
IMAGine: An In-Memory Accelerated
GEMV Engine Overlay

MD Arafat Kabir∗, Tendayi Kamucheka∗, Nathaniel Fredricks∗,
Joel Mandebi†, Jason Bakos‡, Miaoqing Huang∗, and David Andrews∗

∗Department of Electrical Engineering and Computer Science, University of Arkansas,
‡Department of Computer Science and Engineering, University of South Carolina,

†Advanced Micro Devices, Inc. (AMD)
{makabir, tfkamuch, njfredri, mqhuang, dandrews}@uark.edu, jmandebi@amd.com, jbakos@cse.sc.edu,

Abstract—Processor-in-Memory (PIM) overlays and alterna-
tive reconfigurable tile fabrics have been proposed to eliminate
the von Neumann bottleneck and enable processing performance
to scale with BRAM capacity. The performance of these FPGA-
based PIM architectures has been limited due to a reduction of
the BRAMs maximum clock frequencies and less than ideal scal-
ing of processing elements with increased BRAM capacity. This
paper presents IMAGine, an In-Memory Accelerated GEMV
engine, a PIM-array accelerator that clocks at the maximum
frequency of the BRAM and scales to 100% of the available
BRAMs. Comparative analyses are presented showing execution
speeds over existing PIM-based GEMV engines on FPGAs
and achieving a 2.65× – 3.2× faster clock. An AMD Alveo
U55 implementation is presented that achieves a system clock
speed of 737 MHz, providing 64K bit-serial multiply-accumulate
(MAC) units for GEMV operation. This establishes IMAGine
as the fastest PIM-based GEMV overlay, outperforming even
the custom PIM-based FPGA accelerators reported to date.
Additionally, it surpasses TPU v1-v2 and Alibaba Hanguang 800
in clock speed while offering an equal or greater number of
multiply-accumulate (MAC) units.

Index Terms—Processing-in-Memory, System Design, Block
RAM, GEMV engine, Processor Array.

I. INTRODUCTION

The exponential growth of Internet-of-Things (IoT) devices
and social media applications has significantly changed the
landscape of computing workloads. Modern workloads, such
as scientific computation, graph processing, and machine
learning, generate and process datasets that are expanding at
a rate that outpaces Moore’s Law [1]. However, today’s pro-
cessors remain constrained by the “Memory Wall” of the von
Neumann architecture, which limits the ability to exploit the
parallelism within these memory-intensive tasks. Processing-
in-memory (PIM) architectures are being pursued [2]–[15] to
mitigate the memory wall and enable processing performance
to scale with memory capacity.

Modern Field Programmable Gate Arrays (FPGAs) with
100s of Mbits of SRAM distributed throughout the device in
the form of disaggregated memory resources can provide sev-
eral TB/s of internal bandwidth. This is an ideal programmable
substrate for creating customized Processor In/Near Memory

This material is based upon work supported by the National Science
Foundation under Grant No. 1955820.

accelerators. Several PIM array-based accelerator designs [6]–
[13] have been proposed to harness this massive internal
bandwidth. However, results reported to date show achievable
clock frequencies and compute densities are not sufficient
to compete with their custom Application Specific Integrated
Circuit (ASIC) counterparts.

Such shortcomings have motivated redesigns of the separate
Block-RAM (BRAM) and LUT resources into tightly inte-
grated PIM tiles. While these redesigns have increased chip
compute densities, the maximum achievable clock frequency
remains no better than their overlay counterparts. Additionally,
the adoption of a bigger FPGA with an increased resource
capacity does not translate into a linear increase in compute
performance.

This paper presents IMAGine, a PIM array-based GEMV
accelerator that clocks at the maximum frequency of the
BRAM. The PIM tile array architecture of IMAGine has
been designed to achieve linear scalability of the number of
compute units with increased BRAM densities. Comparative
studies are presented that show it is the fastest and most
scalable PIM array-based GEMV accelerator reported to date.
Run time results also show that IMAGine shatters some of
the myths concerning performance limitations of PIM-array
accelerators and FPGA overlays in general. Our contributions
can be summarized as follows,

• A set of aspirational but practical design goals for PIM
array-based accelerators. We argue these goals need to be
met to claim a “Scalable High-Performance PIM design”
on FPGAs.

• We present the design and implementation of IMAG-
ine, an In-Memory Accelerated GEMV engine overlay,
that breaks some existing myths around FPGA design,
clocking faster than Google’s TPU v1-v2 with equal or
more processing elements (PEs) using an off-the-shelf
datacenter-grade FPGA.

• We present a comparative study of IMAGine with existing
PIM-array accelerators, establishing it as the fastest and
most scalable FPGA PIM-based GEMV accelerator.

IMAGine has been published at [16] as open-source imple-
mentation and is freely available for study, use, modification,
and distribution without restriction.

220

2024 34th International Conference on Field-Programmable Logic and Applications (FPL)

DOI 10.1109/FPL64840.2024.00038

20
24

 3
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ie

ld
-P

ro
gr

am
m

ab
le

 L
og

ic
 a

nd
 A

pp
lic

at
io

ns
 (F

PL
) |

 9
79

-8
-3

31
5-

30
07

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
FP

L6
48

40
.2

02
4.

