Auto-grader Feedback Utilization and Its Impacts:
An Observational Study Across Five Community Colleges

Adam Zhang, Heather Burte, Jaromir Savelka, Christopher Bogart, and Majd Sakr
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A.

Keywords:

Abstract:

Auto-grader, feedback, community college, introductory programming, project-based learning

Automated grading systems, or auto-graders, have become ubiquitous in programming education, and the

way they generate feedback has become increasingly automated as well. However, there is insufficient evi-
dence regarding auto-grader feedback’s effectiveness in improving student learning outcomes, in a way that
differentiates students who utilized the feedback and students who did not. In this study, we fill this critical
gap. Specifically, we analyze students’ interactions with auto-graders in an introductory Python programming
course, offered at five community colleges in the United States. Our results show that students checking the
feedback more frequently tend to get higher scores from their programming assignments overall. Our results
also show that a submission that follows a student checking the feedback tends to receive a higher score than

a submission that follows a student ignoring the feedback. Our results provide evidence on auto-grader feed-
back’s effectiveness, encourage their increased utilization, and call for future work to continue their evaluation

in this age of automation

1 INTRODUCTION

Automated grading systems (auto-graders), are a pop-
ular solution to providing immediate scores and feed-
back in programming courses. Though auto-graders
may not consistently provide the same quality of feed-
back as a human instructor, they can still be valuable
to instructors and students alike due to their imme-
diacy and constant availability. Auto-graders’ scala-
bility supports teaching larger classes, and their effi-
ciency provides students with more timely, on-going
guidance for learning and problem-solving. However,
empirical assessments of auto-grader feedback’s im-
pact on learning outcomes, such as grades and pass
rates, remain insufficient (Keuning et al., 2018). This
raises the question of whether auto-grader feedback
is in fact useful to students, or even utilized at all.
In absence of such studies, instructors run the risk of
dedicating considerable resources to developing tools
that may not necessarily yield better learning out-
comes. Such studies are especially timely when in-
creasingly many educators explore ways to replace or
augment human instructors’ feedback with feedback
generated by large language models (LLMs) (Prather
et al., 2023; Prather et al., 2024).

In this paper, we evaluate auto-graders from a
Python course we offered in partnership with five
community colleges in the United States during the
2022-23 academic year, with 199 student participants.

In this course, we logged and analyzed students’ nav-
igation history, submission history, estimated time
spent, and scores. The course is hosted on a propri-
etary learning and research platform called Sail()'.

For this course, students write source code in lo-
cal files, and submit them by running a submitter exe-
cutable file. Students then log on to the course website
and check their scores and feedback, which are usu-
ally available within seconds. The auto-graders are
containers in a Kubernetes cluster, developed by our
faculty and teaching assistants, and run against stu-
dent submissions. In this paper, we investigate the
following two research questions:

1. Do students consistently check auto-grader feed-
back every time they submit? (RQ1)

2. Is checking auto-grader feedback associated with
better learning outcomes, as measured by stu-
dents’ scores? (RQ2)

We show that checking auto-grader feedback more
frequently is associated with getting higher scores for
programming assignments, and that checking auto-
grader feedback between two consecutive submis-
sions is associated with a higher probability of get-
ting an improved score in the latter submission. We
could not show that checking auto-grader feedback is
associated with increased efficiency (as measured by

'https#sailplatform.org

estimated time spent). Further work is needed to ex-
amine our feedback template, experiment with vary-
ing templates, and better understand why some feed-
back templates might be more useful than others for
learning outcome improvements.

This study is focused on auto-grader feedback’s
impact on adult students learning to write correct
code, and excludes other learning objectives such as
style and algorithmic performance. In the rest of this
paper, all feedback is assumed to be provided by an
auto-grader.

2 Related Work

This paper extends our prior work on student out-
comes and working habits when engaged with auto-
graded project-based CS/IT courses delivered through
the Sail() Platform. Previously, we analyzed students’
persistence, their course grades, and self-efficacy in
an introductory programming classes, focusing on the
delivery modality (i.e., online, in-person, cohort, syn-
chronous, asynchronous) (Bogart et al., 2024; Savelka
et al., 2025). We also explored different student ap-
proaches to working on programming projects (work-
ing habits), showing if and how certain habits could
lead to better course performance (Anet al., 2021;
Goldstein et al., 2019). This paper follows up on those
work by investigating how students interact with auto-
grader feedback, provided in a project-based intro-
ductory programming course.

