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Abstract

Deep-Learning has become a dominant computing paradigm across a broad range of

application domains. Different architectures of Deep-Networks like CNN, MLP, and RNN have

emerged as the prominent machine-learning approaches for today’s application domains. These

architectures are heavily data-dependent, requiring frequent access to memory. As a result, these

applications suffer the most from the memory bottleneck of the von Neumann architectures.

There is an imminent need for memory-centric architectures for deep-learning and big-data

analytic applications that are memory intensive. Modern Field Programmable Gate Arrays

(FPGAs) are ideal programmable substrates for creating customized Processor in/near Memory

(PIM) accelerators. Modern FPGAs contain 100s of Mbits of dual-ported SRAM in the form of

disaggregated, configurable Block RAMs (BRAMs). These BRAMs contain TB/s of available

internal bandwidth.

Unfortunately, developing FPGA-based accelerators for deep learning is not a simple task and

demands the utilization of specialized tools provided by the FPGA vendors. It requires expertise

in low-level hardware microarchitecture design. These are often not available to most researchers

in the field of deep learning. Even with the ongoing improvements in High-Level Synthesis (HLS)

tools, the requirement for hardware-specific design knowledge cannot be completely eliminated.

This research developed a new reconfigurable memory-centric architecture and design

approach that opens the advantages of FPGAs and Processor-in-Memory architecture to

memory-intensive applications. Due to its high-performance and scalable memory-centric design,

this architecture can deliver the highest speed and the lowest latency achievable from an FPGA

overcoming the memory bottleneck.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) are widely used in Artificial Intelligence applications such as

computer vision, voice recognition, autonomous driving, and robotics. With the help of advanced

digital technologies and data handling infrastructure, DNNs have become an increasingly popular

choice for solving complex real-world problems. In some cases, the performance and accuracy of

a DNN can exceed that of human intelligence. However, these networks are computationally

demanding, requiring a large number of resources to perform data-intensive calculations.

General-purpose architectures like CPUs are not well-suited to handle such data and

computationally intensive algorithms. As a result, there has been significant interest and effort

invested in developing specialized architectures for different hardware platforms including

Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), Application

Specific Integrated Circuits (ASICs), and Coarse-Grained Reconfigurable Arrays (CGRAs) to

enable more effective implementation of these computationally intensive algorithms.

In the past decade, several FPGA-based custom accelerator designs have been proposed for

deep-learning applications [4–22]. Creating a custom accelerator that is specifically tailored to a

particular application is an ideal solution as it matches resources to the problem at hand and has a

relatively simple design complexity. The accelerator architecture can be fine-tuned for the

particular application taking advantage of the unique features of the target device. Custom

accelerators achieve the shortest latency and highest performance with the lowest power

consumption. However, they are not reusable for other applications and may lose performance

when synthesized for a different device. Moreover, a custom accelerator takes a very long time to

design and is not portable between FPGA families.

To solve these portability issues, several domain-specific overlay architectures have been

proposed for deep-learning [23–31]. They reduce design complexity by abstracting the

underlying hardware and providing a simpler interface to programming it for a particular
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application. They improve the programmer’s productivity and design speed by eliminating the

synthesis step. However, it comes at the cost of reduced performance, higher latency, worse

FPGA resource utilization, and higher power.

An interesting design approach has evolved in the form of High-Leve Synthesis (HLS), which

tries to bridge the gap between software programming and hardware accelerator design. Several

HLS-based deep-learning accelerators have been proposed [32–37] in the past few years.

However, there is a considerable difference in the achievable frequency between an HLS design

and a manually-crafted RTL design. Interconnect delays are more challenging to predict and

optimize for HLS tools, which often results in interconnect delays becoming the frequency

bottleneck for HLS-based designs. Furthermore, modern FPGAs are increasingly heterogeneous

and can span multiple dies, resulting in longer routing paths that can become the limiting factor

for the maximum frequency of large designs. As a result, timing issues are much worse in such

scenarios.

An outcome of this dissertation is a reconfigurable memory-centric array processor

architecture for deep-learning applications on FPGA that breaks the von Neumann memory

bottleneck and provides the maximum speed the target device can support. Its reconfigurable

design and abstract programming interfaces offer the portability and programmer productivity of

overlays and HLS. At the same time, it provides the highest performance and maximum

utilization of the device’s internal memory bandwidth, making it competitive with custom

accelerators.

1.1 Why Array Processors?

Array processors are the most suitable candidates for deep-learning accelerators for several

reasons including their massive parallelism and distributed memory architecture. Deep-learning

applications are inherently parallel. The most common operations like multiply-accumulate

(MAC), convolution, and pooling employ the same computation on different data. This

computing model resembles single-instruction multiple-data (SIMD) architecture. In the ideal
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case, we want as many processing elements as the number of parallel instances of such

operations. This is exactly what array processors offer. Array processors have SIMD architecture

with thousands of processing elements that can carry out those operations in parallel, taking full

advantage of the inherent parallelism of the deep-learning models.

On the other hand, some deep-learning applications are computation-bound while others are

memory-bound. Convolutional Neural Networks (CNNs), Multilayer Perceptrons (MLPs), and

Recurrent Neural Networks (RNNs) have emerged as the dominant machine learning approaches

for today’s application domains. Each of the three networks has different computation to

communication requirements. These requirements are analytically quantified by an operational

intensity computed as the number of multiply-accumulate (MAC) operations performed per

weight. CNNs exhibit high operational intensities where end-to-end inference latencies are

dominated by arithmetic compute times. Conversely, MLPs and RNNs exhibit low operational

intensities where the end-to-end inference latencies are dominated by bus bandwidth and memory

swapping times. Processor in/near memory (PIM) architectures are making a resurgence to

address these types of networks. PIM architectures integrate bit-serial processors within memory.

This eliminates the sequential bottleneck between the processor and memory resources in

traditional von Neumann architectures. PIM systems offer a theoretical peak performance limited

only by the memory bandwidth. These PIM blocks when used as the processing elements in array

processors provide very high memory bandwidth along with massive parallelism.

1.2 Why FPGAs?

An argument in favor of not using FPGAs is that they are much slower than application-specific

ICs (ASICs). A TSMC 28nm ASIC can run at 3 GHz, while the Virtex 7 FPGA designed in the

same technology node can run as fast as 600 MHz, 5× slower than ASIC. However, ASICs have a

long turnaround time. If we look at Google’s Tensor Processing Unit (TPU) as an example, it took

a team of experts in the architecture world 15 months to design it with almost unlimited resources

available at Google. This time frame can easily become 2 – 4 years for an average engineering

3



team. On the other hand, an FPGA accelerator design can be completed in a few months.

Deep-learning models are fast-evolving. In 2014, the VGGNet architecture achieved

state-of-the-art results on the ImageNet classification task with a top-5 error rate of 7.3%. In

2016, the ResNet architecture achieved even better performance on the ImageNet classification

task, with a top-5 error rate of 3.57%. Thus, in just two years, the ResNet architecture was able to

outperform the VGGNet architecture by a significant margin on the ImageNet classification task.

This is just one example of how rapidly deep-learning architectures can evolve and improve over

a short period of time. ASIC design cycles cannot keep up with this fast growth of deep learning

applications. Thus, despite being significantly slower, FPGAs are the most suitable candidates for

deep-learning accelerators compared to ASIC.

Moreover, FPGAs are an ideal reconfigurable platform for memory-centric Array Processor

implementation. If we look at the layout of a Virtex-7 or an UltraScale FPGA, they have

distributed BRAMs all over the reconfigurable fabric. It is not difficult to see that, these BRAMs

can be utilized to build PIM blocks and then connect them together to build an Array Processor.

Recent proposals have been made to modify the BRAM tiles to convert them to PIM blocks.

However, these are not currently available on mainstream devices.

1.3 Why Overlays?

The process of developing applications for FPGAs is vastly different from writing software

programs, with a higher degree of complexity and intricacy involved. It requires intimate

knowledge of the underlying FPGA architecture as well as experience in low-level hardware

microarchitecture design. In addition, software programmers may face difficulties in working

with complicated vendor-specific implementation tools, which are designed specifically for their

FPGA development. The usage of these tools requires an understanding of hardware design

flows. Moreover, the synthesis step involved in programming for FPGAs can be time-consuming,

leading to slower turnaround times. Therefore, programmers who are accustomed to the rapid

iteration cycles of software development may find FPGA development to be a more arduous and
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challenging process.

An FPGA overlay is a virtual reconfigurable architecture that overlays on top of the physical

FPGA configurable fabric. Overlays provide a level of abstraction to the underlying FPGA

hardware, allowing for greater reuse, versatility, and programmer accessibility. Applications

developed for a particular overlay can be easily transferred to other hardware systems that use the

same overlay, enabling efficient code reuse. The development cycle for overlays is similar to that

of software development, with quick turnaround times and a greater degree of flexibility.

Additionally, overlays can be used with most off-the-shelf FPGAs available on the market,

providing greater accessibility and availability for developers. Furthermore, applications

developed with overlays automatically benefit from performance improvements when running on

new generations of FPGAs, ensuring a greater degree of scalability and future-proofing. All these

reasons strongly motivate the development of a reconfigurable overlay to make FPGAs more

accessible as deep-learning accelerators.

1.4 Why Application-Specific Customization?

This is probably the easiest question to answer. A design that is good for everyone is best for

none. Different deep-learning models have different computation and data-movement patterns

that necessitate different types of architectural support. If we look at Google’s data-center report

on TPU [38], we can see,

• Array active cycles are high for CNN but very low for MLP and LSTM

• Weight stall cycles for MLP and LSTM are high but for CNN very low

• Weight shift cycles for MLP and LSTM are significant, but CNN is insignificant

• Non-matrix cycles of all of them are comparable

These results suggest that if we want to improve the performance of CNNs, we need to focus

on the computation and control part of the accelerator. We should invest more resources and
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optimization efforts to improve the clock frequency and throughput of the processing elements

and the control circuitry and can relax some constraints on the data network. On the other hand,

for MLP and LSTM, we need to focus more on designing a better data network to decrease or

hide the weight stalls as much as possible. It is okay if we relax some constraints on the

computation circuit and relocate the resources for a better network design.

Another argument in favor of application-specific customization is the constraints imposed by

the application environment. The same deep-learning model can have different sets of constraints

based on the runtime environment. Let’s take AlexNet for example, which is a CNN designed for

image classification. If AlexNet will be used by a user sitting in front of a desktop computer to

process some images on its hard drive, it is probably a better idea to optimize the accelerator for

throughput and not worry about latency and power too much. On the other hand, if it will be used

by a battery-powered space probe as part of its navigation system it probably needs to have

shorter inference latency and be power efficient. The point is, the same deep-learning model

needs to meet different constraints for different application environments and so, the accelerator

needs to be customized to meet those constraints.

Moreover, different FPGAs have different logic resources, at least they vary in the distribution

of those resources; some have more memory and less logic than others, some have faster DSPs,

while some of the embedded FPGAs don’t even have DSP blocks. So, the accelerator overlay

need to be customizable to take advantage of the unique resources available in the target device as

well as adjust its resource budgets for each component of the architecture based on the

deep-learning model, application goals, and the resource distribution of the target device.

1.5 Thesis Statement

This dissertation explored the question of the feasibility of creating a Reconfigurable

Memory-Centric Array Processor Overlay architecture that can approach an optimal solution for

FPGA-based deep-learning accelerators. This statement has been evaluated by developing and

studying a reconfigurable memory-centric Array Processor Overlay architecture and design
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approach. To be broad, this work broke down and investigated the question for each

microarchitecture subsystem of an Array Processor to understand how each subsystem impacts

performance at the system level across the major categories of deep-learning applications. This

study resulted in the formulation of a theoretical upper limit for BRAM-LUT-based PIM array

architectures in the form of a set of ideal design standards. These standards are to be used as an

aspirational set of design objectives as well as guiding principles for making near-optimal

architectural design choices. To be specific, the contribution of this dissertation is a

Reconfigurable memory-centric array processor overlay architecture that,

• Establishes an ideal design standard for high-performance PIM designs,

• Runs as fast as the maximum frequency of the BRAM,

• Scales its peak-performance linearly with the BRAM capacity of the target device,

• Offers a balanced network design for reduction operations across the array,

• Offers full customization access at both software and hardware levels,

• Outperforms most of the existing PIM accelerators and many custom accelerators in terms

of application latency.
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Chapter 2

Related Work

Over the past few decades, several FPGA-based accelerators have been developed for

deep-learning applications. This chapter briefly discusses some of the more recent and relevant

research work on FPGA-based accelerator design for deep-learning.

2.1 FPGA-Based Custom Accelerators

Custom accelerators designed for a particular application can provide the best performance and

power at a very small cost. Moreover, they can be fine-tuned for the target platform to take

advantage of the platform-specific features relevant to the application.

Han et al. [7] proposed Efficient speech recognition engine (ESE) to accelerate speech

recognition using LSTM on FPGA. The design presented in this study utilizes a load-balanced

sensing pruning technique to compress the LSTM model. To implement the LSTM algorithm for

speech recognition, the proposed accelerator employs the Kaldi framework. Running at 200 MHz

on a Xilinx XCKU060 FPGA, the proposed design achieves a performance of 282 GOPS.

Additionally, the study showcases the implementation of speech recognition algorithms using

FPGA-based accelerators, which has also been discussed in previous studies [4, 11, 16, 20].

Wang et al. [17] proposed YOLOv3 to accelerate object detection using FPGA. The YOLOv3

(You Only Look Once, Version 3) is an object detection algorithm that detects specific objects in

images or videos in real time. A new accelerator based on the ARM with FPGA architecture has

been proposed. The experimental results demonstrate that this FPGA-based YOLOv3 accelerator

consumes less energy and achieves higher throughput than its GPU counterpart. Furthermore, it is

compatible with various frameworks, including TensorFlow, Caffe, and PyTorch. The

implementation of the proposed accelerator is performed on Xilinx ZCU104 with a frequency of

300 MHz. This approach is also used in several other works to implement object detection

algorithms [6, 12, 13].
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Hamza et al. [28] proposed NPE to efficiently implement Natural Language Processing

(NLP) models on FPGA. The NPE offers a unified platform to handle non-linear functions of any

complexity, with programmability similar to that of software. Compared to CPUs and GPUs, the

NPE consumes 4 times and 6 times less power respectively. It has been implemented on the

Xilinx Zynq Z-7100 FPGA, operating at a frequency of 200 MHz.

Lian et al. [24] have presented a CNN accelerator based on block-floating-point (BFP)

arithmetic to support DNN inference. The accelerator includes Processing Element Array (PEA),

an on-chip buffer, and external memory. The proposed accelerator used 8-bit and 16-bit formats

to represent the feature maps and model parameters. This approach decreased off-chip bandwidth

and memory, while only slightly affecting accuracy in comparison to the 32-bit floating-point

approach. The accelerator design was performed with the Vivado HLS tool, and the proposed

BFP arithmetic is conducted with the Caffe [23] scheme. The Xilinx VC709 evaluation board is

utilized to implement the accelerator, which runs at 200 MHz and achieves a throughput of

760.83 GOP/s.

Xiao et al. [18] proposed a DNN accelerator designed for sparse and compressed DNN

models. The accelerator includes a PE array, RLC encoder, controller, and on-chip buffers. The

weights and non-linear activation functions are stored in RLC compressed form in off-chip

DRAM memory. The PE array contains 64 PEs and performs the MAC operations of the fully

connected layer. A new dataflow is proposed to reuse input activations across fully connected

layers to exploit parallelism and maximize the utilization of PEs. The proposed architecture

achieved a performance of 1.34 GOP/s on the Xilinx Virtex-7 FPGA platform.

Ahmed et al. [19] introduced an FPGA-based low-power CNN accelerator for GoogLeNet

CNN. The proposed accelerator implements quantization and weight pruning techniques to

decrease the memory size, enabling pipelining and processing layer by layer. The on-chip

memory stores activations and weights, replacing multiplication with shifting operations, and

avoiding DSP units. The LP-CNN accelerator provides a significant improvement in power

efficiency over Intel Core-i7 and NVidia GTX 1080Ti, achieving 49.5 and 7.8 times power
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improvement, respectively. The LP-CNN accelerator has been implemented on the Virtex-7

FPGA at 200 MHz.

In [26], a low-power FPGA-based accelerator designed for LeNet CNNs was introduced. The

accelerator utilizes 8-bit, 16-bit, and 32-bit fixed point representations for the weights, activations,

and biases, respectively. It supports pipelining and implements LeNet using minimal resources to

maintain throughput. The design process involves converting C++ code to RTL implementation

using the Xilinx Vitis HLS tool. The accelerator is implemented on the Nexys DDR 4 FPGA

evaluation board and is capable of processing 14,000 images per second while consuming only

628 mW of power.

An FPGA-based dynamically reconfigurable architecture was presented in [27] that uses

Dynamic Partial Reconfiguration to switch between different types of neural network

architectures without affecting precision or throughput. The proposed accelerator includes a PE

array and configurable switches controlled by a hard/soft processor. Each PE can implement

various functionalities with the same hardware, and communicate with other PEs, CPUs, or I/O

ports via configurable switches. The proposed accelerator was implemented on the Xilinx Zynq

7020 FPGA board and the C++ code was converted to RTL implementation using the Xilinx Vitis

HLS tool.

Gowda et al. [30] proposed an FPGA-based reconfigurable CNN accelerator that contains

configuration registers to reconfigure the architecture according to the instructions stored in the

DDR. The PE arrays perform convolution operations while the special function buffer performs

pooling, batch normalization, and activation functions. The proposed accelerator uses sparse

optimization of weight and convolutional optimizations to reduce the sizes of weights and feature

maps, respectively. It uses 16-bit, 8-bit, and 4-bit fixed point formats to represent the feature

maps, CONV layer weights, and FC layer weights, respectively. The accelerator was

implemented on the Xilinx Zynq 7020 FPGA board using the Vivado HLS toolchain.

Gao et al. [39] proposed a GRU-RNN accelerator architecture called DeltaRNN (DRNN). Its

implementation was based on the Delta Network algorithm that skips dispensable computations
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during network inference by exploiting the temporal dependency in RNN inputs and activations.

An implementation on a Xilinx Zynq-7100 FPGA of a single-layer RNN of 256 Gated Recurrent

Unit (GRU) neurons showed that the DRNN achieved 1.2 TOp/s effective throughput and 164

GOp/s/W power efficiency. The delta update achieved 5.7× speedup compared to a conventional

RNN update because of the sparsity created by the DN algorithm and the zero-skipping ability of

DRNN.

Later, they proposed Spartus [40] improving upon DeltaRNN, that exploits the

spatio-temporal sparsity to achieve ultralow latency inference. In Spartus, the spatial sparsity was

induced using a column-balanced targeted dropout (CBTD) structured pruning method. The

pruned networks running on Spartus hardware achieved weight sparsity levels of up to 96% and

94% with negligible accuracy loss on the TIMIT and the Librispeech datasets. Exploiting

spatio-temporal sparsity, Spartus achieved per-sample latency of 1us for a single DeltaLSTM

layer of 1024 neurons. It achieved 46× speedup for the LSTM network using the TIMIT dataset.

Several FPGA-based deep-learning accelerators have also been developed for medical

purposes. A CNN accelerator was proposed by Serkan et al. [14] for the classification of malaria

disease cells using FPGA. Xiong et al. [22] created a CNN accelerator using FPGA to enhance

the automatic segmentation of 3D brain tumors. FPGA-based accelerators are also used to

implement a variety of other applications such as autonomous driving [8, 10], image

classification [5, 21], fraud detection [9], cancer detection [15], and more.

All these accelerators are application-specific. Their implementation depends either on the

target device or the particular deep-learning model. These are neither reconfigurable nor

memory-centric designs. Thus, this dissertation has no overlap with these works. However, some

of these designs were used as comparison benchmarks to validate the performance of the

accelerator developed in this dissertation.
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2.2 Automated Accelerator Generation Frameworks

For rapid prototyping and to automate the process of deep learning accelerator generation, several

automated frameworks have been proposed. Using these frameworks, it is possible to describe the

accelerator in a high-level description language. Several approaches to high-level synthesis (HLS)

of the accelerators have also been proposed. Some frameworks attempt to generate the accelerator

directly from the software description of the deep-learning model.

