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Abstract—Apache Spark arguably is the most prominent Big
Data processing framework tackling the scalability challenge of
a wide variety of modern workloads. A key to its success is
caching critical data in memory, thereby eliminating wasteful
computations of regenerating intermediate results. While critical
to performance, caching is not automated. Instead, developers
have to manually handle such a data management task via APIs,
a process that is error-prone and labor-intensive, yet may still
yield sub-optimal performance due to execution complexities.
Existing optimizations rely on expensive profiling steps and/or
application-specific cost models to enable a postmortem analysis
and a manual modification to existing applications.

This paper presents CACHEIT, built to take the guesswork off
the users while running applications as-is. CACHEIT analyzes
the program’s workflow, extracting important features such as
dependencies and access patterns, using them as an oracle to
detect high-value data candidates and guide the caching decisions
at run time. CACHEIT liberates users from low-level memory
management requirements, allowing them to focus on the business
logic instead. CACHEIT is application-agnostic and requires no
profiling or a cost model. A thorough evaluation with a broad
range of Spark applications on real-world datasets shows that
CACHEIT is effective in maintaining satisfactory performance,
incurring only marginal slowdown compared to the manually
well-tuned counterparts.

Index Terms—caching, memory management, dynamic analysis

I. INTRODUCTION

Large-scale data processing frameworks are the backbone

of modern computing. Some popular frameworks, to name

a few, are Spark [1, 2], MapReduce [3], and Flink [4].

These frameworks use a dataflow programming model where

users write applications as a sequence of operations on the

input datasets. The processing engines enable a push-button

deployment that can scale from a single node to a datacenter-

sized cluster. Among these Big Data analytics systems, Apache

Spark is the most prominent framework. The ecosystem based

on Spark flourishes with support for a wide variety of workloads

such as high-level querying (SparkSQL [5]), graph processing

(GraphX [6]), and AI/ML (SparkML) in multiple languages

such as Python, Scala, Java, and R.

A key feature that makes Spark superior to a framework

such as MapReduce is the advocating for keeping data in

memory (a.k.a. caching) for reuse and thereby eliminating

repeated computations and/or disk I/O to generate the same data.

This is highly relevant to modern algorithms and workloads

such as graph analytics and machine learning which are often

iterative — a same set of functions is invoked on input datasets

repeatedly. Despite its importance, caching is not automated.

Spark provides APIs for developers to manually cache and

uncache data. Even though the APIs have rich semantics (e.g.,

using persist(), users can choose between memory, disk, or

a combination of both), manual data caching is challenging. To

be effective, developers must have a deep understanding of the

workflow including the working set size and data dependencies,

as well as the internals of Spark. As a simple example, if two

consecutive jobs do not share any data dependency, caching

data of the earlier job needlessly increases the memory pressure.

This is more problematic in cases where the working set size

exceeds the memory capacity. Indeed, evidence [7, 8], as well

as our experience, shows that mistakes in caching data are

detrimental: applications may crash due to out-of-memory

errors, or suffer a significant slowdown. The impact is more

devastating for long-running or latency-sensitive applications

where a slowdown of one worker node can prolong the entire

pipeline. These failures are the direct consequences of undue

memory pressure caused by keeping useless data in memory,

exceeding memory capacity and/or magnifying the overhead

of the runtime system. In practice, this is a trial-and-error

process that is labor-intensive and error-prone. Developers

usually follow a set of best-practice recommendations for

picking data to be cached and may miss performance gain

opportunities.

There is a body of work on identifying valuable data for

caching [9–16]. However, the majority of these works rely

on profiling or expert experience to derive an application-

specific cost model that can provide hints to users. While

commendable, there is much to be desired. Profiling is known

to suffer from a plethora of problems such as low accuracy

to unseen datasets and being expensive to use. Moreover,

these techniques are postmortem. Using the analysis result

which might contain false positives, users manually modify the

applications for re-execution (i.e., inserting the API cache(),

which is short-hand for persist() using memory — if the

target is within Spark libraries, this might not be possible),

then observe the performance. The tedious process repeats

until users are satisfied. Some other works [8, 17] mitigate

this laborious effort by exposing the dynamic workflow to the

users, allowing them to interactively reconfigure the run time

behavior. Still, involving human in the optimization process

makes these tools undesirable.
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We argue that the burden on users to manually cache data

at development time outweighs the flexibility provided by the

framework. Relying on users to enforce caching decisions

makes it infeasible to adapt to dynamic execution behaviors.

This explains why even after a lengthy experimentation of

various combinations, there is still room for performance

improvement in most applications. Hence, the overarching goal

of this work is 1) to free developers from the labor-intensive

task of detecting and manually enforcing caching decisions on

a set of data at compile time while 2) providing satisfactory

performance at run time. Other attempts for the same goal

[18, 19] aim to find an optimum data caching decision using a

search algorithm. Although automated, these methods may be

costly because they must find the optimum in a large search

space that scales with the program duration and complexity.

Work that performs caching by dynamically analyzing the

data flow [15] operates solely on the global view of the data

dependency graph and, hence, falls short in recognizing changes

in the usage patterns to timely remove stale data.

