
Polar: A Managed Runtime with Hotness-Segregated
Heap for Far Memory

Dat Nguyen
Texas A&M University
tiendat.ng.cs@tamu.edu

Khanh Nguyen
Texas A&M University
khanhtn@tamu.edu

Abstract

Thanks to recent advances in high-bandwidth, low-latency
interconnects, running a data-intensive application with a
remote memory pool is now a feasibility. When developing a
data-intensive application, a managed language such as Java
is often the developer’s choice due to convenience of the
runtime such as automatic memory management. However,
the memory management cost increases signi�cantly in far
memory due to remote memory accesses.
Our insight is that data hotness (i.e., access frequency of

objects) is the key to reducing the memory management
cost and improving e�ciency in far memory. In this paper,
we present an ongoing work designing Polar, an enhanced
runtime system that is hotness-aware, and optimized for
far memory. In Polar, the garbage collector is augmented
to identify cold (infrequently accessed) objects and relocate
them to remote memory pools. By placing objects at memory
locations based on their access frequency, Polar minimizes
the number of remote accesses, ensures low access latency
for the application, and thus improves overall performance.

CCS Concepts

• Information systems→ Data management systems;
• Software and its engineering→ Garbage collection;
Runtime environments; Allocation / deallocation strategies.

Keywords

Far memory, managed runtime, garbage collection

ACM Reference Format:

Dat Nguyen and Khanh Nguyen. 2024. Polar: A Managed Run-
time with Hotness-Segregated Heap for Far Memory. In 15th ACM

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

APSys ’24, September 4–5, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1105-3/24/09.

https://doi.org/10.1145/3678015.3680490

SIGOPS Asia-Paci�c Workshop on Systems (APSys ’24), Septem-

ber 4–5, 2024, Kyoto, Japan. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3678015.3680490

1 Introduction

Modern computing has a high demand for processing a huge
amount of data, fueled by the increase in memory-hungry
workloads such as AI/ML and graph processing in recent
years. Managed languages (e.g., Java and Scala) which are
known for their simple usage, easy memory management,
and large community support are often developers’ choice
to implement large-scale frameworks. These languages sim-
plify development e�orts and help reduce a large number of
memory-related bugs thanks to the garbage collector (GC1).
Thanks to rapid technological advances in network con-
trollers [22, 28, 44], it now becomes practical to utilize a re-
mote memory pool to overcome memory capacity wall [10],
giving rise to the far-memory architecture. In far memory, an
application is deployed at a local server that is connected to
a network of remote servers o�ering memory resources. The
application, in addition to the local memory, can now use
memory from remote servers without prohibitive overheads.

The GC provides automatic memory management, freeing
up developers’ time, hence the broad adoption of managed
runtime such as Java Virtual Machine (JVM). GC is triggered
whenever the heap occupancy reaches a threshold (e.g., 80%).
As illustrated in Figure 1, GC scans the heap by following ob-
ject references from a set of GC roots (e.g., global variables),
moves reachable objects to a di�erent memory space, and
discards objects that are no longer in use. In a far-memory
environment, however, GC cost is exacerbated due to the
latency of remote accesses. Even though recent network ad-
vances have achieved lower latency than decades ago, one re-
mote access takes an average of 40-80Ćs, which is still orders
of magnitude slower than Ĥĩ-latency local memory access.
Our experience with a dozen representative data-intensive
applications and evidence have shown that, running an ap-
plication as-is, the GC cost is magni�ed, reducing end-to-end
performance by up to 10× [25, 47, 48].

1As commonly in the literature, ‘GC’ also stands for ‘garbage collection’



APSys ’24, September 4–5, 2024, Kyoto, Japan Dat Nguyen and Khanh Nguyen

Non-reachable
objects
(garbage)

Reachable
objects 
(live)

GC
Roots

Figure 1: How GC works in Java. Essentially, GC is a

transitive closure computation starting from a set of

roots. Reachable objects are moved to another space.

Our insight and proposal. One root cause for the costly
runtime system is that the GC is oblivious to program se-
mantics — in this work, we focus speci�cally on data hotness
(i.e., access frequency of objects). The golden rule for perfor-
mance in a far-memory environment is that objects that are
“hot” (frequently accessed) should be placed in local memory
that is close to the CPU running the application, while “cold”
objects are placed in the remote memory.
In this work, we propose Polar as an enhanced, far-

memory-friendly runtime for data-intensive applications.
Polar, to the best of our knowledge, is the �rst runtime that
is hotness-aware at object granularity for far memory. Po-
lar-heap consists of a local heap in the local server (hot) and
a remote heap at remote servers (cold). Objects are initially
allocated in the local heap. When the local heap runs out of
space, GC is triggered and segregates the live heap based on
hotness: hot objects are kept in the local heap, whereas cold
objects are relocated to the remote heap. Traditional GC will
run and manage the local heap while the remote heap will
be managed by a Polar-agent.

