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Abstract—Apache Spark arguably is the most prominent Big
Data processing framework tackling the scalability challenge of
a wide variety of modern workloads. A key to its success is
caching critical data in memory, thereby eliminating wasteful
computations of regenerating intermediate results. While critical
to performance, caching is not automated. Instead, developers
have to manually handle such a data management task via APIs,
a process that is error-prone and labor-intensive, yet may still
yield sub-optimal performance due to execution complexities.
Existing optimizations rely on expensive profiling steps and/or
application-specific cost models to enable a postmortem analysis
and a manual modification to existing applications.

This paper presents CACHEIT, built to take the guesswork off
the users while running applications as-is. CACHEIT analyzes
the program’s workflow, extracting important features such as
dependencies and access patterns, using them as an oracle to
detect high-value data candidates and guide the caching decisions
at run time. CACHEIT liberates users from low-level memory
management requirements, allowing them to focus on the business
logic instead. CACHEIT is application-agnostic and requires no
profiling or a cost model. A thorough evaluation with a broad
range of Spark applications on real-world datasets shows that
CACHEIT is effective in maintaining satisfactory performance,
incurring only marginal slowdown compared to the manually
well-tuned counterparts.

Index Terms—caching, memory management, dynamic analysis

I. INTRODUCTION

Large-scale data processing frameworks are the backbone
of modern computing. Some popular frameworks, to name
a few, are Spark [1, 2], MapReduce [3], and Flink [4].
These frameworks use a dataflow programming model where
users write applications as a sequence of operations on the
input datasets. The processing engines enable a push-button
deployment that can scale from a single node to a datacenter-
sized cluster. Among these Big Data analytics systems, Apache
Spark is the most prominent framework. The ecosystem based
on Spark flourishes with support for a wide variety of workloads
such as high-level querying (SparkSQL [5]), graph processing
(GraphX [6]), and AI/ML (SparkML) in multiple languages
such as Python, Scala, Java, and R.

A key feature that makes Spark superior to a framework
such as MapReduce is the advocating for keeping data in
memory (a.k.a. caching) for reuse and thereby eliminating
repeated computations and/or disk I/O to generate the same data.
This is highly relevant to modern algorithms and workloads
such as graph analytics and machine learning which are often
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iterative — a same set of functions is invoked on input datasets
repeatedly. Despite its importance, caching is not automated.
Spark provides APIs for developers to manually cache and
uncache data. Even though the APIs have rich semantics (e.g.,
using persist (), users can choose between memory, disk, or
a combination of both), manual data caching is challenging. To
be effective, developers must have a deep understanding of the
workflow including the working set size and data dependencies,
as well as the internals of Spark. As a simple example, if two
consecutive jobs do not share any data dependency, caching
data of the earlier job needlessly increases the memory pressure.
This is more problematic in cases where the working set size
exceeds the memory capacity. Indeed, evidence [7, 8], as well
as our experience, shows that mistakes in caching data are
detrimental: applications may crash due to out-of-memory
errors, or suffer a significant slowdown. The impact is more
devastating for long-running or latency-sensitive applications
where a slowdown of one worker node can prolong the entire
pipeline. These failures are the direct consequences of undue
memory pressure caused by keeping useless data in memory,
exceeding memory capacity and/or magnifying the overhead
of the runtime system. In practice, this is a trial-and-error
process that is labor-intensive and error-prone. Developers
usually follow a set of best-practice recommendations for
picking data to be cached and may miss performance gain
opportunities.

There is a body of work on identifying valuable data for
caching [9-16]. However, the majority of these works rely
on profiling or expert experience to derive an application-
specific cost model that can provide hints to users. While
commendable, there is much to be desired. Profiling is known
to suffer from a plethora of problems such as low accuracy
to unseen datasets and being expensive to use. Moreover,
these techniques are postmortem. Using the analysis result
which might contain false positives, users manually modify the
applications for re-execution (i.e., inserting the API cache (),
which is short-hand for persist () using memory — if the
target is within Spark libraries, this might not be possible),
then observe the performance. The tedious process repeats
until users are satisfied. Some other works [8, 17] mitigate
this laborious effort by exposing the dynamic workflow to the
users, allowing them to interactively reconfigure the run time
behavior. Still, involving human in the optimization process
makes these tools undesirable.
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We argue that the burden on users to manually cache data
at development time outweighs the flexibility provided by the
framework. Relying on users to enforce caching decisions
makes it infeasible to adapt to dynamic execution behaviors.
This explains why even after a lengthy experimentation of
various combinations, there is still room for performance
improvement in most applications. Hence, the overarching goal
of this work is 1) to free developers from the labor-intensive
task of detecting and manually enforcing caching decisions on
a set of data at compile time while 2) providing satisfactory
performance at run time. Other attempts for the same goal
[18, 19] aim to find an optimum data caching decision using a
search algorithm. Although automated, these methods may be
costly because they must find the optimum in a large search
space that scales with the program duration and complexity.
Work that performs caching by dynamically analyzing the
data flow [15] operates solely on the global view of the data
dependency graph and, hence, falls short in recognizing changes
in the usage patterns to timely remove stale data.

