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A Distributionally Robust Optimization Framework
for Stochastic Assessment of Power System
Flexibility in Economic Dispatch

Xinyi Zhao, Lei Fan, Fei Ding, Weijia Liu, and Chaoyue Zhao

Abstract—Given the complexity of power systems, particularly
the high-dimensional variability of net loads, accurately depicting
the entire operational range of net loads poses a challenge. To
address this, recent methodologies have sought to gauge the
maximum range of net load uncertainty across all buses. In
this paper, we consider the stochastic nature of the net load
and introduce a distributionally robust optimization framework
that assesses system flexibility stochastically, accommodating a
minimal extent of system violations. We verify the proposed
method by solving the flexibility of the economic dispatch
problem on four distinct IEEE standard test systems. Compared
to traditional deterministic flexibility evaluations, our approach
consistently yields less conservative flexibility outcomes.

Index Terms—Flexibility metric, net load uncertainty, distri-
butionally robust optimization, economic dispatch

I. INTRODUCTION

The national electricity sector has witnessed a significant
rise in renewable energy integration. As this trend is projected
to continue in the coming decades, net demand—calculated by
subtracting electricity generation from the total load—has be-
come more volatile and unpredictable. Confronted with these
fluctuations, system operators must assess the grid’s resilience
across various scenarios. In this context, the term “flexibility”
emerges in literature, describing a power system’s capacity
to manage the variability and uncertainty of net loads cost-
effectively [1], [2]. Gaining insights into this metric is vital,
equipping engineers to predict a system’s endurance against
unforeseen demand shifts and to guide reliability enhance-
ments. Crucially, neglecting flexibility can lead to transient
instabilities, cascading outages, and potential blackouts.

Numerous reviews [1], [3], [4] on power system flexibility
categorize prior studies into two main groups based on the
time scope of their target applications. First, from a short-term
operational viewpoint, system frequency is a pivotal indicator
of electrical power quality. Deviations from its nominal value
require timely compensation from available resources. As
such, the capacity for regulation, energy storage, power range,
and ramping duration serves as their flexibility indices [2], [5].
However, these studies have inherent limitations: a flexibility
index relevant in one context might be inapplicable in another.
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In contrast, defining flexibility based on system failure causes,
rather than remedies, makes it more universally relevant across
different operational systems, offering greater utility for power
grid planners and operators.

Second, from a long-term planning perspective, scholars
have introduced diverse technical and economic indices to
gauge system flexibility from multiple facets. These include
generation adequacy metrics such as the loss of load ex-
pectation [6]; ramping resource sufficiency indicated by the
insufficient ramping resource expectation [7]; and flexibility
endurance, i.e., periods of flexibility deficit [8]. These indices
typically originate from simulations with preset net load
probability assumptions. However, the task of computing the
multi-dimensional joint probability distribution of net loads
in real-world power systems, which often include numerous
buses, is a formidable computational challenge. Furthermore,
while these indices do well to capture system failures during
certain variability patterns, such as Gaussian-distributed net
loads, they don’t fully represent the breadth of operational net
load scenarios where systems function normally.

To address these challenges, state-of-the-art techniques con-
centrate on quantifying the utmost net load uncertainty that a
system can accommodate [9]-[11]. These methodologies fre-
quently employ a two-stage robust model [12], [13] to gauge
the worst-case scenarios arising from renewable energy unpre-
dictability. Instead of optimizing for cost-related objectives,
some strategies [14], [15] apply a robust optimization model
to deterministically identify the maximum net load deviation
from its typical baseline. Nonetheless, such a conservative
deviation range doesn’t invariably ensure total operational
safety, particularly given the rarity of worst-case scenarios.
Normally, system operators exhibit a readiness to tolerate a
slight degree of potential disruptions if it leads to augmented
system adaptability. To cater to this perspective, we propose a
novel stochastic assessment model grounded in distributionally
robust optimization, offering twofold contributions:

o Identifying the maximum permissible net load variation
ensures that the expected operational violations for any
net load profile within this range stay within a predefined
acceptable threshold.