To that end, we propose CACHEIT – implemented as an

extension to the Spark runtime system. CACHEIT intercepts

Spark jobs submission, and automatically extracts and analyzes

dataflow graphs of the job. Using a combination of local and

global analyses, it tracks data dependencies and access patterns

to identify frequently used data and passes such information

to the runtime system. During execution, high-value data are

automatically kept in memory for future reuse without any

user effort. The idea is simple yet — as demonstrated in our

evaluation on several benchmarks using real-world workloads

— effective. CACHEIT is practical as it does not require any

profiling and can be used with any application as-is without any

modification to the program’s code. The end-to-end execution

time of the application with CACHEIT’s support is on par with

the manually well-tuned versions. Our work prevents users

from making caching mistakes, allowing them to focus on

high-level business logic instead.

In summary, the contributions of this paper are as follows:

• We provide two analysis algorithms capturing local and

global reuse patterns of RDDs, the immutable dataset

abstraction, in Spark applications. These algorithms enable

timely cache and uncache decisions of the RDDs.

• We thoroughly evaluate the effectiveness of CACHEIT.

The results are positive, CACHEIT delivers satisfactory

execution time without much user effort.

II. BACKGROUND & MOTIVATION

In this Section, we briefly introduce the execution model of

Spark. We then present an empirical study on the impact of

data caching mistakes on performance to motivate our work.

A. Spark execution model

A Spark cluster consists of one Master node running the

driver program, and multiple Worker nodes running executors,

as shown in Figure 1. The driver represents the control

plane: it accepts user applications and drives the flow of

the applications as well as work re-execution in case of

Figure 1: Spark Architecture. The Driver controls the execution

flow while Workers perform computation in parallel, each

operates on a partition of an RDD.

errors. The executors perform actual data processing. Both

driver and executor are instances of Java Virtual Machines

(JVMs). Spark employs a core data abstraction called Resilient

Distributed Datasets (RDDs) [20]. An operation on RDD is

partitioned into small tasks, each operates on a fragment of

the RDD in parallel. For fault-tolerance purposes, RDDs are

immutable. When a user submits an application, the driver

analyzes the logic and represents the workflow as a directed

acyclic graph (DAG) of operations, each node is an RDD. In

Spark’s terminology, an operation is either a transformation or

an action. Transformations produce intermediate RDDs while

actions return results to the driver. The execution of an action

triggers the execution of all transformations along the actions’

dependency graph (or in Spark’s lingo, lineage). An action

establishes a barrier, delaying transformations until the next

action is called. Effectively, actions split a program into multiple

jobs, each with a different lineage/DAG.

The result of an operation does not persist. Consequently, an

operation referenced in multiple jobs are invoked repeatedly,

once for each, to generate the same data. To avoid such wasteful

computations, Spark programmer has the option to keep the

result in memory explicitly1 by invoking the API cache()

in the program. Upon executing an action, cached RDDs can

be used in lieu of the computations generating them, thereby

avoiding performance degradation. Under the hood, these RDDs

are marked so that once materialized at run time, they are not

garbage-collected by the JVM.

B. Impact of improper RDD caching to execution time

Caching appropriate RDDs is critical to performance by

avoiding wasteful recomputations each time the executor

requires them. A naïve solution of caching the result of all

operations, assuming infinite memory, is not optimal because

it creates undue memory pressure on the runtime system.

Evidence [21–23] shows the runtime can spend up to 50%

1by default, as this is the most efficient way. Spark does provide other
options for caching, which we defer them to future work.
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of execution on automatic memory management tasks such as

garbage collection (GC).

As a motivating example, we ran PageRank application

on a Wikipedia dataset [24] in a cluster using multiple sizes

of the heap ranging from 16GB to 128GB, which was very

generous given the dataset is of size of 6GB. The code is

shown in Listing 1 and graphically visualized in Figure 2. The

application was run under three scenarios representing memory

consumption ranking from the least to the most:

• NoCache: No RDD is persisted, every RDD must be

recomputed.

• ManualIdeal: Manually applying cache() to a selective

set of RDDs after an exhaustive search of all combinations.

The version with the fastest execution is chosen.

• CacheAll: Every RDD is cached in memory, no recom-

putation is needed.

Listing 1: A Spark PageRank application in Scala.

1 def PageRank(edges:RDD, iters:Int):Unit={

2 val graph = edges.groupByKey()

3 var ranks = graph.mapValues(v => 1.0)

4

5 for (i <- 1 to iters) {

6 val contribs = graph.join(ranks).values.

flatMap{ case (urls, rank) =>urls.map(url

=> (url, rank / urls.size))}

7 ranks = contribs.reduceByKey(_ + _).mapValues

(0.15 + 0.85 * _)

8 }

9 print(ranks.collect())

10 }

Figure 2: A DAG of PageRank running 3 iterations. The RDD

created by the first groupByKey transformation is reused in

subsequent iterations.

Each heap size configuration is run three times and the

average performance is reported in Table I. We normalize

the performance to that of ManualIdeal. Aside from end-

to-end time, we also report the performance of G1 GC [25]

- JVM’s default garbage collector. For PageRank (PR), the

best performance is obtained with only the RDD on Line 2,

representing the input graph, cached in memory. This RDD is

reused multiple times in the loop (Line 6). Failure to cache this

RDD (in NoCache) results in, on average, a 30% slowdown due

to recomputation in each iteration. Somewhat counter-intuitive,

GC cost is also increased in this case (1.41× on average).

