of the L j . Note that, because each L
[Pj ]
j is represented by a linear combination

of weighted links, the disjoint union L [P1,P2,...,Pc] ∈ Sq
SLd

(M) is also defined by a linear
combination of disjoint unions of those links.

Threading a polynomial P ∈ Z[e1, e2, . . . , ed−1] is transparent if, for every oriented
framed knot L in a 3–manifold M and every webW ⊂ M that is disjoint from L , the element
of Sq

SLd
(M) that is represented by L [P] & W is invariant under any isotopy of the knot L

that allows it to cross W . Because every skein module is spanned by weighted links, this is
equivalent to the version given in the Introduction, where the web W was restricted to be a
weighted link.

Lemma 3 If threading each of the polynomials P1, P2, …, Pc ∈ Z[e1, e2, . . . , ed−1] is
transparent then, for every surface S and every oriented framed link L ⊂ S × [0, 1] with
components L1, L2, …Lc, the skein L [P1P2...Pc] obtained by threading the polynomials Pj
along the components L j of L is central in the skein algebra Sq

SLd
(S).

Proof If [W ] ∈ Sq
SLd

(S) is represented by a web W ⊂ S × [ 13 , 2
3 ], then [L [P]] • [W ] is

represented by L [P]
1 & W where L1 is obtained by rescaling L inside S × [0, 1

3 ], while
[W ] • [L [P]] is represented by L [P]

2 & W with L2 obtained by rescaling L inside S × [ 23 , 1].
Applying the transparency property to an isotopy moving L1 to L2 shows that [L [P]]•[W ] =
[W ] • [L [P]]. *&

3 Power elementary polynomials

In the ring Z[λ1, λ2, . . . , λd ] of polynomials with integer coefficients in d variables λ1,
λ2, …, λd , recall that a polynomial is symmetric if it is invariant under all permutations
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1 Page 8 of 21 F. Bonahon, V. Higgins

of the variables λ1, λ2, …, λd . Fundamental examples include the elementary symmetric
polynomials

E (i)
d =

∑

1! j1< j2<···< ji!d

λ j1λ j2 . . . λ ji ,

defined for 1 " i " d .
There is a well-known connection between the elementary symmetric polynomials E (i)

d
and the Lie group GLd . Namely, if A ∈ GLd(K) is a matrix with coefficients in the field K,
with eigenvalues λ1, λ2, …, λd in the algebraic closure of K, the coefficient of the term of
degree d − i in the characteristic polynomial of A is equal to (−1)i E (i)

d . In this situation, we
will also write

E (i)
d (A) = E (i)

d (λ1, λ2, . . . , λd) ∈ K.

Amore intrinsic interpretation is that E (i)
d (A) is the trace of the action"i A : "iKd → "iKd

of A on the exterior power "iKd .
If we are interested in the characteristic polynomial of a power An , whose eigenvalues are

λn1, λ
n
2, …, λnd , it makes sense to consider, for n ! 1 and 1 " k " d , the power elementary

symmetric polynomials

E (n,i)
d =

∑

1! j1< j2<···< ji!d

λnj1λ
n
j2 . . . λ

n
ji

obtained from E (i)
d by replacing each occurrence of the variable λ j with its power λnj . For

instance, the case n = 1 gives the original elementary symmetric polynomial E (1,i)
d = E (i)

d ,
while the case i = 1 corresponds to the well-known family of power sum polynomials
E (n,1)
d = ∑d

i=1 λni .

Lemma 4 There exists a unique polynomial P(n,i)
d ∈ Z[e1, e2, . . . , ed ] such that E (n,i)

d ∈
Z[λ1, λ2, . . . , λd ] is obtained from P(n,i)

d by replacing each variable e j with the elementary

symmetric polynomial E ( j)
d ∈ Z[λ1, λ2, . . . , λd ].

Proof This is an immediate consequence of the very classical property that the subring
of symmetric polynomials in Z[λ1, λ2, . . . , λd ] is itself isomorphic to the polynomial ring
Z[e1, e2, . . . , ed ], by an isomorphism sending each elementary symmetric polynomial E (i)

d
to the variable ei . See for instance [14, Sect. I.2]. *&

We call these P(n,i)
d ∈ Z[e1, e2, . . . , ed ] the power elementary polynomials, not to be

confused with the closely connected but formally different power elementary symmetric
polynomials E (n,i)

d ∈ Z[λ1, λ2, . . . , λd ], which involve different variables.
Simple considerations show that P(1,i)

d = ei when n = 1, and P(n,d)
d = end when i = d .