00
03

8

979-8-3315-3007-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MAXIMUM FREQUENCY (MHZ) OF EXISTING FPGA-PIM DESIGNS

PIM Design Type Device fBRAM fPIM Rel. fSys Rel.

CCB Custom Stratix 10 1000 624 62% 455 46%
CoMeFa-A Custom Arria 10 730 294 40% 288 39%
CoMeFa-D Custom Arria 10 730 588 81% 292 40%

BRAMAC-2SA Custom Arria 10 730 586 80% - -
BRAMAC-1DA Custom Arria 10 730 500 68% - -

M4BRAM Custom Arria 10 730 553 76% - -
SPAR-2 Overlay UltraScale+ 737 445 60% 200 27%
PiCaSO Overlay UltraScale+ 737 737 100% - -

II. RELATED WORK

A. Custom-BRAM PIMs

Wang et al [6] proposed the Compute-Capable BRAM
(CCB) based on Neural Cache [17]. CCB exposes compute
parallelism within a BRAM by converting each BRAM bitline
into a bit-serial Processing Element (PE). CCB was used
to build RIMA [6] to accelerate recurrent neural networks
(RNNs). RIMA achieved 1.25× and 3× higher performance
compared to the Brainwave DL soft processor [18] for 8-bit
integer and block floating-point precisions, respectively.

Arora et al [10], [11] proposed CoMeFa that uses bit-
serial PEs per SRAM bitline like CCB, but exploits the dual-
port nature of BRAMs to simultaneously read two operands.
To evaluate the performance and energy benefits of CoMeFa
RAMs, various microbenchmarks, including General Matrix-
Vector Multiplication (GEMV) and General Matrix-Matrix
Multiplication (GEMM) were studied in [11]. Augmenting an
Intel Arria 10-like FPGA with CoMeFa RAMs delivered a
geomean speedup of 2.55× across diverse applications.

Chen et al proposed BRAMAC [12] and M4BRAM [13],
which bypass MAC computation on the slow and power-
hungry primary BRAM array by copying operands to a smaller
“dummy array”. BRAMAC requires 2-/4-/8-bit predefined
weights and activations, limiting its use to quantized uniform-
precision deep neural nets. M4BRAM overcomes some of
these limitations by enabling variable activation precision
between 2 and 8 bits with linearly scaled MAC latency. Com-
bining BRAMAC-2SA/BRAMAC-1DA with Intel’s DLA [19]
resulted in an average speedup of 2.05×/1.7× for AlexNet and
1.33×/1.52× for ResNet-34. M4BRAM surpassed BRAMAC
by an average of 1.43× across diverse benchmarks.

B. BRAM-Overlay PIMs

To leverage the benefits of PIM architectures in contempo-
rary FPGAs, PIM overlay architectures have been proposed.
Panahi et al [7]–[9] proposed SPAR-2, a SIMD PIM-array
overlay accelerator, connecting bit-serial PEs from the pro-
grammable fabric with BRAMs. SPAR-2 was implemented
on Virtex-7 and Virtex UltraScale FPGAs with 10K PEs to
accelerate several deep learning applications. It achieved up
to 34.2× and 3.5× speedups compared to other custom HLS-
based and RTL-based accelerators, respectively.

Building upon the PIM overlay of SPAR-2, Kabir et al pro-
posed PiCaSO [15] with configurable pipeline stages along the
datapath. PiCaSO introduced an intermediate muxing module

TABLE II
DELAY (NS) BREAKDOWN OF 1-LEVEL LOGIC PATH IN AMD DEVICES

FF-C2Q1 LUT FF-Setup Total2 BRAM3 Net Budget SB-Min4

V7 0.290 0.34 0.255 0.885 1.839 0.954 0.272
US+ 0.087 0.15 0.098 0.335 1.356 1.021 0.102
1 Clock-to-Q delay of flip-flops
2 Total cell delay
3 BRAM pulse-width requirement, clock period for Fmax
4 Minimum net delay through a switchbox

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

30% 40% 50% 60% 70% 80% 90% 100%

TO
P

S

BRAM U�liza�on

RIMA TOPS

CCB Ideal TOPS

Fig. 1. Ideal scaling vs. actual TOPS of RIMA on Stratix 10 GX2800

to enable zero-copy in-block reduction and a “binary-hopping”
pipelined NEWS network for array-level reduction. PiCaSO
provided competitive performance and memory utilization
efficiency compared to both CCB and CoMeFa custom-BRAM
architectures.

III. MOTIVATION AND DESIGN GOALS

Table I summarizes the maximum frequencies of the PIM
designs discussed in section II. The relative frequency columns
(Rel.) show that the clock frequency fPIM of all the PIM tiles
are significantly slower compared to the maximum frequency
for the device BRAMs (fBRAM), except for PiCaSO. Their
fastest system frequencies (fSys) are 2.1× – 3.7× slower
than the BRAM maximum frequencies (fBRAM). This slower
frequency was attributed to the limitations of the soft logic and
the routing resources of the FPGAs. It was also reported as
unlikely that an FPGA accelerator at the system level would
operate at a frequency surpassing the degraded frequency
(fPIM) of these PIM designs, even in a more advanced node
than the evaluation platforms [10]–[13].

