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A Distributionally Robust Optimization Framework
for Stochastic Assessment of Power System

Flexibility in Economic Dispatch
Xinyi Zhao, Lei Fan, Fei Ding, Weijia Liu, and Chaoyue Zhao

Abstract—Given the complexity of power systems, particularly
the high-dimensional variability of net loads, accurately depicting
the entire operational range of net loads poses a challenge. To
address this, recent methodologies have sought to gauge the
maximum range of net load uncertainty across all buses. In
this paper, we consider the stochastic nature of the net load
and introduce a distributionally robust optimization framework
that assesses system flexibility stochastically, accommodating a
minimal extent of system violations. We verify the proposed
method by solving the flexibility of the economic dispatch
problem on four distinct IEEE standard test systems. Compared
to traditional deterministic flexibility evaluations, our approach
consistently yields less conservative flexibility outcomes.

Index Terms—Flexibility metric, net load uncertainty, distri-
butionally robust optimization, economic dispatch

I. INTRODUCTION

The national electricity sector has witnessed a significant

rise in renewable energy integration. As this trend is projected

to continue in the coming decades, net demand—calculated by

subtracting electricity generation from the total load—has be-

come more volatile and unpredictable. Confronted with these

fluctuations, system operators must assess the grid’s resilience

across various scenarios. In this context, the term “flexibility”

emerges in literature, describing a power system’s capacity

to manage the variability and uncertainty of net loads cost-

effectively [1], [2]. Gaining insights into this metric is vital,

equipping engineers to predict a system’s endurance against

unforeseen demand shifts and to guide reliability enhance-

ments. Crucially, neglecting flexibility can lead to transient

instabilities, cascading outages, and potential blackouts.

Numerous reviews [1], [3], [4] on power system flexibility

categorize prior studies into two main groups based on the

time scope of their target applications. First, from a short-term

operational viewpoint, system frequency is a pivotal indicator

of electrical power quality. Deviations from its nominal value

require timely compensation from available resources. As

such, the capacity for regulation, energy storage, power range,

and ramping duration serves as their flexibility indices [2], [5].

However, these studies have inherent limitations: a flexibility

index relevant in one context might be inapplicable in another.
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In contrast, defining flexibility based on system failure causes,

rather than remedies, makes it more universally relevant across

different operational systems, offering greater utility for power

grid planners and operators.
Second, from a long-term planning perspective, scholars

have introduced diverse technical and economic indices to

gauge system flexibility from multiple facets. These include

generation adequacy metrics such as the loss of load ex-

pectation [6]; ramping resource sufficiency indicated by the

insufficient ramping resource expectation [7]; and flexibility

endurance, i.e., periods of flexibility deficit [8]. These indices

typically originate from simulations with preset net load

probability assumptions. However, the task of computing the

multi-dimensional joint probability distribution of net loads

in real-world power systems, which often include numerous

buses, is a formidable computational challenge. Furthermore,

while these indices do well to capture system failures during

certain variability patterns, such as Gaussian-distributed net

loads, they don’t fully represent the breadth of operational net

load scenarios where systems function normally.
To address these challenges, state-of-the-art techniques con-

centrate on quantifying the utmost net load uncertainty that a

system can accommodate [9]–[11]. These methodologies fre-

quently employ a two-stage robust model [12], [13] to gauge

the worst-case scenarios arising from renewable energy unpre-

dictability. Instead of optimizing for cost-related objectives,

some strategies [14], [15] apply a robust optimization model

to deterministically identify the maximum net load deviation

from its typical baseline. Nonetheless, such a conservative

deviation range doesn’t invariably ensure total operational

safety, particularly given the rarity of worst-case scenarios.

Normally, system operators exhibit a readiness to tolerate a

slight degree of potential disruptions if it leads to augmented

system adaptability. To cater to this perspective, we propose a

novel stochastic assessment model grounded in distributionally

robust optimization, offering twofold contributions:

• Identifying the maximum permissible net load variation

ensures that the expected operational violations for any

net load profile within this range stay within a predefined

acceptable threshold.

• Adapting this model to the economic dispatch problem,

wherein it evaluates system flexibility on an hourly basis

through hyperbox metrics within a rolling optimization

framework. Our case study emphasizes the superior per-

formance of our stochastic assessment in comparison to

traditional deterministic approaches.
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II. ASSESSMENT METHODS

A. Flexibility Metric

The hyperbox metric evaluates the safe operating range,

U , of net loads [14], [15]. Defined by Δd = [Δdb] as the

peak deviation of net load db on each bus, and d̄ as the

average or user-defined normal net load, these parameters

can be empirically derived from historical observations. The

hyperbox representation of the uncertainty set is thus given as:

U(λ) = {ξ : d̄− λΔd ≤ ξ ≤ d̄+ λΔd}. (1)

In (1), a higher generic value λ ∈ [0, 1] indicates the system

flexibility. This metric guarantees the minimum level of net

load uncertainty tolerance. It is manifest that the flexibility

set U(λ) ⊆ U . A net load combination ξ /∈ U(λ) does not

necessarily trigger a system failure.