Multiple literature review papers found that there
is insufficient empirical evidence of auto-grader feed-
back’s effectiveness in improving learning outcomes
in programming education. One such systematic liter-
ature review of automated feedback generation tools
developed by the year of 2015 (Keuning et al., 2018)
shows a quarter of them had anecdotal or no evalua-
tion at all; even the tools that had empirical evaluation
(which was about a third of them) differed greatly in
how they were evaluated, and often lacked detail on
the methods and results. Another systematic litera-
ture review of such tools published between the years
of 2017 and 2021 (Messer et al., 2024) shows most of
these tools had been evaluated using surveys or by be-
ing compared to human graders rather than learning
outcomes such as assignment grades, course grades,
and third-party assessment grades (Pettit et al., 2015).

Demonstrating auto-grader feedback’s effective-
ness for computer science education, and identi-
fying which methods of feedback generation and
presentation work better than others, can have far-
reaching impacts. During the 2021-22 academic year,
108,049 Bachelor’s degrees were conferred in Com-

puter and Information Sciences and Support Services
in the United States alone (National Student Clearn-
inghouse, 2024). Those numbers do not include stu-
dents in other parts of the world, or students in other
fields of study taking programming courses. At least
121 research papers on automated grading and feed-
back tools for programming education were published
between the years of 2017 and 2021 (Messer et al.,
2024). With the growing number of students and
institutions utilizing auto-graders, often in isolation
(Pettit and Prather, 2017), the importance of a shared
understanding on how to generate and present feed-
back that is as effective as it is efficient cannot be
overstated.

Generating effective auto-grader feedback for in-
troductory courses is arguably more difficult than it
is for intermediate or advanced courses, with fail-
ure rates of novice programming courses often ex-
ceeding 30% (Sim and Lau, 2018; Bennedsen and
Caspersen, 2007). This is because novice learners
may even struggle to write code that compiles, not
to mention parsing feedback or error messages pro-
vided by the auto-graders and by their console. Fail-
ure to understand console messages may cause fail-
ure to compile and submit code, which may in turn
cause failure to receive any feedback at all. This adds
all the more necessity to demonstrating that the feed-
back indeed helps students learn, so that fewer stu-
dents feel left behind. At the time of our study, our
auto-graders suffered from the same limitation, re-
quiring successful compilation of the students’ code
before they can submit. We have since improved both
our auto-graders and our learning platform such that
the compilation requirement is removed for the initial
programming assignments (Nguyen et al., 2024), the
effects of which we will extensively report on in the
future.

A few studies show a positive impact ~ of auto-
grader feedback on student learning, but with limi-
tations. Some had a small number of students work-
ing in groups and surveyed them after a short time
period of observation (Kurniawan et al., 2023; Ku-
mar, 2005), which may not be representative of how
auto-graders are deployed in semester-long, poten-
tially online, large courses. Some did not observe
improvements in the treatment group’s post-tests or
post-assignments (Mitra, 2023). Some did observe
improvements after introducing auto-graders that pro-
vides immediate feedback (Gabbay and Cohen, 2022;
Wang et al., 2011), but it is unclear if the students in-
deed checked the feedback that was provided.

This study builds on those earlier findings by ad-
dressing one of their key limitations: being able to
differentiate between students checking feedback and

students not checking feedback, while providing feed-
back to everyone. We address that limitation by host-
ing the feedback on submission-specific web pages,
and logging student navigation to those web pages,
which allows us to evaluate our auto-grader feedback
based on knowledge of which students presumably
consumed them.

3 Background

3.1 The Python Course

Our Python course is entirely online and has 9 units,
of which 5 are used by all the colleges included in this
study:

1. In Hello World, students practice how to make a
submission and how to navigate to the feedback
for that submission, using the Sail() Platform.

2. In Types, Variables, and Functions, students
practice creating the basic building blocks of
Python, visualized using a simple calculator app
with a graphical user interface.