See Proposition 19 in the Appendix for a method to explicitly compute the power elementary
polynomials P(n,i)

d ∈ Z[e1, e2, . . . , ed ].
We are interested in the Lie group SLd rather than GLd . For a matrix A ∈ SLd(K) with

eigenvalues λ1, λ2, …, λd in the algebraic closure of the field K, we have that

E (d)
d (A) = E (d)

d (λ1, λ2, . . . , λd) = λ1λ2 . . . λd = det A = 1.

It is therefore natural to specialize the polynomial P(n,i)
d ∈ Z[e1, e2, . . . , ed ] by setting ed =

1, and to consider the reduced power elementary polynomial P̂(n,i)
d ∈ Z[e1, e2, . . . , ed−1]
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defined by

P̂(n,i)
d (e1, e2, . . . , ed−1) = P(n,i)

d (e1, e2, . . . , ed−1, 1).

Lemma 5 The power elementary polynomial P(n,i)
d is the unique polynomial inZ[e1, e2, . . . ,

ed ] such that

E (i)
d (An) = P(n,i)

d

(
E (1)
d (A), E (2)

d (A), . . . , E (d)
d (A)

)

for every A ∈ GLd , where E (i)
d (A) is the i-th elementary symmetric polynomial in the

eigenvalues of A.
The reducedpower elementary polynomial P̂(n,i)

d is the uniquepolynomial inZ[e1, e2, . . . ,
ed−1] such that

E (i)
d (An) = P̂(n,i)

d

(
E (1)
d (A), E (2)

d (A), . . . , E (d−1)
d (A)

)

for every A ∈ SLd .

Proof If a matrix A ∈ GLd has eigenvalues λ1, λ2, …, λd , its n-th power An has eigenvalues
λn1, λn2, …, λnd . The fact that P(n,i)

d and P̂(n,i)
d satisfy the relations indicated then follows

from their definitions, noting that E (d)
d (A) = 1 for every A ∈ SLd . The uniqueness property

immediately follows from the fact that the polynomials E (1)
d , E (2)

d , …, E (d)
d are algebraically

independent in Z[λ1, λ2, . . . , λd ] (see [14, Sect. I.2]). *&

For future reference, we note the following elementary homogeneity property of the power
elementary polynomials P(n,i)

d ∈ Z[e1, e2, . . . , ed ].

Lemma 6 For an additional variable θ ,

P(n,i)
d (θe1, θ2e2, . . . , θded) = θni P(n,i)

d (e1, e2, . . . , ed)

as polynomials in Z[θ, e1, e2, . . . , ed ].

Proof This is an immediate consequence of the property that each elementary symmetric
polynomial E (i)

d ∈ Z[λ1, λ2, . . . , λd ] is homogeneous of degree i , while the power elemen-
tary symmetric polynomial E (n,i)

d is homogeneous of degree ni . *&

The following result is much less natural, but it will play an essential role in the proof of
the main result of this article.

Proposition 7 Given commuting variables x1, x2, …, xd−1 with xd−1 invertible, define

y j =
{
x−1
d−1 + x1 if j = 1
x j−1x−1

d−1 + x j if 2 " j " d − 1.

Then, for every n and every i with 1 " i " d − 1, we have the following equality

P̂(n,i)
d (y1, y2, . . . , yd−1) = x−n

d−1P
(n,i−1)
d−1 (x1, x2, . . . , xd−1)+ P(n,i)

d−1 (x1, x2, . . . , xd−1)

of Laurent polynomials in Z[x1, x2, . . . , xd−2, x±1
d−1].
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1 Page 10 of 21 F. Bonahon, V. Higgins

Proof The proof should make the statement less mysterious. Consider the ring homomor-
phism

ϕ : Z[x1, x2, . . . , xd−2, x
±1
d−1] → Z[λ1, λ2, . . . , λd ]/(λ1λ2 . . . λd = 1)

sending each x j to the elementary symmetric polynomial E ( j)
d−1 ∈ Z[λ1, λ2, . . . , λd−1] in

the first d − 1 variables, and sending x−1
d−1 to λd . Note that ϕ is well-defined since, in the

target space,

ϕ(x−1
d−1) = λd = (λ1λ2 . . . λd−1)

−1 = (E (d−1)
d−1 )−1 = ϕ(xd−1)

−1.

Using the fact that the E (i)
d−1 are algebraically independent inZ[λ1, λ2, . . . , λd−1], a simple

argument shows that ϕ is injective. To prove the proposed relation, we therefore only need
to show that the two sides have the same image under ϕ.