B. Deterministic Assessment

The overall goal of the deterministic approach is to identify

the largest possible λ based on the flexibility metric such that

the system can accommodate all ξ ∈ U(λ). Let x be a vector

including all decision variables. We then propose the following

general optimization framework:

max λ (2a)

s.t. max
ξ∈U(λ)

φ(ξ) ≤ 0, (2b)

where

φ(ξ) = min
x,u

1Tu (3a)

s.t. A1x− u1 ≤ h1 +H1ξ, (3b)

A2x+ u+
2 − u−

2 = h2 +H2ξ, (3c)

u ≥ 0. (3d)

In the model, constraint (3b) represents all system inequal-

ities, whereas (3c) captures all system equalities. The term u
denotes system violations, and the objective is to determine

the maximum deviation λ ensuring no system violations, even

under the worst case ξ running within U(λ), as indicated by

constraint (2b). A detailed mathematical model of this concept

in (2) for the power system’s economic dispatch problem will

be introduced in Section III.

Solution Approach: Several methods have been proposed

to address problem (2). For example, [14] establishes that

maximizing λ is equivalent to solving a mixed-integer program

that reformulates the constraint φ(ξ) = 0 using its first-

order Karush-Kuhn-Tucker conditions. Furthermore, the cut-

ting plane method in [15] also presents an alternative solution

for addressing problem (2).

C. Stochastic Assessment

Building upon the deterministic approach, we extend our

methodology [15] to develop a stochastic one, aimed at

characterizing the uncertainty of the net load. We assume that

ξ follows a probability distribution denoted as P (ξ), which

belongs to the following ambiguity set:

D(λ) =

{
P (ξ)

∣∣∣∣
∫
ξ∈U(λ)

dP (ξ) = 1,

∫
ξ∈U(λ)

ξdP (ξ) = d̄

}
.

(4)

This ambiguity set indicates that we consider all distribution

P (ξ) if its support is on U(λ) and the mean value is d̄.

The goal of the stochastic approach is to identify the most

extensive support set within the ambiguity set D(λ), ensuring

that the expected constraint violation, considering the worst-

case distribution within D(λ), remains below a predefined

threshold β. The abstract formulation can be expressed as

follows:

max
0≤λ≤1

λ (5a)

s.t. max
P (ξ)∈D(λ)

EP (ξ)[φ(ξ)] ≤ β. (5b)

The resulting formulation (5) is a distributionally robust

optimization (DRO) model [16]. In this variant, the distribution

of the random parameter is uncertain and can vary adversely

within the decision-dependent (endogenous) ambiguity set

D(λ), with the optimal solution determined by considering

the worst-case distribution.

To tackle (5), we can treat the objective in (5a) as the mas-

ter problem and redefine the internal maximization function

within the constraints in (5b) as the subproblem. Employing

the ambiguity set specified in (4), we reformulate the max-

imization function in (5b) as follows, where we represent

EP (ξ)[φ(ξ)] as
∫
ξ∈U(λ)

φ(ξ)dP (ξ).

max
P (ξ)

{∫
ξ∈U(λ)

φ(ξ)dP (ξ) :

∫
ξ∈U(λ)

dP (ξ) = 1,∫
ξ∈U(λ)

ξdP (ξ) = d̄.

} (6)

Let α and γ serve as dual variables of two constraints in (6),

its dual formulation can be expressed as follows:

min
α,γ

α+ d̄T γ

s.t. α+ ξT γ ≥ φ(ξ), ∀ξ ∈ U(λ)

α, γ free.

(7)

Using the minimax duality for the Lagrangian, (7) is equivalent

to:

min
γ

{
d̄T γ + max

ξ∈U(λ)
(φ(ξ)− ξT γ)

}
. (8)

To further express φ(ξ), we develop the dual formulation

of the formulation (3):

max
ξ∈U(λ),μ,ν

(h1 +H1ξ)
Tμ+ (h2 +H2ξ)

T ν (9a)

s.t. AT
1 μ+AT

2 ν ≤ 0, (9b)

− 1 ≤ μ ≤ 0, −1 ≤ ν ≤ 1. (9c)
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Here, μ and ν are introduced as dual variables for constraints

(3b) and (3c), respectively. Subsequently, we substitute φ(ξ)
in (8) with the objective function derived in (9). This refor-

mulation of the maximization function in (5b) is presented as

follows:

min
γ

[
d̄T γ + max

ξ∈U(λ),μ,ν

{
(h1 +H1ξ)

Tμ+ (h2 +H2ξ)
T ν

− ξT γ : Constraints (9b) − (9c)
}]

≤ β.