3. In Iteration, Conditionals, Strings, and Ba-
sic I/0, students implement a series of functions
which, together with the starter code, become a
report generating app.

4. In Data Structures, students build on that report-
generating app by manipulating lists, dictionaries,
sets, and tuples.

5. In Object-Oriented Programming, students
practice OOP basics by declaring, instantiating,
and extending simple classes.

The course also has optional units in Software Devel-
opment, Data Manipulation, Web Scraping, and Data
Analysis. We excluded data from those units in this
study because not every college used them.

Each unit has four types of modules: concepts,
primers, quizzes, and projects. For this paper, we
focused solely on projects as they employ auto-
graders. There is exactly one project per unit, fol-
lowing a project-based education model (Kokotsaki
et al.,, 2016). Our prior work, (Savelka et al., 2023),
provides additional details on the course itself.

Projects are where students spend most of their
time. For each project, students are presented with a
real-world scenario, and handout code that scaffolds
the scenario (See Figure 1). To complete the tasks
within each project, which are usually spread across
multiple Python files, students extend the code in each
file (sometimes creating new files) drawing upon what
they learned earlier in the unit.

File Edit Options Buffers Tools Python Help

TODO 6: Import the “pi’ constant here.

ef circle_area(radius):
pass # TODO 1: Replace this line with your code.

ef sphere_volume(radius):
pass # TODO 2: Replace this line with your code

def add_word(text, word):
pass # TODO 3: Replace this line with your code.

TODO 4: Implement ‘max_minus_min® function here.

TODO 5: Implement 'max_minus_min_abs' function here

TODO 7: Implement ‘circle_area_exact® function here

TODO 8: Implement sphere_volume_exact' function here
TODO 9: Implement ‘add_numbers_return’ function here.

TODO 10: Implement “add_numbers_print® function here.
-UU-:x%- F1 task2.py A P CV Ho R Do e ——————

Figure 1: Example of Handout Code
3.2 The Auto-grader Feedback

Auto-grader feedback is generated within seconds for
each submission. The feedback is hosted on a dedi-
cated webpage accessible via a hyperlink on the sub-
missions table for the task on the course website. The
feedback is not provided anywhere else. The feed-
back is available only to the student who made the
submission. The feedback is exclusively textual; an
example is shown in Figure 3.

3.3 The Offerings

When instructors offer the Python course, they may
choose to add additional materials or activities be-
yond the scope of the original course. We do not col-
lect data on those materials and activities.

Six instructors from five colleges in four Amer-
ican states offered the course in our one-year study.
All instructors completed the course before teaching.

Two colleges offered the course asynchronously,
which means all projects were open from the start to
the end of the semester which spanned four months.
The other three offered it synchronously, which
means all students from the same section worked on
the same project in a week, before they moved on to
the next project next week.

4 Dataset

The dataset consists of records of 15 sections of the
Python course, offered in Fall 2022, Spring 2023,
and Summer 2023, at five community colleges in the
United States, for 199 student participants in total.
Records of students who dropped the course (at any

awrapper

Figure 2: American States Represented by Participants;
Arizona (1), Illinois (1), New Mexico (1), and North
Carolina (2)

time) or chose not to participate in the research are
excluded from the study. The sections had between 3
and 28 students; most had around 15.

We analyzed data from the first five projects
(which are used by all colleges in this study), and ex-
cluded data from later projects. The projects are zero-
indexed, and will be referred to as projectthrough
projectdn later figures. Each project consists of
2-6 tasks, which could be distributed across multiple
Python files. Students submit their code for each task,
and get feedback for each submission. The number of
submissions is not limited as long as the deadline has
not passed.

We estimate how long a student spends on each
project by counting distinct clock hours in which
they navigate within that project’s web pages or make
submissions to that project’s tasks. This is called
ProjectHouurn later diagrams.

We note the final score a student
each project when that project is due.
ProjectScouna later diagrams.

The colleges are anonymized as A, B, C, D, E.