To that end, we propose CACHEIT — implemented as an
extension to the Spark runtime system. CACHEIT intercepts
Spark jobs submission, and automatically extracts and analyzes
dataflow graphs of the job. Using a combination of local and
global analyses, it tracks data dependencies and access patterns
to identify frequently used data and passes such information
to the runtime system. During execution, high-value data are
automatically kept in memory for future reuse without any
user effort. The idea is simple yet — as demonstrated in our
evaluation on several benchmarks using real-world workloads
— effective. CACHEIT is practical as it does not require any
profiling and can be used with any application as-is without any
modification to the program’s code. The end-to-end execution
time of the application with CACHEIT’s support is on par with
the manually well-tuned versions. Our work prevents users
from making caching mistakes, allowing them to focus on
high-level business logic instead.

In summary, the contributions of this paper are as follows:

« We provide two analysis algorithms capturing local and
global reuse patterns of RDDs, the immutable dataset
abstraction, in Spark applications. These algorithms enable
timely cache and uncache decisions of the RDDs.

o We thoroughly evaluate the effectiveness of CACHEIT.
The results are positive, CACHEIT delivers satisfactory
execution time without much user effort.

II. BACKGROUND & MOTIVATION

In this Section, we briefly introduce the execution model of
Spark. We then present an empirical study on the impact of
data caching mistakes on performance to motivate our work.

A. Spark execution model

A Spark cluster consists of one Master node running the
driver program, and multiple Worker nodes running executors,
as shown in Figure 1. The driver represents the control
plane: it accepts user applications and drives the flow of
the applications as well as work re-execution in case of
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Figure 1: Spark Architecture. The Driver controls the execution
flow while Workers perform computation in parallel, each
operates on a partition of an RDD.

errors. The executors perform actual data processing. Both
driver and executor are instances of Java Virtual Machines
(JVMs). Spark employs a core data abstraction called Resilient
Distributed Datasets (RDDs) [20]. An operation on RDD is
partitioned into small tasks, each operates on a fragment of
the RDD in parallel. For fault-tolerance purposes, RDDs are
immutable. When a user submits an application, the driver
analyzes the logic and represents the workflow as a directed
acyclic graph (DAG) of operations, each node is an RDD. In
Spark’s terminology, an operation is either a transformation or
an action. Transformations produce intermediate RDDs while
actions return results to the driver. The execution of an action
triggers the execution of all transformations along the actions’
dependency graph (or in Spark’s lingo, lineage). An action
establishes a barrier, delaying transformations until the next
action is called. Effectively, actions split a program into multiple
jobs, each with a different lineage/DAG.

The result of an operation does not persist. Consequently, an
operation referenced in multiple jobs are invoked repeatedly,
once for each, to generate the same data. To avoid such wasteful
computations, Spark programmer has the option to keep the
result in memory explicitly! by invoking the API cache ()
in the program. Upon executing an action, cached RDDs can
be used in lieu of the computations generating them, thereby
avoiding performance degradation. Under the hood, these RDDs
are marked so that once materialized at run time, they are not
garbage-collected by the JVM.

B. Impact of improper RDD caching to execution time

Caching appropriate RDDs is critical to performance by
avoiding wasteful recomputations each time the executor
requires them. A naive solution of caching the result of all
operations, assuming infinite memory, is not optimal because
it creates undue memory pressure on the runtime system.
Evidence [21-23] shows the runtime can spend up to 50%

by default, as this is the most efficient way. Spark does provide other
options for caching, which we defer them to future work.
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of execution on automatic memory management tasks such as
garbage collection (GC).

As a motivating example, we ran PageRank application
on a Wikipedia dataset [24] in a cluster using multiple sizes
of the heap ranging from 16GB to 128GB, which was very
generous given the dataset is of size of 6GB. The code is
shown in Listing 1 and graphically visualized in Figure 2. The
application was run under three scenarios representing memory
consumption ranking from the least to the most:

« NoCache: No RDD is persisted, every RDD must be

recomputed.

« Manualldeal: Manually applying cache () to a selective

set of RDDs after an exhaustive search of all combinations.
The version with the fastest execution is chosen.

o CacheAll: Every RDD is cached in memory, no recom-

putation is needed.

Listing 1: A Spark PageRank application in Scala.

1 def PageRank (edges:RDD, iters:Int) :Unit={
val graph = edges.groupByKey ()
var ranks = graph.mapValues (v => 1.0)

for (1 <- 1 to iters) {
val contribs = graph.join(ranks) .values.
flatMap{ case (urls, rank) =>urls.map (url
=> (url, rank / urls.size))}

- R SRS

7 ranks = contribs.reduceByKey(_ + _).mapValues
(0.15 + 0.85 » )
8}
9 print (ranks.collect ())
10 }
(gmupByKey) imquqweg\ anqume;\ imqucme{

(flatMap| (flatMap| (flatMap| [ ) Transformation

t 1 1 ][I Action

GeducedByKejj\}educedByKejj\}educedByKeiﬁ — Dependency

mapValues «—join| oin| oin|

Figure 2: A DAG of PageRank running 3 iterations. The RDD
created by the first groupByKey transformation is reused in
subsequent iterations.