Further observation yielded that most of these systems
could not utilize all available BRAMs as PIMs. This lower
utilization combined with a lower clock frequency results in
less efficient use of the available internal BRAM bandwidth
of the devices and a lower system-level compute density. A
final observation shows a troubling common pattern: as the
utilization of BRAMs increases the achievable system-level
clock frequency decreases [6], [11].

These observations motivated our interest in understanding
if these results were a new reality of BRAM PIM arrays or
symptomatic of specific design and implementation choices.

A. System Clock Speed Goal

In FPGAs, BRAMs are the single component with the
longest latency [20]–[22]. Thus, we propose using the maxi-
mum frequency (Fmax) of the BRAM as the target frequency
for the PIM-array accelerators. To assess the practicality of this

221

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

(b) GEMV Tile architecture

E
as

t-
in

W
es

t-
ou

t

Tile Controller

Top-level Fanout Tree

(a) Top-level architecture

FIFO-inFIFO-out
Input-Regs

GEMV
Tile Array

C
ol

um
n

S
hi

ft
R

eg
s PIM Array

Fanout Tree
(Parameterized)

1
2

3

1

2

3

4

Fig. 2. System architecture of IMAGine illustrating the data and instruction
flow (a) through the GEMV engine and (b) within GEMV tiles.

design goal, we closely examined two AMD FPGA families:
Virtex-7 and UltraScale+. We created a test design where all
timing paths are one logic level deep and averaged all paths
to obtain Table II. The Total column sums the cell delays in
the columns to its left. The BRAM column lists the clock
period for BRAM Fmax. The SB-Min column displays the
minimum delay of a net passing through a switchbox. Net
Budget is derived by subtracting the Total column from the
BRAM column. Comparing the net budget with the minimum
net delay shows that, it is feasible to design at least two LUTs
deep logic paths clocking at the BRAM Fmax.

B. Performance Scaling Goal

We posited that the peak-performance of a PIM design
needs to scale linearly with the on-chip BRAM resource. The
compute capacity in custom-BRAM-based PIM designs [6],
[10]–[13] scales linearly with BRAM count if all BRAM
tiles are used in PIM mode. However, a significant sacrifice
is imposed in the clock frequency that ends up limiting the
achievable peak-performance on the device. Table I fPIM col-
umn indicates that the custom-BRAM PIM designs are up to
2.5× slower than the BRAM Fmax. Fig. 1 plots RIMA’s peak-
performance from Table-II of [6], computed using reported
BRAM utilization and M-DPE clock frequency. The irregular
trend is attributed to RIMA’s system-level architecture. If
RIMA adhered to the proposed performance scaling goal,
even at the degraded CCB frequency of 624 MHz, its peak-
performance would align with the CCB Ideal TOPS line. The
gap between these plots represents wasted compute capacity
and memory bandwidth provided by CCB BRAMs.

IV. IMAGINE ARCHITECTURE

A. System-Level Architecture

The top-level system is illustrated in Fig. 2(a). It consists of
(1) a 2D array of GEMV tiles, (2) a set of input registers, (3)
a fanout tree connecting the input registers to the tile array,
and (4) a column of shift-registers to read out the final result.
The front-end processor sends instructions to the GEMV tiles
through the input registers. The fanout tree is parameterized
to be adjusted during implementation. The 2D tile array is
implemented as a parameterized module that instantiates and
connects the tiles. At the end of the GEMV operation, the
output vector is stored in the column shift registers, which is

(a) Tile Controller organization (b) Changes to PiCaSO-F

B
R

A
M

O
pM

ux

A
LU

Network
Node

East-inWest-out

S
el

ec
tID

isTx

Pointer

addr-A

A

B

C

Control Sigs.

Driver-Select FSM

Decoder

Op-Params

outmux

Single-Cycle
Driver

Multicycle
Driver (FSM)

Instruction

Fig. 3. Architectures of (a) GEMV controller and (b) PiCaSO-IM, the adapted
version of PiCaSO-F [15].

shifted up and read through the FIFO-out port, one element
per cycle.

B. IMAGine GEMV Tile Architecture

Illustrated in Fig. 2(b), the GEMV tile is the heart of
IMAGine. It consists of (1) an FSM-based controller, (2) a 2D
array of PIM blocks, and (3) a fanout tree between them. The
controller receives the instruction written to the input registers
at the top level, decodes it, and generates the sequence of
control signals needed to execute the instruction. The fanout
tree connects the control signals to all PEs in the PIM array
and is parameterized for adjustment during implementation.
The PIM array interfaces allow cascading with arrays in
neighboring tiles on each side. During accumulation, partial
results move from east to west through PIM arrays, ultimately
accumulating in the left-most PE column of the left-most
GEMV tile.