We do not know if a student actually read the feed-
back for a submission, or how carefully they read it.
We say that a student has checked the feedback if the
event of them navigating to the webpage that hosts the
feedback is logged by our web service.

receives for
This is called

5 Results

5.1 Do students consistently check
auto-grader feedback every time
they submit? (RQ1)

Students check auto-grader feedback almost as often
as they submit. Throughout the course, across five

projects, students made an average of 66 submissions
(o= 72) and checked feedback an average of 64 times
(o = 73). The pattern also holds for each individual
project and for each college, as shown in Figure 4,
where the regression line for all subsets of the data
(based on either project or college, as signified by the
color) closely resemble each other. Their correlation
is explored in the next subsection.

Project College
-+ project0
== project1
== project2
== project3
== project4

Number of Feedback Checks
Number of Feedback Checks

0 25 50 75 100 0 25 50 75 100
Number of Submissions Number of Submissions

Figure 4: NFeedbackChecks v. NSubmissions;
Grouped by Project and by College

However, not all feedback is checked. Recall that
feedback is generated by the auto-grader for each sub-
mission, on a webpage uniquely identified by the sub-
mission, and accessible only to the student who made
the submission. 28% of the feedback pages were
never checked. 56% were checked once. 16% were
checked more than once.

The number of feedback checks may be related
to the assignment’s difficulty. Students are about 3
times as active in projectas they are in project0
as shown in Figure 5. Instructors and authors of
the course expressed in interviews that projectis
the most difficult of the projects. It also has one of
the highest number of tasks (4), while project@nd
projectare two of the easiest projects with the low-
est number of tasks (2). Students are second-most ac-
tive in projectdwhich has the highest number of
tasks (6).

SUMMARY

Project 2: Iteration, Conditionals, Strings and Basic /0
Task 1: Color Game

LEARNING OBJECTIVES

[LO1 PARTIAL] Use conditional statements with complex boolean expressions to solve computational problems involving

| decisions. (3/10)

All feedback starts with
a summary section,
which identifies the
learning objectives that
have not been met and

T(I)TAL SCORE the activities that have
3/10

not been completed.
TO DO
[LO1 - ACTIVITY 2] Implement the “is_correct” function that evaluates if the player's answer is correct. J

DETAILED ASSESSMENT

[LO1] Use conditional statements with complex boolean expressions to solve ¢

[ACTIVITY 1] Implement the “time_color function that resolves the color of the displayed time to black, orange, or red.

[RULE] The “time_color function should return the correct output to a given input.
[RESULT] PASSED (3/3)
[FEEDBACK] Great work! Your implementation of ‘time_color appears to work correctly.

[ACTIVITY 2] Implement the “is_correct” function that evaluates if the player's answer is correct.

[RULE] The “is_correct™ function should return the correct output to a given input.
[RESULT] FAILED (0/7)

ional problems involving decisions.

Feedback exists for both
passed and failed tests.

Dynamic test vectors are
provided, in order for
students to test their

[FEEDBACK] The expected output to the provided arguments “("orange", "green", "yellow", "nonsense", "Neither")" is

| “False”. Your implementation of “is_correct” returned “True™.

own code and fix bugs.

Figure 3: Example of Auto-grader Feedback for A Student’s Submission

EventType B3 Submission E3 FeedbackCheck

40

w
S

o

H=

Number of Events
N
o

o

¥ P >

S >
& &
O S > o O
T ¢ ¢ ¢ <9
Project

200

o
S

Number of Events
g B

Figure 5: Number of Submissions and Feedback Checks
per Student, Grouped by Project and by College

Figure 5 also shows that students at College E are
twice as active as students at College A, and even
more so than students at College B. To better un-
derstand the variations (of the numbers of submis-
sions and feedback checks) among the colleges, we
analyzed how many students from each college at-
tempted each project as their semesters progressed,
as shown in Figure 6. We observed that almost all
students from College B, and more than half of all
students from College A, did not attempt project3
or projectd Lower levels of participation would
explain lower numbers of submissions and feedback
checks.

200

@
o

project0 project1 project2 project3 project4
Project

College [l A [lle [l c Mo &

Number of Active Students
g 3

Figure 6: Number of Students Active for Each Project;
making at least one submission to a project qualifies them
as being active for that project

5.2 Is checking auto-grader feedback
associated with better learning
outcomes, as measured by students’
scores? (RQ2)

We investigated the relationship between the num-
ber of submissions (nSubmissionsand feedback
checks (nFeedbackCheck the estimated time spent
on a project (ProjectHouy,sand the project score
(ProjectScoydor each student, using Pearson Cor-
relations, as shown in Figure 7.