The key property underlying the whole result is that, for 2 " j " d − 1,

ϕ(y j ) = ϕ(x j−1x
−1
d−1 + x j ) = E ( j−1)

d−1 λd + E ( j)
d−1

= λd
∑

1!i1<···<i j−1!d−1

λi1λi2 . . . λi j−1 +
∑

1!i1<···<i j!d−1

λi1λi2 . . . λi j

=
∑

1!i1<···<i j!d

λi1λi2 . . . λi j = E ( j)
d .

A similar argument shows that ϕ(y1) = E (1)
d .

Then, for the left-hand side of the proposed equality,

ϕ
(
P̂(n,i)
d (y1, y2, . . . , yd−1)

)
= P̂(n,i)

d

(
ϕ(y1),ϕ(y2), . . . ,ϕ(yd−1)

)

= P̂(n,i)
d (E (1)

d , E (2)
d , . . . , E (d−1)

d )

= P(n,i)
d (E (1)

d , E (2)
d , . . . , E (d−1)

d , 1)

= P(n,i)
d (E (1)

d , E (2)
d , . . . , E (d−1)

d , E (d)
d ) = E (n,i)

d

using the properties that ϕ is a ring homomorphism and that E (d)
d = λ1λ2 . . . λd = 1 in the

target space of ϕ.
For the right-hand side,

ϕ
(
x−n
d−1P

(n,i−1)
d−1 (x1, x2, . . . , xd−1)+ P(n,i)

d−1 (x1, x2, . . . , xd−1)
)

= ϕ(x−1
d−1)

n P(n,i−1)
d−1

(
ϕ(x1),ϕ(x2), . . . ,ϕ(xd−1)

)

+ P(n,i)
d−1

(
ϕ(x1),ϕ(x2), . . . ,ϕ(xd−1)

)

= λnd P
(n,i−1)
d−1 (E (1)

d−1, E
(2)
d−1, . . . , E

(d−1)
d−1 )+ P(n,i)

d−1 (E
(1)
d−1, E

(2)
d−1, . . . , E

(d−1)
d−1 )

= λnd E
(n,i−1)
d−1 + E (n,i)

d−1

= λnd

∑

1! j1<···< ji−1!d−1

λnj1λ
n
j2 . . . λ

n
ji−1

+
∑

1! j1<···< ji!d−1

λnj1λ
n
j2 . . . λ

n
ji

=
∑

1! j1<···< ji!d

λnj1λ
n
j2 . . . λ

n
ji = E (n,i)

d = ϕ
(
P̂(n,i)
d (y1, y2, . . . , yd−1)

)
.

Since ϕ is injective, this concludes the proof. *&
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Fig. 6 A few webs, representing the elements I , T , X j ∈ Sq
SLd

(A)io

Fig. 7 The skeins L j ∈ Sq
SLd

(A), I • L j ∈ Sq
SLd

(A)io and L j • I ∈ Sq
SLd

(A)io

4 Computations in the annulus

Inspired by earlier constructions of Morton [15], Lê [12] and Queffelec-Wedrich [18], we
let A = S1 × [0, 1] be the annulus with two marked points x0 = (x, 0) and x1 = (x, 1)
on the boundary (for an arbitrary x ∈ S1). Let Sq

SLd
(A)io be the vector space generated by

webs in A with boundary {x0, x1}, where the edges containing these boundary points carry
the weight 1 and are oriented inward at x0 and outward at x1, and quotiented by the skein
relations of [4]. (The subscript io stands for “in-out”.)

Figure 6 offers a few examples of webs representing elements of Sq
SLd

(A)io in A. In
particular, let I ∈ Sq

SLd
(A)io be represented by the arc x × [0, 1] of the first picture of Fig. 6,

endowed with weight 1, and let the twist element T ∈ Sq
SLd

(A)io be the arc of the second
diagram if Fig. 6, also endowed with weight 1. A more elaborate element X j ∈ Sq

SLd
(A)io,

with 1 " j " d − 2, is represented by the third web of Fig. 6.
The space Sq

SLd
(A)io comes with a multiplication

◦ : Sq
SLd

(A)io ⊗ Sq
SLd

(A)io → Sq
SLd

(A)io

by concatenation, where the skein W1 ◦ W2 is defined by placing W1 in S1 × [0, 1
2 ] and W2

in S1 × [ 12 , 1].
It also comeswith left and right actions of the usual skein algebraSq