(10)

Considering that “min” in (10) indicates feasibility, it can

be safely omitted. As a result, the minimax formulation in

(10) can be alternatively represented by solving its inherent

maximization problem.

It’s worth noting that in this maximization problem, U(λ)
adopts a hyperbox-metric form, as described in (1). Therefore,

ξ can be further expressed as ξ = d̄ + λΔdz+ − λΔdz−,

with both z+ and z− being binary vectors indicating deviation

direction. As outlined in [15], the optimal ξ must be achieved

at the boundary of U(λ).

For notation brevity, we suppose that ξ ∈ R
N×1, H1 ∈

R
M1×N , and H2 ∈ R

M2×N . Given these, the expanded form

of the maximization problem in (10) can be reformulated as:

ψ = max
z,μ,ν

hT
1 μ+ hT

2 ν +
N∑

n=1

M1∑
m=1

(d̄nH1,m,nμm

+ λΔdnH1,m,nμ̂
+
n,m − λΔdnH1,m,nμ̂

−
n,m)

+
N∑

n=1

M2∑
m=1

[
d̄nH2,m,n(ν

a
m − νbm)

+ λΔdnH2,m,n(ν̂
a,+
n,m − ν̂b,+n,m)

− λΔdnH2,m,n(ν̂
a,−
n,m − ν̂b,−n,m)

]
−

N∑
n=1

(d̄nγn + λΔdnγnz
+
n − λΔdnγnz

−
n ) (11a)

s.t. Constraints (9b) − (9c), (11b)

− z+n ≤ μ̂+
n,m, μm ≤ μ̂+

n,m ≤ 1− z+n + μm,

− z−n ≤ μ̂−
n,m, μm ≤ μ̂−

n,m ≤ 1− z−n + μm,

− 1 ≤ μ̂+
n,m ≤ 0, −1 ≤ μ̂−

n,m ≤ 0,

∀n = 1 . . . N, ∀m = 1 . . .M1. (11c)

− z+n ≤ ν̂κ,+n,m, νκm ≤ ν̂κ,+n,m ≤ 1− z+n + νκm,

− z−n ≤ ν̂κ,−n,m, νκm ≤ ν̂κ,−n,m ≤ 1− z−n + νκm,

− 1 ≤ ν̂κ,+n,m ≤ 0, −1 ≤ ν̂κ,−n,m ≤ 0,

∀κ ∈ {a, b}, ∀n = 1 . . . N, ∀m = 1 . . .M2. (11d)

z+n + z−n = 1, ∀z+n , z−n ∈ {0, 1}. (11e)

To tackle the bilinear term ξTHT
1 μ in the objective function,

we introduce auxiliary variables μ̂+
n,m and μ̂−

n,m to denote the

products z+n μm and z−n μm, respectively. For the term ξTHT
2 ν,

we decompose ν into νa − νb. Both these components, νa

and νb, are restricted to the range [−1, 0]. We then employ a

method similar to (11c) to linearize the expressions ξTHT
2 ν

a

and ξTHT
2 ν

b. Consequently, (11) is transformed into a mixed-

integer linear programming model.

Upon solving (11), the optimal solutions are denoted as

(z∗, μ∗, ν∗) with the corresponding optimal value of ψ∗. In

accordance with (10), we examine whether the following

condition is satisfied:

d̄T γ + ψ∗ ≤ β. (12)

If (12) is met, the optimal solution to the master problem (5a),

denoted as λ∗, becomes the final flexibility result.

Otherwise, we refine the master problem by incorporating

a feasibility cut d̄T γ + ψ(λ, γ) ≤ β. Here, ψ(λ, γ) is derived

by replacing with the optimal solution (z∗, μ∗, ν∗) from (11a).

Subsequently, the reformed master problem is developed as:

max
0≤λ≤1

λ (13a)

s.t.