C. Tile Controller

Fig. 3(a) shows the architecture of the tile controller. It
takes a 30-bit instruction, which is executed by either the
single-cycle or the multicycle driver, selected by the 2-state
driver-selection FSM. The single-cycle driver can execute
one instruction every cycle, while the multicycle driver takes
several cycles to execute instructions like ADD, SUB, MULT,
etc. including an additional cycle to load its parameters from
the Op-Params module. All inputs and outputs are registered to
localize timing paths within the controller. The combinatorial
logic in the controller is grouped into meaningful steps and
optional pipeline stages are added as illustrated by the dashed
lines A, B, and C in Fig. 3(a). Running synthesis, we ensured
that each step could be implemented in one or two logic levels.

D. PIM Module

We adopted PiCaSO [15] as IMAGine’s PIM module for
the following three reasons: (1) it is publicly available and
open-source [23], (2) it is a modifiable overlay that can be
ported and studied on existing AMD devices, and (3) PiCaSO-
F, a pipelined configuration of PiCaSO, can be clocked at the
BRAM Fmax. The modifications highlighted in red in Fig. 3(b)
were applied to PiCaSO-F to build PiCaSO-IM for IMAGine.
The original NEWS network was replaced with a simpler east-
to-west data movement network. Block-ID-based selection

222

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

TABLE III
UTILIZATION AND FREQUENCY OF 12×2 GEMV TILE COMPONENTS

Controller Rel. Fanout Rel. PIM Array Rel. Tile

LUT 167 5.8% 0 0.0% 2736 94.2% 2903
FF 155 4.0% 615 15.9% 3096 80.1% 3866

DSP 0 - 0 - 0 - 0
BRAM 0 0.0% 0 0.0% 12.0 100.0% 12

Freq. (MHz) 890 1.2× 890 1.2× 737 1× 737

logic was included in PiCaSO-IM. IMAGine’s accumulation
algorithm requires 3 addresses to maximize the overlap of data
movement and computation. As PiCaSO-F supports only 2
simultaneous addresses, we added a pointer register for the
third address. If PiCaSO is realized as a custom-BRAM tile
as proposed in [15], these changes can be implemented in
programmable logic fabric, keeping registerfile, OpMux, and
ALU modules within the BRAM tile. We name such a custom-
BRAM implementation of PiCaSO-IM as PiCaSO-CB.

V. IMPLEMENTATION AND ANALYSIS

In this section, we discuss the bottom-up implementation
and analysis of IMAGine, targeting the design goals discussed
in Section III. In [15], PiCaSO was studied on AMD Alveo
U55C (xcu55c, -2 speed grade). We use the same device as
our implementation platform to keep the results predictable.
The BRAM Fmax on this device is 737 MHz [21], which sets
the target clock period to be 1.356 ns. All of the following
studies were carried out using Vivado 2022.2.

A. GEMV Tile

The components of the GEMV tile were studied individually
to verify if they met the design requirements. Each tile contains
a 12×2 PIM array and 2 stages of pipeline in the fanout tree,
which best fits the physical layout of the Alveo U55 FPGA as
discussed later in this section. Table III shows the utilization
and performance of these components and their relative values
compared to the entire GEMV tile.

The controller together with the fanout network passed the
timing constraints at a clock rate of 890 MHz. Because the
PIM array contains the BRAM, it cannot run faster than the
BRAM Fmax. It passed the timing at 737 MHz, the BRAM
Fmax. As observed in Table III, the logic utilization of the
controller is around 5% of the entire tile and requires no DSPs,
while around 90% of the logic resources are consumed by
the PIM array. Thus, the controller and the fanout tree are
not expected to bottleneck system frequency or utilization.
The GEMV tile’s speed and scalability are fundamentally
dependent on the PIM array, which is the desired outcome.

B. Scalability Study

To evaluate the scalability of our architecture on different
device families, we followed the approach in [15]. Along with
Alveo U55, four representatives were selected from AMD’s
Virtex-7 and UltraScale+ devices based on two criteria: BRAM
capacity and LUT-to-BRAM ratio. Table IV lists these devices
with their BRAM capacity, LUT-to-BRAM ratio, and a short
ID used in Fig. 4. The target clock frequency of the system

TABLE IV
REPRESENTATIVES OF VIRTEX-7 AND ULTRASCALE+ FAMILIES [15]

Device Tech BRAM# Ratio1 Max PE#2 ID
xcu55c-fsvh-2 US+ 2016 646 64K U55
xc7vx330tffg-2 V7 750 272 24K V7-a
xc7vx485tffg-2 V7 1030 295 32K V7-b
xc7v2000tfhg-2 V7 1292 946 41K V7-c
xc7vx1140tflg-2 V7 1880 379 60K V7-d
xcvu3p-ffvc-3 US+ 720 547 23K US-a

xcvu23p-vsva-3 US+ 2112 488 67K US-b
xcvu19p-fsvb-2 US+ 2160 1892 69K US-c
xcvu29p-figd-3 US+ 2688 643 86K US-d
1 LUT-to-BRAM ratio
2 Number of PEs utilizing all BRAMs as PIMs

0

20

40

60

80

100

U55 V7-a V7-b V7-c V7-d US-a US-b US-c US-d

U
�

liz
a�

o
n

 %

BRAM LUT FF Control Set

Fig. 4. Resource usage of IMAGine on representatives of Virtex-7 and
Ultrascale+ families utilizing 100% BRAMs as PIM overlays.

was set to 100 MHz on all devices to avoid timing issues and
only focus on the logic utilization of the system at this point.