Guan et al. [41] proposed FP-DNN (Field Programmable DNN), an end-to-end framework

that automatically generates hardware implementations of deep neural networks described in

TensorFlow for FPGA boards using RTL-HLS hybrid templates. The proposed framework

performs model inference of DNNs using a high-performance computation engine and optimized

communication strategies. FP-DNN was tested on several types of DNNs, including CNNs,

LSTM-RNNs, and Residual Nets, and experimental results demonstrated the framework’s

flexibility and high performance. Results showed that using fixed16 data precision, FP-DNN

outperformed CPU implementations by 1.9× to 3.06× in terms of speed. However, FP-DNN did

not perform as well as GPU implementations. When it came to energy efficiency, FP-DNN

always outperformed CPU implementations regardless of the model and precision used. In fact,

FP-DNN could even surpass GPU implementations when using fixed16 data precision.

Wei et al. [42] propose a systolic array architecture, which is designed to increase the speed

of convolutional neural networks on FPGAs. They use modeling techniques and design strategies

to solve problems related to mapping, shape selection, and data reuse. The authors also developed

a framework that automates the mapping process. Results show that their design can achieve up to

1171 GOPSon Intel’s Arria 10 device.

Abdelfattah et al. [43] propose an overlay for deep neural network inference with a minimal

overhead of about 1%. They use a lightweight VLIW network for control and reprogramming

logic and a domain-specific graph compiler to compile deep learning languages such as Caffe and

TensorFlow for their overlay. Their graph compiler optimizes the software architecture to

improve the performance of CNNs and RNNs significantly. They report a 3× improvement on
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ResNet-101 and a 12× improvement on LSTM cells compared to naive implementations.

Chi et al. [44] proposes SODA, an automated framework for implementing Stencil algorithms

on FPGAs. SODA minimizes on-chip buffer size, provides flexible and scalable parallelism, and

generates efficient high-frequency dataflow implementation. The automation framework reduces

the difficulty of programming FPGAs efficiently for stencil algorithms. The SODA design-space

exploration framework searches for the performance-optimized configuration with accurate

models for resource utilization and onboard execution throughput. Experimental results show up

to 3.28× speedup over 24-thread CPU, and the fully automated framework achieves better

performance compared to manually designed state-of-the-art FPGA accelerators.

Cong et al. [45] proposed PolySA, an automated compilation framework that uses a

polyhedral-based transformation to map algorithms to systolic array architecture. It enables

efficient selection of scattering functions through the mapping process and generates off-the-shelf

design IPs. PolySA can be used for matrix multiplication and convolutional neural networks, and

it can identify all different design alternatives. It generates systolic array designs with comparable

performance to well-tuned manual designs, and the entire compilation flow finishes within an

hour. They also studied four common communication and computation patterns (scatter, gather,

broadcast, and reduce) that can result in degraded frequency and long interconnects in scaled-out

designs in High-Level Synthesis (HLS). To address this issue, the authors propose the Latte [46]

microarchitecture, which uses pipeline transfer controllers in these four patterns to reduce wire

delay and improve frequency. They also implement an automated framework to enable easy

implementation of the Latte microarchitecture in HLS designs, which improves frequency from

120 MHz to 181 MHz on average with only a small overhead.

Yu et al. [47] proposed S2FA, an automated framework that can compile Spark application

kernels to FPGA accelerators and integrate them into Blaze runtime. S2FA supports

object-oriented constructs in bytecode-to-C code generation and uses a parallel learning-based

design space exploration to optimize the accelerator performance. The framework generates

FPGA kernels that provide up to 1225.2× and 49.9× speedup for string processing and machine

13



learning applications, respectively, compared to the equivalent Scala implementations from which

they are automatically generated.

Zhang et al. [48] proposed DNNBuilder, which delivers high performance and power

efficiency for building DNN hardware accelerators on FPGAs, achieving the highest throughput

performance peaking at 4218 GOPS (KU115) and 526 GOPS (ZC706) compared to existing

FPGA/embedded FPGA-based solutions. It also achieved higher efficiency (up to 4.35x) than

GPU-based solutions. The tool uses a fine-grained layer-based pipeline architecture and a

column-based cache scheme for higher throughput, lower pipeline latency, and smaller on-chip

memory consumption. It has a flexible process engine that provides optimal implementations of

diversified DNN layers and allows adjusting parallelism factors to fit resource allocation

guidelines.

Zhang et al. [49] proposed a uniformed convolutional matrix-multiplication representation for

both convolutional and fully-connected layers, and optimize the accelerator microarchitecture

based on a revised roofline model. They designed an automation flow to directly compile

high-level network definitions to the final FPGA accelerator. Caffeine was integrated into the

deep learning framework Caffe and achieved a peak performance of 1460 giga fixed point

operations per second on a medium-sized FPGA board. It also achieved 29× and 150×

performance and energy gains over Caffe on a 12-core Xeon server and 5.7× better energy

efficiency over the GPU implementation.

Chen et al. [50] proposed a ternary hardware accelerator called T-DLA, and a framework for

ternary neural network training. The T-DLA is a specialized hardware unit designed to accelerate

TNNs, while the training framework can compress DNN parameters down to two bits with

minimal accuracy loss. The authors report that their training framework can compress the DNN

up to 14.14× while maintaining similar accuracy compared to the floating-point version. The

T-DLA can deliver up to 0.4 TOPS with a power consumption of 2.576W, which is 873.6× and

5.1× more energy-efficient (fps/W) than the Xeon E5-2630 CPU and Nvidia 1080 Ti GPU on

ImageNet with the Resnet-18 model.
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Li et al. [51] proposed HeteroHalide, a system for compiling Halide programs to efficient

FPGA accelerators, using the algorithm and scheduling information specified in a Halide

program. Halide is a domain-specific language for image processing that allows programmers to

search for optimized mappings targeting CPU and GPU. Heterohalid simplifies the flow for

Halide programs to be applicable to FPGAs, requiring only moderate modifications on the

scheduling part. HeteroCL is used as the intermediate representation of HeteroHalide, a

heterogeneous programming infrastructure that supports multiple implementation backends.

HeteroHalide generates efficient accelerators by choosing different backends according to the

application. The performance evaluation shows that HeteroHalide achieves 4.15× speedup on

average over 28 CPU cores and 2 4× throughput improvement compared with the existing

Halide-HLS compiler. The proposed system provides a way to easily map Halide programs to

efficient FPGA accelerators, which was previously a challenge.

Wang et al. [52] proposed AutoSA, a complete framework for compiling systolic arrays on

FPGA. AutoSA utilizes the polyhedral framework and includes a series of optimizations across

various dimensions to increase efficiency. It performs extensive design space exploration to

identify high-performance designs. AutoSA’s effectiveness has been proven across several

applications where it has achieved high performance in a short period. For instance, in matrix

multiplication, AutoSA achieves 934 GFLOPs, 3.41 TOPs, and 6.95 TOPs in floating-point,

16-bit, and 8-bit integer data types on the Xilinx Alveo U250.

Basalama et al. [53] proposed FlexCNN, an architecture for delivering high computation

efficiency in convolutional neural networks (CNNs). It uses dynamic tiling, layer fusion, and data

layout optimizations to achieve this. The architecture includes a versatile systolic array that can

process normal, transposed, and dilated convolutions efficiently. It uses a fully pipelined

software-hardware integration that reduces software overheads. With an automated compilation

flow, FlexCNN takes an ONNX representation of a CNN, performs a design space exploration,

and generates an FPGA accelerator. FlexCNN achieves 2.3× performance improvement and up to

15.98× and 13.42× speedups for transposed and dilated convolutions, respectively, with a 6%
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average area overhead.

Liu et al. [54] proposed OverGen, a hardware generation framework targeting a highly

customizable overlay. OverGen generated designs are as good as the fixed-function HLS-based

systems. Even without tuning the kernel, OverGen provides 1.2 times better overall performance

compared to AutoDSE, an HLS-based design exploration framework.

Zhuang et al. [55] proposed the CHARM framework, which allows for the composition of

multiple MM (matrix multiplication) accelerator architectures that work concurrently on different

layers of a single application. It uses analytical models for design space exploration to determine

accelerator partitions and layer scheduling, and can automatically generate code for onboard

design verification. CHARM was tested on four deep-learning applications on the AMD/Xilinx

Versal ACAP VCK190 evaluation board. Results showed that CHARM achieved 1.46 TFLOPs,

1.61 TFLOPs, 1.74 TFLOPs, and 2.94 TFLOPs of inference throughput for BERT, ViT, NCF, and

MLP, respectively. Compared to one monolithic accelerator, CHARM obtained throughput gains

of 5.29x, 32.51x, 1.00x, and 1.00× for BERT, ViT, NCF, and MLP, respectively.

Due to the success of HLS [32] as a high-level interface to accelerator generation, several

HLS-based automated frameworks have been proposed. Choi et al. [33] proposed the TARO

framework, which automatically applies the free-running optimization on HLS-based streaming

applications. Sohrabizadeh et al. [34] proposed AutoDSE that leverages a bottleneck-guided

coordinate optimizer to systematically find a better design point. Ye et al. [35] proposed

ScaleHLS, a scalable and customizable HLS framework, on top of a multi-level compiler

infrastructure called MLIR. Jun et al. [36] proposed AutoScaleDSE, a design space exploration

engine, which outperformed ScaleHLS by a maximum of 59X. Later, Ye et al. [37] proposed a

new HLS framework combining ScaleHLS, AutoScaleDSE, and PyTransform, which promises to

deliver a scalable and extensible solution to automate the process of designing domain-specific

accelerators.

Though these frameworks automate the process of deep-learning accelerator generation, none

of these targets memory-centric architectures. The placement and routing problems are NP-Hard,

16



making it very difficult to get the highest performance using these automated approaches. As a

result, the accelerators generated by these frameworks run significantly slower than

application-specific custom accelerators. To quote Dr. Jason Cong, a leading expert in HLS and

automated deep-learning accelerator generation, “There remains a significant gap in the

achievable frequency between an HLS design and a hand-crafted RTL one.” [32] Thus, this

research work does not overlap with these approaches. On the contrary, the memory-centric

overlay architecture can act as the backend of these frameworks. For example, after all the

polyhedral optimizations, these frameworks can generate a configuration for the overlay

architecture targetting a particular device.

2.3 Memory-Centric Accelerators

In the past decade, researchers have been developing deep-learning accelerators for inference and

training on various memory platforms. These platforms include traditional memory platforms like

SRAM and DRAM, as well as newer non-volatile memory technologies like ReRAM, PCM,

STT-MRAM, and SOT-MRAM. Studies showed that even with various levels of quantization and

down-scaling of data parameters in CNN algorithms, a satisfactory level of accuracy can still be

maintained. This finding opens up opportunities for high-performance and low-power accelerator

implementations for IoT and Mobile applications.

2.3.1 DRAM-Based

Li et al. [56] proposed DRISA, a DRAM-based Reconfigurable In-Situ Accelerator architecture

that offers powerful computing capability and large memory bandwidth. It uses DRAM memory

arrays where every memory bitline can perform bitwise Boolean logic operations. DRISA can

compute various functions by combining the functionally complete Boolean logic operations and

the proposed hierarchical internal data movement designs. It achieves high performance by

simultaneously activating multiple rows and sub-arrays, unblocking the internal data movement

bottlenecks, and optimizing activation latency and energy. DRISA achieved an 8.8× speedup and
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1.2× better energy efficiency compared with ASICs and a 7.7× speedup and 15× better energy

efficiency over GPUs with integer operations.

Later, they improved upon DRISA and proposed SCOPE [57], another DRAM-based in-situ

accelerator to accelerate error-tolerant applications like deep learning. To enhance performance

and compensate for numerical precision loss, they proposed a stochastic arithmetic optimization

method. The proposed architecture provided a 2.3× improvement in performance per unit area

compared to the binary arithmetic baseline and a 3.8× improvement over GPU. The proposed

H2D arithmetic contributed an 11× performance boost and a 60% numerical precision

improvement.

Deng et al. [58] proposed DrAcc, a CNN accelerator based on DRAM technology and utilizes

bit operations within the DRAM to implement a ternary weight network, resulting in high

inference accuracy. The configuration of data partition and mapping strategies can be adjusted to

balance performance, power, energy consumption, and DRAM data reuse factors. DrAcc

achieved a frame rate of 84.8 FPS while using 2W of power and delivering 2.9× better power

efficiency compared to a process-near-memory design.

Later, they proposed LAcc [59], a PIM accelerator based on DRAM, to support LUT-based

multiplication, which is both fast and accurate. By allowing vector multiplication based on LUT

in DRAM, LAcc reduced LUT size and increased its reuse. LAcc used a hybrid mapping of

weights and inputs to improve hardware utilization. It achieved a rate of 95 FPS at 5.3W for

Alexnet, resulting in a 6.3× improvement over the state-of-the-art benchmark.

Ferreira et al. [60] proposed pLUTo, an architecture that utilizes DRAM to enable the parallel

storage and querying of lookup tables (LUTs). pLUTo simplifies operations by using low-cost

memory reads. pLUTo was evaluated across 11 real-world workloads and outperformed

optimized CPU and GPU baselines by an average of 713× and 1.2x, respectively. Additionally,

pLUTo reduced energy consumption by an average of 1855× and 39.5x.
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2.3.2 SRAM-Based

Eckert et al. [61] proposed Neural Cache, which re-purposes cache structures as compute units for

Deep Neural Networks. In-situ arithmetic techniques in SRAM arrays, efficient data mapping,

and reduced data movement are proposed. The architecture can execute convolutional, fully

connected, and pooling layers in-cache and supports quantization in-cache. Experimental results

showed that Neural Cache improves inference latency by 18.3× over a multi-core CPU and 7.7×

over a server-class GPU for the Inception v3 model. It also improved inference throughput by

12.4× over CPU and reduced power consumption by 50% over CPU and 53% over GPU.

Later, they improved upon Neural Cache and proposed Eidetic [62], an SRAM-based ASIC

neural network accelerator that eliminates the need for frequent off-chip weight loading and

minimizes the requirement for intermediate result transfer. The design used in-situ arithmetic in

the SRAM arrays and supported various precision types to achieve efficient inference. With the

Eidetic architecture, multiple network layers were mapped simultaneously, storing both weights

and intermediate results on-chip to avoid the energy and latency costs of off-chip memory access.

Eidetic was evaluated on Google’s Neural Machine Translation System (GNMT) encoder and

demonstrated a 17.20× increase in throughput and 7.77× reduction in average latency compared

to a single TPUv2 chip.

Ali et al. [63] proposed IMAC, an in-memory dot product computing primitive using standard

6T SRAM arrays. The accuracy of LeNet-5 and VGG neural network architectures with MNIST

and CIFAR-10 datasets was studied for the proposed in-memory dot-product mechanism against

circuit non-idealities and process variations. The results showed that the proposed mechanism

achieved 99% accuracy for MNIST and 88.8% accuracy for CIFAR-10. The proposed system

showed significant improvements compared to the standard von Neumann system, with 6.24×

better energy consumption and 9.42× better delay.

Yin et al. [64] proposed XNOR-SRAM, an in-memory computing SRAM macro that

performs ternary-XNOR-and-accumulate operations for binary/ternary deep neural networks.

XNOR-SRAM simultaneously turns on all 256 rows to accumulate the ternary XNOR operations
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on the read bitline, which is then digitized with an 11-level flash ADC. The prototype

XNOR-SRAM achieved 403 TOPS/W for ternary-XAC operations, with 88.8% accuracy for the

CIFAR-10 dataset at a 0.6V supply. XNOR-SRAM provides 33× better energy efficiency and

300× better energy-delay product than conventional digital hardware and delivers a great tradeoff

between energy efficiency and inference accuracy.

2.3.3 ReRAM-Based

Chi et al. [65] proposed PRIME to accelerate deep-learning applications in ReRAM-based main

memory. The proposed design has an insignificant area overhead and a software/hardware

interface for software developers to implement various neural networks. The experimental results

showed that PRIME improved performance by approximately 2360× and energy consumption by

approximately 895× compared to a state-of-the-art neural processing unit design across the

evaluated machine learning benchmarks.

Shafiee et al. [66] proposed ISAAC, an in-memory accelerator for CNN/DNN using ReRAM

crossbar arrays that store synaptic weights as analog resistance values. Input bits are sent as

analog voltage pulses through the word lines, and the bitline currents represent the accumulated

products of input bits with all weights connected along that bitline. These partial products are

digitized, shifted, and accumulated to perform complete MAC operations. Weights are

represented in 2’s complement to account for positive and negative values. ISAAC has a

hierarchical architecture including MAC, ADC/DAC, sigmoid, and max pool units in each

processing tile. It maps all CNN layers in different tiles and has a pipelined data flow.

Song et al. [67] proposed PipeLayer, a ReRAM-based PIM accelerator for CNN training and

testing. The system exploits inter-layer parallelism through a proposed efficient pipeline and

intra-layer parallelism through highly parallel design. PipeLayer allows for highly pipelined

execution of both training and testing without potential stalls. The system achieved a 42.45×

speedup compared to a GPU platform on average and saved an average of 7.17× the energy

compared to a GPU implementation.
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Tang et al. [68] proposed an RRAM crossbar-based accelerator for inference on Binary

Convolutional Neural Networks (BCNN). They discussed the design of BCNN, including the

matrix splitting problem and pipeline implementation. Experimental results showed that BCNNs

on RRAM had significantly less accuracy loss than multi-bit CNNs for LeNet on MNIST. For

AlexNet on ImageNet, the RRAM-based BCNN accelerator saved 58.2% energy consumption

and 56.8% area compared to the multi-bit CNN structure.

Qiao et al. [69] proposed AtomLayer, a ReRAM-based accelerator that can efficiently support

both CNN training and inference. AtomLayer uses atomic layer computation to eliminate

pipeline-related issues and reduce on-chip buffer overhead. To further optimize its performance,

AtomLayer uses a unique filter mapping and a data reuse system to minimize layer switching and

DRAM access. The experimental results showed that AtomLayer outperforms ISSAC in

inference by 1.1× and PipeLayer in training by 1.6x while reducing the footprint by 15x.

Sun et al. [70] proposed an RRAM synaptic architecture, XNOR-RRAM, which uses a

bit-cell design to implement XNOR and bit-counting operations. For large-scale matrices, array

partition is necessary, and multi-level sense amplifiers (MLSAs) are used to accumulate partial

weighted sums. The impact of sensing offsets on accuracy is investigated, and various design

options are analyzed. Experimental results with RRAM models and 65nm CMOS PDK showed

that the system achieves accuracies of 98.43% for MLP on MNIST and 86.08% for CNN on

CIFAR-10. The projected energy efficiency of XNOR-RRAM is 141.18 TOPS/W, showing

approximately 33× improvement compared to the conventional RRAM synaptic architecture.

Xue et al. [71] proposed a 2 Mb non-volatile computational-in-memory (nvCIM) macro that

combines memory cells and peripheral circuitry based on single-level cell resistive random-access

memory devices. This macro has improved capabilities in performing multibit dot-product

operations with increased input-output parallelism, reduced cell-array area, improved accuracy,

and lower computing latency and energy consumption. Specifically, the macro achieved latencies

ranging from 9.2 to 18.3 nanoseconds and energy efficiencies ranging from 146.21 to 36.61

tera-operations per second per watt for binary and multibit input-weight-output configurations.
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Wan et al. [72] proposed NeuRRAM, a chip based on RRAM technology that enables the

reconfiguration of computational-in-memory cores for different model architectures. NeuRRAM

improved energy efficiency compared to previous RRAM-based PIM chips, and its inference

accuracy was comparable to software models that use 4-bit weights on various artificial

intelligence (AI) tasks, such as image classification and speech recognition. Specifically,

NeuRRAM achieved a 99.0% accuracy on the MNIST dataset, an 85.7% accuracy on the

CIFAR-10 dataset, and an 84.7% accuracy on Google speech command recognition, as well as a

70% reduction in image-reconstruction error on a Bayesian image-recovery task.