o Adapting this model to the economic dispatch problem,
wherein it evaluates system flexibility on an hourly basis
through hyperbox metrics within a rolling optimization
framework. Our case study emphasizes the superior per-
formance of our stochastic assessment in comparison to
traditional deterministic approaches.
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II. ASSESSMENT METHODS
A. Flexibility Metric

The hyperbox metric evaluates the safe operating range,
U, of net loads [14], [15]. Defined by Ad = [Ad,] as the
peak deviation of net load d;, on each bus, and d as the
average or user-defined normal net load, these parameters
can be empirically derived from historical observations. The

hyperbox representation of the uncertainty set is thus given as:
UM ={¢:d—NAd < € <d+ A\Ad}. (1)

In (1), a higher generic value A € [0, 1] indicates the system
flexibility. This metric guarantees the minimum level of net
load uncertainty tolerance. It is manifest that the flexibility
set U(A) C U. A net load combination & ¢ U(A) does not
necessarily trigger a system failure.

B. Deterministic Assessment

The overall goal of the deterministic approach is to identify
the largest possible A\ based on the flexibility metric such that
the system can accommodate all £ € U()\). Let x be a vector
including all decision variables. We then propose the following
general optimization framework:

max A (2a)
.t <0, 2b
St max P(&) < (2b)
where
¢(£) = min 17y (3a)
s.t. Aix—u; < h;+ Hlf, (3b)
Aox +uf —uy; = ho + Ha&,  (3c)
u > 0. (3d)

In the model, constraint (3b) represents all system inequal-
ities, whereas (3c) captures all system equalities. The term
denotes system violations, and the objective is to determine
the maximum deviation A ensuring no system violations, even
under the worst case £ running within U()), as indicated by
constraint (2b). A detailed mathematical model of this concept
in (2) for the power system’s economic dispatch problem will
be introduced in Section III.

Solution Approach: Several methods have been proposed
to address problem (2). For example, [14] establishes that
maximizing A is equivalent to solving a mixed-integer program
that reformulates the constraint ¢(¢{) = 0 using its first-
order Karush-Kuhn-Tucker conditions. Furthermore, the cut-
ting plane method in [15] also presents an alternative solution
for addressing problem (2).

C. Stochastic Assessment

Building upon the deterministic approach, we extend our
methodology [15] to develop a stochastic one, aimed at
characterizing the uncertainty of the net load. We assume that

¢ follows a probability distribution denoted as P(&), which
belongs to the following ambiguity set:

o= {r@| [ -1 [ eare-a}
geU(N) §eU(N)
“)
This ambiguity set indicates that we consider all distribution
P(&) if its support is on U()) and the mean value is d.

The goal of the stochastic approach is to identify the most
extensive support set within the ambiguity set D(\), ensuring
that the expected constraint violation, considering the worst-
case distribution within D()\), remains below a predefined
threshold (. The abstract formulation can be expressed as
follows:

max A s
0<A<1

S.t. max E < . Sb

P(£)eD(N) Pl < B (5b)

The resulting formulation (5) is a distributionally robust
optimization (DRO) model [16]. In this variant, the distribution
of the random parameter is uncertain and can vary adversely
within the decision-dependent (endogenous) ambiguity set
D()), with the optimal solution determined by considering
the worst-case distribution.

To tackle (5), we can treat the objective in (5a) as the mas-
ter problem and redefine the internal maximization function
within the constraints in (5b) as the subproblem. Employing
the ambiguity set specified in (4), we reformulate the max-
imization function in (5b) as follows, where we represent

Epe)[p(§)] as fer(A) P(§)dP(§).

{ /E oy, AOPE): /f o PO =1
/: o €dP(€) = J.}

Let o and v serve as dual variables of two constraints in (6),
its dual formulation can be expressed as follows:

e
(©)

min a+d'y
o,y

st. a+&Ty > 4(8), VEeU) (7

a,y free.