Fig. 4 shows a bar graph of post-implementation utilization
numbers of IMAGine on the representative devices. As ob-
served, IMAGine can utilize 100% of the available BRAMs
as PIM overlays providing 64K PEs in U55, with only 25%
logic and 6% control set utilization. This leaves sufficient logic
resources to implement the fanout trees and pipeline stages if
they are needed to achieve the target clock speed. In fact,
IMAGine scaled up to 100% of available BRAM in all the
representative devices for Virtex-7 and UltraScale+ families.

In the Virtex-7 family, the device V7-a has the smallest
number of BRAMs and the smallest LUT-to-BRAM ratio.
IMAGine used around 60% logic resources to provide 24K
PEs in V7-a. In the UltraScale+ family, US-a and US-b have
the smallest number of BRAMs and the smallest LUT-to-
BRAM ratio, respectively. In these devices IMAGine provide
23K and 67K PEs, respectively, using roughly 30% logic
resources. For devices with more BRAMs and a higher LUT-
to-BRAM ratio the logic utilization is very small: the logic
utilization in US-c is less than 10% providing 69K PEs. Thus,
IMAGine is scalable up to 100% BRAM capacity irrespective
of the available logic resources in existing devices.

C. System-Level Timing Optimizations

For the final implementation, the target clock was set to
1.356 ns to match the BRAM Fmax of Alveo U55. The goal
of the study was to find out how close we can get to the target
clock rate, and what are the practical challenges that limit us
from achieving it. We ran the first iteration using the default
settings of Vivado and achieved a setup slack of -0.52 ns. The
critical paths were within the controller with a logic depth
of 4, going through the pipeline stage A of the controller as
shown in Fig. 3(a). So, we enabled the pipeline stage A in the
controller for the next iteration.

223

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

C
M

A
C

C
M

A
C

Floorplan
Block

Floorplan
Block west-out

east-in

C
M

A
C

Sig. Driver

Sig. Driver

Fig. 5. Avoiding unnecessary hard-block (CMAC) crossing by floorplanning
(a) placement and net connections before floorplanning, (b) floorplan localiz-
ing logic and routing, (b) placement and net connections in the final design.

At the end of the second iteration of implementation, we
achieved a setup slack of -0.38 ns. The control signals between
the controller and the PIM array were failing the timing due to
their high fanout and long routes. Thus, we synthesize a fanout
tree between the controller and the PIM array empirically
choosing 2 levels and a fanout of 4 for the next iteration.

The design achieved a setup slack of -0.27 ns in the
third iteration. The long routes crossing hard blocks, like
an Ethernet port (CMAC) [24], were failing the timing. The
white lines in Fig. 5(a) highlight some of those critical nets.
To avoid placement results generating such paths, we created
floorplanning blocks (Pblocks) [25] as shown in Fig. 5(b), to
localize the logic placement and routing of a tile. This required
defining a tile with 12×2 PIM array on Alveo U55. Fig. 5(c)
shows the placement and net connections in the final iteration.
The logic and routing of each tile are localized on either side
of the hard block. Only the inter-tile connections for east-
to-west accumulation, highlighted in yellow lines, cross the
CMAC block requiring minimal routing resources.

The final design met the timing at 737 MHz clock, demon-
strating the practical achievability of the proposed clocking
goal. Utilizing 100% available BRAMs as PIMs, this design
also achieved linear scaling of peak-performance. Surprisingly,
this clock rate is faster than custom GEMM accelerator ASICs
TPU v1-v2 [1], [26] and Alibaba Hanguang 800 [27], that run
at 700 MHz. Both Alveo U55 and TPU v2 are manufactured
at 16 nm and Hanguang 800 at 12nm technology nodes.
So, this clock improvement is not due to a technology node
difference. On Alveo U55, IMAGine has an equal number of
PEs compared to TPU v1 (64K), and 4× of TPU v2 (16K).
However, IMAGine can only deliver up to 0.33 TOPS at 8-bit
precision, which is significantly smaller compared to TPU v1
(92 TOPS) and v2 (46 TOPS), due its bit-serial architecture.
These results dispel the myth that FPGA designs are always
slower and have less compute density compared to ASICs.

D. Comparison With Other PIM-Array Accelerators

Table V shows the utilization and system frequencies of
existing GEMV engines and equivalent PIM-array accelera-
tors. System-level utilizations and frequencies for BRAMAC
and M4BRAM-based systems were not reported in [12], [13].