This is because unpersisted intermediate data are marked as

garbage at the end of each job to be collected, forcing the

next jobs to recompute these data and allocate additional heap

space. Consequently, memory is allocated much faster than

that can be collected, thus triggering more frequent GC runs.

Naïvely caching more RDDs than necessary in CacheAll also

degrades the performance. A more occupied heap is constantly

under pressure to find space for new allocations, forcing the

GC to start more frequently and run for a longer duration.

GC overhead in CacheAll is more than doubled on average,

and is as high as 7.4×. A prolonged iteration holds up the

entire pipeline, decreasing throughput, and further prolonging

the execution. We observe an average increase of 56% in the

execution time of PageRank with CacheAll. Similar behavior

is observed with other applications such as KMeans (KM), and

TransitiveClosure (TC), as shown in Table I.

Table I: Slowdowns (×) incurred by improperly caching,

normalized to performance of ManualIdeal. For each metric,

we report the range and the mean, across all different heap

sizes ranging from 16GB to 128GB.

Apps NoCache CacheAll
Ex. Time GC Ex. Time GC

PR 1.31 > 1.41 0.89 > 2.08 1.46 > 1.86 1.51 > 7.40
(1.37) (1.41) (1.56) (2.30)

KM 1.13 > 3.28 0.02 > 0.74 1.24 > 1.68 0.99 > 7.51
(2.09) (0.25) (1.41) (5.84)

TC 1.48 > 2.05 1.39 > 1.42 1.02 > 1.22 1.08 > 5.90
(1.60) (1.41) (1.10) (1.40)

Discussion The study confirms that over- and under-

estimating the set of candidate RDDs can negatively impact

the performance of a Spark program even in the case memory

is not a scarce resource, a generous assumption that often fails

to hold in practice. Therefore, a Spark program developer is

required not only to understand the implemented algorithm but

also the internals of Spark to develop a performant application.

It is worth noting that even if the programmer understands the

implication of Spark’s execution model, determining a good

set of RDDs and having a good performance is not a trivial

problem. The reason is twofold: first, the search space for all

combinations of RDDs as caching candidates is huge; second,

often users need to use Spark libraries which contain hidden

RDDs that are out of users’ direct control.

III. CACHEIT’S DESIGN

In this Section, we present the design of CACHEIT with its

two job analyses handling two common RDD reuse patterns.

We also describe a special pattern found empirically and how

CACHEIT handles such a case.

A. Overview & Design rationale

CACHEIT can be implemented as a static analysis that

analyzes the whole execution plan of a Spark application before

its execution (using a byte code analyzer such as Soot [26]).

However, because of the tight coupling between the application

and the platform, a static analysis has to exhaustively explore

all execution paths including those in libraries, which is the

well-known path explosion problem [27], making CACHEIT not

able to scale to Spark’s codebase which has millions of lines
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Figure 3: Overview of CACHEIT’s design. The DAGAnalyzer is

new to the Spark engine. It analyzes a job’s DAG and returns

the caching candidates to the runtime.

of code. Additionally, static analysis is often too conservative,

thus lacking the ability to precisely detect caching candidates.

To address these challenges, we implement CACHEIT as

a runtime support. Specifically, as shown in Figure 3, a new

DAGAnalyzer is created in the driver to 1) intercept each job

submission at run time, 2) analyze workflow information from

the DAGs created by Spark’s DAGScheduler to select caching

candidates, and 3) return the set of caching candidates to Spark

before resuming the job submission.

Because Spark generates DAGs on a per-job basis, each DAG

contains the RDDs relating specifically to its job execution.

To allow for dynamic behaviors in a Spark program, whether

a job is executed depends on the results returned from the

previous job(s). Hence, caching decisions made for each job

in isolation from the job sequence are ineffective because

the intermediate results may be utilized across jobs. An ideal

data caching strategy demands the knowledge of future jobs,

which is challenging to dynamically derive. However, because

there often exists patterns of RDD usage in a job sequence,

we can leverage past jobs for future caching decisions. The

DAGAnalyzer, therefore, uses a combination of two analyses

to have a complete picture of the execution: an intra-job (local)

analysis to identify candidates using dependencies in the current

dataflow graph; and an inter-job (global) analysis to capture

access patterns across jobs.

B. Intra-job analysis

Algorithm 1 shows the pseudo-code of the DAGAnalyzer’s

intra-job analysis. The analysis is a BFS-like graph traversal

starting from the RDD on which the action is invoked, which

we refer to as root RDD (dr on Line 11). For each RDD in the

DAG, the algorithm computes the number of direct downstream

RDDs, called dependentCount (Lines 4-10). While simple,

dependentCount captures how important an RDD is in the

current job. After filtering out all low-value RDDs, i.e., having

dependentCount less than a user-defined threshold TDC ,

CACHEIT marks the remaining RDDs as caching candidates at

Algorithm 1: Intra-job analysis

Input:
integer TDC : Intra-job dependentCount threshold
RDD dr: root RDD of the current job

/* BFS on the current job’s DAG to count each RDD’s number of

dependents */

1 Mapï RDD ³ integer ï dependenceCounts ± '
2 Queueï RDD ï toV isit ± '
3 Setï RDD ï visited ± '
4 def visit(d: RDD):
5 if d /* visited then
6 visited.add(d)
7 dependenceCounts[dep] ± 0
8 foreach RDD dep * d.dependencies() do
9 dependenceCounts[dep]++

10 toV isit.enqueue(dep)

11 toV isit.enqueue(dr)
12 while toV isit is not empty do
13 visit(toV isit.dequeue())

/* Candidate RDDs: multiple dependents in the current job */

14 foreach RDD d * dependenceCounts.keySet() do
15 if dependenceCounts[d] g TDC then
16 d.mark_cache()

Figure 4: Simplified DAGs of the first three jobs of KMeans.