Each heap size configuration is run three times and the
average performance is reported in Table I. We normalize
the performance to that of Manualldeal. Aside from end-
to-end time, we also report the performance of G1 GC [25]
- JVM’s default garbage collector. For PageRank (PR), the
best performance is obtained with only the RDD on Line 2,
representing the input graph, cached in memory. This RDD is
reused multiple times in the loop (Line 6). Failure to cache this
RDD (in NoCache) results in, on average, a 30% slowdown due
to recomputation in each iteration. Somewhat counter-intuitive,
GC cost is also increased in this case (1.41x on average).
This is because unpersisted intermediate data are marked as
garbage at the end of each job to be collected, forcing the
next jobs to recompute these data and allocate additional heap
space. Consequently, memory is allocated much faster than
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that can be collected, thus triggering more frequent GC runs.
Naively caching more RDDs than necessary in CacheAll also
degrades the performance. A more occupied heap is constantly
under pressure to find space for new allocations, forcing the
GC to start more frequently and run for a longer duration.
GC overhead in CacheAll is more than doubled on average,
and is as high as 7.4x. A prolonged iteration holds up the
entire pipeline, decreasing throughput, and further prolonging
the execution. We observe an average increase of 56% in the
execution time of PageRank with CacheAll. Similar behavior
is observed with other applications such as KMeans (KM), and
TransitiveClosure (TC), as shown in Table I.

Table I: Slowdowns (x) incurred by improperly caching,
normalized to performance of Manualldeal. For each metric,
we report the range and the mean, across all different heap
sizes ranging from 16GB to 128GB.

Apps NoCache CacheAll
Ex. Time | GC Ex. Time | GC

PR 131 ~ 141 |0.89 ~ 2.08 || 1.46 ~ 1.86 | 1.51 ~ 7.40
(1.37) (1.41) (1.56) (2.30)

KM 1.13 ~ 328 | 0.02 ~ 0.74 || 1.24 ~ 1.68 | 0.99 ~ 7.51
(2.09) (0.25) (1.41) (5.84)

TC 148 ~ 205|139 ~ 1.42 || 1.02 ~ 1.22 | 1.08 ~ 5.90
(1.60) (1.41) (1.10) (1.40)

Discussion  The study confirms that over- and under-

estimating the set of candidate RDDs can negatively impact
the performance of a Spark program even in the case memory
is not a scarce resource, a generous assumption that often fails
to hold in practice. Therefore, a Spark program developer is
required not only to understand the implemented algorithm but
also the internals of Spark to develop a performant application.
It is worth noting that even if the programmer understands the
implication of Spark’s execution model, determining a good
set of RDDs and having a good performance is not a trivial
problem. The reason is twofold: first, the search space for all
combinations of RDDs as caching candidates is huge; second,
often users need to use Spark libraries which contain hidden
RDDs that are out of users’ direct control.

III. CACHEIT’S DESIGN

In this Section, we present the design of CACHEIT with its
two job analyses handling two common RDD reuse patterns.
We also describe a special pattern found empirically and how
CACHEIT handles such a case.

A. Overview & Design rationale

CACHEIT can be implemented as a static analysis that
analyzes the whole execution plan of a Spark application before
its execution (using a byte code analyzer such as Soot [26]).
However, because of the tight coupling between the application
and the platform, a static analysis has to exhaustively explore
all execution paths including those in libraries, which is the
well-known path explosion problem [27], making CACHEIT not
able to scale to Spark’s codebase which has millions of lines
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Figure 3: Overview of CACHEIT’s design. The DAGAnalyzer is
new to the Spark engine. It analyzes a job’s DAG and returns
the caching candidates to the runtime.

of code. Additionally, static analysis is often too conservative,
thus lacking the ability to precisely detect caching candidates.

To address these challenges, we implement CACHEIT as
a runtime support. Specifically, as shown in Figure 3, a new
DAGAnalyzer is created in the driver to 1) intercept each job
submission at run time, 2) analyze workflow information from
the DAGs created by Spark’s DAGScheduler to select caching
candidates, and 3) return the set of caching candidates to Spark
before resuming the job submission.

Because Spark generates DAGs on a per-job basis, each DAG
contains the RDDs relating specifically to its job execution.
To allow for dynamic behaviors in a Spark program, whether
a job is executed depends on the results returned from the
previous job(s). Hence, caching decisions made for each job
in isolation from the job sequence are ineffective because
the intermediate results may be utilized across jobs. An ideal
data caching strategy demands the knowledge of future jobs,
which is challenging to dynamically derive. However, because
there often exists patterns of RDD usage in a job sequence,
we can leverage past jobs for future caching decisions. The
DAGAnalyzer, therefore, uses a combination of two analyses
to have a complete picture of the execution: an intra-job (local)
analysis to identify candidates using dependencies in the current
dataflow graph; and an inter-job (global) analysis to capture
access patterns across jobs.

B. Intra-job analysis

Algorithm 1 shows the pseudo-code of the DAGAnalyzer’s
intra-job analysis. The analysis is a BFS-like graph traversal
starting from the RDD on which the action is invoked, which
we refer to as root RDD (d,. on Line 11). For each RDD in the
DAG, the algorithm computes the number of direct downstream
RDDs, called dependentCount (Lines 4-10). While simple,
dependentCount captures how important an RDD is in the
current job. After filtering out all low-value RDDs, i.e., having
dependentCount less than a user-defined threshold Tpc,
CACHEIT marks the remaining RDDs as caching candidates at
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Algorithm 1: Intra-job analysis

Input:
integer T'pc: Intra-job dependentCount threshold
RDD d;: root RDD of the current job

/* BFS on the current job’s DAG to count each RDD’s number of

dependents */

1 Map( RDD —; integer ) dependenceCounts < ()

2 Queue( RDD ) toVisit « 0

3 Set{ RDD ) visited <+ ()

4 def visit (d: RDD):

if d ¢ visited then
visited.add (d)
dependenceCounts|dep] + 0
foreach RDD dep € d.dependencies () do
L dependenceCounts|dep]++

toVisit.enqueue (dep)
toVisit.enqueue (d;)

while toVisit is not empty do
L visit (toVisit.dequeue () )