TABLE V
UTILIZATION AND FREQUENCY OF PIM-BASED GEMV/GEMM ENGINES

LUT FF DSP BRAM fSys
1 Rel. Freq

RIMA-Fast 60% 50% 55% 455 45.5%
RIMA-Large 89% 50% 93% 278 27.8%
CCB GEMV 27.9% 90.1% 91.8% 231 31.6%

CoMeFa-A GEMV 27.9% 90.1% 91.8% 242 33.2%
CoMeFa-D GEMM 25.5% 92.4% 86.7% 267 36.6%

SPAR-2 (US+) 11.3% 2.4% 0.0% 14.5% 200 27.1%
SPAR-2 (V7) 28.5% 7.0% 0.0% 30.4% 130 23.9%

IMAGine 35.6% 24.8% 0.0% 100.0% 737 100.0%
IMAGine-CB2 10.1% 7.2% 0.0% 100.0% 737 100.0%

1 System frequency in MHz
2 IMAGine with custom-BRAM PIM tile (PiCaSO-CB)

RIMA [6] was evaluated on a Stratix 10 GX2800 FPGA with a
BRAM Fmax of 1 GHz [22]. Its fastest reported configuration
(RIMA-Fast) runs at 455 MHz, which is 2.2× slower than
its BRAM Fmax. The largest reported configuration (RIMA-
Large) utilizes 93% of BRAMs and runs at 278 MHz, 4×
slower than the BRAM Fmax. The GEMV/GEMM systems
based on CCB and CoMeFa were evaluated on an Arria
10 GX900 with a BRAM Fmax of 730 MHz [11]. Though
CoMeFa-based designs run slightly faster than the CCB-
GEMV engine, they are still roughly 3× slower than the
BRAM Fmax. Thus, CCB and CoMeFa-based GEMV/GEMM
engine performance did not scale well at the system level.

SPAR-2 [8] utilized only 30% of the BRAMs while running
4× slower than BRAM Fmax on both platforms. Thus, its
performance and scalability are even worse than CCB and
CoMeFa-based systems. On the other hand, IMAGine has a
system clock running at the BRAM Fmax while utilizing 100%
device BRAM as PIMs. Outperforming all existing designs,
IMAGine is the fastest PIM array-based GEMV engine imple-
mented on any FPGA, running at a clock rate 2.65× – 3.2×
faster than any existing design. This is an important proof
of concept design that dispels earlier beliefs that PIM arrays
and overlay accelerators cannot achieve BRAM Fmax clock
frequencies at the system level [10]–[13].

As observed in Table V, RIMA and CCB/CoMeFa-based
designs exhaust either the logic resources or the DSPs of
the device even though their PIM blocks are implemented by
customizing the BRAM tile itself. Even after being an overlay,
IMAGine is achieving faster clock and better scalability using
0 DSPs and only one-third of the device logic resources
due to its near-optimal architectural choices. Like SPAR-2,
IMAGine does not use DSPs to implement the bit-serial PEs.
With a custom-BRAM implementation of the PIM module,
like PiCaSO-CB discussed in Section IV-D, IMAGine would
consume about 10% of device resources while being fully
scalable and implementable even in resource-limited FPGAs.

E. GEMV Execution Latency

Fig. 6 plots the GEMV latency of PIM-array accelerators,
with square-matrix dimensions on the x-axis and latency in
log scale on the y-axis. The execution times in Fig. 6(b)
are computed by multiplying cycle latencies with the cor-
responding clock periods from Table V system frequencies.

224

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

(b) GEMV Execution Time

8-bit 32-bit4-bit 16-bit

4-bit 16-bit8-bit 32-bit

(a) GEMV Cycle Latency

0 50 100 150 200 250

2000

200

20
0 50 100 150 200 250

30

300

3000

10000

1000
0 50 100 150 200 2500 50 100 150 200 250

300

3000

C
yc

le
s

Matrix Size

50ns

0.5us

5us

0 50 100 150 200 250
0.1us

1us

10us

0 50 100 150 200 250
0.3us

3us

30us

0 50 100 150 200 250
1us

10us

0 50 100 150 200 250

Ti
m

e

Matrix Size

IMAGine CCB/CoMeFa BRAMACSPAR2 IMAGine-slice4

IMAGine CCB CoMeFaSPAR2 IMAGine-slice4

Fig. 6. Cycle latency and execution time of GEMV operation on different PIM array-based FPGA accelerators

We adopted the approach in [12] to model the block-level
cycle latencies of CCB, CoMeFa, BRAMAC, and SPAR-2
using their analytical models. IMAGine’s latency model was
developed and validated by running a prototype on hardware.

As observed in Fig. 6(a), BRAMAC has the shortest cycle
latency, due to their hybrid bit-serial & bit-parallel MAC2
algorithm. BRAMAC’s MAC latency grows linearly with
operand bit-width, while it grows quadratically in the other
bit-serial architectures. BRAMAC is designed specifically for
low-precision (2, 4, and 8-bit) quantized neural networks, ren-
dering it unsuitable for general computing tasks like GEMV.
BRAMAC did not report the system-level frequency which is
why we could not plot its execution time.