The first 4 RDDs (RDD#0 to RDD#3) appear in all DAGs but

only RDD#3 should be cached.

run time (see Section III-E). Because we visit each RDD node

in the DAG only once, this analysis is lightweight with a time

complexity of O(D) with D being the number of RDDs in

the current DAG. Often this D is small, making the analysis

overhead negligible. Because each Spark job is reasonably

unique, all RDDs cached by CACHEIT’s intra-job analysis

are automatically uncached at the end of each job unless the

inter-job analysis (explained next in Section III-C) detects that

they should stay in the memory to be reused in future jobs.

C. Inter-job analysis

If multiple consecutive jobs share a common set of RDDs,

a subset of such RDDs should be cached in memory for faster

access in later jobs. In Figure 4, each job shown represents an

iteration of the KMeans program. Because all RDDs in each
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Algorithm 2: Inter-job analysis

Input:
integer TAC : Inter-job appearanceCount threshold
RDD dr: root RDD of the current job
Setï RDD ï currentJob: RDDs in the current job
Queueï Setï RDD ï ï latest: RDDs in the latest W jobs

/* Counting RDDs appearance */

1 Setï RDD ï nominated ± '
2 foreach RDD d * currentJob do
3 foreach Setï RDD ï S * latest do
4 integer appearanceCount := 0
5 if d * S then
6 appearanceCount++

7 if appearanceCount g TAC & d is not cached then
8 nominated.add(d)

9 Setï RDD ï reached ± '
10 def revisit(d: RDD):
11 if d /* reached then
12 reached.add(d)
13 if d is not cached & d /* nominated then
14 foreach RDD dep * d.dependencies() do
15 revisit(dep)

16 revisit(dr)
/* Candidate RDDs: found to be reused in W jobs */

17 foreach RDD d * currentJob do
18 if d * (nominated + reached) then
19 d.mark_cache()

DAG have a low dependentCount of no more than 1, they are

not cached by the intra-job analysis. This caching decision is

incorrect because some RDDs (e.g., #0 to #3) are reused across

jobs, and caching them can improve performance. A naïve inter-

job solution would cache RDDs that appear in the majority of

jobs. However, this is sub-optimal because the appearance of an

RDD in a DAG is not always equivalent to it being accessed in

an execution. In Figure 4, all jobs share the subset of RDDs#0

- #3. Intuitively, only RDD#3 should be cached because it is

the closest RDD to all of the dependents - caching upstream

RDDs#0-#2 will not bring additional benefits if RDD#3 is

already in memory. Worse, they add space overheads.

Algorithm 2 shows how CACHEIT’s inter-job analysis

precisely selects RDDs for caching. The analysis keeps a history

of W latest DAGs in latest queue, updated at the beginning

of each job scheduling. Then, the DAGAnalyzer performs two

steps. In the first step (Line 1-8), CACHEIT inspects latest

(Line 3) to derive the number of DAGs each RDD appears

in, called appearanceCount. RDDs with appearanceCount

not smaller than a user-defined threshold TAC becomes the

nominated set — an over-estimation of the caching candidates

(RDD#0 to RDD#3 in Figure 4). In the second step (Lines 10

- 16), CACHEIT filters out from nominated any RDD that has

all of their downstream RDDs are cached or in nominated.

Specifically, the DAGAnalyzer performs a recursive DFS-like

DAG traversal from root RDD dr that stops as soon as a cached

or nominated RDD is visited (Lines 10 - 16). All visited RDDs

form a reached set whose data are already cached or will get

materialized in the current job execution. reached RDDs that

are also in nominated are the top caching candidates. (Line 17

- 19). In Figure 4, nominated RDD#0-#2 are not cached due

to having a common downstream nominated RDD#3. The

DAGAnalyzer will uncache an RDD if its appearanceCount

in the latest W DAGs falls below TAC .

Because the appearanceCount of an RDD is always less

than TAC in the first few jobs, CACHEIT delays caching the

RDDs by at least one job (i.e., when TAC = 2) compared to

the ideal, which will incur a penalty. However, given modern

workloads are iterative, such a penalty of delayed caching can

be sufficiently amortized.

D. A special case of root RDD reuse

We noticed a special RDD usage pattern of the TransitiveClo-

sure (TC) execution as a side-effect of RDD’s immutability. TC

is a graph analysis program that runs a fixed-point algorithm

to compute all paths transitively in a graph. This is represented

by an RDD variable tc shown in Listing 2. The program

iteratively joins graph edges with the already-discovered paths

in tc to generate new paths. Because RDDs are immutable,

each iteration assigns tc a new RDD instance representing

the up-to-date paths (Line 8). Then, the program calls action

count() (Line 9) to check for convergence before passing

the transformed RDD to the next iteration. Applying count()

on the RDD instance in tc makes it the root RDD of the job.