2.3.4 MRAM-Based

Fan et al. [73] proposed a design for a Convolution-in-Memory engine (CIM) using dual-mode

SOT-MRAM array architecture. This design enables the implementation of convolution

computation within memory to reduce the energy consumption and long data communication

distances associated with state-of-the-art CNNs. Later, they proposed an In-Memory Convolution

Engine (IMCE) [74] to perform convolution computation within SOT-MRAM memory. IMCE

uses parallel computational memory sub-array as a fundamental unit. An accelerator system

architecture based on IMCE can greatly reduce energy consumption and accelerate CNN

inference. The proposed system architecture can process low bit-width AlexNet on the ImageNet

dataset with 785.25 µJ/img, which consumes 3× less energy than the state-of-the-art.

Pan et al. [75] proposed an in-memory computing architecture based on multilevel cell

(MLC) spin-toque transfer magnetic random access memory (STT-MRAM) for convolutional

operation in Binary Convolutional Neural Networks (BCNNs). The proposed architecture was

designed for low current consumption and fully utilized the in-memory computing advantages.

The simulation results showed that the proposed architecture reduced power consumption by

approximately 35× and 59% compared to the resistive random access memory (RRAM)- and

spin-orbit torque-STT-MRAM-based counterparts, respectively, on the MNIST dataset.

Patil et al. [76] proposed an MRAM-based architecture called MRAM-DIMA to perform
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multi-bit matrix-vector multiplication for deep neural networks. The MRAM-DIMA used a

standard MRAM bit-cell array and achieves lower energy and delay compared to conventional

digital MRAM architecture with a 4.5× and 70× reduction, respectively. The impact of circuit

non-idealities, including process variations, on DNN accuracy was estimated using behavioral

models. For LeNet-300-100 on the MNIST dataset and a 9-layer CNN on the CIFAR-10 dataset,

the MRAM-DIMA can tolerate a 24% and 12% variation in cell conductance and still achieve

accuracy drops of ≤ 0.5% and ≤ 1%, respectively.

Angizi et al. [77] proposed CMP-PIM, a SOT-MRAM-based accelerator to execute a

hardware-oriented comparator-based neural network named CMPNET. CMPNET replaces the

multiplications in convolution layers with more efficient and less complex comparison and

addition. Later, they proposed MRIMA [78] proposed MRIMA, an STT-MRAM-based

in-memory accelerator for efficient in-memory computing. MRIMA transforms STT-MRAM

arrays into massively parallel computational units capable of working as nonvolatile memory and

in-memory logic. It exploits bitline computing methods to implement complete boolean logic

functions between operands within a memory array in a single clock cycle. The

device-to-architecture co-simulation results showed that MRIMA can obtain 1.7× better energy

efficiency and 11.2× speed-up compared to ASICs for CNN acceleration. MRIMA also shows

77% and 21% lower energy consumption compared to CMOS-ASIC and domain-wall-based

designs, respectively, for AES in-memory encryption.

2.3.5 FPGA Block-RAM-Based

The trend towards PIM architectures is inspiring new reconfigurable fabrics that integrate

bit-serial arithmetic units into FPGA Block-RAM (BRAM) IP to form PIM tiles. This trend is

relatively recent in the FPGA community. Thus, only a few works have been published to date.

Inspired by Neural Cache [61], Wang et al. [79] proposed Compute-Capable BRAMS (CCB)

adding in-memory compute capabilities to FPGA BRAMs, allowing them to act as storage units

or execute bit-serial arithmetic operations. This results in a 1.6× and 2.3× increase in peak
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multiply-accumulate throughput for a large Stratix 10 FPGA, at a minimal cost of only a 1.8%

increase in the FPGA die size. The proposed change does not affect the BRAM’s interface to the

programmable routing. A reconfigurable in-memory accelerator architecture (RIMA) was

developed for deep-learning inference, which uses CCBs and FPGA’s reconfigurability to achieve

1.25× and 3× higher performance for 8-bit integer and block floating-point precisions,

respectively, compared to the state-of-the-art Brainwave deep-learning soft processor. RIMA

implemented on a Stratix 10 FPGA with compute-capable BRAMs achieved an order of

magnitude higher performance than a same-generation GPU.

Improving upon CCB, Arora et al. [80] proposed modification to FPGA BRAMs to create

CoMeFa (Compute-In-Memory Blocks for FPGAs) RAMs, which provides compute-in-memory

capabilities by combining computation and storage in one block. CoMeFa RAMs use the true

dual-port nature of FPGA BRAMs and include multiple programmable single-bit bit-serial

processing elements. They can be used for computing with any precision, making them valuable

for applications like deep-learning. They proposed two variations of CoMeFa RAMs:

CoMeFa-D, which is optimized for the delay, and CoMeFa-A, which is optimized for the area.

Compared to existing proposals, CoMeFa RAMs are practical to implement and versatile, finding

applications in various parallel applications like Deep Learning, signal processing, and databases.

By adding CoMeFa-D or CoMeFa-A RAMs to an Intel Arria-10-like FPGA, a geomean speedup

of 2.55× or 1.85x was achieved, respectively, with algorithmic improvements and efficient

mapping, at the cost of 3.8% or 1.2% area, respectively.

Both CCB and CoMeFa used a transposed data layout for bit-serial computation, where

operands are stored along the bitlines occupying multiple wordlines in a column-major format.

This adds additional latency to the end application, due to conversion to and from the row-major

format. To solve this problem, Chen et al. proposed a hybrid bit-serial and bit-parallel

Multiply-Accumulate (MAC) dataflow in BRAMAC [81] and M4BRAM [82]. In contrast to CCB

and CoMeFa, this approach avoids computing on the primary SRAM array, which is large and

thus slow and power-intensive. Instead, they copy the operands from the BRAM to a smaller,
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separate “dummy array” for MAC operations. This approach liberates the BRAM data ports for

read/write tasks, facilitating the concurrent execution of MAC operations, data loading, and

parallel DSP operations. BRAMAC’s constraint lies in necessitating uniform precision

(2-/4-/8-bit) for both weights and activations, restricting its use to uniform-precision DNNs

exclusively. M4BRAM overcomes this limitation by enabling variable activation precision,

spanning from 2 to 8 bits, while maintaining a MAC latency that scales linearly.

2.4 Benchmark Design

This research work has its roots in the Ph.D. dissertation of Dr. Atiyehsadat Panahi [3]. In her

dissertation, she developed a prototype of a memory-centric FPGA overlay, which is designed

using a SIMD processor array to support rapid coding, programmability, and flexibility for the

acceleration of machine learning applications. The developed architecture was based on a 2-D

array of processor-in-memory tiles each consisting of small bit-serial ALUs with concurrent

access to register files. In the memory-centric architecture, a set of PEs share the same BRAM

block as their register file and therefore can access the other PEs within the same PE block. This

architecture eliminates the physical connections between the PEs and increases the level of

concurrency in the design that is provided with the SIMD architecture. The studies presented

in [3,25,29,31] show significant speed-up compared to existing custom designs (1.75×) and HLS

(24.51×). They offer massive parallelism in a mid-sized Virtex-7 FPGA (xc7vx485) by packing

10K-16K PEs. The overlay architecture presented in [3, 25, 29] has been adopted as a benchmark

design for comparative study.

Though the basic architecture of this research work is similar to the benchmark design, the

design approach and the end goals are vastly different. Table 1 compares the benchmark design

and this work to distinguish between them. The first four criteria in the table are the same in both

works; they both are FPGA overlays based on SIMD array processors. Both employ PIM blocks

to carry out computation and can be programmed using software tools. However, the similarity

ends there. Though the benchmark is an overlay that can be programmed to implement any
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Table 1: Comparison of this research work with the benchmark design

Criterion Benchmark Design This Work

FPGA Overlay Yes Yes
SIMD Array Processor Yes Yes
PIM Overlay Yes Yes
Software programmable Yes Yes

Reconfigurability Dimensions only Reconfigurable Architecture
Data network NEWS, Bin-Add (Fixed) Custom, Binary-Hopping
Control Network Broadcast (Fixed) Custom, Pipelined Tree
Front-end interface Memory-Mapped Registers Custom, Abstract ISA

Component Architectures Fixed Plug-and-Play
Extensible No Yes
Customization Access Software (SW) level only Both SW and HW levels

Design Goals Low-Latency (qualitative) Ideal Design Standard
Performance Goal Unspecified BRAM max frequency
Scaling with BRAM No Linear Scaling
Reduction Latency Goal Unspecified Balanced

deep-learning model, it does not aim for the high-performance and scalability memory-centric

design goals achieved in this dissertation.

The second section of Table 1 summarizes the limitations of the architecture of the

benchmark design. The benchmark design has fixed networks for data movement and control

signals. The front-end interface is a set of memory-mapped registers, which directly connects to

the PE blocks without any intermediate networking mechanism. This drastically deteriorates the

system performance achieving only 25% of the maximum achievable system frequency [29]. On

the other hand, this work provides a flexible system-level architecture with well-defined interface

to support custom implementations of each of these components of the accelerator to achieve

maximum performance on a target platform.

The third section of the table highlights the customization capabilities offered by this work,

not offered by the benchmark design. The only part of the benchmark design that can be

reconfigured for a target application or device is the dimensions of the array; the designer can

specify how many rows and columns of PEs to implement and how to group them in the tiles. The

accelerator developed in this work offers a fully reconfigurable architecture, where any part of the

26



accelerator can be reconfigured or replaced as per the designer’s choice seamlessly. Each

component in the benchmark design is fixed and cannot be changed without breaking other parts

of the system. Thus, this prevents any attempt to perform application-specific optimization on the

benchmark design. The only way to customize the benchmark overlay is through software

programming using its custom instruction set. In the architecture developed in this research work,

the functionality of each of the components is well-defined without restricting it to a particular

implementation. This enables a plug-and-play approach to prototyping and rapid accelerator

development. Consequently, it can make application-specific optimizations as easy as writing a

configuration file.

The last section of the table highlights the fact that, the benchmark design only aimed to

reduce latency without establishing any quantifiable design goal. This work targeted and met very

specific memory-centric design goals for attaining the highest performance and scalability. These

design goals define the theoretical upper limits of the PIM array-based FPGA accelerators. On the

other hand, the benchmark design does not define or meet these goals in any of its configurations.
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Chapter 3

Defining The Ideal Design Standard

Processing-in-Memory (PIM) architectures offer promising features that have the potential to

significantly enhance computing performance by integrating processing capabilities directly into

memory. Despite these advantages, the proposed PIM architectures to date, including the ones

discussed in the last chapter, strive to achieve optimal performance but face inherent limitations.

While compute density is increased, the maximum BRAM clock frequency is significantly

reduced. Additional scalability issues are also introduced at the system level: a faster and larger

device does not imply a faster system speed or a linear increase in the compute units with

increased BRAM density. While each proposal offers some relative improvement over prior

designs, there is currently no absolute metric or yardstick that could be used to evaluate the

efficiency of these designs. This has made it difficult to perform quantitative comparisons between

PIM arrays implemented in different logic families from one vendor or between different vendors.

These limitations often stem from a lack of a unified design standard, resulting in inconsistent

performance and scalability challenges across different implementations. No existing PIM

architecture fully addresses these crucial aspects, leaving a gap in the field. In this chapter, we

aim to bridge this gap by defining a comprehensive design standard for PIM architectures. This

standard is intended to serve as an absolute metric for comparing the efficiency of existing

designs while also serving as an aspirational set of design objectives for future designs. The

feasibility of each goal and related implementation challenges are also discussed. Through this,

we hope to provide a robust framework that future PIM designs can adhere to, facilitating the

development of more efficient and effective architectures.

3.1 Analysis of Existing PIM Designs

Table 2 summarizes the maximum achieved frequencies of existing PIM designs. From the

relative frequency columns, it is observable that the clock frequency fPIM of all the PIM designs,
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Table 2: Maximum Frequency (MHz) of Existing FPGA-PIM Designs

PIM Design Type Device fBRAM fPIM Relative fSys Relative

CCB Custom Stratix 10 1000 624 62% 455 46%
CoMeFa-A Custom Arria 10 730 294 40% 288 39%
CoMeFa-D Custom Arria 10 730 588 81% 292 40%

BRAMAC-2SA Custom Arria 10 730 586 80% - -
BRAMAC-1DA Custom Arria 10 730 500 68% - -

M4BRAM Custom Arria 10 730 553 76% - -
SPAR-2 Overlay UltraScale+ 737 445 60% 200 27%

PiMulator Overlay UltraScale+ 737 - - 333 45%

both overlays and custom BRAMs, are significantly slower compared to the maximum frequency

for the device BRAMs (fBRAM). Their system frequencies (fSys) are 2.1× – 3.7× slower than the

BRAM maximum frequencies (fBRAM). This decrease in system frequency was attributed to the

limitations of the soft logic and the routing resources of the FPGAs. It was also reported as

unlikely that an FPGA accelerator at the system level would operate at a frequency surpassing the

degraded frequency (fPIM) of these PIM designs, even in a more advanced node than the

evaluation platforms [1, 81–83].

Further observation yielded that most of these systems could not utilize all available BRAMs

as PIMs. This lower utilization combined with a lower clock frequency results in less efficient use

of the available internal BRAM bandwidth of the devices and a lower system-level compute

density. A final observation shows a troubling common pattern: as the utilization of BRAMs

increases the achievable system-level clock frequency decreases [1, 84].

These observations motivated our interest in understanding if these results were a new reality

of BRAM PIM arrays or symptomatic of specific design decisions and implementation choices.

This led us to ask two questions. What is the fastest frequency a PIM-based design should/could

be able to achieve on FPGAs, and was it possible to scale compute density up to the maximum

BRAM capacity without degrading the clock frequency?

We posited that the compute efficiency of PIM-Arrays should be measured relative to an

FPGA’s full internal bandwidth and only limited by the density of the devices BRAMs. This

would require a PIM architecture to run at the BRAM maximum speed with compute density
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Table 3: Delay (ns) Breakdown of 1-level Logic Path in AMD Devices

FF-C2Q1 LUT2 FF-Setup Total3 BRAM4 Net Budget Min5

V7 0.290 0.34 0.255 0.885 1.839 0.954 0.272
US+ 0.087 0.15 0.098 0.335 1.356 1.021 0.102
1 Clock-to-Q delay of flip-flops
2 Average of delay through LUTs
3 Total cell delay
4 BRAM pulse-width requirement, clock period for Fmax
5 Minimum net delay through a switchbox

scaling linearly up to the full density of BRAMs on a device. We termed such a PIM architecture

as the Ideal Design Standard.

3.2 Ideal Clocking

In FPGAs, BRAMs are the single component with the longest latency [85–87], thus representing

the timing bottleneck for setting clock speed. Though in a typical FPGA design, the logic and

routing delays can dominate the overall path delays, at the unit level, FPGA resources like LUTs,

FF, and routing blocks are much faster than the BRAM. Thus, we define the maximum frequency

(Fmax) of the BRAM as the Ideal Standard clock frequency for the PIM accelerator. This requires

processing elements along bit lines to be designed such that they do not degrade this frequency.

To assess the practicality of this standard, we closely examined two AMD FPGA families:

Virtex-7 and UltraScale+. While Virtex-7 CLB resource’s delay numbers are available in the

datasheet [85], those numbers are not publicly available for UltraScale+ devices. Thus, we

created a design where all timing paths are one logic level deep and averaged all paths to obtain

Table 3. The Total column sums the cell delays in the columns to its left. The BRAM column lists

the clock period for BRAM Fmax. The Min column displays the minimum delay of a net passing

through a switchbox. Net Budget is derived by subtracting the Total column from the BRAM

column. Comparing the net budget with the minimum net delay shows the possibility of designing

at least two LUTs deep logic paths that can run at the BRAM Fmax on these device families.

In certain FPGA families, achieving this constraint may be challenging due to the presence of
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multiple dies and fixed-function blocks supporting various functionalities, such as PLLs,

high-performance IO blocks, PCIe blocks [88], and application processors [89]. These blocks

impact placement and routing, eventually affecting the maximum achievable clock frequency. In

such devices, this Ideal Standard may not be achievable. However, FPGA vendors can employ

this clocking standard to ensure the achievability of this constraint in device families targeting

PIM designs.

3.3 Ideal Clocking Design Challenges

There are several challenges in achieving this Ideal Standard for clock speed, and most of them

can be addressed at the architectural level. The most important design consideration to make is

the logic depth design. The part of the system logic residing in the same clock domain as the

BRAM should be at least as fast as the BRAM. This may require adding optional pipelines in the

design, which can be enabled at a later stage of implementation if the logic depth is limiting the

clock speed.

Another major problem is the high fanout nets. Most of the PIM array-based designs share

the control logic across multiple PIM blocks [3, 29, 84]. These nets carrying the control signals

can have several hundreds to thousands of fanouts, which need to be managed carefully to achieve

the Ideal Standard. This fanout can be kept low by replicating the control logic. If large fanout is

unavoidable, then pipelined fanout trees need to be synthesized for these signals.

Despite the aforementioned design considerations, timing failures may still occur during

placement and routing due to long routes causing excessive net delays. To mitigate this, the

system architecture should employ a tile-based approach at the system level [1, 29, 83, 84] to

localize logic and routing. The RTL design should be implemented with an awareness of potential

placement and routing issues. If feasible, alternative implementations should be incorporated to

be selected during the implementation stage to address placement and routing issues.
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Figure 1: Ideal scaling vs. actual TOPS of RIMA on Stratix 10 GX2800

3.4 Ideal Scaling of Peak-Performance

One of the major benefits of the PIM architecture is the massive parallelism it can offer: all

bitlines of the memory array can be designed into concurrent processing elements [1, 83, 84, 90].

It is desired that the compute capacity should scale proportionately with the number of available

BRAMs. As an Ideal Standard, we posited that the peak-performance of a PIM design needs to

scale linearly with the on-chip BRAM count. Existing PIM designs do not adhere to this standard.

The compute capacity in custom-BRAM-based PIM designs [1, 81–84] scales linearly with

BRAM count if all BRAM tiles are used in PIM mode. However, a significant sacrifice is

imposed in the clock frequency that ends up limiting the achievable peak-performance on the

device. The fPIM column in Table 2 indicates that the custom-BRAM PIM designs run up to 2.5×

slower than the BRAM Fmax. The situation is worse at the system level. As reported in Table-II

of [84], CCB-based accelerator RIMA experiences decreased system speed as the BRAM usage

increases. A similar trend is observed in CoMeFa-based designs as reported in Tables 8 and 9

of [1]. Fig. 1 plots the peak-performance of RIMA using Table-II of [84]. The peak-performance

of the system is computed from the reported BRAM utilization of Stratix 10 GX 2800 FPGA and

the corresponding frequency of the M-DPE clock domain. We can see that the peak-performance

of RIMA shows an irregular trend. This irregularity can be attributed to the system-level

architecture of RIMA. If RIMA was designed following the ideal scaling standard, even at the

degraded CCB frequency of 624 MHz, its peak-performance would align with the CCB Ideal
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TOPS line. The gap between these plots represents wasted compute capacity and memory

bandwidth provided by CCB BRAMs.

3.5 Ideal Scaling Design Challenges

The ideal scalability in custom-BRAM-based PIM systems can be achieved in most cases by

keeping the system clock at BRAM Fmax avoiding too deep combinatorial logic and routing

issues as discussed before. Apart from the clock speed, the main challenge preventing these

PIM-based accelerators from achieving the ideal scaling is the high logic utilization of the rest of

the system. The same design principle as in the ideal clocking standard must be applied here as

well: BRAM should be the utilization bottleneck, not the control logic.

In PIM accelerators, PIM blocks handle computation, while the rest of the system primarily

manages data pipelines and control logic [1, 29, 83, 84]. To prevent the control logic from

becoming the utilization bottleneck, controllers should be shared between multiple PIM blocks.

Control signals should be designed to minimize the number of unique control sets in the system.