Figure 2 shows the e�ect of Polar on the local heap usage.
When the local heap is under pressure, GC identi�es and
evicts cold objects to the remote memory, reclaiming local
heap space to avoid a potential out-of-memory crash.

Figure 2: In Polar, upon memory pressure, the GC

identi�es and evicts cold objects to remote memory,

avoiding a potential out-of-memory crash.

While Polar and the generational GC share commonal-
ities, they are fundamentally di�erent from each other. In
Polar, the GC is restricted to the local heap, i.e., not follow-
ing references that lead to the remote heap. Compared to
some of the recent work such as Semeru [47], Mako [25],
and MemLiner [48], Polar o�ers a �ner granularity at the
object level instead of a coarse grain such as (virtual) mem-
ory page or memory regions which has been shown to su�er
from data ampli�cation problem [36, 41]. We envision Polar

will unlock additional bene�ts such as improved locality and
more e�cient data fetches.

Why JVM. Even though a number of far-memory tech-
niques have been developed, almost all of them use a cache-
and-swap mechanism to enhance the OS, treating the remote
memory pool as an extended swap system [1–4, 17, 20, 27].
The application uses local memory as a data cache only. Once
a page that does not reside in the local memory is accessed, a
page fault is triggered and the page is fetched from a remote
server into the local memory. Because they manage memory
at the coarse granularity of pages, they are suboptimal for
the average case where a page contains objects with di�er-
ent hotness. Moreover, replacing the OS kernel is intrusive.
Polar runs atop an unmodi�ed OS kernel with a memory
management scheme that operates at object level, and is
complementary to ongoing work in OS kernels.

Challenges and Solutions. While the idea of matching ob-
jects to memory locations based on their access frequency
appears simple, there are several challenges in how to im-
plement it e�ciently and correctly. We discuss below the
challenges in carrying out this high-level idea and our solu-
tions.

The �rst challenge in designing Polar is how to classify hot

and cold objects without incurring much overhead. A simple
approach of using access count is impractical because there is
no one-size-�ts-all threshold value for all applications. More
importantly, access count fails to capture temporal hotness:
an object may be hot at one point but stay dormant for the
rest of its lifetime. Orthogonal to this is the second challenge
of when to move cold objects to remote memory to maximize
space bene�ts given to the application while minimizing
costs which include data transfer over the network costs.
Finally, the third challenge is how to guarantee memory safety

as the heap now spans multiple servers.
To overcome these challenges, we design a collaborative

mechanism between GC and the application to compute a
dynamic threshold Ĉ to segregate the live heap. An object is
a candidate for remote memory relocation if the application
has not accessed it within a past window of Ĉ GC runs.
In Polar, the GC is enhanced to evict cold objects to the
remote heap. By tying cold object eviction directly to a GC
run, Polar helps maximize the e�ectiveness of cold object



Polar: A Managed Runtime with Hotness-Segregated Heap for Far Memory APSys ’24, September 4–5, 2024, Kyoto, Japan

eviction, giving back to the application the much-needed
heap space for new allocations. Access to evicted data is still
safe and guaranteed. Polar uses an indirection structure
called trampoline as a proxy to access data across server
boundaries. All cross-server accesses are forwarded to the
trampoline which provides one-level indirection to resolve
the actual address.

In the remainder of the paper, we describe internal design
of Polar in §2. Because Polar is still under development,
we include, as a preliminary result, in §3 a study validating
our assumption of data hotness, hence demonstrating the
potential of Polar.

2 Polar

In this Section, we describe the design of Polar. The key
characteristic of Polar is that it splits the heap into a local
(hot) heap and a remote (cold) heap, which correspond to
2 levels of data hotness. Each heap is subject to a di�erent
style of management. The GC is restricted to managing the
local heap in normal ways and is not allowed to follow object
references into the remote heap. The remote heap is assumed
to be abundant, contains objects that are rarely needed by
the application threads, and thus can be managed in a more
relaxed manner (e.g., less frequent scanning).

2.1 Polar heap

Figure 3 illustrates Polar heap which is a partitioned global
address space (PGAS), spanning across local and remote
servers. During JVM’s bootstrapping, when the heap is cre-
ated, it reserves three disjoint ranges of virtual addresses,
namely the nursery, the hot zone, and the cold zone. The
nursery and hot zone are backed by the local server (the
local heap) while the cold zone is backed by the remote
servers (the remote heap).