Figure 5 shows a graphical illustration of the situation. An

expert will know that the root RDD tc (the first instance of

RDD#2, #4, #6, and #8) will be used in the next iteration, and

will correspondingly cache these RDDs at the first time an

action is called upon it. Failing to do so results in the RDD

getting recomputed.

Listing 2: TransitiveClosure (TC) application (simplified). Each

RDD instance assigned to variable tc (Line 8, RDD#2, #4,

#6, and #8 in Figure 5) must be cached at their first encounter

to be efficiently used in the next iteration (Line 8). Inter-job

analysis (Section III-C) fails to timely cache these root RDDs

as delayed caching occurs to each new RDD instance of tc.

1 def TC(){

2 var tc = // all paths, i.e., the result

3 var edges = // edges of the graphs

4 var oldCount = 0

5 var nextCount = tc.count()

6 do {

7 oldCount = nextCount

8 tc = tc.union(tc.join(edges)).distinct()

9 nextCount = tc.count()

10 } while (oldCount != nextCount)

11 }

This root RDD reuse pattern is a special case of inter-job

RDD reuse that must be handled differently. For iterative

workloads that operate on the same RDD at each iteration

such as KMeans (discussed in Section III-C), delayed caching

happens once at the first time this RDD appears. TC is

different. Because TC repeatedly reuses last iteration’s RDD

to to generate a new RDD instance (tc on Line 9), delayed
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Figure 5: A simplified DAG of the first 4 jobs of TC.

caching happens at every iteration. This inefficiency, although

being a corner case that only applies to a subset of programs

such as TC, needs to be addressed.

We overcome this inefficiency by adding another analysis

step to CACHEIT after inter-job analysis. Each job keeps a

counter called rootReuseCount, initialized to 0. The DAGAn-

alyzer inspects each pair of consecutive jobs/DAGs in W latest

jobs and increments the current job’s rootReuseCount each

time a root RDD of a job is used in the next job. The root RDD

of the current job is cached if the current rootReuseCount is

at least 2. Otherwise, we leave the root RDD of the current job

untouched. For example, in Figure 5, at Job 3, CACHEIT detects

there have been two reuses (RDD#2 and RDD#4, highlighted in

red boxes) and therefore marks RDD#6 as a caching candidate.

E. Integrating CACHEIT to Spark runtime

To implement CACHEIT, the existing API cache() in

Spark is modified to be No_Op when CACHEIT is being

used. The TaskScheduler sends tasks along with RDD caching

candidates which are retrieved from CACHEIT to the workers.

At run time, if an RDD is a candidate according to CACHEIT,

cache() is invoked – we did not modify such an operation

to demonstrate the impact of our analyses. If all cached RDDs

cannot fit in the memory, a standard LRU eviction policy is

used. While an alternative eviction policy such as LRC [14] or

LPW [28] has been shown to help improve memory utilization,

it is not our goal to explore such a policy in this work.

IV. EVALUATION

Setup We implemented CACHEIT in Spark version 3.2.3.

The programs are executed using a cluster with one master node

and five worker nodes. Each node has 2 Intel®Xeon®Silver

4214R processors, 180GB of memory, and 500GB of SSD,

connected via a Mellanox ConnectX-6 card. Hadoop Distributed

File System (HDFS) is used for distributed storage.

We evaluated CACHEIT using a collection of programs

commonly used to benchmark the performance of Spark in

suites such as HiBench [29]. Table II lists these programs along

with the input datasets in various scales. The programs are

selected to represent various RDD usage patterns and DAG

structures, which are important to CACHEIT’s caching decisions.

For example, WordCount is a simple map-reduce workload that

does not require caching because each created RDD is only used

once. Other applications that require RDD caching are diverse

in their DAG structures. For instance, PageRank is a single-

job workload that reuses a subset of RDDs at each execution,

while KMeans, TransitiveClosure (TC), SupportVectorMachine

(SVM), RandomForest, and LogisticRegression (LR) have RDD

reuses across jobs.

Because GC is a major factor of the JVM, and the caching

decisions made by CACHEIT directly affect memory usage,

we use multiple heap configurations to simulate a spectrum

of memory settings, from abundance to scarcity, ranging from

128GB to 1GB. All experiments involving CACHEIT have

caching configurations set to the default values (TDC = 2;

TAC = 2; W = 10). Each experiment is run three times to

avoid noise, and the average is reported. The variation among

runs is negligible (normalized standard deviations are no more

than 0.5%). For each run, we collect the execution time and

the GC time.

Methodology While there are many similar works

[9, 10, 12, 15], unfortunately, they are not open-sourced. We

reimplemented ReSpark [15], which is closest to CACHEIT

to assess its effectiveness. Similarly to the empirical study in

Section II-B, we compare CACHEIT to ManualIdeal. We also

run two extreme cases, CacheAll and NoCache (also described

in Section II-B). They are cases where caching decisions are

over- and under-estimated. We implement CacheAll at the

job scheduler by caching all RDDs used for each job. The

implementation of NoCache is a modification to the caching

APIs to bypass their functionalities, similar to CACHEIT. In

this Section, we normalize the performance of all caching

strategies to that of ManualIdeal.