-RE-CREEN B N

/* Candidate RDDs: multiple dependents in the current job */

foreach RDD d € dependenceCounts.keySet () do
if dependenceCounts|d] > Tpc then

L d.mark_cache ()

Job 1 Job 2 Job 3
#0 \ chnText\J \: ScanText :\ \: ScanText :\
#1 \;Deser.ToObiect:\ \ Deser.ToObject \\ \ Deser.ToObiject \

1 i i

#2| mapParfition:\ \ mapPartition ) ( mapPartition \

1 1

#3\: map \ ‘\mdp:‘ ‘\mqu

‘ takeSample ‘ | reduceByKey | | reduceByKey |
() Transformation | map | map
[ ]Action T T

— Dependency ‘ collectAsMap ‘ ‘ collectAsMap ‘

Figure 4: Simplified DAGs of the first three jobs of KMeans.
The first 4 RDDs (RDD#0 to RDD#3) appear in all DAGs but
only RDD#3 should be cached.

run time (see Section III-E). Because we visit each RDD node
in the DAG only once, this analysis is lightweight with a time
complexity of O(D) with D being the number of RDDs in
the current DAG. Often this D is small, making the analysis
overhead negligible. Because each Spark job is reasonably
unique, all RDDs cached by CACHEIT’s intra-job analysis
are automatically uncached at the end of each job unless the
inter-job analysis (explained next in Section III-C) detects that
they should stay in the memory to be reused in future jobs.

C. Inter-job analysis

If multiple consecutive jobs share a common set of RDDs,
a subset of such RDDs should be cached in memory for faster
access in later jobs. In Figure 4, each job shown represents an
iteration of the KMeans program. Because all RDDs in each
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Algorithm 2: Inter-job analysis

Input:

integer T'4c: Inter-job appearanceCount threshold
RDD d,: root RDD of the current job

Set( RDD ) currentJob: RDDs in the current job
Queue( Set( RDD ) ) latest: RDDs in the latest W jobs

/* Counting RDDs appearance */
1 Set{ RDD ) nominated <+ ()
2 foreach RDD d € currentJob do
foreach Set( RDD ) S € latest do
integer appearanceCount := 0
if d € S then
| appearanceCount++

[ L7 I N

if appearanceCount > Tac & d is not cached then
L nominated.add (d)

et( RDD ) reached < ()

ef revisit (d: RDD):

1 if d ¢ reached then

12 reached.add (d)

13 if d is not cached & d ¢ nominated then

14 foreach RDD dep € d.dependencies () do
15 L L revisit (dep)

16 revisit (d,)
/* Candidate RDDs: found to be reused in W jobs */
17 foreach RDD d € currentJob do
18 L if d € (nominated N reached) then
19

L dmark_cache ()

DAG have a low dependentCount of no more than 1, they are
not cached by the intra-job analysis. This caching decision is
incorrect because some RDDs (e.g., #0 to #3) are reused across
jobs, and caching them can improve performance. A naive inter-
job solution would cache RDDs that appear in the majority of
jobs. However, this is sub-optimal because the appearance of an
RDD in a DAG is not always equivalent to it being accessed in
an execution. In Figure 4, all jobs share the subset of RDDs#0
- #3. Intuitively, only RDD#3 should be cached because it is
the closest RDD to all of the dependents - caching upstream
RDDs#0-#2 will not bring additional benefits if RDD#3 is
already in memory. Worse, they add space overheads.

Algorithm 2 shows how CACHEIT’s inter-job analysis
precisely selects RDDs for caching. The analysis keeps a history
of W latest DAGs in latest queue, updated at the beginning
of each job scheduling. Then, the DAGAnalyzer performs two
steps. In the first step (Line 1-8), CACHEIT inspects latest
(Line 3) to derive the number of DAGs each RDD appears
in, called appearanceCount. RDDs with appearanceCount
not smaller than a user-defined threshold T4~ becomes the
nominated set — an over-estimation of the caching candidates
(RDD#0 to RDD#3 in Figure 4). In the second step (Lines 10
- 16), CACHEIT filters out from nominated any RDD that has
all of their downstream RDDs are cached or in nominated.
Specifically, the DAGAnalyzer performs a recursive DFS-like
DAG traversal from root RDD d,. that stops as soon as a cached
or nominated RDD is visited (Lines 10 - 16). All visited RDDs
form a reached set whose data are already cached or will get

—
=
(=Tl
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materialized in the current job execution. reached RDDs that
are also in nominated are the top caching candidates. (Line 17
- 19). In Figure 4, nominated RDD#0-#2 are not cached due
to having a common downstream nominated RDD#3. The
DAGAnalyzer will uncache an RDD if its appearanceCount
in the latest W DAGs falls below T'4¢.

Because the appearanceCount of an RDD is always less
than T4¢ in the first few jobs, CACHEIT delays caching the
RDDs by at least one job (i.e., when Ty = 2) compared to
the ideal, which will incur a penalty. However, given modern
workloads are iterative, such a penalty of delayed caching can
be sufficiently amortized.