Hot zone Cold zone

Local
Server

Remote
Server

#1

Nursery

Virtual Address 
Local heap Remote heap

Remote
Server
#2

RDMA

Figure 3: Polar’s heap structure.

Allocation. All object allocations take place in the nursery.
In order to be a lock-free operation, each application thread
has a thread-local allocation bu�er (TLAB) given by the
nursery. Upon an allocation request, each thread uses a bump-
pointer algorithm to accommodate a new object in its bu�er.
When running out of bu�er space, the thread requests a new
bu�er from the nursery. Similar to conventional design, very

large objects will be allocated in a special centralized heap
area called humongous area (not shown in Figure 3).

2.2 Data hotness measurement

Data hotness metric. A naïve measure of hotness is the ac-
cess count: an object is hot if it has been read and/or written
by the application threads (a.k.a. the mutator) above a static
threshold. This measure is impractical because there is no
one-size-�ts-all value for all applications. More importantly,
access count fails to capture temporal hotness: an object may
be hot at one point but stay dormant for the rest of its lifetime.
We �nd it more e�cient to focus on subjects for eviction.
A (live) object is called cold and subject to eviction to the
remote heap i� it has not been accessed by the mutator
within a past window of Ĉ GC runs. De�ning an object’s
data coldness ą as the length of time since its last access by
the mutator, we evict the object if ą > Ĉ . This is a better
solution as it ties cold object eviction directly to the memory
consumption behavior of the application. A memory-hungry
application will trigger GC often, and thus will gain bene�ts
from evicting cold objects out of the local heap, saving space
for newly-allocated objects instead of wasting memory space
to hold cold objects while struggling to accommodate new
allocations.

Record ą transparently. Computing data coldness ą is a col-
laborative e�ort between the mutator and the GC. Polar pig-
gybacks on the existing read/write (R/W) barriers to record
ą. A R/W barrier contains code that is executed together
with every heap load/store instruction, and is an indispens-
able component of modern GCs. For example, G1 GC [14]
uses them to track inter-generation references; ZGC [31]
and Shenandoah GC [16] use them to ensure heap integrity.
Using this basic barrier, we add an additional Polar-logic
for each R/W access of instance �elds and array elements.
For instance, with a heap write ė.Ĝ = Ę, the coldness value ą
of the object ċė is (re)set to 0. This additional step is light
and thus will have negligible overhead. As the GC scans the
heap and marks live objects, it will increase ą by 1. To store
ą, as done in existing works [25, 30, 47, 48], we enlarge the
object’s header, adding 2 bytes.

2.3 Coldness threshold Ĉ

Determining a concrete value of Ĉ to classify objects as hot
and cold is challenging. Ĉ should be the sweet spot to (1)
minimize the amount of cold data to be evicted due to an
associated cost with each eviction, and (2) avoid unnecessary
GC (in the local heap) to �nd space for new allocations.
E�ectively we are optimizing the local heap usage using two
con�icting criteria. On the one hand, we want to fully utilize
the local heap to save on remote memory access. If Ĉ is
low, we might evict too aggressively and cause unnecessary



APSys ’24, September 4–5, 2024, Kyoto, Japan Dat Nguyen and Khanh Nguyen

roundtrips to retrieve the recently-evicted objects. On the
other hand, if Ĉ is high, the local heap will be too full and
the runtime will struggle to �nd space for new allocations.
It is critical for e�ciency to strike a balance.

Using pro�ling techniques to determine Ĉ is problematic
due to their lack of precision (i.e., requiring representative
input) and cost (i.e., pro�ling often is expensive). To address
this issue, Polar’s solution is to leverage GC runs to deter-
mineĈ dynamically. As GC scans the local heap, it computes
Ĉ as a size-weighted average coldness of all live objects ċ .
As con�rmed in our study (see §3), this is a good proxy to
capture the temporal property of the heap and can react well
to the application’s dynamic behavior.

2.4 Local heap management

Polar uses lazy memory expansion, i.e., it is unnecessary to
involve remote memory when the local heap is enough to
contain the application’s working set. Accordingly, two types
of GC exist: GC-and-Eviction (GCE), which is only triggered
when the application is su�ering from memory pressure,
and thus bene�cial for the application to evict cold objects
to the remote memory, freeing up space for new allocations.
Otherwise, Local-Only (LO) GC is triggered. The di�erence
is that LO does not perform object eviction.