N∑
n=1

{ M1∑
m=1

(ΔdnH1,m,nμ̂
+,∗
n,m −ΔdnH1,m,nμ̂

−,∗
n,m)

+

M2∑
m=1

[
ΔdnH2,m,n(ν̂

a+,∗
n,m − ν̂b+,∗

n,m )

−ΔdnH2,m,n(ν̂
a−,∗
n,m − ν̂b−,∗

n,m )
]

− (Δdnz
+,∗
n −Δdnz

−,∗
n )γn

}
λ

+ hT
1 μ

∗ + hT
2 ν

∗ +
N∑

n=1

{ M1∑
m=1

d̄nH1,m,nμ
∗
m

+

M2∑
m=1

d̄nH2,m,n(ν
a∗
m − νb∗m )

}
≤ β, (13b)

where the bilinear term λγn from the feasibility cut (13b)

is substituted with wn, as depicted in (14a)-(14b) using Mc-

Cormick Envelopes.

wn ≥ −λK, wn ≥ γn + λK −K, ∀n = 1 . . . N, (14a)

wn ≤ γn − λK +K, wn ≤ λK, ∀n = 1 . . . N. (14b)

Notably, K is a sufficiently large constant, and the constraint

−K ≤ γ ≤ K provides relaxation for the unrestricted γ.

Solution Approach: The subsequent steps outline the cutting

plane algorithm used to resolve the DRO model (5):

1. Address the master problem (5a) to determine the optimal

value, denoted as λ∗.

2. Assess the feasibility of the subproblem by resolving (11)

using the derived λ∗.

3. Evaluate the validity of condition (12):

• If it holds, conclude the process and yield both the

optimal solution and the master problem’s objective

value, λ∗.

• If not, refine the master problem by incorporating the

feasibility cut from (13b) and revert to Step 1.

III. ECONOMIC DISPATCH

In this section, we present the mathematical framework for

a multi-period Economic Dispatch (ED) problem, accounting
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for flexible resources such as power generators and Energy

Storage Systems (ESS). Our model optimizes the generation

levels of each generator (pG
n,t) and the net power outputs from

ESS (pESS
i,t ) per hour, indexed by t. Notably, a negative pESS

i,t

indicates ESS charging, while a positive value signals dis-

charging. With a predefined uncertainty space U , the feasible

domain for these decision variables can be expressed as:

X(d) =

{
Pmin
n ≤ pG

n,t ≤ Pmax
n , ∀n ∈ G, ∀t ∈ T , (15a)

−RDn ≤ pG
n,t − pG

n,t−1 ≤ RUn, ∀n ∈ G, ∀t ∈ T , (15b)

EESS
i,t = EESS

i,t−1 − pESS
i,t , ∀i ∈ E , ∀t ∈ T , (15c)

Emin
i ≤ EESS

i,t ≤ Emax
i , ∀i ∈ E , ∀t ∈ T , (15d)

− Pmax
c,i ≤ pESS

i,t ≤ Pmax
dc,i, ∀i ∈ E , ∀t ∈ T , (15e)

− Fl ≤
∑
b∈B

SFb,l(
∑
n∈Gb

pG
n,t +

∑
i∈Eb

pESS
i,t − db,t) ≤ Fl, ∀l ∈ L,

(15f)∑
t∈T

{∑
n∈G

CG
np

G
n,t +

∑
i∈E

CESS
i pESS

i,t

}
≤ τ, ∀n ∈ G, ∀i ∈ E ,

(15g)∑
n∈G

pG
n,t +

∑
i∈E

pESS
i,t −

∑
b∈B

db,t = 0, ∀db,t ∈ Ub,t, (15h)

pG
n,t ≥ 0, ∀b ∈ B, ∀n ∈ G, ∀t ∈ T

}
. (15i)

We denote the sets of generators, ESSs, and transmission

lines as G, E , and L, respectively, with Gb and Eb indicating

subsets of generators and ESSs at bus b. This model bypasses

simultaneous ESS charging and discharging scenarios for

arbitrage, given that its absence doesn’t compromise system

flexibility.

Fig. 1. Illustration of the flexibility assessment process for the ED model.

Fig. 1 depicts the process of assessing flexibility for the ED

model on an hourly basis. Grounded in the uncertainty set for

the net load Ut, we optimize flexibility λt for each hour t using

either the deterministic or stochastic assessment, subject to the

constraints highlighted in (15) for the corresponding hour. In

this context, while optimizing for hour t, we regard the pre-

ceding decision variables pG
n,t−1 and EESS

i,t−1 from constraints

(15b) and (15c) as pre-established constants, derived from the

prior hour’s optimal power flow results.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the maximum extent of net load

uncertainty across all buses in the ED model, as presented in

Section III. We demonstrate both deterministic and stochastic

methods using four IEEE standard systems. By integrating an

hourly charging load demand into the ED model, the optimal

power flow results vary hourly, leading to distinct flexibility

outcomes optimized for each period.