SLd
(A) by superposition

where, if [W0] ∈ Sq
SLd

(A) and [W1] ∈ Sq
SLd

(A)io, [W0] • [W1] is obtained by placing
[W0] below [W1] and [W1] • [W0] is obtained by placing [W0] on top of [W1]. We are
particularly interested in the elements I • L j and L j • I ∈ Sq

SLd
(A)io illustrated in the last

two pictures of Fig. 7, where L j ∈ Sq
SLd

(A) is represented by a simple loop L = S1 × { 12 }
going counterclockwise around the annulus and carrying weight j .
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1 Page 12 of 21 F. Bonahon, V. Higgins

Fig. 8 The proof of Lemma 9 when 2 " j " d − 2

The following lemma states that the elements I , T , I • L j and L j • I are central in
Sq
SLd

(A)io, for the multiplication by concatenation ◦.

Lemma 8 For every X ∈ Sq
SLd

(A)io,

X ◦ I = I ◦ X = X X ◦ T = T ◦ X

X ◦ (I • L j ) = (I • L j ) ◦ X X ◦ (L j • I ) = (L j • I ) ◦ X .

Proof These properties are easily checked by elementary isotopies in the thickened annulus
A × [0, 1]. *&

A less immediate relation between the skeins of Figs. 6–7 is provided by the skein relations
of Sect. 1.1.

Lemma 9 For 1 " j " d − 1,

I • L j =






q
d−1
d T − q− 1

d X1 if j = 1

(−1) j−1q
d− j
d X j−1 ◦ T + (−1) j q− j

d X j if 2 " j " d − 2

(−1)d−2q
1
d Xd−2 ◦ T + q

1−d
d T−1 if j = d − 1

L j • I =






q
1−d
d T − q

1
d X1 if j = 1

(−1) j−1q
j−d
d X j−1 ◦ T + (−1) j q

j
d X j if 2 " j " d − 2

(−1)d−2q− 1
d Xd−2 ◦ T + q

d−1
d T−1 if j = d − 1

where T−1 is the inverse of T for the composition operation ◦ (which is also its mirror image).

Proof This follows from an application of the braiding relations of Fig. 5, which express
L j • I and I • L j as a linear combination of two webs.

When 2 " j " d −2, the computation for I • L j is illustrated in Fig. 8. On the right hand
side of the equation, the webs represented each have one edge carrying weight 0 (represented
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Fig. 9 The proof of Lemma 9 when j = d − 1

by a dotted line in the pictures) which must be erased by the conventions stated in Sect. 1.1.
The first web is easily seen to be isotopic to X j−1 ◦ T , while the second web is isotopic to
X j .

When j = 1, the first web occurring in the same computation now has two edge weights
equal to 0. After erasing the corresponding two edges, the resulting web is isotopic to T . The
second web is still isotopic to X1.

When j = d − 1, the first web is still Xd−2 ◦ T but the second web has an edge weight
equal to d . We now need to use the conventions of [4] for this case, which we had skipped
in our discussion in Sect. 1.1. These involve a two-step process, first splitting the weight d
edge into two stumps and then flipping the resulting inward stump to the other side of the
split vertex at which it is attached (see the top of Page 358 of [4]). After applying the second
and third skein relations of Fig. 4 followed by an isotopy, we obtain the mirror image of T ,
which is also T−1 in Sq

SLd
(A)io. See Fig. 9.

This completes the proof of the statement of Lemma 9 for I • L j . The proof for L j • I is
essentially identical. *&

Lemma 10 For every X ∈ Sq
SLd

(A)io and every j with 1 " j " d − 2,

X ◦ X j = X j ◦ X .

Proof By induction on j , the formulas of Lemma 9 show that, for the multiplication by
concatenation ◦, the skein X j ∈ Sq

SLd
(A)io can be expressed as a polynomial in the skeins

I , T and L j • I . Since these skeins are central in Sq
SLd

(A)io by Lemma 8, so is X j . *&

In the annulus A = S1 × [0, 1], let L = S1 × { 12 } be the loop that we used to define the
skeins L j ∈ Sq

SLd
(A).

Proposition 11 Suppose that the d-root q
1
d occurring in the braiding relations of Fig. 5 is

a 2n–root of unity, and let P̂(n,i)
d ∈ Z[e1, e2, . . . , ed−1] be the reduced power elementary

polynomial of Sect. 3. Then, for the framed link L ⊂ A and the skein I ∈ Sq
SLd

(A)io of Fig. 7,

L [P̂(n,i)
d ] • I = I • L [P̂(n,i)

d ].