Steps of GCE. Because LO is a slim-down version of GCE
where it does not need to perform cold object classi�cation
and eviction, we will focus the discussion on GCE. For the
ease of exposition of Polar, we will adapt G1 GC [14], which
is the default GC since OpenJDK 9. G1 is a generational, stop-
the-world GC that provides the best balance between latency
and throughput. We modify the generational algorithm to
restrict its scope. If the GC reaches a referencewhose target is
in the remote heap, we ignore the reference. The frequency of
GC is relative to the usage of the local heap only, disregarding
the remote heap (which is managed by Polar-agent, discuss
in §2.5). GCE has two phases: (1) Marking phase whose goal
is to identify live, cold objects, and (2) Evacuation phase

segregates the live heap and evicts cold objects.
1 Marking phase. Algorithm 1 shows our marking phase

as the �rst step of the GC cycle. The algorithm takes as input
the nursery and a number of memory regions belonging to
the hot zone using the same heuristic of G1. We �rst identify
a set of objects to serve as tracing roots (Line 1). They include
objects referred to by global variables and stack variables.
Next, for each tracing root ċĨ , we perform a BFS traver-
sal to compute a transitive closure (Line 4 – 16). gray is
a set containing a closure of transitively reachable objects
from ċĨ . For each object’s visit, we increase ą in its header
(Line 8) and gather size of the object as well as ą to col-
lectively calculate the coldness threshold Ĉ (Line 9) to be
used in the evacuation phase. Formally, Ĉ is calculated as

Algorithm 1:Marking phase

1 Set roots← TracingRoot()

2 foreach Object ċĨ ∈ roots do

3 Queue gray = {Or }

4 while gray is NOT empty do

5 Object ċ ← Deqeue(gray)

6 if ċ.ĬğĩğĪěĚ = Ĝ ėĢĩě then

7 ċ.ĬğĩğĪěĚ = ĪĨīě // mark ċ live

8 ċ .ą ++

9 ComputeOmega(ċ .ĩğİě , ċ .ą)

10 foreach Outgoing reference ě of ċ do

11 Object ċ ′ ← Target(e)

12 if Addr(ċ ′) ∈ RemoteHeap then

13 // ignore cross-zone references

14 continue

15 else

16 Enqeue(ċ ′, gray)

∑
Live Objectsċ (ċ.ĩğİě ×ċ.ą)/

∑
Live Objectsċ (ċ.ĩğİě). As men-

tioned earlier, all references leading to the remote heap are
ignored (Line 14). For e�ciency, we launch multiple parallel
marking tasks which will synchronize once �nished.

2 Evacuation phase. After calculating Ĉ , we are ready to
evacuate cold objects, relieving the program from memory
pressure. As in G1, this phase is stop-the-word: all mutator
threads are paused during evacuation. Each live object will
be moved to the corresponding hot/cold zones based on its ą
value. After being copied, a forwarding reference is left at the
original location so that their pointers can update correctly.
The application is resumed after the evacuation phase.

Maintaining integrity and e�ciency. There are several
potential problems if naïvely relocating objects to remote
servers. First, recall that the GC runs in the local heap and
not the remote heap. The lack of a global view of the entire
heap can cause dangling pointers – a severe problem. Fig-
ure 4a illustrates a simple example. When a cold object ÿ1
that is sandwiched between two hot objects is relocated, the
reference ÿ1 → Ą2 is not followed by the GC (in Alg. 1),
resulting in Ą2 and Ą3 unreachable and will be (mistak-
enly) deallocated. To ensure memory safety, Polar captures
all incoming references to the local heap (e.g., ÿ1 → Ą2)
and includes the pointees (e.g., Ą2) in the set of GC roots
(i.e., Alg. 1, Line 1). These captured references should also
be monitored. Figure 4b is a snapshot after Figure 4a. Here,
reference Ą1 → ÿ2 is destroyed, thus ÿ1 is a dead object,
causing ÿ1 → Ą2 to also be dead. If the GC is unaware of
such a dead reference, Ą2 is still included as a GC root and



Polar: A Managed Runtime with Hotness-Segregated Heap for Far Memory APSys ’24, September 4–5, 2024, Kyoto, Japan

thus, Ą2 and Ą3 will not be collected and become memory
leaks.

H1

H2

C1

H3

Local heap Remote heap

Boundary that GC doesn’t cross

(a)

H1

H2

C1

H3

Local heap Remote heap

Boundary that GC doesn’t cross

(b)

Figure 4: (a) Ignoring reference C1→ H2 will cause H2

& H3 to be mistakenly collected. (b) Unaware of the

dead reference C1→H2 will cause H2 & H3 to become

memory leaks.

Second, when an object is moved, the standard practice
is to leave the new address at the original location. While it
works for any intra-local heap relocation, it is problematic
if there is a cold-to-hot reference. Using Figure 4a as an
example where a cold object ÿ1 has a reference to a hot
object Ą2. If Ą2 is moved by the GC (to another location
in the local heap, due to heap compaction), ÿ1 has no way
of knowing the new location of Ą2 to update the reference.
Without updating, if we access ÿ1 again, the reference will
result in invalid data. A synchronization between the local
heap and the remote heap is required but will be expensive.