A control set is a group of control signals (set/reset, clock enable, and clock) for a register or

latch [91]. Excessive unique control sets can degrade placement quality, impacting system

scalability and clock frequency. Overall, the rest of the system should complement the PIM array

without limiting its scalability and performance.

3.6 Ideal Reduction Latency

Reduction is a critical operation in applications like GEMM and deep-learning as it requires data

movement throughout the distributed BRAM memories and/or processing elements of the PIM

array. Accumulation, a common reduction operation, is often implemented using a pipelined

adder tree [1, 84] as shown in Fig. 2. Adder trees are resource-hungry, especially on routing,

requiring more adders and routing resources as the PIM row size increases. Bit-parallel

implementations are even harder to manage compared to bit-serial: INT8 requires 8× more logic

and routing resources than bit-serial implementations. Such high utilization can subsequently
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Figure 2: Reduction latency breakdown of a pipelined binary adder tree maintaining ideal clocking
constraint.

affect system frequency and scalability.

To prevent the reduction network from becoming the utilization and routing bottleneck,

sharing logic and routing resources with the rest of the system may be necessary. Existing

high-performance reduction architectures for FPGA implementation [92–97] highlight the

unavoidable trade-off between reduction latency and resource utilization. To guide this trade-off,

we propose the Ideal Standard for reduction latency as the following empirical model,

Array-Level Reductionideal = aN logP+bP+ c (1)

In-Block Reductionideal = aN logk (2)

In this context, a PIM “block” is a single BRAM tile, like CCB, CoMeFa, BRAMAC, etc., along

with its related logic. In-Block reduction generates partial sums accumulating the PEs in a PIM

block, while array-level reduction accumulates these partial sums. Here, P = no. of partial sums

obtained from all PIM columns involved in the reduction process, N = operand width (precision),

k = no. of PE columns in a PIM block; a,b,c are implementation-specific parameters with their

ideal range specified in Table 4.

The intuition behind (1) and the parameter ranges can be explained using Fig. 2. The total

reduction (accumulation) latency can be broken down into two parts: reduction operation (add)

and data movement. The term aN logP represents the latency of reduction operations (add) only,

requiring at least logP reduction steps; the base of the log represents the number of operands
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Table 4: Parameters of Ideal Standard for Reduction Latency

Parameter Ideal Range Related to

a 1/N ≤ a ≤ 2 Latency of reduction steps (addition)
b 0 ≤ b ≤ 1 Latency of data movement
c 0 ≤ c Cycles spent outside reduction network

reduced per step, typically 2. The PE architecture (bit-serial, bit-sliced, or bit-parallel) determines

the value of a. The lower bound of a is 1/N because at least one cycle is needed per reduction step

(aN ≥ 1). We set the upper bound for a to 2 because bit-serial PEs, especially in overlays,

commonly require 2 cycles to process each bit (aN = 2N) of the operand [2, 3, 29].

Under the ideal clocking constraint, data-movement latency depends linearly on the number

of PIM columns in a row, represented by bP. Assume each PIM block (p) in Fig. 2 occupies a

large enough area such that a net does extend beyond two consecutive PIM blocks without

violating the ideal clocking constraint. Then constructing the adder tree without sacrificing the

clock speed requires one pipeline stage to be placed along each PIM column as in Fig. 2. This

requires P/2 cycles (b = 1/2) for accumulation towards the middle in this example. In general, the

value of b depends on the speed of FPGA’s routing resource relative to BRAM Fmax. Typically

b < 1 in modern FPGAs with fast routing resources, which allows nets to span multiple PIM

columns at BRAM Fmax. The lower bound of b is 0, corresponding to a bit-parallel pipelined

reduction tree that perfectly overlaps data movement with computation.

In (1), c represents delays outside the reduction network. The In-Block partial-sum

generation latency (2) is a simpler version of (1), where k denotes the number of PE columns

accumulated within the PIM block. A term for pipelined data movement is absent as signals can

move within a block without violating the ideal timing constraint. In-Block reduction latency (2)

can be absorbed into c, making (1) as the overall reduction latency standard. The lower bound of

c is 0, representing no additional cycles outside of the reduction network. Having no upper bound

allows the network architecture to vary without violating the proposed Ideal Standard; some

preprocessing steps may be employed such as the pop-count-based adder in RIMA [84], before
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Table 5: Reduction/Accumulation Latency of Existing PIM Designs

Block Level PIM Array Level Utilization1

Linear-Add2[3] 3N (k-1) 3N (P-1) Low
Binary-Add2[3] 2Nlog(k) + N(k-1) 2Nlog(P) + N(P-1) Low

CCB/CoMeFa [84] 2Nlog(k) + log2(k) log(P) + 2 High
Proposed Standard aNlog(k) aNlog(P) + bP + c Balanced3

1 Qualitative logic and routing resource utilization
2 NEWS network with linear shift then add
3 Offers latency vs. resource utilization trade-off

entering the reduction network that requires tens or hundreds of cycles.

Though the proposed standard (1) closely resembles a pipelined adder tree, it can provide

insights and help identify design inefficiencies in various other architectures. Importantly it can

steer designers towards optimal or near-optimal reduction network designs. We explore this in

Chapter 5 through a quantitative study of existing designs.

3.7 Ideal Reduction Design Approaches

Table 5 shows the latency equations for bit-serial PIM architectures [1, 2, 29, 84] and their relative

utilization of resources. The bit-parallel architectures [81, 82] are not listed because the

block-level reduction is built into their MAC units and they do not have a proposed

implementation for array-level reduction.

In SPAR-2 [3], the reduction is performed using a NEWS network with two different

approaches. In each iteration of the linear-shift linear-add approach, partial sums are bit-serially

shifted to the next column, added with the multiplication result of that column, and then shifted

again. In each iteration of the linear-shift binary-add approach, partial sums are bit-serially

shifted through a given number of intermediate columns, then added with the partial sum stored in

that column, and then shifted again doubling the number of intermediate columns. Thus, the

binary-add approach has the log term, unlike the linear-add approach. The block-level and

array-level latency equations are exactly the same because, the operands move through PE
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columns connected using the NEWS network, ignoring the block-level grouping of the PEs. The

NEWS network is the simplest of the data movement networks among the designs listed in the

table, requiring very small logic and routing resources.

Accumulation in CCB and CoMeFa [1, 84] at the block level is implemented as a series of

across-bitline copies and additions, followed by a pop-count-based adder. Unlike other designs in

Table 5, it has a log2 term at the block level because it increases the number of bits accumulated

after each addition, to increase the precision of the accumulation result. They mentioned using a

“global reduction tree” at the array-level, without discussing its implementation details. If we

assume the fastest implementation, the global reduction tree can be implemented using a

pipelined adder tree with the array-level latency represented by the CCB/CoMeFa row of Table 5

with a pipeline overhead of 2 cycles. This implementation consumes the highest logic and routing

resources, which can significantly affect the scalability of a PIM array with hundreds of blocks

per row in the array.

As observed from the table, each of the architectural improvements brings the latency

expression closer to the proposed standard (1). This standard latency equation can be used as a

guide to design the optimal trade-off between latency and utilization. It can also be used to

evaluate and compare different reduction network architectures by approximating their latencies

using the model. If the latency expression of an implementation deviates too much from the Ideal

Standard, like the NEWS network-based implementations, this will mean that the network

architecture is not optimal for reduction and adjustments are needed. In Chapter 5, we will

quantify these latencies and demonstrate how the proposed standard can help us identify the

design inefficiencies and guide us toward an optimal design.

37



Chapter 4

PiCaSO: A Processor-in-Memory Scalable and Fast Overlay

After establishing the proposed Ideal Design Standard, we created a PIM block that adheres to the

standard. PiCaSO, a Processor in/near Memory Scalable and Fast Overlay, is a representative

PIM overlay architecture that served as a practical test of the validity of the standard, revealing

both the potential and the challenges inherent in meeting these ambitious goals. Successfully

meeting these goals resulted in a high-performance PIM block, demonstrating not only the

feasibility of the standards but also their effectiveness in guiding the development of superior PIM

architectures. PiCaSO has been published at [98] as an open-source implementation and is freely

available for study, use, modification, and distribution without restriction.

4.1 PIM Architecture

A generic bit-serial PIM block has a datapath that starts at the data output ports of the BRAM,

passes through the logic elements that usually implement the ALU, and then returns to the data

input ports of the BRAM [1, 29, 99]. However, as the operands are streamed on separate bit-lines

this datapath cannot support reduction of operands in different PEs. If the PIM block does not

have a built-in mechanism for such reduction, the operands need to come out of the memory

block, be processed in the LBs of the FPGA, and then written back to the target PE column of the

memory block. This defeats the purpose of having a PIM block.

To address this shortcoming, we introduce an operand-multiplexer (Op-Mux) module

between the BRAM and the ALU. The Op-Mux implements the mechanism of multiplexing the

bit lines going into the bit-serial ALUs. To overlap data movement with computation, we design a

network module that can move the bit-serial operand stream over the network and directly feed it

to the ALU for reduction operations. Fig. 3 shows the proposed architecture of PiCaSO.
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Figure 3: Proposed PIM architecture

4.1.1 Register File

In our proposed design, each column of a BRAM acts as a bit-serial register file. One important,

but less discussed, aspect of the register file design using BRAMs is to determine the optimal

dimension of the PE-Block. A square array may seem reasonable: a PE-Block with 16 PEs can be

logically organized into a 4×4 array [29]. However, it may not be optimal depending on the target

application and the FPGA. To get the best performance out of a design implemented on an FPGA,

its logical structure needs to map well to the physical layout of the FPGA. In Virtex-7 and Virtex

UltraScale+ FPGAs, there can be 10–16 BRAM columns, each containing 60–120 of BRAMs.

For such a layout, an array processor with a wider PE-Block will map better than a square

PE-Block. For this reason, we designed a PE-Block with a logical array dimension of 1×16

targeting a Virtex FPGAs. This also reduced the number of PE-Blocks per row, thus reducing the

number of hops while moving data through the network for accumulation.

4.1.2 Bit-Serial ALU

In array-processor applications, the most frequent operation is multiply-accumulate followed by

the addition of the bias vector. The accumulation part requires data movement, which is handled

by the data network and the Op-Mux module. ALU is responsible for performing the

multiplication and addition. In a bit-serial PE, multiplication is implemented through repeated
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Table 6: ALU (FA/S) Op-Codes

Op-Code Output (SUM) Description

ADD X + Y Acts as a Full-Adder (FA)
SUB X - Y Acts as an FA with borrow logic
CPX X Copies operand X unmodified
CPY Y Copies operand Y unmodified

ADD/SUB operations following algorithms like Booth’s Radix-2 or Radix-4.

Another very common operation performed in CNNs is min/max pooling, which involves the

comparison of two or more operands and the selection of the min/max of them. Bit-serial

comparison can be performed by comparing two operands serially from MSB to LSB. The first

mismatched bit determines the comparison result (X or Y) and the rest of the bits of the selected

operand are simply copied from that bit onwards. So, the ALU needs to have a mechanism for

selecting one of the operands unmodified.

To support these essential operations and to optimally map the logic into FPGA, we selected

four fundamental operations shown in Table 6 for the ALU. ADD and SUB can be used as

standard arithmetic operations as well as a step of the multiplication operation to update the

partial product. CPX and CPY can be used to implement min/max pooling or any other filter-like

operations that requires selecting one of the two operands. CPX is also used in multiplication as a

substitute for the no-operation (NOP) step of Booth’s algorithm.

Fig. 4 shows the architecture of the bit-serial ALU. It consists of two logical parts:

Full-ADD/SUB module (FA/S) and op-code encoder (Op-Encoder). FA/S implements the four

operations in Table 6. It is a pure combinatorial block with two single-bit outputs: SUM and CB,
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Table 7: Op-Encoder Configurations for Booth’s Radix-2 Multiplier

Conf YX ALU Op-Code Description

000 xx ADD Request ADD
001 xx CPX Select X operand
010 xx CPY Select Y operand
011 xx SUB Request SUB

1xx 00 CPX NOP
1xx 01 ADD +Y
1xx 10 SUB -Y
1xx 11 CPX NOP

implemented as the following logic functions,

SUM = X⊕Y⊕CB−1, if ADD or SUB

CB =


X ·Y+X ·CB−1 +Y ·CB−1, if ADD

X ·Y+X ·CB−1 +Y ·CB−1, if SUB

Op-Encoder provides an abstract interface to the FA/S module for high-level operations. It

takes a configuration code (Conf) from the controller, determines the corresponding Op-Code for

FA/S for that configuration, and stores it in a register (Op-Reg). In PiCaSO, we use it as an

interface to implement Booth’s Radix-2 multiplication. Table 7 shows the mapping of the 3-bit

configuration code to the Op-Code of the FA/S module. If the MSB of the Conf is 0, a requested

Op-Code is loaded into Op-Reg. If the MSB is 1, the Op-Code loaded depends on the YX 2-bit

combination. If YX holds the 2-bits of the multiplicand for an iteration of Booth’s Radix-2

algorithm, the selected Op-Code maps to Booth’s encoding to update the partial product. The

Op-Encoder can be modified to add other high-level operations, such as pooling, without

redesigning the FA/S module.

The FA/S module has 5 input bits: X, Y, CB−1, and 2-bit Op-Code, and 2 output bits: SUM

and CB. This can be mapped to a single LUT6 (2×LUT5) of a Virtex-7 FPGA. The Op-Encoder

module also has 5 input bits and 2 output bits. Therefore, this can also be mapped to a single
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LUT6. In addition to that, 2 flip-flops are needed to store the Op-Code generated by the

Op-Encoder, and 1 flip-flop is needed to store the CB output of FA/S to be used as CB−1 in the

next cycle. Thus, the entire ALU can be implemented in less than a logic slice, using 2 LUTs and

3 flip-flops. From the data stream point of view, the Op-Encoder is not part of the datapath. Thus,

the ALU acts as a single LUT stage in the datapath.

4.1.3 Operand Multiplexer

The Op-Mux module is used to perform reduction operations between the PEs in a PE-Block, as

well as to overlap computation and data movement during reduction. To achieve this goal,

Op-Mux module provides the interface to route the network stream directly into the ALU. As

shown in Fig. 3, the Op-Mux module takes in the bit-streams coming out of the network module

and BRAM ports, then streams the multiplexed output as X & Y operands of the ALU.

In traditional NEWS networks, reduction works by moving data from a PE register to a

register of its neighboring PE, then performing the required operation on that register and another

register in the destination PE [25, 29]. In this approach, q PEs in a row will take q−1 moves. For

N-bit operand, a move takes N-cycles if we use 2 cycles for read–write and take advantage of the

dual-port configuration of BRAMs. Each ADD/SUB takes 2 cycles to process each bit and so,

takes 2N cycles to process each ADD/SUB operation. For q PEs, it needs at least log2 q such

operation. Thus, we can represent the PE-Block reduction latency (PB-RL) using the following

equation,

PB-RLNEWS = N · (q−1+2log2 q) (3)

Op-Mux module significantly reduces this latency using a folding technique. Fig. 5 shows

two types of folding patterns for a PE-row with 8 columns, which can be implemented by the

Op-Mux module. In pattern (a), after adding an operand with its fold-1 pattern, PE 0, 1, 2, and 3

contain the summation of 0 & 4, 1 & 5, 2 & 6, and 3 & 7 respectively. In pattern (b), after adding

an operand with its fold-1 pattern, PE 0, 2, 4, and 6 contain the summation of 0 & 1, 2 & 3, 4 & 5,

and 6 & 7. In both cases, after applying fold-1, fold-2, and fold-3 in that order, the accumulation
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Figure 5: Folding patterns in Operand Multiplexer

Table 8: Configurations of Operand Multiplexer

Config Code X Y Description

A-OP-B A B Used in standard operations
A-FOLD-1 A {0, A[H2]} A[H2]: second half of A
A-FOLD-2 A {0, A[Q2]} A[Q2]: second quarter of A
A-FOLD-3 A {0, A[HQ2]} A[HQ2]: second half-quarter of A
A-FOLD-4 A {0, A[HHQ2]} A[HHQ2]: second half of A[HQ1]1

A-OP-NET A NET Operates on network stream
0-OP-B 0 B Used in the first iteration of MULT

1 A[HQ1] : first half-quarter of A

result will be stored in PE-0. Fold-1 of pattern (b) can be especially useful in CNN models, where

each PE needs access to its adjacent PEs. Such a folding scheme can be implemented using the

multiplexers at the output of SA in custom PIM blocks as in [1].

To reduce q PEs in a row will take log2 q folds. Thus, we can represent the PE-Block

reduction latency using Op-Mux using the following equation,

PB-RLopmux-rw = 2N · log2 q (4)

This eliminates the linear term from (3) related to the data movement through the NEWS network.

In the proposed design of PiCaSO, we select the seven configurations shown in Table 8 for

the Op-Mux module. The default configuration is A-OP-B, which makes the Op-Mux module

transparent on the datapath by directly connecting A to X and B to Y. The output port Y is used to
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implement the folding. If one of the fold configurations is selected, both output ports X and Y

receive a combination of the register file’s port A bit streams. As port B of the register file is not

used in this configuration, we can use this port to simultaneously write the ALU output to the

destination registers. This optimization reduces the cycle latency in (4) even further. If we assume

there exist C (= 1, 2, 4) pipeline stages in the datapath, the equation for the reduction latency

using the Op-Mux module becomes,

PB-RLopmux = (N +C) · log2 q (5)

In a PE-Block with q = 16 and N = 32, PB-RLNEWS takes 736 cycles. Even with the deepest

pipeline (C = 4) PB-RLopmux takes 144 cycles to perform a PE-Block level accumulation,

providing a 5.1× improvement. In our experimental design, the muxing configurations of Table 8

are implemented for 16-bit wide ports A, B, NET, X, and Y using 20 LUTs and 3 flip-flops on a

Virtex-7 FPGA. The flip-flops are used for storing the configuration code. The combinatorial part

acts as a single LUT stage in the datapath.

4.1.4 Data Network Architecture

The proposed network architecture uses a PE-Block instead of a PE as a node, unlike a standard

NEWS network design [29]. As shown in Fig. 6(a) a PE-Block connects to the network module,

which in turn connects to the network. Though the figure shows a typical NEWS network, any

other network configuration (e.g. mesh network) between the nodes (N) can be implemented. We

can assume that the PE-Block level accumulation result is stored in a PE-0 register of all

PE-Blocks. To get the accumulation result of the entire row of the array, we need to accumulate

only those registers.

Fig. 6(b) shows the data movement pattern for reduction across the array processor. A

network module can be abstracted as a flip-flop with some routing logic. A conceptual binary tree

is implemented using a hopping mechanism along a row or a column. We use a conceptual level
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Figure 6: Data network for fast accumulation and reduction operations

value (L) to encode the routing configuration of each node. A node can be configured in 3 modes:

transmitter (TX), receiver (RX), and pass-through (P). Each node has a unique row and a unique

column ID corresponding to its position in the array. Based on the level specified and the unique

IDs, a node operates in one of these three modes.

In Fig. 6, the movement pattern for level 0 shows that adjacent nodes get logically connected

because every even column acts as a receiver while every odd column acts as a transmitter. As

each node adds a register stage, level 0 has a network latency of 1 hop. Similarly, for level 1, in

every consecutive 4 nodes, the first one acts as the receiver, the second and the last ones act as

pass-through, and the third one acts as the transmitter. This effectively connects the first and the

third of them, with a network latency of 2 hops. Finally, level 2 connects node-4 to node-0 with a

network latency of 4 hops. In general, the number of hops (H) needed for a given level can be

represented by (6). At the end of level 2, PE 0 of node-0 contains the accumulation result of the

entire row of the array. We can say that each level of the conceptual binary tree facilitates a jump

over the intermediate PE-Blocks. In a network with D nodes in a row, the number of such jumps

(J) needed can be expressed using (7).

H = 2L (6)

J = log2 D (7)
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4.1.5 Network Node Architecture

Fig. 7 shows the architecture of the network module that acts as a node (N) in the data network. It

has 3 logical parts: receiver multiplexer (RX), transmitter multiplexer (TX), and capture registers.