Proof Consider Sq
SLd

(A)io as a ring for the multiplication by concatenation ◦. Then, the
commutativity property of Lemma 10 shows that there is a unique ring homomorphism

ψ : Z[x1, x2, . . . , xd−2, x
±1
d−1] → Sq

SLd
(A)io

such that ψ(xd−1) = q
d−1
d T−1 and ψ(x j ) = (−1) j q

j
d X j for every j with 1 " j " d − 2.
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If we set

y j =
{
x−1
d−1 + x1 if j = 1
x j−1x

−1
d−1 + x j if 2 " j " d − 1

as in Proposition 7, the first batch of computations in Lemma 9 show that ψ(y j ) = L j • I
for every j . Applying the ring homomorphism ψ to both sides of the conclusion

P̂(n,i)
d (y1, y2, . . . , yd−1) = x−n

d−1P
(n,i−1)
d−1 (x1, x2, . . . , xd−1)+ P(n,i)

d−1 (x1, x2, . . . , xd−1)

of Proposition 7, we conclude that

P̂(n,i)
d (L1 • I ,L2 • I , . . . , Ld−1 • I )

= q
n(1−d)

d T n ◦ P(n,i−1)
d−1

(
− q

1
d X1,+q

2
d X2, . . . , (−1)d−1q

d−1
d Xd−1

)

+ P(n,i)
d−1

(
− q

1
d X1,+q

2
d X2, . . . , (−1)d−1q

d−1
d Xd−1

)

= (−1)n(i−1)q
n(i−d)

d T n ◦ P(n,i−1)
d−1

(
X1, X2, . . . , Xd−1

)

+ (−1)ni q
ni
d P(n,i)

d−1

(
X1, X2, . . . , Xd−1

)
,

using the specialization of Lemma 6 at θ = −q
1
d for the second equality.

When evaluating a polynomial on elements of Sq
SLd

(A)io, we used the multiplication by
concatenation ◦. However, in the case of the skeins L j • I , this evaluation is also closely
related to the multiplication by superposition • and to the threading operation. Indeed, by
inspection of the definitions,

P(L1 • I , L2 • I , . . . , Ld−1 • I ) = L [P] • I

for every polynomial P ∈ Z[e1, e2, . . . , ed−1]. In particular, we now conclude that

L [P̂(n,i)
d ] • I = (−1)n(i−1)q

n(i−d)
d T n ◦ P(n,i−1)

d−1

(
X1, X2, . . . , Xd−1

)

+ (−1)ni q
ni
d P(n,i)

d−1

(
X1, X2, . . . , Xd−1

)
.

If we now use the second batch of computations in Lemma 9, where q is replaced by q−1,
the same arguments show that

I • L [P̂n,k
d ] = (−1)n(i−1)q− n(i−d)

d T n ◦ P(n,i−1)
d−1

(
X1, X2, . . . , Xd−1

)

+ (−1)ni q− ni
d P(n,i)

d−1

(
X1, X2, . . . , Xd−1

)
.

We are now ready to use our hypothesis that q
1
d is a 2n–root of unity, which means that

q
n
d = q− n

d . The above computations then show that L [P̂(n,i)
d ] • I = I • L [P̂(n,i)

d ]. *&

5 Central and transparent skeins from power elementary polynomials

We now use Proposition 11 to construct transparent elements in the skein module Sq
SLd

(M).
The following lemma will enable us to limit our argument to web edges that carry weight 1.

Lemma 12 Let W be a web in the 3-manifold M, and let B ⊂ M be a ball meeting W along
an arc contained in the interior of an edge e of W carrying weight i ∈ {1, 2, . . . , d − 1}.
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Fig. 10 The proof of Lemma 12

Suppose that q2 j %= 1 for every j ∈ {2, 3, . . . , i}, so that the quantum factorial [i]q ! is
nonzero. Then there exists a web W ′ in M such that

(1) [W ] = 1
[i]q ! [W

′] in the skein module Sq
SLd

(M);

(2) every point of B ∩ W ′ is contained in a weight 1 edge of W ′;
(3) W ′ is contained in an arbitrarily small neighborhood of W.

Proof The skein relation of Fig. 3 gives us the relation of Fig. 10. The result then follows by
repeated application of this property. *&

Theorem 13 Suppose that the d-root q
1
d occurring in the definition of skeinmodulesSq

SLd
(M)

is such that q
2n
d = 1, and that q2 j %= 1 for every integer j with 2 " j " d

2 . Then, for

every i = 1, 2, …, d − 1, threading the reduced power elementary polynomial P̂(n,i)
d ∈

Z[e1, e2, . . . , ed−1] is transparent in the skein module Sq
SLd

(M) of any oriented 3–manifold
M.