In Polar, we develop an e�cient solution: for each zone,
it has an indirection structure called trampoline as a proxy
for cross-zone access. Formally, a zone’s trampoline records
cross-zone, incoming references. A trampoline can be im-
plemented as an array of entries, each recording pointee’s
address, and stored in an o�-heap area. When an object is
evicted to the cold zone, we are not leaving the remote ad-
dress; instead, the address of the trampoline entry will be
left as the forwarding reference.

Before Evacuation

Local heap Remote heap

After Evacuation

Local heap Remote heap

A
B

C D

Hot/Cold object

A

B

C

D

Hot/Cold trampoline entry
Intra-heap reference Inter-heap reference

Figure 5: Heap snapshot before and after evacuation.

Figure 5 illustrates an example of a heap snapshot before
(left) and after (right) evacuation. Consider the hot-to-cold
reference ý → þ (stored in �eld Ĝ of A), after B is evicted
to the remote heap, at original B’s location, the address of
an entry, says ě of the cold trampoline is left. Field Ĝ is
then updated with the address of ě , which stores B’s remote
address. When we access �eld Ĝ of A, there is one-level
indirection to be resolved to retrieve B’s remote address.
A similar treatment happens to the cold-to-hot reference
þ → ÿ . We do not have to worry about intra-zone references
such as ý → ÿ and þ → Ā because both the pointer and
pointee are not crossing server boundaries.

Accessing cold objects. Cold objects are rarely needed by
the mutator. As such, an obvious treatment is to perform, af-
ter resolving the indirection through the trampoline, RDMA
operations on-demand. That is, for every heap read Ę = ė.Ĝ

or heap write ė.Ĝ = Ę, the runtime �rst checks if objectċė is
in the remote heap. If so, the system redirects this access to a
new RDMA-based path. Otherwise, the usual (local heap ac-
cess) path is taken. While issuing singular RDMA operation
for each access seems expensive, as our assumptions stand,
such access to cold objects should be infrequent, making this
handling acceptable.

2.5 Remote heap management

The remote heap could be managed using a spectrum of op-
tions. One option is that it can be treated akin to fast storage.
In other words, cold objects are assumed to be immortal
for the whole execution. As such, the remote heap is deallo-
cated as a whole at the end of the execution. The treatment
is clearly over-conservative and is not an e�cient use of
resources. For e�ciency, a Polar-agent occasionally scans,
reclaims dead objects, and compacts the remote heap. Due
to space constraints, details of this agent are omitted.

3 Data hotness study

Polar is ongoing. In this Section, to establish the feasibility
of Polar, we present a study examining data hotness of
several real-world applications.

Setup & Methodology. We modi�ed the codebase of Open-
JDK v. 11u (a popular open-source version of the JVM) at
various modules such as the GC, the memory allocator, the
interpreter, and the multi-tiered compiler (C1 and C2) to
enlarge the object’s header and instrument all memory R/W
to track data coldness ą as described in §2. The modi�ed
runtime system is then used to execute programs of Apache
Spark v. 3.1.2 [8], a widely adopted distributed system for
big data analytics. We used a cluster of three servers, each of
which has 2 Intel(R) Xeon(R) Silver 4214R processors, 180GB
of memory, and 500GB of SSD, connected via a Mellanox



APSys ’24, September 4–5, 2024, Kyoto, Japan Dat Nguyen and Khanh Nguyen

ConnectX-6 card. Spark is run with Hadoop v. 3.3.1 [6]. Addi-
tionally, we run two programs from the DaCapo benchmark
suite v. 9.12 [12] on one of the servers. Table 1 lists programs
used in this study and their input datasets. These programs
cover multiple categories of workload, including a typical
Map-Reduce (WordCount), graph processing (PageRank, Tri-
angleCount), and machine learning (KMeans, LinearRegres-
sion, and DecisionTree). From the DaCapo benchmark suite,
H2 is a database program, and Tradesoap is a trading applica-
tion based on Apache DayTrader J2EE. For each program, the
heap size is con�gured to be at least three times the working
set’s size.

Programs Datasets Heap

Spark:

WordCount StackOver�ow comments (8GB) [40] 10GB
PageRank Wikipedia English (6GB) [43] 20GB
TriangleCount Synthetic 1K nodes, 4K edges 5GB
KMeans KDD2012 (5GB) [35] 20GB
LinearRegression E2006-Unigram frequencies (2GB) [35] 12GB
DecisionTree E2006-Unigram frequencies (2GB) [35] 12GB

DaCapo:

H2 DaCapo Huge 2GB
Tradesoap DaCapo Huge 2GB

Table 1: Programs, their input datasets and heap size

used in our study.