We observed that nSubmissions and
nFeedbackCheckhave a strong and positive
correlation (cor = 0-961, p < 0-001), which aligns

heck i ProjectScore
500~

400~
300- Corr Corr Corr:
200 0.961*** 0.474** 0.278**
100~
o
.
2004 5 Corr: Corr:
100~ 0.497* 0.273*
3 -+
. .
150~
100- 3 ® 5 B ®, . Corr:
504 % 0.344*
o4 o o o
9 .
] .
o

i ' .
50 100 150 0

0OUDNOEGPRI!

.‘og
T
...:’.
.
..
s

0 100 200 300 0 100 200 0 2% 50 75 100

Figure 7: Correlation Matrix

with our earlier observation that students check
feedback almost as often as they submit regardless of
project and college.

nSubmissionand ProjectHouralso have a
strong and positive correlation (cor = 0-474,p <
0-001). We hypothesize that this is because it takes
more time to make more submissions.

The strong and positive correlation be-
tween nFeedbackChecksand ProjectHours
(cor = 0-497: p < 0-001) is a natural extension of the
previous two correlations, but we could not deter-
mine if past a certain threshold students who check
feedback more often per submission end up spending
less time, which would support the hypothesis that
checking feedback allows students to learn more
efficiently.

nFeedbackCheckand ProjectScordave a
moderately positive correlation (cor = 0-273,p <
0-001), which aligns with our hypothesis that feed-
back checks have a positive impact on scores,
but the impact may instead come from spending
more time on the project, as ProjectHourand
ProjectScoredso has a positive correlation that
is a little stronger (cor = 0-344, p < 0.001).

To better understand the impact of checking feed-
back, we analyzed consecutive submissions made by
the same student where the first submission did not
get a full score, and observed if the student checked
the feedback for the former submission, and if the lat-
ter submission got a higher score. We consider two
submissions to be consecutive even if the student at-
tempted another task or another project between the
two submissions. Recall that there are multiple tasks
in a project, and submissions are made to tasks.

Specifically, we call a submission non-maximal if
it does not receive the full score, and non-terminal
if the student makes another submission to the same
task at any time in the future. We analyzed the set of
all such non-maximal, non-terminal submissions, and
computed the following conditional probabilities.

P(Higher|Check) = 38-46%

P(Higher|NotCheck) = 33-77%

Students who check the auto-grader feedback af-
ter a non-maximal, non-terminal submission are more
likely to score higher in the subsequent submission
(p = 0-0063 following a Fisher’s Exact Test). This
provides statistically significant evidence that check-
ing auto-grader feedback likely has a positive impact
on submission scores. Moreover, our result resembles
that of a previous study (Gabbay and Cohen, 2022)
where the authors noted in 36% of resubmissions for
an online programming course with auto-grader feed-
back, students corrected their mistakes.

6 Discussion

Our study shows that students check auto-grader feed-
back almost as often as they submit code. Our study
also provides evidence of a positive impact of check-
ing auto-grader feedback on assignment scores and
submission scores. Specifically, checking auto-grader
feedback more frequently for an assignment is asso-
ciated with getting a higher final score for that assign-
ment, and checking auto-grader feedback between
consecutive submissions is associated with a higher
probability of getting a higher score in the latter sub-
mission.

However, our study is limited in that it does not
take into consideration variations in the quality of
feedback provided by our auto-graders: some feed-
back may be more useful than others. Further work
is needed to categorize our feedback template using
a framework such as Narciss’ (Narciss, 2008), exam-
ine our feedback generation process, and better un-
derstand how to systematically generate more useful
feedback.

Our learning platform also lacked the ability for
students to give feedback on the feedback they get
from the auto-grader (a feature we are developing
now). A thumbs-up/thumbs-down button, a place for
students to enter plain text feedback, and a bookmark
mechanism allowing students to communicate exactly
where they feel improvements are needed, would help
course authors identify and focus their attention on
feedback that have been labeled as less useful, and
help researchers better understand why some feed-
back might be more useful than other.