Proof Let W be a web in a oriented 3-manifold M , and let L1 and L2 be two framed knots
in M that are disjoint from W and isotopic to each other by an isotopy that is allowed to

cross W . We want to show that L
[P̂(n,i)

d ]
1 &W and L

[P̂(n,i)
d ]

2 &W represent the same element in
Sq
SLd

(M).
By decomposing the isotopy into little steps, we can clearly restrict attention to the case

where it crossesW in exactly one point, located in an edge ofW carrying weight i . If i > d
2 ,

we can use the second skein relation of Fig. 4 to replace i by d − i ; we can therefore assume
that i " d

2 , and in particular that [i]q ! %= 0 by our hypotheses on q . Then, applying Lemma 12
to a small ball around the crossing point enables us to restrict attention to the case where the
isotopy crosses W transversely in one point contained in an edge e with weight 1.

By transversality, we can further choose the isotopy so that, for the standard annulus A,
there is an embedding of A × [0, 1] in M such that:

(1) the intersection of the edge e with A× [0, 1] is equal to I × 1
2 for the arc I of Fig. 6, and

the ribbon structure near e is horizontal for the projection to A;
(2) shortly around the time when the isotopy crosses e, the link is contained in A × [0, 1],

its projection to A is equal to the knot L of Fig. 7, and its ribbon structure is horizontal;
(3) the knot is contained in A× [ 12 , 1] shortly before the isotopy crossesW , and in A× [0, 1

2 ]
shortly after that.

See Fig. 11. Restricting the isotopy to times near the crossing time, we can even assume that
the knot L stays as in (2) throughout the isotopy, that L1 is contained in A × [0, 1

2 ], and that
L2 is contained in A × [ 12 , 1]
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Fig. 11 The link L crossing the web W

We can then apply Proposition 11 to conclude that the intersections of L
[P̂(n,i)

d ]
1 & W and

L
[P̂(n,i)

d ]
2 &W with A× [0, 1] differ by a sequence of isotopies and skein relations supported in

the interior of A× [0, 1]. Since L [P̂(n,i)
d ]

1 &W and L
[P̂(n,i)

d ]
2 &W coincide outside of A× [0, 1],

we conclude that [L [P̂(n,i)
d ]

1 & W ] = [L [P̂(n,i)
d ]

2 & W ] in Sq
SLd

(M). *&

Applying Lemma 3, an immediate corollary is that Theorem 13 provides central elements
in the skein algebra Sq

SLd
(S).

Corollary 14 Suppose that the d-root q
1
d occurring in the definition of the skein algebra

Sq
SLd

(M) is such that q
2n
d = 1, and that q2i %= 1 for every integer i with 2 " i " d

2 . In a
thickened surface S×[0, 1], let L = L1&L2&· · ·&Lc be a framed link in which each compo-

nent L j carries a weight i j ∈ {1, 2, . . . , d − 1}. Then the skein L [P̂(n,•)
d ] ∈ Sq

SLd
(S) obtained

by threading the reduced power elementary polynomial P̂
(n,i j )
d ∈ Z[e1, e2, . . . , ed−1] along

each component L j is central in the skein algebra Sq
SLd

(S) of the surface S. *&

Remark 15 In the statements of Theorem 13 and Corollary 14, the condition that q2i %= 1 for
every i with 2 " i " d

2 is an artifact of our use of Lemma 12 in the proof, and is probably
unnecessary.

6 Two conjectures

We conclude with two conjectures.
The first conjecture is the obvious one regarding the center of the skein algebraSq

SLd
(S). In

addition to the elements exhibited in this article, the center of Sq
SLd

(S) admits more obvious
elements associated to the punctures of the surface S. Indeed, if [Pi ] ∈ Sq

SLd
(S) is represented

by a small loop going around one of the punctures of the surface S, endowed with a weight
i ∈ {1, 2, . . . , d − 1}, a simple isotopy shows that [Pi ] in central in Sq

SLd
(S), and this for any

value of q .

Conjecture 16 Suppose that the d-root q
1
d occurring in the definition of the skein algebra

Sq
SLd

(S) is such that q
2
d is a primitive n-root of unity. Then, for every oriented surface S of
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finite topological type, the center of Sq
SLd

(S) is generated (as a subalgebra) by the skeins

[Pi ] associated to punctures as above, as well as by the skeins L [P̂(n,i)
d ] obtained by threading

reduced power elementary polynomials P̂(n,i)
d around framed knots L ⊂ S × [0, 1].