It also has a configuration register that holds the current level value of the conceptual tree and the

direction of the data movement. The level value is decoded into the selection bits of the TX mux,

and the direction value determines the selection bits of the RX mux. A single flip-flop is enough

to capture the network stream of bit-serial PEs for accumulation along the row. Custom PIM

blocks can have a single-bit port connecting the output of the capture register to the multiplexers

at the SA output [1, 99]. Accumulation operation is not essential along the columns in

deep-learning applications. However, for convolution and pooling operations in CNNs, each PE

needs to access at least its adjacent PE. This can be enabled using a set of flip-flops acting as a

shift register along each column of a PE-Block.

In the proposed design of PiCaSO, we implement the exact architecture shown in Fig. 7.

Because the dimension of the PE-Block is 1×16, we added 15 flip-flops for the shift along the

column. The RX mux is implemented using a LUT6 and TX mux is implemented using a LUT3

primitive. The conceptual binary-tree level encoding makes the network node design highly

scalable. We selected 3 bits to encode the level in each direction, which can be decoded by a

LUT6. Now, a 3-bit number can be used to specify 23 or 8 levels. A network with 8 levels can
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handle a 256×256 array of PE-Blocks. As each PE-Block has 16 PEs, such an array, if

implemented, will contain more than a million PEs.

4.1.6 Datapath Pipeline

As shown in Fig. 8, there are 3 stages in the datapath, which can be pipelined to increase the clock

frequency: register file output, Op-Mux output, and ALU output. The datapath pipeline needs to

be designed carefully, especially for bit-serial PE architectures. If an extra clock cycle is

introduced in a processing step of a bit-serial PE, the operation latency will scale linearly with the

size of the operand for basic operations like ADD/SUB and quadratically for operations like

MULT. We studied the performance and utilization of different pipeline configurations, which are

presented in Table 9.

Single-Cycle: In this configuration, none of the pipeline stages shown in Fig. 8 are enabled.

This corresponds to the traditional RF–ALU–RF datapath presented in prior work [29] as well as

the modified BRAM block architectures in [1, 99]. A single cycle is needed to read a bit of the

operands from the register file, process it through the ALU, and send the result back to the

register file data port to be written in the next cycle. The controller FSM repeatedly transitions

between Read–Write states to compute the result in 2N cycles for N-bit operands. This

configuration has the slowest datapath, as expected. Our experimental study shows that about
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Table 9: Comparison of different PE-Block configurations in Virtex-7

Prev. Work [29] Full-Pipe Single-Cycle RF-Pipe Op-Pipe

LUT 187 53 82 74 53
FF 64 119 71 103 103

Slice 64 32 42 36 37

Max-Freq 270 MHz 540 MHz 265 MHz 400 MHz 390 MHz

80% of the total delay is contributed by the register file.

RF-Pipe: We considered the effects of adding a pipeline stage at the output of the register file.

As shown in Table 9, this bumps up the clock frequency to 400 MHz, 1.5× improvement

compared to the Single-Cycle configuration. In this configuration, 2 clock cycles are needed to

read a single bit out of the register file. This overhead can be remedied by modifying the

controller FSM to transition through 2×Read–2×Write states. As a result, it takes 4 cycles to

read, process, and write 2 bits of the operand, which takes 2N cycles to process N-bit operands.

The implied condition is that N is an even number, which is almost always the case.

Op-Pipe: We next considered adding a pipeline stage at the output of Op-Mux. This

configuration achieves 390 MHz, which is very close to the performance achieved with the

RF-Pipe configuration. The difference is due to the longer output delay of the BRAM in the

absence of its output registers. This configuration also requires 2 clock cycles to process a single

bit of the operand, which can be handled in a similar manner as in the RF-Pipe configuration. The

unique advantage of this configuration becomes more evident when the PE Block is connected to

a larger network. The pipeline stage at the output of Op-Mux can help the design tools to meet the

timing of the paths that pass through the network, which may have long wire delays.

Full-Pipe: We then considered fully pipelining the stages as shown in Fig. 8. This configuration

requires 4 clock cycles to read a single bit out of the register file, process it through the ALU, and

send the result back to the register file to be written in the next cycle. This overhead can be

remedied by extending the solution for RF-Pipe: the controller FSM to transition through
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4×Read – 4×Write states. To process N-bit operands, it still takes 2N clock cycles. The implied

condition, in this case, is that N is a multiple of 4 (e.g. 4, 8, 16, etc.), which is the most common

case. As shown in Table 9, this configuration achieves a clock frequency of 540 MHz, which is

2× that of the Single-Cycle configuration shown in Fig. 3. This implementation targets Xilinx’s

xc7vx485tffg1761-2 device, which is a Virtex-7 FPGA of -2 speed grade. The maximum

frequency of BRAM in this device reported in the datasheet is 543.77 MHz. Thus, this

configuration meets one of the proposed Standards of an Ideal PIM design: clock at the BRAM

Fmax.

4.1.7 Accumulation Latency

Suppose, (a) we have a PE array of dimension q×q, (b) operating on N-bit operands, (c) built

from the Full-Pipe configuration (C = 4) of the PE-Block as a 1×16 array of PEs, (d) connected

to the network shown in Fig. 6 through the node shown in Fig. 7. From (5) we can compute

PE-Block level accumulation latency as,

PB-RLopmux’ = (N +4) · log2 16

= 4N +16 (8)

From (7) we observe J = log2(q/16) jumps are needed, from level 0 to level J−1, in order.

Using (6), the total hop latency to perform all jumps over q PEs can be computed as,

Hq = 2J −1

=
q

16
−1 (9)

The last part of the accumulation is to stream the output of the network capture register

through the ALU and ADD it to a operand stream in the receiver PE-Block. In each jump, it takes

4 cycles to fill the pipeline and N cycles to write the result back to the register file. Thus, the

49



operate and write-back latency (WB) for all jumps can be expressed as,

WBq = (N +4) · J (10)

Note that in the Full-Pipe configuration, 2 cycles are needed in the transmitter PE-Block to get the

first bit of the stream to enter the network before hopping starts. This latency is included in (10).

From (8), (9), and (10) we compute the total reduction latency at the array level (Arr-RLFull-Pipe)

as follows,

Arr-RLFull-Pipe = PB-RLopmux’ +Hq +WBq

= 4N +16+
q

16
−1+(N +4) · J

= 15+
q

16
+4N +(N +4) · J (11)

As observed in (11), the array dimension contributes two terms: q/16 and (N +4) · J, both of

which grow significantly slowly with the array size, q, making the network design highly scalable.

We can rewrite (11) in the form of the proposed ideal latency model (1). In this architecture, a

partial sum is generated from each PIM block. Thus, P = q/16 and J = log2(q/16) = log2(P).

Substituing these values we can write,

Arr-RLFull-Pipe = 15+P+4N +(N +4) · log2(P)

= (N +4) · log2(P)+1 ·P+(15+4N) (12)

Comparing the array reduction latency form (12) with the ideal latency model (1) shows that the

implementation specific parameters for this architecture are, a = (N +4), b = 1, c = (15+4N).

These values are in the ideal range of the proposed latency model as shown in Table 4. Thus,

PiCaSO accumulation network architecture meets the ideal latency standard.

50



4.2 Analysis

In this section, we will study the utilization and performance of FPGA implementations of

PiCaSO. To highlight its relative improvements, we have compared PiCaSO against a benchmark

PIM overlay architecture [29]. A scalability study has been presented, demonstrating that PiCaSO

adheres to the ideal scalability standard. Additionally, we have performed a detailed comparative

analysis with custom-BRAM PIM architectures, exploring the advantages and disadvantages of

the PiCaSO architecture in contrast to those designs. This comprehensive examination provides

insights into PiCaSO’s strengths and unique architectural features.

4.2.1 Performance and Utilization

Table 10 compares the pipeline configurations outlined in subsection 4.1.6 against SPAR-2, the

benchmark overlay from [29]. All designs were implemented and run on Virtex-7 (xc7vx485) and

Alveo U55 FPGAs. Utilization numbers follow the tile definition in SPAR-2 consisting of 256

PEs organized in a 4×4 array of PE blocks, with 16 PEs in each block. The total utilization per

tile and the average utilization per block are shown. The Full-Pipe configuration achieved a

2.25× and a 1.67× increase in clock frequency compared to the benchmark design on Virtex-7

and U55 devices, respectively. In both devices, Full-Pipe provided a 2× improvement in resource

utilization over SPAR-2.

The Single-Cycle configuration achieved similar performance on the Virtex-7 and better

performance on the U55 compared to the benchmark system, with 2.6× and 2.5× utilization

improvements, respectively. It had a smaller flip-flop count and slice utilization compared to the

Full-Pipe due to the absence of the pipeline registers. Both RF-Pipe and Op-Pipe achieved better

clock speeds but with an increase in slice utilization compared to Single-Cycle, due to the

addition of the pipeline stages. As argued in Subsection 4.1.6, Op-Pipe had better performance

compared with RF-Pipe by minimizing the clock latency contributed by the network. All

configurations offered at least 2× better utilization and up to 2× better performance compared to

the benchmark design.
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Table 11: Cycle latency of different operations

Operation Benchmark [29] PiCaSO-F
ADD/SUB 2N 2N

MULT1 2N2 +2N 2N2 +2N
Accumulation2 (q−1+2log2 q)N 15+ q

16 +4N +(N +4)J
q = 128, N = 32 4512 259
1 Booth’s Radix-2 multiplication
2 q : Number of columns to be accumulated
N : Operand width
J : Number of network jumps needed = log2(q/16)

Table 10 shows Full-Pipe achieved clock frequencies of 540 MHz on the Virtex-7

(xc7vx485-2), and 737 MHz on the Alveo U55 (xcu55c, -2 speed grade). The data sheets for

these devices list 543.77 MHz and 737 MHz, respectively as the maximum BRAM clock

frequencies. Surprisingly, this is an improvement over the custom designs reported in [1, 99]. The

technology node of Alveo U55 (16 nm) is comparable to that of the designs proposed in CCB

(Stratix 10, 14 nm) and CoMeFa (Arria 10, 20 nm). Yet, PiCaSO runs 1.62× and 1.25× faster

than the fastest configurations of CCB and CoMeFa, respectively. This is due to the pipelined

architecture of PiCaSO, where the slowest stage is the BRAM. Thus, it can run as fast as the

maximum frequency of the BRAM, achieving the ideal clocking standard.

4.2.2 Reduction Network

Both PiCaSO and SPAR-2 [29] use Booth’s Radix-2 algorithm for multiplication. Thus, the cycle

latencies for the ADD/SUB and MULT operations in Table 11 are identical. SPAR-2 uses a

standard NEWS network to copy operands between PEs when summing the partial products

during multiply-accumulate (MAC) operations. The Accumulation row compares the number of

clock cycles for SPAR-2’s NEWS network and PiCaSO’s reduction network. The last row in

Table 11 shows the PiCaSO-F reduction network provides a 17× improvement in accumulation

latency for the test configuration reported in [25]. This improvement is due to the careful design

of the binary-hopping network discussed in Section 4.1.4, which overlaps data transfer with
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Table 12: Representative of Virtex-7 and Ultrascale+ devices

Device Tech BRAM# Ratio1 Max PE#2 ID
xc7vx330tffg-2 V7 750 272 24K V7-a
xc7vx485tffg-2 V7 1030 295 32K V7-b
xc7v2000tfhg-2 V7 1292 946 41K V7-c
xc7vx1140tflg-2 V7 1880 379 60K V7-d
xcvu3p-ffvc-3 US+ 720 547 23K US-a

xcvu23p-vsva-3 US+ 2112 488 67K US-b
xcvu19p-fsvb-2 US+ 2160 1892 69K US-c
xcvu29p-figd-3 US+ 2688 643 86K US-d
1 LUT-to-BRAM ratio
2 Maximum number of PEs if all BRAMs are utilized
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Figure 9: Scalability study on Virtex-7 and Ultrascale+ FPGA families

computation during accumulation.

4.2.3 Scalability

PiCaSO is designed to meet the ideal scaling goal: linear scaling of peak-performance with the

BRAM capacity of the target device. To evaluate scalability, the largest-sized array of PIM blocks

that could fit into the target devices was constructed. The results of this study are shown in

Table 13.

In the Virtex-7 FPGA, the largest array of SPAR-2 [29] PIM blocks contained 24K PEs. This

did not achieve the full capacity of the Slices or BRAM resources available in that device. The

implementation tool failed at the placement step for larger arrays due to a high utilization (32.1%)

of Unique Control Sets. Control sets are the collection of control signals for slice flip-flops [100].

Flip-flops must belong to the same control set to be packed into the same slice. A large number of
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Table 13: Comparison of largest overlay arrays in Virtex devices

Virtex-7 Alveo U55
Benchmark [29] PiCaSO-F Benchmark [29] PiCaSO-F

Max-Size 24K 33K 63K 64K
LUT 74.6% 32.5% 41.6% 14.8%
FF 16.0% 38.0% 9.7% 17.3%

BRAM 73.8% 99.9% 98.4% 100.0%
Uniq. Ctrl. Set 32.1% 2.1% 19.5% 0.8%

Slice 86.0% 76.4% 63.4% 32.0%

unique control sets makes it difficult to find a valid placement, even with enough available slices.

In contrast, PiCaSO-F fully utilized the BRAM resources to fit 33K PEs, a 37.5% improvement

over SPAR-2 in the same device. PiCaSO does not suffer from the placement issues observed in

SPAR-2 due to a very low (2.1%) utilization of the unique control sets.

In the U55 FPGA, SPAR-2 almost achieved the full BRAM capacity for an array size of 63K

PEs. This is due to the U55 FPGA offering significantly more slices and routing resources

compared to the Virtex-7 FPGA. PiCaSO achieved 100% utilization of BRAM with 2× better

slice utilization over SPAR-2.

Our results showed that the scalability of the benchmark design, SPAR-2, is dependent on the

Slice-to-BRAM ratio and cannot guarantee the creation of a PIM array that scales with the

BRAM capacity. Conversely, our results showed PiCaSO scaling with the BRAM capacity

independent of the Slice-to-BRAM ratio across multiple devices of Virtex-7 and Ultrascale+

FPGA families. Table 17 lists representative devices we evaluated based on the following two

criteria: BRAM capacity and LUT-to-BRAM ratio. Each device is assigned an ID as a short name

to be used in this paper.

Fig. 9 shows that PiCaSO utilized the full BRAM capacity in all devices, and achieved the

maximum number of PEs the device can fit based on BRAM density. Results showed for the

smallest device (V7-a) and lowest LUT-to-BRAM ratio, the LUT and flip-flop utilization is

around 40%. For one of the largest devices with a high LUT-to-BRAM ratio (US-c), these

utilization numbers are negligible, around 5%. These results strongly support that PiCaSO scales

linearly with the BRAM capacity of the device.

55



4-bit 8-bit 16-bit

CCB CoMeFa-D CoMeFa-A PiCaSO-F A-Mod D-Mod

1.50

2.00

2.50

1.00

0.50

0.00

Figure 10: Relative MAC latency of custom designs w.r.t PiCaSO
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Figure 11: Peak MAC throughput of PiCaSO and custom designs on Alveo U55

4.3 Comparison with Custom-BRAM PIM Designs

Fig. 10 shows the relative MAC latency of the custom designs w.r.t PiCaSO. The latency is

computed for 16 parallel MULTs followed by the accumulation of the products. The clock speeds

of custom designs are adjusted based on the performance degradations reported in [1, 99]. With

the exception of CoMeFa-D at 16-bit precision, PiCaSO has the shortest latency due to faster

clock speed and accumulation. CCB and CoMeFa extend the clock period to allow a complete

read-modify-write per clock cycle. This allows a complete MULT to finish in half the number of

cycles compared to PiCaSO and can reduce latencies at higher precisions. Still, PiCaSO runs

1.72× – 2.56× faster than CoMeFa-A, which is reported as the most practical design in [1].

Peak TeraMAC/sec throughputs on the U55 FPGA are shown in Fig. 11. CCB and CoMeFa

design the BRAM IP to support one PE per bitline. With a column muxing factor of 4 [1], a

Virtex 36Kb BRAM would be redesigned as a 256×144 array with 144 PEs per BRAM. The use

of standard BRAM IP prevents PiCaSO (and all overlays) from making this modification. Yet

PiCaSO still achieves 75% – 80% of CoMeFa-A’s peak throughput, the most practical of the two
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Figure 12: BRAM memory utilization efficiency on Virtex devices

CoMeFa designs. This results from PiCaSO not sacrificing the same degradation of clock speed

seen in all custom designs.

The memory utilization efficiency of BRAMs is not discussed in [1, 99] but we feel is an

important metric for PIM architectures. Memory utilization efficiency can be defined as the

fraction of BRAM memory that can be used to store model weights. Both CCB and CoMeFa

follow the computation techniques used in [90] which requires scratchpad memory. For N-bit

operands, CCB requires 8N reserved wordlines. CoMeFa only needs 5N wordlines using the

“One Operand Outside RAM (OOOR)” technique. PiCaSO requires only 4N wordlines, as it does

not require copying operands to the same bitline as in CoMeFa. In the widest mode of a Virtex

36Kb BRAM, each PE of CCB and CoMeFa would have 256 bits of storage in its register file

(bitline). For PiCaSO, each register file has 1024 bits. Fig. 12 shows the memory utilization

efficiency of these architectures. As observed, at higher precisions the memory efficiency drops

significantly for CCB and CoMeFa. For 16-bit operands, CCB and CoMeFa are only 50% and

68.8% efficient, respectively, while PiCaSO is 93.8% efficient.

Table 14 summarizes comparisons between PiCaSO and the custom designs. The custom

designs significantly degrade the BRAMs maximum clock frequency, whereas PiCaSO runs at the

maximum clock speed of the BRAM. However, PiCaSO has 1/4th the number of parallel MACs,

as it cannot access all the bitlines. Multiplication in PiCaSO is 2× slower, as it requires 2 cycles

to process a single bit. However, accumulation is 2× faster in PiCaSO. PiCaSO supports Booth’s

radix-2 multiplication. In Booth’s algorithm, on average half of the intermediate steps are NOPs.

Thus, PiCaSO can potentially further reduce the multiplication latency by 50% on average.
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Table 14: Comparison with Customized BRAM PIM architectures

CCB CoMeFa-D CoMeFa-A PiCaSO-F A-Mod
Architecture Custom Custom Custom Overlay Custom
Clock Overhead 60% 25% 150% 0% 150%
Parallel MACs 144 144 144 36 144
Mult Latency1 (a) (a) (a) (b) (a)
N = 8 86 86 86 144 86
Accum. Latency2 (c) (c) (c) (d) (e)
q = 16, N = 8 80 80 80 48 40
Support Booth’s No Partial Partial Yes Yes
Mem. Efficiency Low Medium Medium High Medium
Complexity High Medium Medium No Medium
Practicality Low Medium High Very High High
1 (a) N2 +3N −2 ; (b) 2N2 +2N
2 (c) (2N + log2 q) log2 q ; (d) (N +4) log2 q ; (e) (N +2) log2 q

CoMeFa can use Booth’s algorithm only in OOOR mode and CCB does not support it at all.

As discussed earlier, the memory utilization efficiency of CCB is significantly low, PiCaSO is

high, and CoMeFa lies in between. CCB has the highest design complexity mainly due to its need

for a modified voltage supply. CoMeFa has medium complexity since it requires modifications to

the SAs, additional flip-flops, and SA cycling. Being an overlay, PiCaSO does not have such

design complexities. As reported in [1], the practicality of CCB is low, CoMeFa-D is medium,

and CoMeFa-A is high. In that reference, the practicality of PiCaSO is very high. It offers 80% of

CoMeFa-A’s peak throughput with 2.56× shorter latency, 25% better memory efficiency, can be

implemented using off-the-shelf FPGAs, and is tested on real devices, while CCB and CoMeFa

numbers are mainly based on simulations.