D. A special case of root RDD reuse

We noticed a special RDD usage pattern of the TransitiveClo-
sure (TC) execution as a side-effect of RDD’s immutability. TC
is a graph analysis program that runs a fixed-point algorithm
to compute all paths transitively in a graph. This is represented
by an RDD variable tc shown in Listing 2. The program
iteratively joins graph edges with the already-discovered paths
in tc to generate new paths. Because RDDs are immutable,
each iteration assigns tc a new RDD instance representing
the up-to-date paths (Line 8). Then, the program calls action
count () (Line 9) to check for convergence before passing
the transformed RDD to the next iteration. Applying count ()
on the RDD instance in tc makes it the root RDD of the job.
Figure 5 shows a graphical illustration of the situation. An
expert will know that the root RDD tc (the first instance of
RDD#2, #4, #6, and #8) will be used in the next iteration, and
will correspondingly cache these RDDs at the first time an
action is called upon it. Failing to do so results in the RDD
getting recomputed.

Listing 2: TransitiveClosure (TC) application (simplified). Each
RDD instance assigned to variable tc (Line 8, RDD#2, #4,
#6, and #8 in Figure 5) must be cached at their first encounter
to be efficiently used in the next iteration (Line 8). Inter-job
analysis (Section III-C) fails to timely cache these root RDDs
as delayed caching occurs to each new RDD instance of tc.

1 def TC() {

2 var tc =
3 var edges =

4 var oldCount = 0

5 var nextCount = tc.count ()

6 do |

7 oldCount = nextCount

8 tc = tc.union(tc.join(edges)) .distinct ()
9 nextCount = tc.count ()

10 } while (oldCount != nextCount)

1}

This root RDD reuse pattern is a special case of inter-job
RDD reuse that must be handled differently. For iterative
workloads that operate on the same RDD at each iteration
such as KMeans (discussed in Section III-C), delayed caching
happens once at the first time this RDD appears. TC is
different. Because TC repeatedly reuses last iteration’s RDD
to to generate a new RDD instance (tc on Line 9), delayed
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Figure 5: A simplified DAG of the first 4 jobs of TC.

caching happens at every iteration. This inefficiency, although
being a corner case that only applies to a subset of programs
such as TC, needs to be addressed.

We overcome this inefficiency by adding another analysis
step to CACHEIT after inter-job analysis. Each job keeps a
counter called root ReuseCount, initialized to 0. The DAGAn-
alyzer inspects each pair of consecutive jobs/DAGs in W latest
jobs and increments the current job’s root ReuseCount each
time a root RDD of a job is used in the next job. The root RDD
of the current job is cached if the current root ReuseCount is
at least 2. Otherwise, we leave the root RDD of the current job
untouched. For example, in Figure 5, at Job 3, CACHEIT detects
there have been two reuses (RDD#2 and RDD#4, highlighted in
red boxes) and therefore marks RDD#6 as a caching candidate.

E. Integrating CACHEIT to Spark runtime

To implement CACHEIT, the existing API cache () in
Spark is modified to be No_Op when CACHEIT is being
used. The TaskScheduler sends tasks along with RDD caching
candidates which are retrieved from CACHEIT to the workers.
At run time, if an RDD is a candidate according to CACHEIT,
cache () is invoked — we did not modify such an operation
to demonstrate the impact of our analyses. If all cached RDDs
cannot fit in the memory, a standard LRU eviction policy is
used. While an alternative eviction policy such as LRC [14] or
LPW [28] has been shown to help improve memory utilization,
it is not our goal to explore such a policy in this work.

IV. EVALUATION

Setup We implemented CACHEIT in Spark version 3.2.3.
The programs are executed using a cluster with one master node
and five worker nodes. Each node has 2 Intel®Xeon®Silver
4214R processors, 180GB of memory, and S00GB of SSD,
connected via a Mellanox ConnectX-6 card. Hadoop Distributed
File System (HDFES) is used for distributed storage.

We evaluated CACHEIT using a collection of programs
commonly used to benchmark the performance of Spark in
suites such as HiBench [29]. Table II lists these programs along
with the input datasets in various scales. The programs are
selected to represent various RDD usage patterns and DAG
structures, which are important to CACHEIT’s caching decisions.
For example, WordCount is a simple map-reduce workload that
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does not require caching because each created RDD is only used
once. Other applications that require RDD caching are diverse
in their DAG structures. For instance, PageRank is a single-
job workload that reuses a subset of RDDs at each execution,
while KMeans, TransitiveClosure (TC), SupportVectorMachine
(SVM), RandomForest, and LogisticRegression (LR) have RDD
reuses across jobs.

Because GC is a major factor of the JVM, and the caching
decisions made by CACHEIT directly affect memory usage,
we use multiple heap configurations to simulate a spectrum
of memory settings, from abundance to scarcity, ranging from
128GB to 1GB. All experiments involving CACHEIT have
caching configurations set to the default values (I'pc = 2;
Tsc = 2; W = 10). Each experiment is run three times to
avoid noise, and the average is reported. The variation among
runs is negligible (normalized standard deviations are no more
than 0.5%). For each run, we collect the execution time and
the GC time.

Methodology While there are many similar works
[9, 10, 12, 15], unfortunately, they are not open-sourced. We
reimplemented ReSpark [15], which is closest to CACHEIT
to assess its effectiveness. Similarly to the empirical study in
Section II-B, we compare CACHEIT to Manualldeal. We also
run two extreme cases, CacheAll and NoCache (also described
in Section II-B). They are cases where caching decisions are
over- and under-estimated. We implement CacheAll at the
job scheduler by caching all RDDs used for each job. The
implementation of NoCache is a modification to the caching
APIs to bypass their functionalities, similar to CACHEIT. In
this Section, we normalize the performance of all caching
strategies to that of Manualldeal.