SPAR-2 has the longest latency across all precisions, due
to its slow NEWS accumulation network, with latency in-
creasing almost linearly with matrix dimension. CCB and
CoMeFa-based GEMV engines have the shortest cycle latency
among bit-serial architectures across all precisions. This is
due to their fast reduction algorithm based on a popcount-
based adder and pipelined adder tree. The cycle latency of
IMAGine is significantly shorter compared to SPAR-2 but
longer than CCB/CoMeFa-based implementations. However,
IMAGine clocks at least 2× faster than any of the other GEMV
engines. As a result, IMAGine outperforms all other GEMV
engines in terms of overall execution time. This highlights
the importance of the system clock speed over the cycle
latency; despite the CCB/CoMeFa GEMV engines’ shorter
cycle latency, their slower clock significantly degrades the
execution time.

Because IMAGine is utilizing only 30% of the logic re-
sources in U55, the remaining resources can be used to further
improve its performance. The IMAGine-slice4 curves in Fig. 6
shows the latency of a variant of IMAGine with a 4-bit sliced

accumulation network and a PE implementing Booth’s radix-4
multiplication (default is radix-2). This latency is estimated by
adjusting the analytical model of IMAGine assuming no effect
on the clock rate. In terms of cycle latency, it can run almost
as fast as CCB/CoMeFa-based GEMV implementations, while
significantly outperforming them in execution time.

VI. CONCLUSIONS AND FUTURE WORK

Processor In/Close to Memory (PIM) architectures have
become popular frameworks replacing classic von Neumann
architectures within domain-specific machine learning acceler-
ators. This paper presented a study proposing the performance
and scalability goals for PIM array-based accelerators on
FPGAs. The design, implementation, and analysis of IMAGine
was presented demonstrating how a PIM-array accelerator
could achieve the BRAM Fmax as the system frequency. A
scalability study was presented showing processing capacity
scaling linearly with increasing BRAM density, even for
devices with low LUT-to-BRAM ratios. An implementation
with 64K PEs was run on Alveo U55, clocking faster than the
Tensor Processing Unit (TPU v1-v2) and Alibaba Hanguang
800. This breaks the myth that FPGA overlays and fabrics
must clock slower than ASIC designs.

A comparative study with state-of-the-art PIM-array accel-
erators was presented showing IMAGine has 2.65× – 3.2×
faster system frequency, and significantly outperforms them in
execution time, establishing IMAGine as the fastest and most
scalable PIM array-based GEMV engine reported to date.

Our future work includes the completion of an MLIR-
based compiler framework for hardware/software codesign
and application-specific customization of IMAGine-like PIM
array-based accelerators.

225

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil,
S. Prasad, C. Young, Z. Zhou, and D. Patterson, “Ten lessons from
three generations shaped google’s TPUv4i : Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, Jun. 2021, pp. 1–14.

[2] J.-H. Kim, J. Lee, J. Lee, H.-J. Yoo, and J.-Y. Kim, “Z-PIM: An Energy-
Efficient Sparsity Aware Processing-In-Memory Architecture with Fully-
Variable Weight Precision,” in 2020 IEEE Symposium on VLSI Circuits.
IEEE, Jun. 2020, pp. 1–2.

[3] B. Zhang, S. Yin, M. Kim, J. Saikia, S. Kwon, S. Myung, H. Kim,
S. J. Kim, J.-S. Seo, and M. Seok, “PIMCA: A Programmable In-
Memory Computing Accelerator for Energy-Efficient DNN Inference,”
IEEE Journal of Solid-State Circuits, vol. 58, no. 5, pp. 1436–1449,
May 2023.

[4] C.-F. Lee, C.-H. Lu, C.-E. Lee, H. Mori, H. Fujiwara, Y.-C. Shih,
T.-L. Chou, Y.-D. Chih, and T.-Y. J. Chang, “A 12nm 121-TOPS/W
41.6-TOPS/mm2 All Digital Full Precision SRAM-based Compute-
in-Memory with Configurable Bit-width For AI Edge Applications,”
in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI
Technology and Circuits). IEEE, Jun. 2022, pp. 24–25.

[5] Y. Kwon, G. Kim, N. Kim, W. Shin, J. Won, H. Joo, H. Choi,
B. An, G. Shin, D. Yun, J. Kim, C. Kim, I. Kim, J. Park, C. Park,
Y. Song, B. Yang, H. Lee, S. Park, W. Lee, S. Lee, K. Kim, D. Kwon,
C. Jeong, J. Kim, E. Lim, and J. Chun, “Memory-Centric Computing
with SK Hynix’s Domain-Specific Memory,” in 2023 IEEE Hot Chips
35 Symposium (HCS), 2023, pp. 1–26.

[6] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,
C. Augustine, R. R. Iyer, and R. Das, “Compute-Capable Block RAMs
for Efficient Deep Learning Acceleration on FPGAs,” 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 88–96, 2021.

[7] S. Basalama, A. Panahi, A.-T. Ishimwe, and D. Andrews, “SPAR-2: A
SIMD Processor Array for Machine Learning in IoT Devices,” in 2020
3rd International Conference on Data Intelligence and Security (ICDIS).
IEEE, 2020, pp. 141–147.

[8] A. Panahi, S. Balsalama, A.-T. Ishimwe, J. M. Mbongue, and D. An-
drews, “A Customizable Domain-Specific Memory-Centric FPGA Over-
lay for Machine Learning Applications,” in 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), Aug.
2021, pp. 24–27.