4.4 Fusing PiCaSO Optimizations into Custom-BRAM Designs

Fig. 13 shows how modifications highlighted in red can accelerate CoMeFa-A [1]. We refer to

this implementation as A-Mod. PiCaSO’s OpMux module per bitline consists of a 2-to-1 mux and

a 4-to-1 mux. This can be implemented using a few CMOS pass transistors. OpMux then saves

both the cycles and memory needed to copy operands during accumulation [90, 99]. PiCaSO’s
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Figure 13: Modified CoMeFa-A [1] with PiCaSO adoption (A-Mod)

network module can overlap data movement with computation between different PIM blocks.

The network module can be embedded within the PIM block or can be implemented using logic

slices from the FPGA. A single-bit port connection to the network module is enough to support

row-wise accumulation.

Although [1] mentions that the PE does not add additional delay to the extended clock, in a

practical circuit, there will always be an additional delay. This delay can be hidden using one of

the pipelining schemes of PiCaSO. A single stage of registers could be enough to hide the PE

delay. As BRAM blocks already contain output registers, this should not add any additional area

overhead on top of what is reported in [1]. The PE circuit can be placed between two stages of

registers if the delay is too long. This is illustrated using the dashed flip-flops in Fig. 13. Similar

modifications can be performed on CoMeFa-D referred to as implementation D-Mod.

These modifications can significantly improve the performance of the custom designs. The

extrapolated performance numbers for A-Mod and D-Mod are presented in Fig. 10 and Fig. 11.

As observed in Fig. 10, the adoption of PiCaSO’s OpMux and network modules can improve their

MAC latency by 13.4% – 19.5% due to faster accumulation. This consequently improves their

throughput by 5% - 18% over different precisions. In Fig. 12, CoMeFa-Mod represents both

A-Mod and D-Mod implementations. Due to OpMux, A-Mod and D-Mod no longer requires

scratchpad storage to copy operands for accumulation. This improves their memory utilization
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efficiency by 6.2%. This means at 4-bit precision, 1.6 million more weights can be stored in a

device with 100 Mb of BRAM. This would significantly reduce weight stall cycles [38] and allow

bigger models to be stored on chip. In Table 14, the A-Mod column shows the architectural

enhancements due to these modifications. A-Mod retains the high parallelism and fast Mult

latency of the original CoMeFa design and offers 2× faster accumulation and full support for

Booth’s algorithm.

4.5 Discussion

All these results support the practicality of the proposed ideal design standard for PIM array

accelerators. Although PiCaSO by itself is not a complete accelerator system, its ability to operate

at the BRAM Fmax and scale with the BRAM capacity makes it relatively easier to build an

accelerator that possesses similar attributes. Furthermore, because PiCaSO’s reduction network

already adheres to the ideal standard, it will significantly reduce the design complexity of the data

network at the system level. This adherence simplifies the task of maintaining compliance with

the scalability standard, ensuring that any system built using PiCaSO can achieve high

performance and efficient resource utilization. Thus, PiCaSO serves as a robust foundation for

developing high-performance and scalable accelerators.
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Chapter 5

IMAGine: An In-Memory Accelerated GEMV Engine

While the Ideal Design Standard is an ultimate objective to strive for, it can also serve as a

framework for crafting an efficient architecture of a PIM-Array accelerator on FPGAs. In this

chapter, we develop IMAGine, an In-Memory Accelerated GEMV engine, using PiCaSO.

IMAGine is implemented and analyzed on an off-the-shelf FPGA. The development of IMAGine

serves a dual purpose: it provides a case study demonstrating the use of the proposed Standard to

make better design choices at the system level and evaluate how achievable those standards are in

a practical accelerator. IMAGine has been published at [101] as an open-source implementation

and is freely available for study, use, modification, and distribution without restriction.

5.1 Architecture

5.1.1 System-Level Architecture

The top-level system is illustrated in Fig. 14(a). It consists of (1) a 2D array of GEMV tiles, (2) a

set of input registers, (3) a fanout tree connecting the input registers to the tile array, and (4) a

column of shift-registers to read out the final result. The input registers are used by the front-end

processor to send instructions to the GEMV tile controllers. The fanout tree is parameterized to

be adjusted during implementation. The 2D tile array is implemented as a parameterized module

that instantiates and connects GEMV tiles to build the tile array. The bits written to the register

file of the leftmost PE in the array are shifted into the column shift registers. At the end of the

GEMV operation, the output vector is stored in the column shift registers, which can be shifted up

and read through the FIFO-out port, one element per cycle.

5.1.2 IMAGine Tile Architecture

Illustrated in Fig. 14(b), the GEMV tile is the heart of IMAGine. It consists of (1) an FSM-based

controller, (2) a 2D array of PIM blocks, and (3) a fanout tree between them. The controller
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Figure 14: System architecture of IMAGine illustrating the data and instruction flow (a) through
the GEMV engine and (b) within GEMV tiles.

receives the instruction written to the input registers at the top level, decodes it, and generates the

sequence of control signals needed to execute the instruction. The fanout tree connects the control

signals to all PEs in the PIM array and is parameterized for adjustment during implementation.

The PIM array interfaces allow cascading with arrays in neighboring tiles on each side. During

accumulation, partial results move from east to west through PIM arrays, ultimately accumulating

in the left-most PE column of the left-most GEMV tile in a row.

5.1.3 Tile Controller

Fig. 15(a) shows the architecture of the tile controller. As discussed in Section 3.2, logic paths

need to be short enough to achieve the ideal clock rate. However, estimating precise logic depth

during RTL design is challenging and the requirement varies across devices. Thus, we grouped

the combinatorial logic into meaningful steps and added optional pipeline stages illustrated by the

dashed lines A, B, and C in Fig. 15(a). Running synthesis, we ensured that each step could be

implemented in one or two logic levels.

The controller takes a 30-bit instruction, which is executed by either the single-cycle or the

multicycle driver. The 2-state driver-selection FSM enables any one of them based on the opcode.

The single-cycle driver can execute one instruction every cycle, while the multicycle driver takes

several cycles to execute instructions like ADD, SUB, MULT, etc. including an additional cycle
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Figure 15: Architectures of (a) GEMV controller and (b) PiCaSO-IM, the adapted version of
PiCaSO-F [2].

to load its parameters from the Op-Params module. All inputs and outputs are registered to

localize timing paths within the controller.

5.1.4 PIM Module

PiCaSO-F, the fully pipelined configuration of PiCaSO, is used to build IMAGine. Some

modifications to PiCaSO-F were needed to enhance its control capabilities to implement the

GEMV tile. These modifications are highlighted in red in Fig. 15(b). The additional logic

supporting the original NEWS network was removed, keeping only the parts needed for

east-to-west data movement. PiCaSO-F lacked control signals for selectively enabling/disabling a

block required in IMAGine. Block-ID-based selection logic was included in PiCaSO-IM. Our

accumulation algorithm needed 3 addresses to maximize the overlap of data movement and

computation. As PiCaSO-F supported only 2 simultaneous addresses, we added a pointer register

for the third address.

If PiCaSO is realized as a custom-BRAM tile as discussed in Section 4.4, these changes can

be implemented in programmable logic fabric, keeping registerfile, OpMux, and ALU modules

within the BRAM tile. We name such a custom-BRAM implementation of PiCaSO-IM as

PiCaSO-CB.
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Table 15: Utilization and Clock Frequency of Modified PiCaSO 4×4 Tile

LUT FF Slice DSP BRAM Max Freq.

PiCaSO-F Tile 774 1799 243 0 8 737 MHz
PiCaSO-F Block 49 113 15 0 0.5 737 MHz
PiCaSO-IM Tile 1352 1989 264 0 8 737 MHz

PiCaSO-IM Block 85 125 18 0 0.5 737 MHz
Change % 74.7% 10.6% 8.6% - 0.0% 0%

5.2 IMAGine Implementation and Analysis

In this section, we discuss the bottom-up implementation of IMAGine, setting the design goal to

be the Ideal Standard discussed in Chapter 3. IMAGine was studied on AMD Alveo U55C

(xcu55c, -2 speed grade). The BRAM Fmax on this device is 737 MHz [86], which sets the target

clock period to be 1.356 ns. All of the following studies were carried out using Vivado 2022.2.

5.2.1 PiCaSO-IM Block

We first verified that the additional logic added to the original PiCaSO-F did not degrade the

BRAM Fmax within the PIM block or create a logic utilization bottleneck. A 4×4 array of the

new PiCaSO-IM was tested and compared with PiCaSO-F. This comparison is shown in Table 15.

The Change% row shows the utilization and clock speed change compared to the original

implementation. BRAM utilization is 0.5 because a PiCaSO block uses one RAMB18 tile, which

is reported by Vivado as 0.5 number of RAMB36 tile of AMD devices. As observed, the

modifications did not affect the clock frequency and the utilizations of BRAM and DSP. The

flip-flop utilization increased by only 10.6%. Though there is a significant increase (74.7%) in the

LUT utilization, the overall Slice utilization only increased by 8.6%. This means that the

additional logic has a high packing factor in the logic slices. As a result, the additional logic

would not be expected to introduce a utilization bottleneck.
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Table 16: Utilization and Frequency of 12×2 GEMV Tile Components

Controller Rel. Fanout Rel. PIM Array Rel. Tile

LUT 167 5.8% 0 0.0% 2736 94.2% 2903
FF 155 4.0% 615 15.9% 3096 80.1% 3866

DSP 0 - 0 - 0 - 0
BRAM 0 0.0% 0 0.0% 12.0 100.0% 12

Freq. (MHz) 890 1.2× 890 1.2× 737 1× 737

5.2.2 IMAGine GEMV Tile

Before we implemented the GEMV tile discussed in Section 5.1.2, its components were studied

individually to verify if they met the design requirements. The GEMV tile contains a 12×2 PIM

array and 2 stages of pipeline in the fanout tree. This configuration best fits the physical layout of

the Alveo U55 FPGA as discussed later in this section. Table 16 shows the utilization and

performance of these components and their relative values compared to the entire GEMV tile.

The controller together with the fanout network passed the timing constraints at a clock rate

up to 890 MHz. Because the PIM array contains the BRAM, it cannot run faster than the BRAM

Fmax. It passed the timing at 737 MHz, which is the target clock for Alveo U55 according to the

proposed Ideal Standard. As observed in Table 16, the logic utilization of the controller is around

5% of the entire tile and requires no DSPs, while around 90% of the logic resources are consumed

by the PIM array. Thus, the controller and the fanout tree are not expected to bottleneck system

frequency or utilization. The GEMV tile’s speed and scalability are fundamentally dependant on

the PIM array, which is the desired outcome.

5.2.3 Scalability Study

To evaluate the scalability of our architecture on different device families, we followed the same

approach as for PiCaSO. Along with Alveo U55, four representatives were selected from AMD’s

Virtex-7 and UltraScale+ devices based on two criteria: BRAM capacity and LUT-to-BRAM

ratio. Table 17 lists these devices with their BRAM capacity, LUT-to-BRAM ratio, and a short ID

used in Fig. 16. These are the same devices on which the scalability of PiCaSO-F was studied.
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Table 17: Representatives of Virtex-7 and UltraScale+ Families [2]

Device Tech BRAM# Ratio1 Max PE#2 ID
xcu55c-fsvh-2 US+ 2016 646 64K U55
xc7vx330tffg-2 V7 750 272 24K V7-a
xc7vx485tffg-2 V7 1030 295 32K V7-b
xc7v2000tfhg-2 V7 1292 946 41K V7-c
xc7vx1140tflg-2 V7 1880 379 60K V7-d
xcvu3p-ffvc-3 US+ 720 547 23K US-a

xcvu23p-vsva-3 US+ 2112 488 67K US-b
xcvu19p-fsvb-2 US+ 2160 1892 69K US-c
xcvu29p-figd-3 US+ 2688 643 86K US-d
1 LUT-to-BRAM ratio
2 Number of PEs utilizing all BRAMs as PIMs
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Figure 16: Resource usage of IMAGine on representatives of Virtex-7 and UltraScale+ families
utilizing 100% BRAMs as PIM overlays.

The target clock frequency of the system was set to 100 MHz on all devices to avoid timing issues

and only focus on the logic utilization of the system at this point.

Fig. 16 shows a bar graph of post-implementation utilization numbers of IMAGine on the

representative devices. As observed, IMAGine can utilize 100% of the available BRAMs as PIM

overlays providing 64K PEs in U55, with only 25% logic and 6% control set utilization. This

leaves sufficient logic resources to implement the fanout trees and pipeline stages if they are

needed to achieve the target clock speed. In fact, IMAGine scaled up to 100% of available BRAM

in all the representative devices for Virtex-7 and UltraScale+ families.

In the Virtex-7 family, the device V7-a has the smallest number of BRAMs and the smallest

LUT-to-BRAM ratio. IMAGine used around 60% logic resources to provide 24K PEs in V7-a. In

the UltraScale+ family, US-a and US-b have the smallest number of BRAMs and the smallest
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LUT-to-BRAM ratio, respectively. In these devices IMAGine provide 23K and 67K PEs,

respectively, using roughly 30% logic resources. For devices with more BRAMs and a higher

LUT-to-BRAM ratio the logic utilization is very small: the logic utilization in US-c is less than

10% providing 69K PEs.

If we can keep this scaling and run the PIM blocks at BRAM Fmax, the Ideal Standard of

linear scaling of peak performance would be met. Compared to the scalability study presented in

Section 4.2.3, the logic utilization of IMAGine is roughly 11% more than the standalone PiCaSO

array on average across all the devices. This increase is due to the controller logic, data pipelines,

and the additional logic implemented in PiCaSO-IM.

5.2.4 System-Level Timing Optimizations

For the final implementation, the target clock was set to the Ideal Standard for Alveo U55 with a

period of 1.356 ns to match the BRAM Fmax. The goal of the study was to find out how close we

can get to the Ideal Standard, and what are the practical challenges that limit us from achieving

the Ideal Standard. Achieving the best performance on a device always requires several iterations

of device-specific optimizations. In the first iteration, we started with GEMV tiles having a 4×4

PIM array, without the fanout tree between the controller and the array. After going through the

implementation flow with the default settings of Vivado and a few optimization iterations, we

achieved a setup slack of -0.52 ns. The critical paths were within the controller with a logic depth

of 4, going through the pipeline stage A of the controller as shown in Fig. 15(a). So, we enabled

the pipeline stage A in the controller and moved forward with the second iteration.

At the end of the second iteration of implementation, we achieved a setup slack of -0.38 ns.

The critical nets were the control signals between the controller and the PIM array. These nets

were failing the timing requirement because of high fanout and long routes of the control signals

between the controller and the PIM array. Thus, we synthesize a fanout tree between the

controller and the PIM array empirically choosing 2 levels and a fanout of 4 for the next iteration.

The design achieved a setup slack of -0.27 ns in the third iteration. This time, we had to take
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Figure 17: Avoiding unnecessary hard-block (CMAC) crossing (a) placement and net connections
before floorplanning, (b) floorplanning to localize logic and routing, (c) placement and net connec-
tions in the final design.

a closer look at the design to reveal the main reason for the timing failures. Alveo U55 contains

several hardened blocks like PLLs, high-performance IO blocks, PCIe blocks, high-performance

ethernet port (CMAC) [102], etc. Most of the failing paths were due to the long routes crossing

such hard blocks. The white lines in Fig. 17(a) highlight some of those critical nets crossing a

CMAC block. To avoid placement results creating such paths, we created floorplanning blocks for

each tile to localize the placement of logic and routing within a region dedicated to the tile. The

floorplanning blocks were placed avoiding those hard blocks as shown in Fig. 17(b). This

required defining a tile with the PIM array dimension of 12×2 for Alveo U55.

Fig. 17(c) shows the placement and net connections in the final iteration. The logic and

routing of each tile were localized on either side of the hard block; the white lines representing

the high fanout control signals do not cross the CMAC block. Only the logically essential nets,

the inter-tile connections for east-to-west accumulation, cross the CMAC block requiring minimal

routing resources. The yellow lines in Fig. 17(c) highlight some of those inter-tile nets.

All paths in the final design met the timing requirement at 737 MHz clock, which

demonstrates that the ideal clocking standard is practically achievable. Utilizing 100% available
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BRAMs as PIMs, this design also achieved the ideal linear scaling of peak-performance.

Surprisingly, this clock rate is faster than custom GEMM accelerator ASICs TPU v1-v2 [103] and

Alibaba Hanguang 800 [104], that run at 700 MHz. Both Alveo U55 and TPU v2 are

manufactured at 16 nm and Hanguang 800 at 12nm technology nodes. So, this clock

improvement of IMAGine is not due to a technology node difference. On Alveo U55, IMAGine

has an equal number of PEs compared to TPU v1 (64K), and 4× of TPU v2 (16K). However,

IMAGine can only deliver up to 0.33 TOPS which is significantly smaller compared to TPU v1

(92 TOPS) and v2 (46 TOPS) due its bit-serial architecture. This makes a compelling case: even

though an FPGA design will probably never outperform custom ASICs in terms of

peak-performance or performance-per-watt, the right set of design goals and guiding principles

can bring it very close in terms of clock speed and compute density. Our proposed Ideal Standard

can serve that purpose for PIM array-based FPGA designs.

5.3 Comparison With Other PIM Accelerators

Table 18 shows the utilization and system frequencies of existing GEMV engines and equivalent

PIM-based systems. System-level utilizations and frequencies for BRAMAC and

M4BRAM-based systems were not reported in [81, 82]. Though RIMA is specialized for

accelerating RNNs, a major part of the system implements GEMV operation using Dot Product

Engines (M-DPEs) [84]. The RIMA numbers are taken from Table II of [84] for comparison,

which was evaluated on a Stratix 10 GX2800 FPGA with a BRAM Fmax of 1 GHz [87]. Its

fastest reported configuration (RIMA-Fast) runs at 455 MHz, which is 2.2× slower than the

BRAM Fmax. The largest reported configuration (RIMA-Large) utilizes 93% of BRAMs and

runs at 278 MHz, 4× slower compared to BRAM Fmax. The GEMV/GEMM systems based on

CCB and CoMeFa were evaluated on an Arria 10 GX900 with a BRAM Fmax of 730 MHz [1].

Though CoMeFa-based designs run slightly faster than the CCB-GEMV engine, they are still

roughly 3× slower than the BRAM Fmax of the device. Thus, neither of the CCB and

CoMeFa-based GEMV/GEMM engines scaled well at the system level.
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Table 18: Utilization and Frequency of PIM-based GEMV/GEMM Engines

LUT FF DSP BRAM fSys
1 Rel. Freq

RIMA-Fast 60% 50% 55% 455 45.5%
RIMA-Large 89% 50% 93% 278 27.8%
CCB GEMV 27.9% 90.1% 91.8% 231 31.6%

CoMeFa-A GEMV 27.9% 90.1% 91.8% 242 33.2%
CoMeFa-D GEMM 25.5% 92.4% 86.7% 267 36.6%

SPAR-2 (US+) 11.3% 2.4% 0.0% 14.5% 200 27.1%
SPAR-2 (V7) 28.5% 7.0% 0.0% 30.4% 130 23.9%

IMAGine 35.6% 24.8% 0.0% 100.0% 737 100.0%
IMAGine-CB2 10.1% 7.2% 0.0% 100.0% 737 100.0%

1 System frequency in MHz
2 IMAGine with custom-BRAM PiCaSO-F (PiCaSO-CB)

SPAR-2 [29] utilized only 30% of the BRAMs while running 4× slower than BRAM Fmax

on both tested platforms. Thus, its performance and scalability are even worse than CCB and

CoMeFa-based systems. On the other hand, IMAGine has a system clock running at the BRAM

Fmax while utilizing 100% device BRAM as PIMs. Thus IMAGine takes advantage of the full

internal bandwidth offered by the BRAMs in the device. As a PIM-based GEMV engine,

IMAGine not only outperformed all existing designs but also verified that the Ideal Standards of

clocking and scalability are achievable. This is an important proof of concept design that dispels

earlier beliefs that overlays cannot achieve BRAM Fmax clock frequencies at the system level. It

is the fastest PIM-based GEMV engine implemented on any FPGA, running at a clock rate 2.65×

– 3.2× faster than any existing design.