Using the minimax duality for the Lagrangian, (7) is equivalent
to:

min {JT’y + max
¥ E€U(N)

(6(e) - s%)}. ®)

To further express ¢ (&), we develop the dual formulation
of the formulation (3):

max (b + Hi&) p+ (he + Ha6)"v (9a)
EEU(N),p,v

st. ATu+ ATv <o, (9b)

—-1<pu<0, -1<v <1, (9¢)
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Here, 14 and v are introduced as dual variables for constraints
(3b) and (3c), respectively. Subsequently, we substitute ¢(&)
in (8) with the objective function derived in (9). This refor-
mulation of the maximization function in (5b) is presented as
follows:

min |d'y + max
v EEUN), v

— ¢T'~ : Constraints (9b) — (9c)}] <p.

{(hl + Hi&) "+ (he + H2&)"v

(10)

Considering that “min” in (10) indicates feasibility, it can
be safely omitted. As a result, the minimax formulation in
(10) can be alternatively represented by solving its inherent
maximization problem.

It’s worth noting that in this maximization problem, U (\)
adopts a hyperbox-metric form, as described in (1). Therefore,
¢ can be further expressed as ¢ = d + AAdzt — AAdz—,
with both z* and 2z~ being binary vectors indicating deviation
direction. As outlined in [15], the optimal £ must be achieved
at the boundary of U(\).

For notation brevity, we suppose that ¢ € RN*! H, ¢
RMixN “and H, € RM2XN_ Given these, the expanded form
of the maximization problem in (10) can be reformulated as:

N My
= max i+ hiv+ Z Z (dnH1 mnpim
S n=1m=1

+ AAdnHl,m n,un m
N My

+ Z Z [d_nH2,m,n(V

n=1m=1

+ >\AdnH2 m n(19a7+ - lA/b,Jr )
— Ay Ho (02, — D270

nm,
N

- Z nYn + /\Adn'}/n

n=1

)\Ad Hl ,m, n,un m)

— AAdpvnz,) (11a)

s.t. Constraints (9b) — (9c¢),

=2 <ty i < i <= 2+ s
— 2z, < ﬂ';,nw Hm < :a;,'m <1-—2z, + tm,
1<, <0, =1 < iy <0,
Vn=1...N, Vm=1...M;.

Sﬁim <1-zy +up,
o S Dy U S O S 1= 2y 0,
-1 <o, <0,
Vme{ab} Vn=1...N, Vm=1... M.
=1, Vz, 2

no»Tn 6{0 1}

(11b)

(11c)

(11d)

2+ 2, (11e)

To tackle the bilinear term £7 H{ 1 in the objective function,
we introduce auxiliary variables /i, and /i, ,, to denote the
products 2} s, and 2, ji,,, respectively. For the term £7 HI v
we decompose v into v — v*. Both these components, 1%
and 1°, are restricted to the range [—1,0]. We then employ a
method similar to (11c) to linearize the expressions &7 HI v¢

and ¢T HI'vP. Consequently, (11) is transformed into a mixed-
integer linear programming model.

Upon solving (11), the optimal solutions are denoted as
(z*, u*,v*) with the corresponding optimal value of ¢*. In
accordance with (10), we examine whether the following
condition is satisfied:

d'y +4* < B. (12)

If (12) is met, the optimal solution to the master problem (5a),
denoted as \*, becomes the final flexibility result.
Otherwise, we refine the master problem by incorporating
a feasibility cut d”y + ¥ (), ) < 3. Here, 1/(), ) is derived
by replacing with the optimal solution (z*, u*, v*) from (11a).
Subsequently, the reformed master problem is developed as:

max A\ (13a)
0<A<1
N M,
sty { > (AdnHy i, = Adn Hy o i)
n=1 m=1
Mo
+ Z [AdnHQ,m,n(ﬁZ,tn* - ﬁg—,tr,z*)
m=1
= AdnHy g (0577 = D5 00)]
- (Adnzri_’* - Adnzrf*)%})\
N M,
+ h{/l, + hgy* + Z { Z dnHl,m,nN:n
n=1 m=1
My
+ Y dpHy o (Vi — m>} B, (13b)
m=1

where the bilinear term M7, from the feasibility cut (13b)
is substituted with w,,, as depicted in (14a)-(14b) using Mc-
Cormick Envelopes.
Wy > —AK, wy, > v, +AK — K, Vn=1...N,
Wy <y —AK + K, w, <MK, Vn=1...N.