Instructors should consider actively encouraging
students to check auto-grader feedback after each sub-
mission. This is particularly important for students
who may be new to programming or auto-graded as-
signments. Instructors should also consider monitor-
ing students’ feedback-checking behavior. ~Students
who rarely check feedback may need additional sup-

port or guidance. Finally, instructors should consider
incorporating discussions about how to effectively use
auto-grader feedback into their courses. This could
include demonstrating how to interpret different types
of feedback, sharing strategies for debugging based
on feedback, and explaining how feedback relates to
learning objectives.

7 Conclusions

In this study, we explored if and how often 199 stu-
dents from five community colleges in the United
States checked auto-grader feedback as they took the
same introductory Python programming course, to
see if their feedback-checking behavior seems related
to their scores. Our results clearly show the relation-
ship between the scores and students checking the
feedback. The more often a student checks auto-
grader feedback for a programming assignment, the
more likely they are to get a higher score for that
assignment. Furthermore, checking the auto-grader
feedback for a non-maximal, non-terminal submis-
sion is associated with a 4.69% higher probability of
getting a higher score in the subsequent submission
for the same task, than not checking it. Our findings
are based on logging student navigation to the web
pages hosting the individualized feedback, though we
do not know if the student indeed read the feedback
or how carefully they read it.

8 Future Work

Further analysis and categorization of our feedback,
using frameworks such as Narciss’ (Narciss, 2008),
will allow us to better understand what types of feed-
back are more useful than others. Keuning et al. also
called for such a comparison in their systematic liter-
ature review (Keuning et al., 2018).

Additionally, both researchers and instructors
could benefit from instrumenting the learning plat-
form for students to provide feedback on the feedback
they get, so that researchers can evaluate their useful-
ness and instructors can improve their courses. As we
enter an era where programming education is ubig-
uitous for learners at all levels, and generative Al is
starting to generate course content and contextualized
feedback, it becomes all the more necessary that we
continue to demonstrate the usefulness (and usabil-
ity) of auto-grader feedback provided to learners, so
as to ensure that the next generation of programmers
is well-prepare to enter today’s technology workforce.

ACKNOWLEDGMENT

This material is based upon work supported by
the National Science Foundation under Grant No.
2111305.

Hosting of the educational platform, and Azure
credits for some student learning activities on the
cloud service provider, are sponsored by Microsoft.

Recruitment of the participating community col-
leges was accomplished in collaboration with the Na-
tional Institute for Staff and Organizational Develop-
ment (NISOD).

REFERENCES

An, M., Zhang, H., Savelka, J., Zhu, S., Bogart, C.,
and Sakr, M. (2021). Are working habits differ-
ent between well-performing and at-risk students
in online project-based courses? In Proceedings
of the 26th ACM Conference on Innovation and
Technology in Computer Science Education V. 1,
pages 324-330.

Bennedsen, J. and Caspersen, M. E. (2007). Fail-
ure rates in introductory programming. SIGCSE
Bull., 39(2):32-36.

Bogart, C., An, M., Keylor, E., Singh, P., Savelka, J.,
and Sakr, M. (2024). What factors influence per-
sistence in project-based programming courses
at community colleges? In Proceedings of the
55th ACM Technical Symposium on Computer
Science Education V. 1, pages 116—-122.

Gabbay, H. and Cohen, A. (2022). Exploring the con-
nections between the use of an automated feed-
back system and learning behavior in a mooc for
programming. In Educating for a New Future:
Making Sense of Technology-Enhanced Learn-
ing Adoption: 17th European Conference on
Technology Enhanced Learning, EC-TEL 2022,
Toulouse, France, September 12—16, 2022, Pro-
ceedings, page 116-130, Berlin, Heidelberg.
Springer-Verlag.

Goldstein, S. C., Zhang, H., Sakr, M., An, H., and
Dashti, C. (2019). Understanding how work
habits influence student performance. In Pro-
ceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Ed-
ucation, pages 154-160.

Keuning, H., Jeuring, J., and Heeren, B. (2018).
A systematic literature review of automated
feedback generation for programming exercises.
ACM Trans. Comput. Educ., 19(1).