A. Overhead of CACHEIT’s analyses

CACHEIT pays the overhead of analyzing the job DAGs at
run time. Because both analyses inspect the DAGs at each job
scheduling, their duration scales linearly with the number of
jobs inspected and the size of their DAGs. Table II reports the
number of jobs executed, the largest size of the DAG, and the
accumulated time of CACHEIT analyses spent when running
with Large input datasets. Among the benchmark programs,
RandomPForest has the largest number of jobs (4250), and the
longest analyzing time of 96.14 seconds in total. This overhead
is insignificant considering that RandomForest takes at least
3.37 hours, i.e., this is only ~ 0.7% the execution time. For
other programs, the overhead ranges from 0.008% (PageRank)
to 0.28% (TC), showing that the analyses of CACHEIT are
lightweight.

B. Impact of CACHEIT on executions

Due to space constraints, we exclusively report and dis-
cuss the evaluation results with Large inputs. Nevertheless,
CACHEIT’s relative performance is consistent across all input
sizes listed in Table II.

Summary Table III shows the execution time and the
GC time of each program running with different heap sizes
and caching strategies. The execution time using CACHEIT is
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Table II: (a) Benchmark programs used to evaluate CACHEIT. SVM, RandomForest, and LR datasets have a number of data
points x feature space dimensions. The inputs of TC and LR are synthetically generated; (b) Number of jobs executed for each
input configuration; (c) The maximum number of RDDs visited by CACHEIT’s analyses; And (d) the elapsed Manualldeal
execution time with the accumulated time of running CACHEIT’s analyses; Numbers reported in (c) and (d) are from running
the programs with Large inputs and the largest heap configuration.

(a) Input datasets (b) #Jobs executed || (¢) Max (d) Elapsed time of
) ‘ #RDDS CACHEIT’s

Programs Small Medium Large N M L per job || Manualldeal analyses

WordCount Amazon reviews (9GB) [30] | Google reviews (20GB) [31] | Flight info (30GB) [32] 1 1 1 8 4.33 min 28.25 ms
PageRank Wiki links PL (1GB) [24] Wiki links RS (1.8GB) [24] | Wiki links EN (6GB) [24] 1 1 1 186 10.17 min 48.89 ms
KMeans Wiki links PL (1GB) [24] Wiki links RS (1.8GB) [24] | Wiki links EN (6GB) [24] 9 22 27 52 3.26 min 282.15 ms
TC 1K vertices, 7K edges 2K vertices, 10K edges 3K vertices, 20K edges 8 9 11 88 3.95 min 658.24 ms
SVM SUSY (SMx 18) [33] Higgs (11Mx28) [33] KDD2010 (8.4M x20M) [33] 83| 108 | 158 16 29.30 min 581.52 ms
RandomForest || usps (7.3k x256) [33] minst (60k x780) [33] mnist8m (8.1M x 784) [33] 110 | 573 | 4250 13 || 202.32 min | 96136.61 ms
LR 500 points X 50 features 20k points X 75 features 50k points x 100 features 100 | 250 [ 500 2 38.53 min 645.14 ms

Table III: Execution time and GC time of benchmark programs with four caching strategies. Each measurement is normalized
to that of Manualldeal (best). TC performance is with Root Reuse (Section III-D) enabled. For each metric, we report the

range and the mean from running with different heap sizes.

Apps NoCache CacheAll ReSpark [15] CACHEIT
Ex. Time | GC Ex. Time | GC Ex. Time | GC Ex. Time | GC
WordCount 0.95 ~ 1.01 0.88 ~ 1.03 1.03 ~ 1.08 | 430 ~ 8.43 || 1.01 ~ 1.03 | 093 ~ 1.0 || 0.99 ~ 1.03 | 0.92 ~ 1.02
(1.01) (0.95) (1.06) (5.61) (1.01) (0.96) (1.01) 0.97)
PageRank 1.31 ~ 141 | 0.89 ~ 2.08 146 ~ 1.86 | 1.51 ~ 7.40 || 1.00 ~ 1.05 | 1.04 ~ 1.30 || 1.00 ~ 1.00 | 0.96 ~ 1.01
(1.37) (1.41) (1.56) (2.30) (1.02) (1.21) (1.00) (1.00)
KMeans 1.13 ~ 328 | 0.02 ~ 0.74 1.24 ~ 1.68 | 099 ~ 7.51 || 1.05 ~ 1.57 | 0.98 ~ 7.48 || 1.00 ~ 1.04 | 0.94 ~ 1.09
(2.09) (0.25) (1.41) (5.84) (1.26) (3.60) (1.03) (1.00)
TC 1.48 ~ 2.05 1.39 ~ 1.42 1.02 ~ 1.22 | 1.08 ~ 590 || 1.09 ~ 1.14 | 0.75 ~ 1.10 || 1.06 ~ 1.11 | 0.98 ~ 1.01
(1.60) (1.41) (1.10) (1.40) (1.11) 0.97) (1.08) (1.00)
SVM 3447 ~ 60.61 | 4.82 ~ 12.06 || 2.00 ~ 29.74 | 2.46 ~ 50.84 || 1.48 ~ 1.86 | 1.67 ~ 1.95|| 1.21 ~ 1.33 | 1.0 ~ 1.41
(52.06) (7.58) (9.10) (15.11) (1.68) (1.81) (1.25) (1.21)
RandomForest || 1.75 ~ 1.83 | 0.62 ~ 0.99 1.86 ~ 194 | 1.28 ~ 1.48 || 099 ~ 1.07 | 1.01 ~ 1.58 || 0.98 ~ 1.01 | 0.83 ~ 1.17
(1.79) (0.76) (1.90) (1.36) (1.02) (1.26) (1.00) (0.98)
LR 098 ~ 1.02 | 0.94 ~ 0.98 1.03 ~ 1.17 | 1.10 ~ 2.53 || 1.00 ~ 1.06 | 0.93 ~ 1.09 || 0.92 ~ 1.02 | 0.94 ~ 1.04
(0.99) (0.96) (1.12) (1.56) (1.03) (1.02) (0.98) (0.99)