A. Overhead of CACHEIT’s analyses

CACHEIT pays the overhead of analyzing the job DAGs at

run time. Because both analyses inspect the DAGs at each job

scheduling, their duration scales linearly with the number of

jobs inspected and the size of their DAGs. Table II reports the

number of jobs executed, the largest size of the DAG, and the

accumulated time of CACHEIT analyses spent when running

with Large input datasets. Among the benchmark programs,

RandomForest has the largest number of jobs (4250), and the

longest analyzing time of 96.14 seconds in total. This overhead

is insignificant considering that RandomForest takes at least

3.37 hours, i.e., this is only ≈ 0.7% the execution time. For

other programs, the overhead ranges from 0.008% (PageRank)

to 0.28% (TC), showing that the analyses of CACHEIT are

lightweight.

B. Impact of CACHEIT on executions

Due to space constraints, we exclusively report and dis-

cuss the evaluation results with Large inputs. Nevertheless,

CACHEIT’s relative performance is consistent across all input

sizes listed in Table II.

Summary Table III shows the execution time and the

GC time of each program running with different heap sizes

and caching strategies. The execution time using CACHEIT is
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Table II: (a) Benchmark programs used to evaluate CACHEIT. SVM, RandomForest, and LR datasets have a number of data

points × feature space dimensions. The inputs of TC and LR are synthetically generated; (b) Number of jobs executed for each

input configuration; (c) The maximum number of RDDs visited by CACHEIT’s analyses; And (d) the elapsed ManualIdeal

execution time with the accumulated time of running CACHEIT’s analyses; Numbers reported in (c) and (d) are from running

the programs with Large inputs and the largest heap configuration.

(a) Input datasets (b) #Jobs executed (c) Max (d) Elapsed time of

Programs Small Medium Large S M L
#RDDs
per job ManualIdeal

CACHEIT’s
analyses

WordCount Amazon reviews (9GB) [30] Google reviews (20GB) [31] Flight info (30GB) [32] 1 1 1 8 4.33 min 28.25 ms

PageRank Wiki links PL (1GB) [24] Wiki links RS (1.8GB) [24] Wiki links EN (6GB) [24] 1 1 1 186 10.17 min 48.89 ms

KMeans Wiki links PL (1GB) [24] Wiki links RS (1.8GB) [24] Wiki links EN (6GB) [24] 9 22 27 52 3.26 min 282.15 ms

TC 1K vertices, 7K edges 2K vertices, 10K edges 3K vertices, 20K edges 8 9 11 88 3.95 min 658.24 ms

SVM SUSY (5M×18) [33] Higgs (11M×28) [33] KDD2010 (8.4M×20M) [33] 83 108 158 16 29.30 min 581.52 ms

RandomForest usps (7.3k×256) [33] minst (60k×780) [33] mnist8m (8.1M×784) [33] 110 573 4250 13 202.32 min 96136.61 ms

LR 500 points×50 features 20k points×75 features 50k points×100 features 100 250 500 2 38.53 min 645.14 ms

Table III: Execution time and GC time of benchmark programs with four caching strategies. Each measurement is normalized

to that of ManualIdeal (best). TC performance is with Root Reuse (Section III-D) enabled. For each metric, we report the

range and the mean from running with different heap sizes.

Apps NoCache CacheAll ReSpark [15] CACHEIT

Ex. Time GC Ex. Time GC Ex. Time GC Ex. Time GC

WordCount 0.95 > 1.01 0.88 > 1.03 1.03 > 1.08 4.30 > 8.43 1.01 > 1.03 0.93 > 1.0 0.99 > 1.03 0.92 > 1.02
(1.01) (0.95) (1.06) (5.61) (1.01) (0.96) (1.01) (0.97)

PageRank 1.31 > 1.41 0.89 > 2.08 1.46 > 1.86 1.51 > 7.40 1.00 > 1.05 1.04 > 1.30 1.00 > 1.00 0.96 > 1.01
(1.37) (1.41) (1.56) (2.30) (1.02) (1.21) (1.00) (1.00)

KMeans 1.13 > 3.28 0.02 > 0.74 1.24 > 1.68 0.99 > 7.51 1.05 > 1.57 0.98 > 7.48 1.00 > 1.04 0.94 > 1.09
(2.09) (0.25) (1.41) (5.84) (1.26) (3.60) (1.03) (1.00)

TC 1.48 > 2.05 1.39 > 1.42 1.02 > 1.22 1.08 > 5.90 1.09 > 1.14 0.75 > 1.10 1.06 > 1.11 0.98 > 1.01
(1.60) (1.41) (1.10) (1.40) (1.11) (0.97) (1.08) (1.00)

SVM 34.47 > 60.61 4.82 > 12.06 2.00 > 29.74 2.46 > 50.84 1.48 > 1.86 1.67 > 1.95 1.21 > 1.33 1.0 > 1.41
(52.06) (7.58) (9.10) (15.11) (1.68) (1.81) (1.25) (1.21)

RandomForest 1.75 > 1.83 0.62 > 0.99 1.86 > 1.94 1.28 > 1.48 0.99 > 1.07 1.01 > 1.58 0.98 > 1.01 0.83 > 1.17
(1.79) (0.76) (1.90) (1.36) (1.02) (1.26) (1.00) (0.98)

LR 0.98 > 1.02 0.94 > 0.98 1.03 > 1.17 1.10 > 2.53 1.00 > 1.06 0.93 > 1.09 0.92 > 1.02 0.94 > 1.04
(0.99) (0.96) (1.12) (1.56) (1.03) (1.02) (0.98) (0.99)

close to, if not matching, that of ManualIdeal version. The

largest slowdown of CACHEIT is 1.33× for SVM (2GB heap).