As observed in Table 18, RIMA and CCB/CoMeFa-based GEMV engines exhaust either the

logic resources or the DSPs of the device even though their PIM blocks are implemented by

customizing the BRAM tile itself. Even after being an overlay, IMAGine is achieving faster clock

and better scalability using 0 DSPs and only one-third of the device logic resources due to its

near-optimal architectural choices guided by the proposed Ideal Standard. Like SPAR-2,

IMAGine does not use DSPs to implement the bit-serial PEs. With a custom-BRAM PIM module

like PiCaSO-CB discussed in Section 5.1.4, IMAGine would consume about 10% of device

resources while being fully scalable and implementable even in resource-limited FPGAs.
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Figure 18: Cycle latency and execution time of GEMV operation on different PIM array-based
FPGA accelerators

All implementations of SPAR-2 and IMAGine use 0% of the DSPs, which means DSPs are

not essentially required in PIM accelerators. Thus, some or most of the DSPs can be replaced

with BRAMs/PIM blocks to further improve the peak performance of the PIM accelerators in

FPGA families targeting PIM designs.

5.4 GEMV Execution Latency

Fig. 18(a) displays GEMV cycle latency for the PIM designs showing matrix dimensions

(matrices are square) on the x-axis and cycle latency in log scale on the y-axis. The execution

times shown in Fig. 18(b) are computed by multiplying cycle latencies with the corresponding

clock periods of CCB GEMV, CoMeFa-D GEMM, SPAR-2 (US+), and IMAGine from Table 18

system frequencies. We adopted the approach in [81] to model the block-level cycle latencies of

CCB, CoMeFa, BRAMAC, and SPAR-2 using their analytical models. IMAGine’s latency model

was developed and validated through cycle-accurate simulations of the system. The global

reduction tree of RIMA was modeled as an adder tree, perfectly pipelined with the last iteration of

in-block accumulation. For CoMeFa and BRAMAC GEMV latency, we assumed the same
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system as RIMA but with CoMeFa or BRAMAC replacing the CCB blocks. For SPAR-2, only

the latency for the binary-add version is shown because the linear-add version is too slow to plot

together with the other systems.

As observed in Fig. 18(a), BRAMAC has the shortest cycle latency, due to their hybrid

bit-serial & bit-parallel MAC2 algorithm. MAC latency in BRAMAC grows linearly with

operand bit-width, while it grows quadratically in bit-serial architectures like CCB, CoMeFa,

SPAR-2, and PiCaSO. This result is not surprising; domain-specific architectures can deliver the

best performance at a very low cost. BRAMAC supports only 2, 4, and 8-bit precisions

particularly targetting low-precision applications like quantized neural network acceleration.

However, BRAMAC is less suitable for general computing tasks like GEMV for full-precision

scientific computing or even neural networks requiring wider precisions. BRAMAC [81] did not

report their system-level frequency which is why we could not plot its execution time.

In all precisions, SPAR-2 has the longest cycle latency and execution time due to its slow

NEWS accumulation network. Its accumulation latency increases almost linearly with the matrix

dimension. CCB and CoMeFa-based GEMV engines have the shortest cycle latency among

bit-serial architectures across all precisions. This is due to their fast reduction algorithm based on

a pop-count adder and pipelined adder tree. The cycle latency of IMAGine is significantly shorter

compared to SPAR-2 but longer than CCB/CoMeFa-based implementations. However, IMAGine

has the fastest clock, which is at a minimum 2× faster than any of the other GEMV engines.

When accounting for the clock frequency, IMAGine outperforms all other GEMV engines in

terms of overall execution time. This highlights the importance of the system clock speed over the

cycle latency. Although the reduction tree-based approach in the CCB/CoMeFa GEMV engines

has the shortest cycle latency, the slower clock ultimately degrades the end-to-end latency times

below that of IMAGine.
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Table 19: Curve-Fitted Parameters of Eqn. (1) for 32-bit Accumulation

Fitted Value Speed Interpretation
a b c Addition (a) Movement (b)

SPAR-2 Linear-Add 0 96 0 Very Slow Very Slow
SPAR-2 Binary-Add 2 32 0 Standard Very Slow

CCB/CoMeFa 0.03 0.02 203.1 Fast Fast
IMAGine 1.2 0.9 143 Standard Standard

5.5 Further Improvements

While IMAGine outperforms the existing designs, this does not guarantee it is the optimal

implementation. There could still be some room for improvement, particularly in the reduction

network. When examining all of the architectures, we can intuitively understand which designs

are better suited for the reduction process. However, the proposed Ideal reduction-latency

Standard discussed in Chapter 3 can quantify these insights even without the architectural

knowledge of the implementations. Since the studied systems employ different reduction

approaches, we define the reduction latency for the GEMV operation as any cycle spent outside

the multiplication stage, encompassing the In-Block latency (2). We curve-fitted the proposed

reduction-latency model (1) to the reduction cycle latencies of the designs in Fig. 18(a). Table 19

shows the fitted parameters for 32-bit operands and their interpretations.

SPAR-2 linear-add parameters significantly deviate from their ideal ranges outlined in

Table 4, revealing a suboptimal reduction network design. SPAR-2 binary-add has a in the

standard range, which means the reduction operation is at least near optimal. This was achieved

through an optimization reported in [3] to reduce the number of add operations. A high value of b

in both approaches indicates that accumulation latency is dominated by the data movement part,

which is notably slower than the ideal. The value of c being 0 indicates the reduction process does

not involve extra cycles outside the reduction network, which is true by design in SPAR-2.

For CCB/CoMeFa, both parameters are near the smallest possible values: here 0.3 ≊ 1/N,

N=32. This implies it has the shortest possible cycle latency. The value of c approximates the

In-Block accumulation and pipeline setup latency of 202 cycles spent generating the 16 partial
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sums per block [84] before they enter the reduction network.

IMAGine’s parameters fall within the standard range, implying at least a near-optimal

implementation. In this case, as well, the value of c approximates the In-Block accumulation

latency of 144 cycles. Since b is near its upper bound, it indicates room for improvement in the

data movement part. Because IMAGine is utilizing only 30% of the logic resources in U55, we

can modify the network to implement 2-bit or 4-bit bit-sliced accumulation, possibly without

affecting the system clock speed. This has the potential to further improve the cycle latency of the

GEMV operation. Additionally, the PEs can be modified to implement Booth’s Radix-4 instead of

the default Radix-2 algorithm adopted from PiCaSO.

The IMAGine-slice4 curves in Fig. 18 shows the GEMV latency of a variant of IMAGine

with a 4-bit sliced accumulation network and a PE implementing Booth’s radix-4 multiplication.

This latency is estimated by adjusting the analytical model of IMAGine assuming no effect on the

clock rate. In terms of cycle latency, it can run almost as fast as CCB/CoMeFa-based GEMV

implementations. Because of the higher system frequency, it will then significantly outperform all

other state-of-the-art PIM-based GEMV accelerators. This example demonstrates how the

proposed Ideal Standard can aid in identifying design inefficiencies and making optimal design

choices for PIM-based accelerators in FPGAs.

5.6 Discussion

The implementation and analysis of IMAGine demonstrated that the full internal BRAM

bandwidth of FPGAs can be exploited by operating at the maximum BRAM frequency in a

practical PIM array accelerator. Scalability studies showed linear scaling of processing capacity

with increasing BRAM density, even for devices with low LUT-to-BRAM ratios. IMAGine, a

PIM array-based GEMV accelerator with 64K PEs running on Alveo U55, achieved clock speeds

faster than the Tensor Processing Unit (TPU v1-v2) and Alibaba Hanguang 800. This challenges

the long-held belief that FPGA overlays and reconfigurable fabrics must clock slower than ASIC

designs. Although IMAGine outperformed state-of-the-art FPGA-based PIM architectures and
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clocked faster than some ASIC accelerators, further improvements are necessary. Enhancing

end-to-end GEMV latency could be achieved by overlapping data broadcasting with

multiply-accumulate operations. Additionally, IMAGine requires further development to support

point-wise operations and non-linear activation functions, which are crucial for deep-learning

applications.
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Chapter 6

DA-VinCi: A Deeplearning Accelerator Overlay using in-Memory Computing

In the last chapter, we demonstrated how to use PiCaSO to build an Array Processor, IMAGine, to

accelerate GEMV computation. While IMAGine effectively accelerates the GEMV/GEMM

components of deep-learning models, the operations on the resultant vector of GEMV/GEMM

still require CPU processing. Significant parallelism exists within these vector operations,

presenting an opportunity to further accelerate deep learning models. However, the sequential

nature of a CPU prevents it from exploiting this parallelism effectively. Additionally, non-linear

activation functions such as Sigmoid and Tanh can take 10 to 100 cycles on a CPU, whereas these

functions can be computed in just a few cycles using a custom ALU. In this chapter, we will

extend IMAGine from a GEMV accelerator to a comprehensive deep-learning accelerator by

incorporating additional features that fully leverage the parallelism in vector operations. We name

this DA-VinCi, a Deeplearning Accelerator Overlay using in-Memory Computing.

6.1 Architecture

6.1.1 System-Level Architecture

Figure 19 illustrates the system-level architecture of DA-VinCi, which closely resembles

IMAGine, with key differences including the vector-vector engine (VV-Engine) replacing the

column-shift-registers and an enhanced front-end interface. These new components are

highlighted in the figure using colors, while the common elements with IMAGine are grayed out

for clarity. The front-end interface receives DA-VinCi instructions via an input FIFO, decodes

them, and then redirects them to either the GEMV Engine or the VV-Engine. Post GEMV

operation, the resultant vectors are transferred to the VV-Engine, where vector-vector point-wise

operations and activation functions are performed on them. Finally, the processed data is shifted

out to the output FIFO through a chain of shift-registers in the VV-Engine.

76



(a) VTile architecture

S
er

ia
l-i

n 
fr

om
G

E
M

V
 E

ng
in

e

par-shift-in

par-shift-out
VTile 

Controller

Top-level Fanout Tree

VBlock Array

(b) Top-level architecture

V
V

-E
ng

in
e

Frontend Interface

GEMV
Engine

VTile

C
on

tr
ol

 S
ig

s.
F

an
ou

t

Figure 19: System architecture of DA-VinCi illustrating the data and instruction flow (a) VV-
Engine Tile (VTile) architecture (b) System-level architecture.

6.1.2 Vector-Vector Engine Architecture

Figure 19(a) illustrates the architecture of a VV-Engine tile (VTile), which is designed to process

one-dimensional vectors and bears a close resemblance to a GEMV tile. Each VTile features a tile

controller that connects to an array of vector-vector processing blocks (VBlocks) via a fanout tree

of control signals. Unlike the PIM-Array in GEMV tiles, the VBlock array in a VTile is

one-dimensional, reflecting its specialized function for handling vector-vector operations. This

streamlined design allows the VTile to perform efficient point-wise operations and activation

functions on the resulting vectors from the GEMV Engine exploiting their parallelism.

Figure 20(a) shows the architecture of a VBlock, the main computing component of the

VV-Engine. Each VBlock comprises several modules: a BRAM, an ALU with an output register

(OREG), a serial-parallel shift register (SREG), and a lookup mechanism to support non-linear

activation functions. The BRAM plays a dual role within the VBlock, with its lower half

functioning as a register file and its upper half serves as lookup tables for several non-linear

activation functions. After the GEMV Engine processes the data, the resultant vector is copied to

the SREG. This vector can then be used as an operand for the ALU or transferred to the

registerfile for future operations. SREGs of adjacent VBlocks in a tile are connected to form a

parallel shifting chain (SREG-chain), by connecting their par-shift-in and par-shift-out signals.
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Figure 20: The architecture of VTile components (a) VBlock architecture (b) VTile Controller

This chain runs through the entire VV-Engine, which is used to shift out the result vector to the

FIFO-out through the front-end interface.

Figure 20(b) shows the architecture of the VTile controller, which is a streamlined version of

the GEMV tile controller. The VTile controller’s simplified design includes a VBlock driver

module that performs the same function as the single-cycle driver in the GEMV tile controller.

Unlike the GEMV controller, the VTile controller does not include a multi-cycle FSM driver.

Instead, multi-cycle instructions are managed by asserting the control signals for the VBlock

array for the required number of cycles. This task is accomplished by the Busy-Counter module,

which ensures that the necessary control signals are maintained over the appropriate number of

cycles before fetching the next instruction, to complete the multi-cycle instructions effectively.

This architecture allows for efficient handling of vector operations within the VTile, maintaining

high performance while simplifying the control logic.

Figure 21(a) shows the architecture of the VBlock ALU. The ALU is composed of an

adder/subtractor module, a fixed-point multiplier implemented using a DSP block, and a

combinatorial block that executes the ReLU activation function. The ALU is designed to take

four inputs: the activation function input (ACT), port X and port Y from the BRAM, and the

shift-register (SREG). Depending on the ALU opcode, a subset of these inputs is selected to

perform the desired computation. All of the computed results go to an output multiplexer
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(OutMux) before leaving the ALU. Based on the selected ALU-opcode, one of these results is

selected as the ALU output result. Additionally, the Y input is directly connected to the OutMux,

providing a direct data path that facilitates copying data from one register to another within the

registerfile through OREG. Additional simple activation functions like ReLU can be supported by

adding more logic blocks and connecting the ACT input to it. This modular design ensures

efficient and flexible data handling, allowing the ALU to perform a variety of arithmetic and

activation functions critical for deep-learning applications.

Figure 21(b) shows the data flow of the non-linear activation function computation. Simple

activation functions, like ReLU, are performed in the ALU taking the ACT register as the input.

The non-linear activation functions are computed using a lookup-based approach, which makes

this architecture very flexible compared to the fixed-function architectures of activation

functions [3, 25, 29]. During the initialization of DA-VinCi, the BRAM is preloaded with lookup

tables of all the non-linear activation functions needed for the target applications. To compute the

activation output of an input, the input value is first copied to the ACT register. Based on the

value in the ACT register and an activation code (actCode) from the instruction word, a row

address is generated for the BRAM. This row address points to the non-linear activation output of

the value in the ACT register for the activation function corresponding to the actCode. The output

is then stored in the OREG. This entire lookup process is completed in three cycles.
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6.1.3 Front-end Interface Architecture

Figure 22 illustrates the architecture of the front-end interface of DA-VinCi. This interface

comprises several key components: memory-mapped registers, two FIFOs, status registers, and

various controller blocks. The memory-mapped registers are directly accessible to the CPU,

allowing it to write data and control words to the interface FIFOs and read outputs and status of

the accelerator. The FIFO-in is responsible for receiving 32-bit instruction words from the

memory-mapped register, while the FIFO-out holds the most recent resultant vectors that have

been shifted out from the VV-Engine. The last element of the vector written to the FIFO-out

generates an interrupt signal for the CPU, indicating that the result vector is ready for the CPU to

read out.

The input controller is responsible for fetching instructions from the FIFO-in, examining the

opcode to determine whether the instruction is meant for the GEMV Engine or the VV-Engine,

and then initiating a handshake with the appropriate dispatcher module. The GEMV and

VV-Engine dispatchers manage the states of their respective compute engines, handling

handshake requests from the input controller. They only accept a new instruction if the

corresponding engine is idle or will be idle in the next cycle, ensuring the proper synchronization

of the operations.
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Table 20: Instruction Set of DA-VinCi: GEMV Engine Subset

Instruction Operands Semantics

mv write addr, data BRAM[addr] <= data
mv nop - Spend 1 cycle doing nothing
mv mov rd, rs RF[rd] <= RF[rs]
mv add rd, rs1, rs2 RF[rd] <= RF[rs1] + RF[rs2]
mv sub rd, rs1, rs2 RF[rd] <= RF[rs1] - RF[rs2]

mv selectBlk rowID, colID select BRAM at GEMV[rowID, colID] for mv write
mv selectRow rowID select all BRAMs in the GEMV[rowID] for mv write
mv selectCol colID select all BRAMs in the GEMV[:, colID] for mv write
mv selectAll - select all BRAMs in the GEMV array for mv write

mv accumRow level, reg row-wise accumulation of RF[reg] at L=level
mv updatepp ppreg, mpcand,

mplier, mbit
RF[ppreg] += RF[mpcand]×RF[mplier][mbit]

* BRAM[addr] semantics access BRAMs directly using row address
* RF[reg] semantics access BRAMs as PE registerfiles, each register spanning multiple rows

The output controller monitors the shifted-out vectors through the SREG chain of VV-Engine

and sets the interrupt flag when the last element is shifted out, signaling the completion of the

operation. Additionally, it manages various status and error flags communicating with other

modules, including those for invalid instructions, FIFO-out overflow, and lost instructions, to

ensure the reliable and accurate operation of the system.

6.1.4 DA-VinCi Instruction Set

DA-VinCi has its own instruction set architecture (ISA). This ISA is defined independently of the

hardware implementation of submodules such as the GEMV and VV-Engines using the front-end

interface module. The front-end interface handles the 32-bit instruction word and translates it into

the corresponding instruction format for the respective module. This abstraction layer ensures that

the instruction set and compiled programs are implementation-independent and portable across

future generations of DA-VinCi.

Table 20 lists the subset of the ISA that controls the GEMV engine. These assembly
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Table 21: Instruction Set of DA-VinCi: VV-Engine Subset

Instruction Operands Semantics

vv write addr, data BRAM[addr] <= data

vv nop - Spend 1 cycle doing nothing

vv mov rd, rs RF[rd] <= RF[rs]

vv add rs1, rs2 OREG <= RF[rs1] + RF[rs2]

vv sub rs1, rs2 OREG <= RF[rs1] - RF[rs2]

vv mult rs1, rs2 OREG <= RF[rs1] × RF[rs2] a

vv activ actCode OREG <= activation-func<actCode>(ACT) b

vv shiftOff - Disable all shifting of SREG

vv serialEn - Enable serial shifting of SREG

vv parallelEn - Enable parallel shifting of SREG chain

vv selectBlk blkID Select BRAM at VV-Engine[blkID] for vv write

vv selectAll - Select all BRAMs in the VV-Engine for vv write
* BRAM[addr] semantics access BRAMs directly using row address
* RF[reg] semantics access BRAMs as vector registerfiles
a Fixed-point multiplication
b activation-func<actCode> selects between ReLU or non-linear lookup tables

instructions are prefixed with “mv ” to denote their function in performing matrix-vector

operations. The ISA includes instructions for selectively writing to BRAMs in the GEMV array,

moving data within the registerfile, performing arithmetic operations like ADD and SUB, and

executing row-wise accumulation.

One particularly noteworthy instruction is the update-partial-product (updatepp) instruction.

This instruction executes one step of Booth’s multiplication algorithm and updates the

partial-product register (ppreg). It achieves this by adding the partial-product register (ppreg) with

the product of the multiplicand register (mpcand) and the multiplier bit (mbit). It performs the

necessary shifts of the operands required by Booth’s algorithm. Multiple iterations of this

instruction, using successive values of mbit, are utilized to perform the complete multiplication

between the mpcand and mplier registers in the GEMV Engine.

Table 21 lists the subset of the ISA that controls the VV-Engine. These assembly instructions
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are prefixed with “vv ” to distinguish them from those in the GEMV subset. Similar to the GEMV

subset, the VV-Engine ISA includes instructions for selectively writing to BRAMs in the VBlock

array, moving data between registers, and performing essential computations such as ADD, SUB,

and MULT, as well as activations. It is important to note that the multiplication performed by the

ALU is a fixed-point multiplication. The “vv active” instruction is particularly noteworthy, as it

allows for the selection of either one of the non-linear activation functions stored in the BRAM or

the ReLU function using the appropriate ALU opcode. If one or more simple functions like ReLU

are added to the ALU, only some extra actCode will need to be added to the assembler to support

them. This along with reloadable non-linear lookup tables provides the flexibility needed for a

wide range of activation functions, which is critical for deep-learning applications.

Unlike the GEMV subset, the VV-Engine instructions also include instructions to control the

shift-register chain within the VV-Engine. Serial shifting can be enabled to copy data from the

GEMV Engine, while all shifting can be disabled to retain the content during computation.