(14a)
(14b)

Notably, K is a sufficiently large constant, and the constraint
—K <~ < K provides relaxation for the unrestricted +.

Solution Approach: The subsequent steps outline the cutting
plane algorithm used to resolve the DRO model (5):

1. Address the master problem (5a) to determine the optimal
value, denoted as \*.

2. Assess the feasibility of the subproblem by resolving (11)
using the derived \*.

3. Evaluate the validity of condition (12):

o If it holds, conclude the process and yield both the
optimal solution and the master problem’s objective
value, \*.

o If not, refine the master problem by incorporating the
feasibility cut from (13b) and revert to Step 1.

III. EcoNOMIC DISPATCH

In this section, we present the mathematical framework for
a multi-period Economic Dispatch (ED) problem, accounting
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for flexible resources such as power generators and Energy
Storage Systems (ESS). Our model optimizes the generation
levels of each generator (p%t) and the net power outputs from
ESS (pF3%) per hour, indexed by t. Notably, a negative pf3°
indicates ESS charging, while a positive value signals dis-
charging. With a predefined uncertainty space U/, the feasible

domain for these decision variables can be expressed as:

X(d)=<SPrm<pi, <P/ VneGWVeT, (152)
—RD, <py,—pu, 1 <RU,, YneGVLeT, (I5b)
Bl = Bty — b, Vi€ EVEeT, (150
EM < EFS <BM™, Vie EVteT, (15d)
— P < PP <P, Vie& Ve T, (15e)
~F <Y SFo(Y ] i+ ) 0 —doy) S FLVIEL,
beB negb i€Eb

(15f)
S { S oot Lo <n megviee
teT ™ neg €€

(15g)
DopS Y P =D dyy =0, Vdyp €Uy, (15h)
neg ic€ beB
Py >0, VbEBYYneGVteT (15i)

We denote the sets of generators, ESSs, and transmission
lines as G, &, and L, respectively, with G and £? indicating
subsets of generators and ESSs at bus b. This model bypasses
simultaneous ESS charging and discharging scenarios for
arbitrage, given that its absence doesn’t compromise system
flexibility.

Deterministic assess: Ajer 4

Economic dispatch

Stochastic assess: 4501

Optimal power flow

Fig. 1. Illustration of the flexibility assessment process for the ED model.

Fig. 1 depicts the process of assessing flexibility for the ED
model on an hourly basis. Grounded in the uncertainty set for
the net load U, we optimize flexibility A\, for each hour ¢ using
either the deterministic or stochastic assessment, subject to the
constraints highlighted in (15) for the corresponding hour. In
this context, while optimizing for hour ¢, we regard the pre-
ceding decision variables p§ , | and EF3S, from constraints
(15b) and (15c¢) as pre-established constants, derived from the
prior hour’s optimal power flow results.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the maximum extent of net load
uncertainty across all buses in the ED model, as presented in
Section III. We demonstrate both deterministic and stochastic
methods using four IEEE standard systems. By integrating an
hourly charging load demand into the ED model, the optimal
power flow results vary hourly, leading to distinct flexibility
outcomes optimized for each period.