NoCache incurs a slowdown from 1.06× (PageRank, 8GB

heap) to up to 60× (SVM, 4GB heap) due to not caching any

RDD. Overfilling the heap with RDDs in CacheAll increases

the duration of GC to up to 50.8× that of ManualIdeal (SVM

running with a strict 2GB heap), resulting in a slowdown

of 29.7×. Overall, using CACHEIT yields effective heap

consumption, which reflects in consistent performance across

the heap sizes. Next, we discuss the execution of each program

with CACHEIT in more detail.

In PageRank and WordCount, CACHEIT mirrors the caching

behavior of ManualIdeal with negligible slowdown. Word-

Count is a single-job program that is composed of one map()

followed by one reduce(). Hence, the intermediate data

created by these transformations are only used once. Caching

these data is not only unbeneficial but also adverse to the

performance by introducing GC overhead when the heap

size is limited (as seen in CacheAll). The simple DAG of

WordCount does not satisfy any caching condition of CACHEIT,

making its execution with CACHEIT mirror that of NoCache

and ManualIdeal. Meanwhile, PageRank is also a single-job

program. Its DAG has one RDD with a high dependentCount

as illustrated in Figure 2. CACHEIT’s intra-job analysis correctly

captures this high-value RDD, resulting in no slowdown

compared to ManualIdeal.

KMeans, SVM, and RandomForest are composed of multiple

jobs, thus they rely more on CACHEIT’s inter-job analysis to

effectively cache and reuse RDDs across jobs. Because caching

decisions are delayed by 1 job (when TAC = 2), execution

slowdown is more noticeable. In SVM and KMeans, the

executions are prolonged respectively to 1.25× and 1.03× on

average. The impact of delayed caching (cf. Section III-C) is the

most severe in SVM due to the high cost of RDD recomputation,

confirmed by its NoCache version having up to 60× slowdown.

In contrast, CACHEIT closely matches ManualIdeal (< 1%
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difference) in both RandomForest and LR, although each is

caused by a different execution effect. In LR, the objects are

small and lightweight, hence recomputing them is cheap, as

demonstrated by NoCache having comparable running time to

that of ManualIdeal. As such, the penalty of delayed caching

is minimal, and thus LR’s ideal performance is maintained

with CACHEIT. In RandomForest, even though this penalty is

significant in its first few jobs, suggested by NoCache having

1.79× slowdown on average. However, RandomForest is a long-

running program with 4250 jobs (reported in Table II), each of

which can fully benefit from the cached RDDs. Therefore, the

penalty of delayed caching is efficiently amortized, resulting in

the execution with CACHEIT on par with that of ManualIdeal.

In TC, CACHEIT applies the analysis for root RDD reuse

(will be discussed in Section III-D). This analysis delays the

caching decision by at least 2 jobs before the subsequent jobs

can cache and reuse the root RDDs. This results in a slowdown

of up to 1.11× at 4GB heap, and 1.08× on average.

Similar to CACHEIT, ReSpark achieves near-optimal per-

formance in WordCount, PageRank, RandomForest, and LR

(≤ 3% difference). For KMeans, TC, and SVM, CACHEIT is

more performant than ReSpark thanks to identifying the set of

RDDs reused across jobs sooner - at their second appearance.

C. CACHEIT’s threshold sensitivity

We vary TDC and TAC to evaluate CACHEIT’s sensitivity.

Figure 6 shows the normalized execution time of programs

with CACHEIT using different threshold values (annotated as

TDC × TAC).
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Figure 6: Execution time with different values of TDC × TAC ,

normalized to that of the default configuration (2× 2).

Because WordCount and PageRank are single-job programs,

varying TAC does not affect their executions. In WordCount,

each RDD has at most 1 dependent, which does not exceed any

tested TDC value. Hence, incrementing TDC does not affect

the execution of WordCount. PageRank has a single RDD

that is a common dependency of many other RDDs (shown

in Figure 2). This RDD must be cached. In our experiment,

the dependentCount of this RDD is 25, exceeding all TDC

values shown in Figure 6. When we set TDC larger than

25, CACHEIT does not cache this important RDD, and the

PageRank execution mirrors that of NoCache, which has

an average slowdown of 1.38× compared to CACHEIT and

ManualIdeal (reported in Section IV-B).

KMeans, SVM, and LR are composed of multiple jobs where

each RDD has at most 1 dependent. Therefore, increasing

TDC does not affect their performance. These programs are

iterative. They repeatedly apply operations on a subset of

RDDs which are caching candidates. Consequently, such RDD

has appearanceCount equals to the number of jobs invoked

(reported in Table II), exceeding TAC values in Figure 6.

As we increment TAC to 10, despite the increased penalty

caused by delayed caching, CACHEIT eventually caches them

in subsequent jobs. Therefore, the slowdown is small, up to

1.07× (KMeans with TDC = 2 and TAC = 8).