close to, if not matching, that of Manualldeal version. The
largest slowdown of CACHEIT is 1.33x for SVM (2GB heap).
NoCache incurs a slowdown from 1.06x (PageRank, 8GB
heap) to up to 60x (SVM, 4GB heap) due to not caching any
RDD. Overfilling the heap with RDDs in CacheAll increases
the duration of GC to up to 50.8x that of Manualldeal (SVM
running with a strict 2GB heap), resulting in a slowdown
of 29.7x. Overall, using CACHEIT yields effective heap
consumption, which reflects in consistent performance across
the heap sizes. Next, we discuss the execution of each program
with CACHEIT in more detail.

In PageRank and WordCount, CACHEIT mirrors the caching
behavior of Manualldeal with negligible slowdown. Word-
Count is a single-job program that is composed of one map ()
followed by one reduce (). Hence, the intermediate data
created by these transformations are only used once. Caching
these data is not only unbeneficial but also adverse to the
performance by introducing GC overhead when the heap
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size is limited (as seen in CacheAll). The simple DAG of
WordCount does not satisfy any caching condition of CACHEIT,
making its execution with CACHEIT mirror that of NoCache
and Manualldeal. Meanwhile, PageRank is also a single-job
program. Its DAG has one RDD with a high dependentCount
as illustrated in Figure 2. CACHEIT’s intra-job analysis correctly
captures this high-value RDD, resulting in no slowdown
compared to Manualldeal.

KMeans, SVM, and RandomForest are composed of multiple
jobs, thus they rely more on CACHEIT’s inter-job analysis to
effectively cache and reuse RDDs across jobs. Because caching
decisions are delayed by 1 job (when T4c = 2), execution
slowdown is more noticeable. In SVM and KMeans, the
executions are prolonged respectively to 1.25x and 1.03x on
average. The impact of delayed caching (cf. Section III-C) is the
most severe in SVM due to the high cost of RDD recomputation,
confirmed by its NoCache version having up to 60x slowdown.
In contrast, CACHEIT closely matches Manualldeal (< 1%
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difference) in both RandomForest and LR, although each is
caused by a different execution effect. In LR, the objects are
small and lightweight, hence recomputing them is cheap, as
demonstrated by NoCache having comparable running time to
that of Manualldeal. As such, the penalty of delayed caching
is minimal, and thus LR’s ideal performance is maintained
with CACHEIT. In RandomForest, even though this penalty is
significant in its first few jobs, suggested by NoCache having
1.79x slowdown on average. However, RandomForest is a long-
running program with 4250 jobs (reported in Table II), each of
which can fully benefit from the cached RDDs. Therefore, the
penalty of delayed caching is efficiently amortized, resulting in
the execution with CACHEIT on par with that of Manualldeal.

In TC, CACHEIT applies the analysis for root RDD reuse
(will be discussed in Section III-D). This analysis delays the
caching decision by at least 2 jobs before the subsequent jobs
can cache and reuse the root RDDs. This results in a slowdown
of up to 1.11x at 4GB heap, and 1.08 x on average.

Similar to CACHEIT, ReSpark achieves near-optimal per-
formance in WordCount, PageRank, RandomForest, and LR
(< 3% difference). For KMeans, TC, and SVM, CACHEIT is
more performant than ReSpark thanks to identifying the set of
RDDs reused across jobs sooner - at their second appearance.

C. CACHEIT’s threshold sensitivity

We vary Tpe and T'4¢ to evaluate CACHEIT’s sensitivity.
Figure 6 shows the normalized execution time of programs
with CACHEIT using different threshold values (annotated as
Tpc x Tac).

Q
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Figure 6: Execution time with different values of Tpc X Tac,
normalized to that of the default configuration (2 x 2).

Because WordCount and PageRank are single-job programs,
varying Ty does not affect their executions. In WordCount,
each RDD has at most 1 dependent, which does not exceed any
tested Tpc value. Hence, incrementing Th¢ does not affect
the execution of WordCount. PageRank has a single RDD
that is a common dependency of many other RDDs (shown
in Figure 2). This RDD must be cached. In our experiment,
the dependentCount of this RDD is 25, exceeding all Tpo
values shown in Figure 6. When we set Tph¢ larger than
25, CACHEIT does not cache this important RDD, and the
PageRank execution mirrors that of NoCache, which has
an average slowdown of 1.38x compared to CACHEIT and
Manualldeal (reported in Section IV-B).

KMeans, SVM, and LR are composed of multiple jobs where
each RDD has at most 1 dependent. Therefore, increasing
Tpe does not affect their performance. These programs are
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iterative. They repeatedly apply operations on a subset of
RDDs which are caching candidates. Consequently, such RDD
has appearanceCount equals to the number of jobs invoked
(reported in Table II), exceeding T'4c values in Figure 6.
As we increment Ty to 10, despite the increased penalty
caused by delayed caching, CACHEIT eventually caches them
in subsequent jobs. Therefore, the slowdown is small, up to
1.07x (KMeans with Tpc = 2 and T4 = 8).