A. Flexibility Metric

Fig. 2 displays the hourly-optimized flexibility metrics
through both deterministic and stochastic assessments. We
present results from both single-scenario assessments, based
on the hourly normal net load, and those derived from 100-
scenario assessments. Most of these 100 scenarios fall within
a [0.99, 1.01] range relative to the normal net load per
hour. Nevertheless, we incorporated an outlier—a scenario
with 1.09 times the net load—to examine the responses of
both deterministic and stochastic assessments to rare extreme
cases in the power system. Notably, Ao consistently out-
performs Mg ¢ This difference arises from the DRO model’s
allowance in the stochastic assessment to accommodate minor
ED constraint violations. Specifically, we set 5 in (5b) to
0.05, signifying an expected system operation breach below
5%, thus enhancing the system’s adaptability. Moreover, as the
number of scenarios expands, both the deterministic flexibility
Adet,t and the stochastic flexibility Ago ¢ diminish in the right
subplot. Influenced by extreme cases, Ager,+ plummets to zero
in the day’s final hour, suggesting the system lacks flexibility
at that point. In contrast, Ao ¢ retains a flexibility measure of
0.063, representing the flexibility exhibited in most scenarios,
barring the extreme one.
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Fig. 2. Comparative flexibility outcomes: deterministic vs. stochastic assess-
ments across single and multi net-load scenarios.

B. Sensitivity Analysis

We investigate the impact on the flexibility metric when
there is a presence or absence of ESS in the ED model (15). By
omitting ESS-related constraints, specifically (15¢)-(15e), and
optimizing the system’s hourly flexibility, the resulting A ¢
comparisons, both with and without ESSs under stochastic
assessment, are depicted in Fig. 3.

In the early hours, power systems with ESSs demonstrate
greater flexibility than those without. However, this advantage
lessens over time, and sometimes, systems with ESSs can be
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less flexible. This is because as the ESS discharges, system
generators curtail their power output in the initial hours.
Given the ramping rate constraints, the power generation in
subsequent hours can be inferior to systems devoid of ESSs,
lowering overall flexibility as the ESS reaches its lowest SOC.
This pattern is more evident in larger networks, i.e., the 24-bus
and 30-bus systems, where the initial positive impact of ESSs
on flexibility is diluted due to the ample generator resources
present in these expansive networks.
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Fig. 3. ESS impact on system flexibility metric under stochastic assessment.

C. Computation Performance

To verify the efficiency of the McCormick relaxation tech-
nique in solving the stochastic flexibility assessment Ay, 1, We
also address the master problem (13a) with the nonconvex
feasibility cut directly in Gurobi, referred to as the Gurobi-NC
method. We limit the stochastic cutting plane algorithm to 30
iterations per hour due to time constraints. Table I displays the
computational times and the convergence performance for both
approaches when handling the ED with ESSs. Specifically, the
convergence metric represents the number of hours in a day
both methods converge within those 30 iterations.

TABLE I
RUNNING TIME AND CONVERGENCE PERFORMANCE FOR THE GUROBI-NC
AND MCCORMICK METHOD UNDER STOCHASTIC ASSESSMENT

Time (seconds) Convergence Metric (hours)
Networks  Gurobi-NC ~ McCormick | Gurobi-NC  McCormick
6-bus 4.92 4.54 24 24
14-bus 28.72 18.31 23 24
24-bus 6853.59 1749.41 1 24
30-bus 19601.20 3007.45 8 24

As the system size increases, the efficiency of the Mc-
Cormick method in optimizing the flexibility metric surpasses
the Gurobi-NC method. While both methods converge op-
timally for the 6-bus system within the set iterations, the
Gurobi-NC method struggles to do so for larger systems during
certain hours. In contrast, the McCormick method consistently
achieves convergence. Given its faster convergence and shorter

computational time, the McCormick method stands out as the
preferred choice for stochastic flexibility assessment in the
DRO model.

V. CONCLUSION

Building on deterministic flexibility assessments of power
system net load uncertainty, this paper introduces a stochastic
assessment framework within the DRO model, tested through
a multi-time interval economic dispatch model. Numerical
results indicate that our stochastic approach yields less con-
servative flexibility metrics. Through sensitivity analysis, we
observed that as system scales increase, abundant generators
diminish the positive influence of ESS on system flexibility.
Additionally, the efficiency of the McCormick envelope in
solving the DRO model is confirmed against the direct non-
convex approach.
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