In this study, no object eviction is done. At the end of each
GC run, we used the calculated Ĉ to compute the percentage
of the heap that was hot vs. cold. Figure 6 shows the per-
centage of the heap that is hot (red) and cold (blue) for each
program over time.

Results & Key Takeaways. Except for LinearRegression
(with 8.13% of the heap is cold, on average), the amount of

cold data is signi�cant in the programs, ranging from 31.06%
(DecisionTree) to 62.14% (TriangleCount) of the live heap,
on average. More importantly, this result suggests that Ĉ is
a good proxy to capture the temporal property of the heap
and reacts well to the application’s dynamic behavior.

4 Related Work

Garbage Collection for Data-Instensive Workloads. There
have been several works adapting GC algorithms for
data-intensive workloads such as Yak [30], Taurus [26],
Espresso [51], Panthera [46], Jade [50], among others [19,
23, 42, 52, 55]. Polar is similar in spirit to Semeru [47],
Mako [25], and MemLiner [48], the GCs for memory-
disaggregated environments that o�oad memory manage-
ment tasks onto remote servers. However, they require a
modi�ed OS kernel to support the cache-and-swap mech-
anism while Polar does not. HCSGC [53] augments ZGC

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

WordCount
0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

PageRank
0 20 40 60 80 100 120 140 160

0.0

0.2

0.4

0.6

0.8

1.0

TriangleCount

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

KMeans
0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

LinearRegression
0 2 4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

DecisionTree

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

H2
0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

Tradesoap

Figure 6: Heatmap of the heap of programs.

and segregates the live heap based on a simpler de�nition of
hotness than Polar.

Resource Disaggregation. The has been a proliferation of
remote-memory systems in the past few years. Remote mem-
ory is part of a general trend of resource disaggregation in
datacenters [3, 5, 11, 18, 24]. Many optimizations and sys-
tems such as LegoOS [37], FaRM [15], Kona [13] and oth-
ers [1, 4, 9, 20, 21, 32–34, 36, 38, 39, 41, 49, 56] have been
developed to reduce remote latency. However, they all focus
on low-level system stacks and do not consider the run-time
characteristics of programs. They do not work well for man-
aged applications such as Spark [54] and Hadoop [6] as well
as [7, 29, 45]. Polar optimizes the runtime focusing on the
far memory and does not require co-redesign support from
the OS.

5 Conclusion

Far memory is an attractive solution to increase the scalabil-
ity of modern workloads. This paper presents the design of
Polar, a redesigned runtime for e�ciently running managed
applications in far memory. In Polar, the runtime automati-
cally places objects at appropriate memory locations based
on their access frequency to minimize remote accesses over-
heads, thereby improving end-to-end execution.

Acknowledgments

We thank the anonymous reviewers for their feedback in
improving this paper. This work is supported by NSF grant
CNS-2107010.



Polar: A Managed Runtime with Hotness-Segregated Heap for Far Memory APSys ’24, September 4–5, 2024, Kyoto, Japan

References
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,

Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Sub-

rahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,

and Michael Wei. 2018. Remote Regions: A Simple Abstraction for

Remote Memory. In Proceedings of the 2018 USENIX Conference on

Usenix Annual Technical Conference (USENIX ATC ’18). 775–787.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,

Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Ra-

jesh Venkatasubramanian, and Michael Wei. 2017. Remote Memory

in the Age of Fast Networks. In Proceedings of the 2017 Symposium on

Cloud Computing (SoCC ’17). 121–127.

[3] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad

Singhal. 2019. Designing Far Memory Data Structures: Think Outside

the Box. In HotOS. 120–126.

[4] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy

Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and

Scott Shenker. 2020. Can Far Memory Improve Job Throughput?. In

EuroSys. Article 14.

[5] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disaggre-

gation and the Application. In HotCloud.

[6] Apache. 2005. Hadoop: Open-source implementation of MapReduce.

http://hadoop.apache.org.

[7] Apache. 2024. Apache Flink. http://�ink.apache.org/.

[8] Apache. 2024. Uni�ed engine for large-scale data analytics. https:

//spark.apache.org/.

[9] Krste Asanović. 2014. FireBox: A Hardware Building Block for 2020

Warehouse-Scale Computers. In Keynote talk at the 12th USENIX Con-

ference on File and Storage Technologies (FAST’ 14).

[10] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.

Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,

and Katherine A. Yelick. 2006. The Landscape of Parallel Computing

Research: A View from Berkeley. Technical Report UCB/EECS-2006-

183. EECS Department, University of California, Berkeley. http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[11] Luiz Andre Barroso. 2011. Warehouse-Scale Computing: Entering

the Teenage Decade. In Proceedings of the 38th Annual International

Symposium on Computer Architecture (ISCA ’11).

[12] S. M. Blackburn, R. Garner, C. Ho�man, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.

Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis.

In OOPSLA. 169–190.

[13] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software

Runtimes for Disaggregated Memory. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS 2021). 79–92.

[14] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.

Garbage-�rst Garbage Collection. In ISMM. 37–48.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. 2014. FaRM: Fast Remote Memory. In 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

’14). 401–414.

[16] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and

Roland Westrelin. 2016. Shenandoah: An Open-source Concurrent

Compacting Garbage Collector for OpenJDK. In Proceedings of the 13th

International Conference on Principles and Practices of Programming on

the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

Article 13, 9 pages.

[17] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.

Caladan: Mitigating Interference at Microsecond Timescales. In 14th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’20).

[18] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,

Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.

2016. Network Requirements for Resource Disaggregation. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI’16). 249–264.

[19] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan

Nguyen. 2015. NumaGiC: A Garbage Collector for Big Data on Big

NUMA Machines. In Proceedings of the Twentieth International Confer-

ence on Architectural Support for Programming Languages and Oper-

ating Systems (Istanbul, Turkey) (ASPLOS ’15). ACM, New York, NY,

USA, 661–673. https://doi.org/10.1145/2694344.2694361

[20] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G. Shin. 2017. E�cient Memory Disaggregation with IN-

FINISWAP. In Proceedings of the 14th USENIX Conference on Networked

Systems Design and Implementation (NSDI ’17). 649–667.

[21] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiy-

ing Zhang. 2022. Clio: A Hardware-Software Co-Designed Disag-

gregated Memory System. In Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-

sociation for Computing Machinery, New York, NY, USA, 417–433.

https://doi.org/10.1145/3503222.3507762

[22] Intel. 2019. Intel High Performance Computing Fabrics.

https://www.intel.com/content/www/us/en/high-performance-

computing-fabrics.

[23] Haim Kermany and Erez Petrank. 2006. The Compressor: Concurrent,

Incremental, and Parallel Compaction. In PLDI. 354–363.

[24] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,

and T. F. Wenisch. 2012. System-level implications of disaggregated

memory. In IEEE International Symposium on High-Performance Comp

Architecture. 1–12.

[25] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond,

Stephen M. Blackburn, Miryung Kim, and Guoqing Harry Xu. 2022.

Mako: a low-pause, high-throughput evacuating collector for memory-

disaggregated datacenters. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and Im-

plementation (San Diego, CA, USA) (PLDI 2022). 92–107. https:

//doi.org/10.1145/3519939.3523441

[26] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2016.

Taurus: A Holistic Language Runtime System for Coordinating Dis-

tributed Managed-Language Applications. In ASPLOS. 457–471.

[27] Hasan Al Maruf and Mosharaf Chowdhury. 2020. E�ectively Prefetch-

ing Remote Memory with Leap. In 2020 USENIX Annual Technical

Conference, USENIX ATC 2020, July 15-17, 2020. 843–857.

[28] Mellanox. 2019. ConnectX-6 Single/Dual-Port Adapter supporting

200Gb/s with VPI. http://www.mellanox.com/page/products_dyn?

product_family=265&mtag=connectx_6_vpi_card.

[29] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martin Abadi. 2013. Naiad: A Timely Data�ow System.

In SOSP. 439–455.

[30] KhanhNguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsa-

dat Alamian, and Onur Mutlu. 2016. Yak: a high-performance big-data-

friendly garbage collector. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (Savannah, GA, USA)

(OSDI’16). USENIX Association, 349–365.

[31] Oracle. 2019. The Z Garbage Collector. https://wiki.openjdk.java.net/

display/zgc/Main.



APSys ’24, September 4–5, 2024, Kyoto, Japan Dat Nguyen and Khanh Nguyen

[32] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving High CPU E�ciency

for Latency-sensitive Datacenter Workloads. In 16th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 19).

USENIX Association, Boston, MA, 361–378. https://www.usenix.org/

conference/nsdi19/presentation/ousterhout

[33] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,

Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,

Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen

Yang. 2015. The RAMCloud Storage System. ACM Trans. Comput. Syst.