See [5] for a proof of this conjecture in the case where d = 2.
The second conjecture is the full SLd analogue of the main statement underlying the

results of [2] for Sq
SL2

(S). It essentially asserts that the central skeins L [P̂(n,i)
d ] ∈ Sq

SLd
(S),

obtained by threading reduced power elementary polynomials along framed knots, satisfy
the skein relations corresponding to q

1
d = 1.

Conjecture 17 Let S be an oriented surface of finite topological type. If the d-root q
1
d occur-

ring in the definition of the SLd -skein algebra is a root of unity of order n coprime with 2d,
and if the commutative skein algebra S1

SLd
(S) is defined with the convention that 1

1
d = 1,

there exists an algebra homomorphism

' : S1
SLd

(S) → Sq
SLd

(S)

with central image such that, for every skein [L] ∈ S1
SLd

(S) represented by a framed knot L

carrying weight i ∈ {1, 2, . . . , d −1}, the image '
(
[L]

)
= L [P̂(n,i)

d ] is obtained by threading
the reduced power elementary polynomial P̂(n,i)

d ∈ Z[e1, e2, . . . , ed−1] along L, in the sense
defined in Sect. 2.

Remark 18 It easily follows from the skein relations that the algebra S1
SLd

(S) is generated by
knots carrying aweight i ∈ {1, 2, . . . , d−1}. So the homomorphism' : S1

SLd
(S) → Sq

SLd
(S)

is unique if it exists.

The case d = 2 of this Conjecture 17 was proved in [2] when n is odd. See also [2, 12]
for related statements with other conditions on q

1
2 . These properties played a fundamental

role in the study of the finite-dimensional representation theory [2, 5, 6] of Sq
SL2

(S).
See [8] for a proof of Conjecture 17 when d = 3.
For general d , the homomorphism predicted by Conjecture 17 is likely to be the Frobenius

homomorphism ' : S1
SL3

(S) → Sq
SL3

(S) constructed for d = 3 in [7] (see also [10] for
d = 2), and conjectured to exist for all d . See [21] for an explicit construction of this
Frobenius homomorphism when the surface has nonempty boundary, and [9] for a related
construction. Also see [3, 6] for more general developments.

Appendix A. Power elementary polynomials

Recall that the power elementary symmetric polynomial E (n,i)
d ∈ Z[λ1, λ2, . . . , λd ] is

obtained from the elementary symmetric polynomial

E (i)
d =

∑

1! j1< j2<···< ji!d

λ j1λ j2 . . . λ ji

by replacing each variable λ j by its power λnj , and that the power elementary polynomial

P(n,i)
d ∈ Z[e1, e2, . . . , ed ] is the unique polynomial such that

E (n,i)
d = P(n,i)

d (E (1)
d , E (2)

d , . . . , E (d)
d )
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in Z[λ1, λ2, . . . , λd ].
The following generating series property gives a method to explicitly compute the poly-

nomials P(n,i)
d ∈ Z[e1, e2, . . . , ed ]. As a consequence, it also provides an algorithmic

computation of the reduced power elementary polynomials P̂(n,i)
d ∈ Z[e1, e2, . . . , ed−1]

that play a critical role in this article, since these are defined by

P̂(n,i)
d (e1, e2, . . . , ed−1) = P(n,i)

d (e1, e2, . . . , ed−1, 1).

Proposition 19 For every i = 1, 2, …, d, the power elementary polynomial P(n,i)
d ∈

Z[e1, e2, . . . , ed ] is the coefficient of t i in the expansion of the power series

exp
( ∞∑

j=1

(−1) j(n+1)
∑

i1+2i2+···+did= jn
i1, i2,..., id"0

Ai1i2...id t j
)

∈ Z[e1, e2, . . . , ed ][[t]]

where

Ai1i2...id = (−1)i1+i2+···+id−1n
(i1 + i2 + · · · + id − 1)!

i1!i2! . . . id !
ei11 e

i2
2 . . . eidd .

In particular, considering the coefficient of the term of degree 1 yields the following
well-known expression of the n–th power sum symmetric polynomial in terms of elementary
symmetric polynomials.

Corollary 20

P(n,1)
d = (−1)nn

∑

i1+2i2+···+did=n
i1, i2,..., id"0

(−1)i1+i2+···+id (i1 + i2 + · · · + id − 1)!
i1!i2! . . . id !

ei11 e
i2
2 . . . eidd .