Kokotsaki, D., Menzies, V., and Wiggins, A. (2016).

Project-based learning: A review of the litera-
ture. Improving Schools, 19.

Kumar, A. N. (2005). Generation of problems, an-
swers, grade, and feedback—case study of a
fully automated tutor. J. Educ. Resour. Comput.,
5(3):3—es.

Kurniawan, O., Poskitt, C. M., Al Hoque, 1., Lee, N.
T. S., Jégourel, C., and Sockalingam, N. (2023).
How helpful do novice programmers find the
feedback of an automated repair tool? In 2023
IEEE International Conference on Teaching, As-
sessment and Learning for Engineering (TALE),
pages 1-6.

Messer, M., Brown, N. C. C., Kdlling, M., and Shi,
M. (2024). Automated grading and feedback
tools for programming education: A systematic
review. ACM Trans. Comput. Educ., 24(1).

Mitra, J. (2023). Studying the impact of auto-graders
giving immediate feedback in programming as-
signments. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Ed-
ucation V. 1, SIGCSE 2023, page 388-394, New
York, NY, USA. Association for Computing Ma-
chinery.

Narciss, S. (2008). Feedback strategies for interactive
learning tasks. In Spector, J., Merrill, M., van
Merrienboer, J., and Driscoll, M., editors, Hand-
book of Research on Educational Communica-
tions and Technology, chapter 11, pages 125—

144. Lawrence Erlbaum Associates, Mahwah,
NJ, 3rd edition.
National Student Clearninghouse (2024). Under-

graduate degree earners: Academic year 2022-
23. Technical report, National Student Clearing-
house Research Center.

Nguyen, H. A., Bogart, C., Savelka, J., Zhang, A.,
and Sakr, M. (2024). Examining the trade-offs
between simplified and realistic coding environ-
ments in an introductory python programming
class. In European Conference on Technology
Enhanced Learning, pages 315-329. Springer.

Pettit, R., Homer, J., Holcomb, K., Simone, N., and
Mengel, S. (2015). Are automated assessment
tools helpful in programming courses? ASEE
Annual Conference and Exposition, Conference
Proceedings, 122.

Pettit, R. and Prather, J. (2017). Automated assess-
ment tools: too many cooks, not enough collab-
oration. J. Comput. Sci. Coll., 32(4):113-121.

Prather, J., Denny, P., Leinonen, J., Becker, B. A., Al-
bluwi, 1., Craig, M., Keuning, H., Kiesler, N.,
Kohn, T., Luxton-Reilly, A., etal. (2023). The
robots are here: Navigating the generative ai rev-

olution in computing education. In Proceedings
of the 2023 Working Group Reports on Innova-
tion and Technology in Computer Science Edu-
cation, pages 108—159. ACM.

Prather, J., Leinonen, J., Kiesler, N., Benario, J. G.,
Lau, S., MacNeil, S., Norouzi, N., Opel, S., Pet-
tit, V., Porter, L., et al. (2024). Beyond the
hype: A comprehensive review of current trends
in generative ai research, teaching practices, and
tools. arXiv preprint arXiv:2412.14732.

Savelka, J., Agarwal, A., An, M., Bogart, C., and
Sakr, M. (2023). Thrilled by your progress! large
language models (gpt-4) no longer struggle to
pass assessments in higher education program-
ming courses. In Proceedings of the 2023 ACM
Conference on International Computing Educa-
tion Research-Volume 1, pages 78-92.

Savelka, J., Kultur, C., Agarwal, A., Bogart, C.,
Burte, H., Zhang, A., and Sakr, M. (2025).
Ai technicians: Developing rapid occupational
training methods for a competitive ai workforce.
In Proceedings of the 56th ACM Technical Sym-
posium on Computer Science Education V. 1.

Sim, T. Y. and Lau, S. L. (2018). Online tools to
support novice programming: A systematic re-
view. In 2018 IEEE Conference on e-Learning,
e-Management and e-Services (IC3e), pages 91—
96.

Wang, T., Su, X., Ma, P., Wang, Y., and Wang, K.
(2011). Ability-training-oriented automated as-
sessment in introductory programming course.
Comput. Educ., 56(1):220-226.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