RandomForest has a combination of multiple intra-job and

inter-job RDD reuses. Incrementing TDC and TAC shrinks the

set of RDDs to be cached in the memory. Consequently, we

observe a rising trend in execution time with the slowdown as

high as 1.29×. Interestingly, the trend stops when TDC ≥ 6 and

TAC ≥ 3. We found this is because most of the RDDs have

dependentCount < 6 and appearanceCount < 3. Hence,

incrementing the thresholds past these points has little effect.

TC is special due to having the root RDD reuse pattern

(cf. Section III-D). Therefore, with root reuse, varying TDC

or TAC does not affect its execution, as confirmed by the flat

line. Because CACHEIT handles this reuse pattern differently,

we evaluate it separately in Section IV-D.

D. Impact of root reuse

Table IV reports the execution time of TC using Large input

with two versions of CACHEIT where root RDD caching (cf.

§III-D) is disabled and enabled respectively. Across all heap

sizes, enabling root RDD caching speeds up the execution of

TC by 24% to 30% compared to when disabling this feature.

Other programs’ performance are unaffected because they do

not have this pattern.

Table IV: Execution time of TC and performance gain by

enabling CACHEIT’s Root Reuse.

Heap configs. (GB) 1 4 8 16 32 64

Exec. time (sec) w/

Root Reuse
Dsbl 320 306 306 317 323 319
Enbl 258 244 247 255 250 245

Speedup (×) 1.24 1.25 1.24 1.24 1.29 1.30

V. RELATED WORK

Garbage Collection Big Data applications often run

atop a managed runtime to take advantages of the automatic

memory management. GC is one of major sources of the

runtime cost. Many modern GCs have been proposed, such

as G1 [25], ZGC [34], and Shenandoah [35], offering short

pauses and high throughput. Recent years have seen many

GC algorithms adapting to modern data-intensive workloads.

Panthera [36] and Espresso [37] are GCs that incorporate the

characteristics of non-volatile memory. Taurus [38] cordinates

GC runs across nodes in distributed systems to hide GC latency.

Yak [22] divides the heap memory into two different spaces and

manages them differently to adapt to their object characteristics.

Semeru [39] and Mako [40] are developed for disaggregated

memory, an exciting trend towards datacenter design and

resource management. They offload/share GC workload to

remote machines with weak compute power. These GCs cannot
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solve this data caching problem. In Spark, RDDs have a short,

predefined lifetime. As such, RDDs are collected after a task

is completed, unless being manually cached.

Prefetcher and Replacement Policies for Memory

Cache Previous studies are exploring alternative replacement

policies in Spark [14, 28, 41]. Instead of the default LRU,

these policies consider a combination of data characteristics

such as partition size, computation time, or distance between

uses to remove data when cache memory is reaching its

capacity. These policies are complements and can be adapted

into our work as we already extract these metadata. Other

works such as MRD [13] and MEMTUNE [9] also provide

prefetching solutions on a hierarchy of data storage to hide the

re-computation latency of RDDs. Unlike us, these approaches

operate only on the user-defined RDDs and they are postmortem.

Similar to us, Neutrino [10] is a runtime solution but focuses

on moving cached data between different caching levels in

Spark. It still relies on users to determine a set of caching

RDDs upfront, a task that we aim to eliminate. Orthogonal

to us, ATuMm [16] dynamically tunes the JVM configuration

to adjust the amount of memory available for execution and

caching.

Spark Program Tuning Supports There are many works

that aim to mitigate manual inconvenience for Spark devel-

opers. Among them, Ruya [42] searches for the best cluster

configuration (i.e., number of workers, heap sizes, number of

cores) within a restricted search space. Blaze [43] collects

execution information and uses Integer Linear Programming

(ILP) to optimally decide how each RDD should be recovered

for reuse (i.e., by recomputing or storing and loading from

disk). SparkCAD [8] and MCR [12] are closer to our work.

SparkCAD is a profiling-based RDD lineage visualization

tool that suggests developers which RDD should be manually

cached. MCR automates RDD caching by greedily selecting

RDDs using profiling information. Compared to these works,

CACHEIT does not require profiling, and is guided by the DAG

of RDD dependency which is native to Spark engine.

Program Analyses to Remove Software Bloat The term

bloat refers to inefficiencies in software such as redundant

computations to create the same data. Static [44, 45] and

dynamic analyses [46–48] are popular approaches in detecting

these inefficiencies. While static analysis is cheap but cannot

scale to large codebases, dynamic analyses are precise but have

high time and space overheads. Existing works also do not

operate on the coarse granularity such as RDD. CACHEIT

is a dynamic approach with minimal overheads: intra-job

analysis considers static workflows as they are submitted to the

scheduler, and inter-job analysis considers dynamic information

of past jobs to precisely detect candidates.

VI. CONCLUSIONS

In this paper, we introduce CACHEIT, a runtime support for

Apache Spark framework. CACHEIT releases users from the

difficult responsibility of enforcing caching decisions at compile

time for all programs. CACHEIT automatically identifies high-

value RDDs, leveraging dependencies and access patterns in the

workflows. The experimental results are positive, showing that

CACHEIT is effective in detecting appropriate data for caching,

thereby having only marginal slowdown compared to manually-

tuned counterparts while requiring minimal user effort. This

shows promises in enabling autonomous data caching not only

for Spark but any DAG-based dataflow frameworks.
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