33, 3, Article 7 (Aug. 2015), 55 pages. https://doi.org/10.1145/2806887

[34] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu,

Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023. Hermit:

Low-Latency, High-Throughput, and Transparent Remote Memory

via Feedback-Directed Asynchrony. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23). Boston, MA,

181–198. https://www.usenix.org/conference/nsdi23/presentation/

qiao

[35] Rong-En Fan. 2011. LIBSVM Data: Classi�cation, Regression, and

Multi-label. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

[36] Zhenyuan Ruan, Malte Schwarzkopf, Marcos Aguilera, and Adam

Belay. 2020. AIFM: High-Performance, Application-Integrated Far

Memory. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’20).

[37] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.

LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-

aggregation. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18). 69–87.

[38] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh

Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019.

Shoal: A Network Architecture for Disaggregated Racks. In Proceed-

ings of the 16th USENIX Conference on Networked Systems Design and

Implementation (NSDI ’19). 255–270.

[39] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo

Alonso. 2020. StRoM: Smart Remote Memory. In EuroSys. Article 29.

[40] StackExchange. 2022. StackOver�ow Comments. https://archive.org/

download/stackexchange.

[41] Brian R. Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and

Kyle C. Hale. 2024. TrackFM: Far-out Compiler Support for a Far

MemoryWorld. In Proceedings of the 29th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). 401–419. https:

//doi.org/10.1145/3617232.3624856

[42] Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The Continuously

Concurrent Compacting Collector. In Proceedings of the International

Symposium on Memory Management (San Jose, California, USA) (ISMM

’11). ACM, New York, NY, USA, 79–88. https://doi.org/10.1145/1993478.

1993491

[43] The KONECT Project. 2013. KONECT networks datasets. http:

//konect.cc/networks/.

[44] Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support

for Datacenter Applications. In Proceedings of the 26th Symposium on

Operating Systems Principles (SOSP ’17). 306–324.

[45] Twitter. 2011. Storm: distributed and fault-tolerant realtime computa-

tion. https://github.com/apache/storm.

[46] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur

Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera:

Holistic Memory Management for Big Data Processing over Hybrid

Memories. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI 2019). 347–

362.
[47] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh

Nguyen, Michael Bond, Ravi Netravali, Miryung Kim, and Guo-

qing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed

Runtime. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20). USENIX Association, Ban�, Alberta,

261––280.

[48] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,

Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. MemLiner:

Lining up Tracing and Application for a Far-Memory-Friendly Run-

time. In 16th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’22). 35–53.

[49] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wenguang Chen, Ravi

Netravali, Miryung Kim, and GuoqingHarry Xu. 2023. Canvas: Isolated

and Adaptive Swapping for Multi-Applications on Remote Memory. In

20th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 23). USENIX Association, Boston, MA, 161–179. https:

//www.usenix.org/conference/nsdi23/presentation/wang-chenxi

[50] Mingyu Wu, Liang Mao, Yude Lin, Yifeng Jin, Zhe Li, Hongtao Lyu,

Jiawei Tang, Xiaowei Lu, Hao Tang, Denghui Dong, Haibo Chen, and

Binyu Zang. 2024. Jade: A High-throughput Concurrent Copying

Garbage Collector. In Proceedings of the Nineteenth European Conference

on Computer Systems (Athens, Greece) (EuroSys ’24). 1160–1174. https:

//doi.org/10.1145/3627703.3650087

[51] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu

Zang, and Haibing Guan. 2018. Espresso: Brewing Java For More

Non-Volatility. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating

Systems (VA, USA). ACM.

[52] Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu

Zang, Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao Zhang.

2020. Platinum: ACPU-E�cient Concurrent Garbage Collector for Tail-

Reduction of Interactive Services. In 2020 USENIX Annual Technical

Conference (USENIX ATC 20). USENIX Association, 159–172. https:

//www.usenix.org/conference/atc20/presentation/wu-mingyu

[53] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. 2020.

Improving Program Locality in the GC Using Hotness. In Proceed-

ings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (London, UK) (PLDI 2020). Association

for Computing Machinery, New York, NY, USA, 301–313. https:

//doi.org/10.1145/3385412.3385977

[54] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-

ing Sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 10).

[55] Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. 2022.

Low-latency, high-throughput garbage collection. In Proceedings of the

43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (San Diego, CA, USA) (PLDI 2022). 76–91.

https://doi.org/10.1145/3519939.3523440

[56] Yang Zhou, Hassan M. G.Wassel, Sihang Liu, Jiaqi Gao, James Mickens,

Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, HenryM. Levy,

and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In 16th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22). USENIX Association, Carlsbad, CA, 55–71. https://www.

usenix.org/conference/osdi22/presentation/zhou-yang


	Abstract
	1 Introduction
	2 Polar
	2.1 Polar heap
	2.2 Data hotness measurement
	2.3 Coldness threshold 
	2.4 Local heap management
	2.5 Remote heap management

	3 Data hotness study
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