A. Flexibility Metric

Fig. 2 displays the hourly-optimized flexibility metrics

through both deterministic and stochastic assessments. We

present results from both single-scenario assessments, based

on the hourly normal net load, and those derived from 100-

scenario assessments. Most of these 100 scenarios fall within

a [0.99, 1.01] range relative to the normal net load per

hour. Nevertheless, we incorporated an outlier—a scenario

with 1.09 times the net load—to examine the responses of

both deterministic and stochastic assessments to rare extreme

cases in the power system. Notably, λsto,t consistently out-

performs λdet,t. This difference arises from the DRO model’s

allowance in the stochastic assessment to accommodate minor

ED constraint violations. Specifically, we set β in (5b) to

0.05, signifying an expected system operation breach below

5%, thus enhancing the system’s adaptability. Moreover, as the

number of scenarios expands, both the deterministic flexibility

λdet,t and the stochastic flexibility λsto,t diminish in the right

subplot. Influenced by extreme cases, λdet,t plummets to zero

in the day’s final hour, suggesting the system lacks flexibility

at that point. In contrast, λsto,t retains a flexibility measure of

0.063, representing the flexibility exhibited in most scenarios,

barring the extreme one.

Fig. 2. Comparative flexibility outcomes: deterministic vs. stochastic assess-
ments across single and multi net-load scenarios.

B. Sensitivity Analysis

We investigate the impact on the flexibility metric when

there is a presence or absence of ESS in the ED model (15). By

omitting ESS-related constraints, specifically (15c)-(15e), and

optimizing the system’s hourly flexibility, the resulting λsto,t

comparisons, both with and without ESSs under stochastic

assessment, are depicted in Fig. 3.

In the early hours, power systems with ESSs demonstrate

greater flexibility than those without. However, this advantage

lessens over time, and sometimes, systems with ESSs can be

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 29,2025 at 22:40:04 UTC from IEEE Xplore.  Restrictions apply. 
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less flexible. This is because as the ESS discharges, system

generators curtail their power output in the initial hours.

Given the ramping rate constraints, the power generation in

subsequent hours can be inferior to systems devoid of ESSs,

lowering overall flexibility as the ESS reaches its lowest SOC.

This pattern is more evident in larger networks, i.e., the 24-bus

and 30-bus systems, where the initial positive impact of ESSs

on flexibility is diluted due to the ample generator resources

present in these expansive networks.

Fig. 3. ESS impact on system flexibility metric under stochastic assessment.

C. Computation Performance

To verify the efficiency of the McCormick relaxation tech-

nique in solving the stochastic flexibility assessment λsto,t, we

also address the master problem (13a) with the nonconvex

feasibility cut directly in Gurobi, referred to as the Gurobi-NC

method. We limit the stochastic cutting plane algorithm to 30

iterations per hour due to time constraints. Table I displays the

computational times and the convergence performance for both

approaches when handling the ED with ESSs. Specifically, the

convergence metric represents the number of hours in a day

both methods converge within those 30 iterations.

TABLE I
RUNNING TIME AND CONVERGENCE PERFORMANCE FOR THE GUROBI-NC

AND MCCORMICK METHOD UNDER STOCHASTIC ASSESSMENT

Networks

Time (seconds) Convergence Metric (hours)
Gurobi-NC McCormick Gurobi-NC McCormick

6-bus 4.92 4.54 24 24
14-bus 28.72 18.31 23 24
24-bus 6853.59 1749.41 1 24
30-bus 19601.20 3007.45 8 24

As the system size increases, the efficiency of the Mc-

Cormick method in optimizing the flexibility metric surpasses

the Gurobi-NC method. While both methods converge op-

timally for the 6-bus system within the set iterations, the

Gurobi-NC method struggles to do so for larger systems during

certain hours. In contrast, the McCormick method consistently

achieves convergence. Given its faster convergence and shorter

computational time, the McCormick method stands out as the

preferred choice for stochastic flexibility assessment in the

DRO model.

V. CONCLUSION

Building on deterministic flexibility assessments of power

system net load uncertainty, this paper introduces a stochastic

assessment framework within the DRO model, tested through

a multi-time interval economic dispatch model. Numerical

results indicate that our stochastic approach yields less con-

servative flexibility metrics. Through sensitivity analysis, we

observed that as system scales increase, abundant generators

diminish the positive influence of ESS on system flexibility.

Additionally, the efficiency of the McCormick envelope in

solving the DRO model is confirmed against the direct non-

convex approach.
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