[9] A. Panahi, “A memory-centric customizable domain-specific FPGA
overlay for accelerating machine learning applications,” Ph.D disser-
tation, University of Arkansas, 2022.

[10] A. Arora, T. Anand, A. Borda, R. Sehgal, B. Hanindhito, J. Kulkarni, and
L. K. John, “CoMeFa: Compute-in-Memory Blocks for FPGAs,” in 2022
IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2022, pp. 1–9.

[11] A. Arora, A. Bhamburkar, A. Borda, T. Anand, R. Sehgal, B. Hanindhito,
P.-E. Gaillardon, J. Kulkarni, and L. K. John, “CoMeFa: Deploying
Compute-in-Memory on FPGAs for Deep Learning Acceleration,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 16, no. 3,
pp. 1–34, Sep. 2023.

[12] Y. Chen and M. S. Abdelfattah, “BRAMAC: Compute-in-BRAM Archi-
tectures for Multiply-Accumulate on FPGAs,” in 2023 IEEE 31st Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). Marina Del Rey, CA, USA: IEEE, May 2023, pp.
52–62.

[13] Y. Chen, J. Dotzel, and M. S. Abdelfattah, “M4BRAM: Mixed-Precision
Matrix-Matrix Multiplication in FPGA Block RAMs,” Nov. 2023,

arXiv:2311.02758 [cs]. [Online]. Available: http://arxiv.org/abs/2311.
02758

[14] M. A. Kabir, J. Hollis, A. Panahi, J. Bakos, M. Huang, and D. Andrews,
“Making BRAMs Compute: Creating Scalable Computational Memory
Fabric Overlays,” in 2023 IEEE 31st Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
May 2023, pp. 224–224.

[15] M. A. Kabir, E. Kabir, J. Hollis, E. Levy-Mackay, A. Panahi, J. Bakos,
M. Huang, and D. Andrews, “FPGA Processor In Memory Architectures
(PIMs): Overlay or Overhaul ?” in 2023 33rd International Conference
on Field-Programmable Logic and Applications (FPL). Gothenburg,
Sweden: IEEE, Sep. 2023, pp. 109–115.

[16] M. A. Kabir, T. Kamucheka, N. Fredricks, J. Mandebi, J. Bakos,
M. Huang, and D. Andrews, “IMAGine: An In-Memory Accelerated
GEMV Engine Overlay.” [Online]. Available: https://github.com/
Arafat-Kabir/IMAGine

[17] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural Cache: Bit-Serial in-Cache Acceleration
of Deep Neural Networks,” in 2018 ACM/IEEE 45Th annual interna-
tional symposium on computer architecture (ISCA), 2018, pp. 383–396.

[18] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A Configurable Cloud-Scale
DNN Processor for Real-Time AI,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
1–14.

[19] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An
OpenCL™ Deep Learning Accelerator on Arria 10,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. Association for Computing Machinery, 2017, p. 55–64.

[20] Virtex-7 T and XT FPGAs Data Sheet: DC and AC Switching
Characteristics, AMD, 2021. [Online]. Available: https://docs.xilinx.
com/v/u/en-US/ds183 Virtex 7 Data Sheet

[21] Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching
Characteristics, AMD, 2021. [Online]. Available: https://docs.xilinx.
com/v/u/en-US/ds923-virtex-ultrascale-plus

[22] Intel® Stratix® 10 Device Datasheet, Intel. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
683181/current/memory-block-specifications.html

[23] M. A. Kabir, E. Kabir, J. Hollis, E. Levy-Mackay, A. Panahi, J. Bakos,
M. Huang, and D. Andrews, “PiCaSO: A Scalable and Fast PIM
Overlay.” [Online]. Available: https://github.com/Arafat-Kabir/PiCaSO

[24] Alveo U55C Data Center Accelerator Card User Guide, AMD.
[Online]. Available: https://docs.xilinx.com/r/en-US/ug1469-alveo-u55c

[25] Vivado Design Suite User Guide: Design Analysis and Closure
Techniques, AMD. [Online]. Available: https://docs.amd.com/r/en-US/
ug906-vivado-design-analysis/Using-Pblock-Based-Floorplanning

[26] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[27] Y. Jiao, L. Han, R. Jin, Y.-J. Su, C. Ho, L. Yin, Y. Li, L. Chen, Z. Chen,
L. Liu, Z. He, Y. Yan, J. He, J. Mao, X. Zai, X. Wu, Y. Zhou, M. Gu,
G. Zhu, R. Zhong, W. Lee, P. Chen, Y. Chen, W. Li, D. Xiao, Q. Yan,
M. Zhuang, J. Chen, Y. Tian, Y. Lin, W. Wu, H. Li, and Z. Dou, “7.2
a 12nm programmable convolution-efficient neural-processing-unit chip
achieving 825tops,” in 2020 IEEE International Solid- State Circuits
Conference - (ISSCC). IEEE, Feb. 2020, pp. 136–140.

226

Authorized licensed use limited to: University of South Carolina. Downloaded on July 29,2025 at 22:28:00 UTC from IEEE Xplore. Restrictions apply.