*&

Remark 21 Proposition 19 shows that the power series expansion of the exponential that
occurs there is finite, which reflects hidden relations between the coefficients of the mono-
mials Ai1i2...id . It is possible that similar relations can be used to simplify the formula of
Proposition 19. As is, this statement is already reasonably effective for computations.

Proof of Proposition 19 Consider the generating series

((n)(t) = 1+
d∑

j=1

E (n, j)
d t j =

d∏

i=1

(1+ λni t) ∈ Z[λ1, λ2, . . . , λd , t],

obtained from the classical generating series (see for instance [14, Sect. I.2])

((1)(t) = 1+
d∑

j=1

E ( j)
d t j =

d∏

i=1

(1+ λi t)

for elementary symmetric polynomials by replacing each λi with λni .
As a preliminary computation, let us expand

log((1)(t) = log



1+
d∑

j=1

E ( j)
d t j



 =
∞∑

i=1

(−1)i−1

i




d∑

j=1

E ( j)
d t j




i
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=
∞∑

i=1

(−1)i−1

i

∑

j1+ j2+···+ jd=i

i !
j1! j2! . . . jd !

E (1) j1
d E (2) j2

d . . . E (d) jd
d t j1+2 j2+···+d jd

=
∞∑

k=1

∑

j1+2 j2+···+d jd=k

(−1) j1+ j2+···+ jd−1 ( j1 + j2 + · · · + jd − 1)!
j1! j2! . . . jd !

E (1) j1
d E (2) j2

d . . . E (d) jd
d tk

=
∞∑

j=1

∑

i1+2i2+···+did= j

ai1i2...id E
(1)i1
d E (2)i2

d . . . E (d)id
d t j

with

ai1i2...id = (−1)i1+i2+···+id−1 (i1 + i2 + · · · + id − 1)!
i1!i2! . . . id !

.

To compute the generating series ((n)(t), let ω ∈ C be a primitive n-root of unity, and let
θ ∈ C be any number such that θn = −1. Then,

((n)(t) =
d∏

i=1

(1+ λni t) =
d∏

i=1

(1 − λni θ
nt)

=
d∏

i=1

n∏

j=1

(
1 − ω jλiθ t

1
n
)
=

n∏

j=1

((1)( − ω jθ t
1
n
)
.

Using our earlier computation,

log((n)(t) =
n∑

i=1

log((1)( − ωiθ t
1
n
)

=
n∑

i=1

∞∑

j=1

∑

i1+2i2+···+did= j

ai1i2...id E
(1)i1
d E (2)i2

d . . . E (d)id
d (−1) jωi jθ j t

j
n

= n
∞∑

k=1

∑

i1+2i2+···+did=kn

ai1i2...id E
(1)i1
d E (2)i2

d . . . E (d)id
d (−1)knθkntk

= n
∞∑

j=1

∑

i1+2i2+···+did= jn

ai1i2...id E
(1)i1
d E (2)i2

d . . . E (d)id
d (−1) j(n+1)t j

since, as ω is a primitive n–root of unity,

n∑

i=1

ωi j =
{
n if n divides j

0 otherwise

and θn = −1.
As a consequence,

((n)(t) = exp



n
∞∑

j=1

∑

i1+2i2+···+did= jn

ai1i2...id E
(1)i1
d E (2)i2

d . . . E (d)id
d (−1) j(n+1)t j




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in Z[λ1, λ2, . . . , λd ][[t]], and

1+
d∑

i=1

P(n,i)
d t i = exp



n
∞∑

j=1

∑

i1+2i2+···+did= jn

ai1i2...id e
i1
1 e

i2
2 . . . eidd (−1) j(n+1)t j





in Z[e1, e2, . . . , ed ][[t]]. This proves the statement of Proposition 19, by setting

Ai1i2...id = nai1i2...id e
i1
1 e

i2
2 . . . eidd .

*&

Finally, the following elementary symmetry property is probably worth mentioning.

Proposition 22 For every i ,

P(n,d−i)
d (e1, e2, . . . , ed−1, ed) = end P

(n,i)
d (e−1

d ed−1, e
−1
d ed−2, . . . , e

−1
d e1, e

−1
d ).

Proof If one replaces each λ j by λ−1
j , the power elementary symmetric polynomial E (n,i)

d
gets replaced by

(
E (n,d)
d

)−1
E (n,d−i)
d =

(
E (d)
d

)−n
E (n,d−i)
d

and, in particular, each E (i)
d gets replaced by

(
Ed
d

)−1
E (d−i)
d . The property follows. *&
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