RandomForest has a combination of multiple intra-job and
inter-job RDD reuses. Incrementing T and T4 shrinks the
set of RDDs to be cached in the memory. Consequently, we
observe a rising trend in execution time with the slowdown as
high as 1.29x. Interestingly, the trend stops when Tpc > 6 and
Tac > 3. We found this is because most of the RDDs have
dependentCount < 6 and appearanceCount < 3. Hence,
incrementing the thresholds past these points has little effect.

TC is special due to having the root RDD reuse pattern
(cf. Section III-D). Therefore, with root reuse, varying Tpc
or Ty does not affect its execution, as confirmed by the flat
line. Because CACHEIT handles this reuse pattern differently,
we evaluate it separately in Section IV-D.

D. Impact of root reuse

Table IV reports the execution time of TC using Large input
with two versions of CACHEIT where root RDD caching (cf.
§III-D) is disabled and enabled respectively. Across all heap
sizes, enabling root RDD caching speeds up the execution of
TC by 24% to 30% compared to when disabling this feature.
Other programs’ performance are unaffected because they do
not have this pattern.

Table IV: Execution time of TC and performance gain by
enabling CACHEIT’s Root Reuse.

Heap configs. (GB) | 1| 4| 8] 16| 32| 64

Exec. time (sec) w/ Dsbl | 320 | 306 | 306 | 317 | 323 | 319
Root Reuse ~ Enbl | 258 | 244 | 247 255 | 250 | 245

| 124125 1.24 | 1.24 | 1.29 | 1.30

Speedup (<)

V. RELATED WORK

Garbage Collection  Big Data applications often run
atop a managed runtime to take advantages of the automatic
memory management. GC is one of major sources of the
runtime cost. Many modern GCs have been proposed, such
as G1 [25], ZGC [34], and Shenandoah [35], offering short
pauses and high throughput. Recent years have seen many
GC algorithms adapting to modern data-intensive workloads.
Panthera [36] and Espresso [37] are GCs that incorporate the
characteristics of non-volatile memory. Taurus [38] cordinates
GC runs across nodes in distributed systems to hide GC latency.
Yak [22] divides the heap memory into two different spaces and
manages them differently to adapt to their object characteristics.
Semeru [39] and Mako [40] are developed for disaggregated
memory, an exciting trend towards datacenter design and
resource management. They offload/share GC workload to
remote machines with weak compute power. These GCs cannot
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solve this data caching problem. In Spark, RDDs have a short,
predefined lifetime. As such, RDDs are collected after a task
is completed, unless being manually cached.

Prefetcher and Replacement Policies for Memory
Cache Previous studies are exploring alternative replacement
policies in Spark [14, 28, 41]. Instead of the default LRU,
these policies consider a combination of data characteristics
such as partition size, computation time, or distance between
uses to remove data when cache memory is reaching its
capacity. These policies are complements and can be adapted
into our work as we already extract these metadata. Other
works such as MRD [13] and MEMTUNE [9] also provide
prefetching solutions on a hierarchy of data storage to hide the
re-computation latency of RDDs. Unlike us, these approaches
operate only on the user-defined RDDs and they are postmortem.
Similar to us, Neutrino [10] is a runtime solution but focuses
on moving cached data between different caching levels in
Spark. It still relies on users to determine a set of caching
RDDs upfront, a task that we aim to eliminate. Orthogonal
to us, ATuMm [16] dynamically tunes the JVM configuration
to adjust the amount of memory available for execution and
caching.

Spark Program Tuning Supports There are many works
that aim to mitigate manual inconvenience for Spark devel-
opers. Among them, Ruya [42] searches for the best cluster
configuration (i.e., number of workers, heap sizes, number of
cores) within a restricted search space. Blaze [43] collects
execution information and uses Integer Linear Programming
(ILP) to optimally decide how each RDD should be recovered
for reuse (i.e., by recomputing or storing and loading from
disk). SparkCAD [8] and MCR [12] are closer to our work.
SparkCAD is a profiling-based RDD lineage visualization
tool that suggests developers which RDD should be manually
cached. MCR automates RDD caching by greedily selecting
RDDs using profiling information. Compared to these works,
CACHEIT does not require profiling, and is guided by the DAG
of RDD dependency which is native to Spark engine.

Program Analyses to Remove Software Bloat The term
bloat refers to inefficiencies in software such as redundant
computations to create the same data. Static [44, 45] and
dynamic analyses [46—48] are popular approaches in detecting
these inefficiencies. While static analysis is cheap but cannot
scale to large codebases, dynamic analyses are precise but have
high time and space overheads. Existing works also do not
operate on the coarse granularity such as RDD. CACHEIT
is a dynamic approach with minimal overheads: intra-job
analysis considers static workflows as they are submitted to the
scheduler, and inter-job analysis considers dynamic information
of past jobs to precisely detect candidates.

VI. CONCLUSIONS

In this paper, we introduce CACHEIT, a runtime support for
Apache Spark framework. CACHEIT releases users from the
difficult responsibility of enforcing caching decisions at compile
time for all programs. CACHEIT automatically identifies high-
value RDDs, leveraging dependencies and access patterns in the
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workflows. The experimental results are positive, showing that
CACHEIT is effective in detecting appropriate data for caching,
thereby having only marginal slowdown compared to manually-
tuned counterparts while requiring minimal user effort. This
shows promises in enabling autonomous data caching not only
for Spark but any DAG-based dataflow frameworks.
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