Parallel shifting is enabled to push out the result vector to the FIFO-out. These instructions

provide complete control over the data flow within the VV-Engine essential for maintaining high

efficiency and performance.

These comprehensive instructions collectively make the VV-Engine highly flexible, and

capable of adapting to various computational needs. This combination of flexibility, performance,

and scalability positions the VV-Engine as a powerful component within the DA-VinCi

architecture, capable of meeting the demanding requirements of current and future deep-learning

applications.

6.2 Implementation and Analysis

6.2.1 VV-Engine Tile

Before implementing the VV-Engine, a single VV-Engine tile (VTile) was studied to ensure it

meets the requirements for the Ideal Design Standards. A tile dimension of 12×1 was chosen for

implementation on the Alveo U55 to match the tile height of the GEMV tiles, simplifying the
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Table 22: Utilization of 12×1 VV-Engine Tile Components on Alveo U55 at 737 MHz

Controller Tile Rel. Fanout Tile Rel. VBlock-Array Tile Rel. Tile

LUT 27 1.7% 0 0.0% 1580 98.3% 1607
FF 116 8.5% 247 18.1% 1004 73.4% 1367

DSP 0 0.0% 0 0.0% 12 100.0% 12
BRAM 0 0.0% 0 0.0% 12.0 100.0% 12

connection between the VV-Engine and the GEMV-Engine. The VTiles also have two stages of

pipelines in the fanout tree between the controller and VBlock array, which match the instruction

propagation latency of the GEMV tiles. This design choice simplifies the synchronization

between the VV-Engine and the GEMV-Engine.

Table 22 provides a detailed breakdown of the resource utilization for a 12×1 VTile and its

individual components when implemented on the Alveo U55 at 737 MHz, the BRAM Fmax.

Comparing these utilization figures with the utilization of GEMV tile in Table 16 offers valuable

insights into the efficiency and resource allocation of the VV-Engine design. One notable change

in the VTile design is its significantly smaller controller size compared to that of the GEMV tile

controller. This reduction is attributed to a simpler design without multi-cycle FSMs.

Additionally, the fanout tree within the VTile exhibits lower flip-flop utilization, due to the fewer

controller signals compared to GEMV tiles.

The VBlock array, comprising 12 VBlocks, employs 12 DSPs dedicated to handling

fixed-point multiplications. Each VBlock utilizes a RAMB36 tile as its register file, resulting in a

BRAM utilization of 12 at the tile level. The 12×1 VTile design successfully meets timing

constraints with a positive slack at BRAM Fmax. This ensures that the VV-Engine adheres to

ideal clocking goals maintaining high performance and scalability standards.

6.2.2 Front-End Interface

Table 23 shows the utilization of the front-end interface implemented on the Alveo U55 at BRAM

Fmax. The “Available” column indicates the total number of each resource available in the U55,

while the “Utilization%” column reflects the device-level utilization of the front-end interface. As
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Table 23: Utilization of the front-end interface on Alveo U55 at 737 MHz

Utilization Utilization% Available

LUT 50 0.004% 1303680
FF 32 0.001% 2607360

DSP 0 0.000% 9024
BRAM 1 0.050% 2016

discussed in Section 6.1.3, the design of the front-end interface is very simple, resulting in

minimal usage of LUTs and flip-flops. Since the interface handles straightforward instruction

management tasks without complex computations, its DSP utilization is 0. FIFO-in and

FIFO-out, used as the interface with the CPU, are implemented using 2 RAMB18, consuming 1

RAMB36 tile. Such low utilization makes it a lightweight abstraction layer, ensuring portability

and binary-code compatibility across future DA-VinCi implementations at almost zero cost.

The front-end interface successfully meets timing requirements at BRAM Fmax. The

negligible device-level utilization along with its compliance with the ideal clocking goal ensures

that DA-VinCi can achieve its high-performance and scalability goals at the system level.

6.2.3 System-Level Analysis

With the submodules of DA-VinCi meeting Ideal Design Standards, we move forward with the

system-level implementation on the Alveo U55 platform. The dimensions of the GEMV engine

and VV-Engine were chosen to utilize the 100% available BRAM resources, operating at the

target clock speed of 737 MHz, the BRAM Fmax. Similar to IMAGine, the process involved

multiple iterative implementations to achieve these design goals.

Placement and routing optimizations, as detailed in Section 5.2.4, were employed to achieve

target performance and scalability. This included selecting GEMV tiles of 12×2 dimensions and

VTiles of 12×1 dimensions on Alveo U55. Floorplan blocks were created to avoid hardened

blocks like CMAC. Each tile’s control and data signals were localized, allowing only the inter-tile

network connections to cross the floorplan blocks. All paths in the final design met the timing

requirement at 737 MHz clock, demonstrating DA-VinCi’s adherence to the ideal clocking
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Table 24: Utilization breakdown of the largest DA-VinCi (60K PEs) and its major components on
Alveo U55 at 737 MHz (BRAM Fmax)

GEMV-Engine DA-VinCi% VV-Engine DA-VinCi% DA-VinCi Device%

LUT 463286 95.9% 19703 4.1% 482989 37.0%
FF 608812 97.4% 16202 2.6% 625014 24.0%

DSP 0 0.0% 144 100.0% 144 1.6%
BRAM 1872 92.9% 144 7.1% 2016 100.0%

standard. Furthermore, by utilizing 100% of available BRAMs, DA-VinCi achieved ideal linear

scaling of peak performance.

Table 24 provides a detailed utilization breakdown of DA-VinCi and its major components.

By utilizing 100% of the available BRAM, DA-VinCi offers 60K bit-serial PEs capable of

performing the MAC operations involved in the GEMV/GEMM steps in deep learning

applications. The BRAMs that provided the additional 4K PEs in IMAGine have been reallocated

to the VV-Engine. A comparison of the DA-VinCi column in Table 24 with the IMAGine row in

Table 18 reveals that system-level utilizations are almost identical, with the primary difference

being the 1.6% DSP utilization for fixed-point multiplications in the VV-Engine.

The GEMV-Engine column indicates that over 90% of DA-VinCi’s resources are dedicated to

it, which is desired given that most of the parallelism in deep-learning applications arises from

GEMV/GEMM computations. In contrast, the VV-Engine column shows that less than 10% of

DA-VinCi’s resources are allocated to it. Since the VV-Engine is the sole component utilizing

DSPs, it accounts for 100% of the system’s DSP utilization.

6.3 Comparison with the Benchmark Design

To study the performance gain of DA-VinCi on real-world applications, it was compared with

three classes of accelerators: the benchmark overlay, PIM-based deep-learning accelerators, and

custom FPGA accelerators. The comparison aims to highlight DA-VinCi’s advantages in terms of

latency. To ensure a fair and accurate comparison, utilization and latency were collected by

running the same applications on similar, if not identical, FPGA platforms. This approach allows
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Table 25: Application latency comparison of DA-VinCi with the benchmark overlay SPAR-2 [3]

Design Latencya Speedup Precisionb LUT FF BRAM DSP Freqc FPGA
LSTM-1 (61, 250, 250, 250, 39) on TIMIT dataset

SPAR-2 11400 1 FxP32 133890 56207 313 0 200 US+
DA-VinCi 56.63 201.3 FxP32 521991 675180 2250 250 737 US+

LSTM-2 (64, 128, 128, 64) on CharRec dataset
SPAR-2 257.1 1 FxP16 133890 56207 313 0 200 US+

DA-VinCi 18.72 13.7 FxP16 141095 178127 640 128 737 US+

MLP-1 (784, 100, 100, 10) on MNIST dataset
SPAR-2 300 1 FxP32 133890 56207 313 0 200 US+

DA-VinCi 22.02 13.6 FxP32 98919 124198 450 100 737 US+

GRU-1 (39, 256, 200, 10) on DeepSpeech datase
SPAR-2 2100 1 FxP16 133890 56207 313 0 200 US+

DA-VinCi 17.59 119.4 FxP16 534827 692309 2304 256 737 US+
a Execution latency in micro-seconds (us)
b Precision FxP := Fixed-Point
c System frequency in MHz

us to directly assess how DA-VinCi stacks up against other accelerators under comparable

conditions, providing clear insights into its potential benefits and improvements in practical

deep-learning applications.

Table 25 compares the latency and utilization of DA-VinCi with the benchmark overlay,

SPAR-2, on Virtex UltraScale+ FPGAs. The LSTM-1 benchmark, used for speech recognition on

the TIMIT dataset [105], has an input size of 61, three hidden layers of size 250, and a

fully-connected output layer of size 39. The LSTM-2 benchmark, used for character recognition

on the Shakespeare dataset [106], features an input size of 64, two hidden layers of size 128, and

a fully-connected output layer of size 64. The MLP-1 benchmark, designed for handwritten digit

recognition on the MNIST dataset [107], includes 784 inputs, two fully-connected layers of size

100, and an output layer of size 10. Lastly, the GRU-1 benchmark, used for speech recognition on

the DeepSpeech dataset [108], consists of an input size of 39, two hidden layers of sizes 256 and

200, and a fully-connected output layer of size 10. These benchmarks are selected from the

SPAR-2 latency study published in [3].
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As observed from Table 25, DA-VinCi achieved a 201.3× speed-up on the LSTM-1

benchmark, reducing application latency from 11.4 ms to 56.63 us. This significant speed-up was

achieved at the cost of higher utilization of system resources. On the LSTM-2 benchmark,

DA-VinCi achieved a 13.7× speed-up, reducing latency from 257.1 us to 18.72 us, with similar

logic utilization as SPAR-2. A similar speed-up was observed on the MLP-1 benchmark at a

lower logic utilization. In LSTM-2 and MLP-1, the speed-up is attributed to DA-VinCi’s more

efficient computing architecture and superior system frequency compared to SPAR-2.

Additionally, DA-VinCi achieved a 119.4× speed-up on the GRU-1 benchmark, with higher

utilization similar to that in LSTM-1. In all cases, DA-VinCi outperformed SPAR-2 in system

clock speed by 3.7×. This faster clock speed, combined with a scalable architecture, is the key to

DA-VinCi’s significant latency improvements over SPAR-2.

6.4 Comparison with PIM Accelerators

Table 27 compares the latency and utilization of DA-VinCi with PIM accelerators based on CCB

and CoMeFa. RIMA, built on CCB, was evaluated on Stratix 10, while the CoMeFa-based

GEMM engine was evaluated on Arria 10. These Intel device families are comparable to AMD’s

UltraScale+ family. The benchmarks were selected from the DeepBench [109] suite, as used in

the original publications on RIMA [84] and CoMeFa [1]. The GEMM kernel (m=1536, k=512,

n=32) involves multiplying a weight matrix of size 1536×512 with an input matrix of size

512×32, as described in the original publication [1]. The LSTM-3 (h=256) benchmark consists of

an LSTM layer with 256 hidden units, the LSTM-4 (h=512) benchmark has an LSTM layer with

512 hidden units, and the GRU-2 (h=1024) benchmark includes a GRU layer with 1024 hidden

units. The LSTM and GRU kernels were evaluated following the recommendations on the

DeepBench webpage [109], excluding any input vector or output fully-connected layers.

As observed from Table 27, DA-VinCi achieved a 1.4× speed-up on the GEMM-1

benchmark compared to the CoMeFa-based GEMM engine. This improvement is due to

DA-VinCi’s faster system clock frequency and greater parallelism at the cost of higher resource
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Table 26: Application latency comparison of DA-VinCi with PIM accelerators

Design Latencya Speedup Preci.b Logicd FF BRAM DSP Freqc FPGA
GEMM-1 (m=1536, k=512, n=32) from Deepbench

CoMeFa [1] 388.99e 1 INT8 86604 346413 2239 1317 267 Arria 10
DA-VinCi 268.68 1.4 INT8 534827 692309 2304 256 737 US+

LSTM-3 (h=256) from Deepbench
RIMA [84] 60 1 INT8 559872 2239488 6447 2880 455 Stratix 10
DA-VinCi 2.52 23.8 INT8 534827 692309 2304 256 737 US+

LSTM-4 (h=512) from Deepbench
RIMA [84] 20 1 INT8 690509 2762036 8088 2880 417 Stratix 10
DA-VinCi 9.27 2.2 INT8 534827 692309 2304 256 737 US+

GRU-2 (h=1024) from Deepbench
RIMA [84] 2630 1 INT8 653184 2612736 7619 2880 417 Stratix 10
DA-VinCi 30.16 87.2 INT8 534827 692309 2304 256 737 US+
a Execution latency in micro-seconds (us)
b Precision INT := Integer
c System frequency in MHz
d ALMs for Stratix 10 and Arria 10, LUTs for UltraScale+
e Estimated using relative speed-up w.r.t CCB (RIMA) reported in [1]

utilization compared to the CoMeFa GEMM engine. On the LSTM-3 and LSTM-4 benchmarks,

DA-VinCi demonstrated a 23.8× and 2.2× speed-up over RIMA, respectively. In these cases,

DA-VinCi maintained similar logic utilization but significantly reduced the number of flip-flops,

BRAM, and DSPs used.

Additionally, DA-VinCi achieved an impressive 87.2× speed-up on the GRU-2 benchmark,

which is the largest of the three recurrent network models compared. This substantial speed-up

illustrates DA-VinCi’s ability to scale more effectively with increasing application size compared

to RIMA. Notably, all RIMA implementations run at less than half the speed of the Stratix 10

BRAM with 1 GHz Fmax, whereas DA-VinCi operates nearly twice as fast on UltraScale+

devices with a BRAM speed of 737 MHz. This indicates the potential for even greater

performance improvements if DA-VinCi were implemented on Stratix 10.
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6.5 Comparison with Custom Accelerators

Outperforming custom accelerators with a more general overlay architecture is very difficult.

However, because DA-VinCi achieved the Ideal Design Standards, we expected it to deliver

competitive performance compared to custom accelerators. Table 26 compares DA-VinCi’s

latency and utilization with some state-of-the-art custom deep-learning accelerators implemented

on FPGAs. The LSTM-5 benchmark was used to predict the real-time response of high-rate

(HRate) dynamic systems on the DROPBEAR dataset in [110]. It consists of an input size of 16

and three hidden layers of size 15. The LSTM-2 benchmark, which is also included in Table 25,

has an input size of 64, two hidden layers of size 128, and a fully-connected output layer of size

64. This was used for character recognition on the Shakespeare dataset using a Streaming

accelerator (Stream) in [111]. The MLP-2 benchmark, used by CNN-MLP (CM) in [112] for

handwritten digit recognition on the MNIST dataset. It includes 784 inputs, two fully-connected

layers of size 64, and an output layer of size 10. The GRU-1 benchmark, also included in

Table 25, consists of an input size of 39, two hidden layers of sizes 256 and 200, and a

fully-connected output layer of size 10. It was used for speech recognition on the DeepSpeech

dataset using the DeltaRNN (DRNN) accelerator with an optimal delta threshold of 0x80 in [39].

Lastly, the LSTM-6 benchmark from the DeepBench suite, with an LSTM layer of 1024 hidden

units. This was used by the custom accelerator Spartus [40] for speech recognition on the TIMIT

dataset.

As observed from Table 26, DA-VinCi achieved up to 40% and 20% of the performance

compared to the HLS and HDL implementations of the HRate LSTM-5 accelerator, respectively.

DA-VinCi’s slower performance in this case is due to its bit-serial computing architecture and the

small size of the network. Bit-serial computing is significantly slower than bit-parallel computing,

but DA-VinCi compensates for this by providing tens of thousands of bit-serial processing

elements. However, because the network is very small in these benchmarks, DA-VinCi loses its

parallelism advantage and is hindered by its bit-serial architecture. Despite this, it achieved up to

40% of HRate’s performance due to its higher clock speed, at significantly lower resource
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Table 27: Application latency comparison of DA-VinCi with the Custom accelerators

Design Lat.a Speedup Preci.b LUT FF BRAM DSP Freqc FPGAd Type
LSTM-5 (16, 15, 15, 15) on DROPBEAR dataset

HRate [110] 4.72 1 FxP16 25346 31136 16 224 375 US+ HLS
DA-VinCi 11.8 0.4 FxP16 5397 6541 30 15 737 US+ Overlay

HRate [110] 2.49 1 FxP16 65184 130368 41 1174 256 US+ HDL
DA-VinCi 11.8 0.2 FxP16 5397 6541 30 15 737 US+ Overlay

LSTM-2 (64, 128, 128, 64) on CharRec dataset
Stream [111] 66 1 FxP16 95263 118261 259 1095 420 US+ Overlay

DA-VinCi 18.72 3.5 FxP16 141095 178127 640 128 737 US+ Overlay

MLP-2 (784, 64, 64, 10) on MNIST dataset
CM [112] 180 1 FxP8 18218 11670 222 6 100 V7 HLS
DA-VinCi 12.2 14.8 FxP8 39524 47700 192 64 540 V7 Overlay

GRU-1 (39, 256, 200, 10) on DeepSpeech dataset
DRNN [39] 1000e 1 FxP16 261357 119260 768 457.5 125 Z7 HDL
DA-VinCi 17.59 56.9 FxP16 534827 692309 2304 256 737 US+ Overlay

LSTM-6 (h=1024) from Deepbench
Spartus [40] 1 1 INT8 136481 108186 250 520 200 Z7 HDL
DA-VinCi 36.0 0.03 INT8 534827 692309 2304 256 737 US+ Overlay
a Execution latency in micro-seconds (us)
b Precision FxP := Fixed-Point, INT := Integer
c System frequency in MHz
d US+ := UltraScale+, V7 := Virtex-7, Z7 := Zynq-7000
e The reported latency is for the optimal delta threshold of 0x80 [39]

utilization.

DA-VinCi achieved a 3.5× latency speed-up on the LSTM-2 benchmark compared to the

Streaming accelerator [111], which was tailored for the target application using a custom dataflow

arrangement and DSP block capabilities directly. Despite the tailored design of the Streaming

accelerator, DA-VinCi outperformed it due to its faster clock speed, near-optimal reduction

network design, and a higher level of parallelism. Additionally, DA-VinCi demonstrated a

substantial 14.8× speed-up on the MLP-2 benchmark compared to CNN-MLP [112]

implemented using HLS. DA-VinCi is a software programmable reconfigurable overlay. This

speed-up highlights DA-VinCi as a superior choice to HLS-based custom accelerators, offering
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improved performance without sacrificing the portability, rapid customization, and

reconfigurability features of HLS. DA-VinCi also achieved a notable 17.59× speed-up compared

to Delta-RNN [39] on the GRU-1 benchmark. Part of this speed-up can be attributed to the faster

technology node of UltraScale+ compared to Zynq-7000. It’s important to note that Delta-RNN is

optimized for exploiting temporal dependencies in RNN inputs and activations, and the latency

reported in Table 26 reflects its maximum speed with a delta-threshold of 0x80 [39].

Nevertheless, DA-VinCi significantly outperforms Delta-RNN in application execution latency

due to its higher parallelism and roughly 6× faster system frequency.

The inclusion of the LSTM-6 benchmark and comparison with Spartus demonstrates the

inherent limitations of overlays compared to highly customized accelerators. Spartus leverages

spatio-temporal sparsity through structured column-balanced targeted dropout (CBTD)

pruning [40]. It was implemented as a custom accelerator using HDL enabling target

platform-specific customizations. In executing the LSTM-6 kernel with sufficient parallelism,

Spartus achieved a remarkable 1 us latency, whereas DA-VinCi required 36 us, making DA-VinCi

36 times slower on this benchmark with higher resource utilization. This disparity highlights that

tailored accelerators, leveraging application and platform-specific optimizations, can achieve the

highest performance at a lower cost. However, such customizations require prolonged design

times, lack rapid prototyping capabilities, and often struggle with portability across different

platforms or applications. In contrast, DA-VinCi mitigates these drawbacks, delivering

competitive or superior performance across a broader range of applications and target platforms.
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Chapter 7

Conclusion

This dissertation developed a reconfigurable memory-centric array processor overlay architecture

that successfully met a set of Ideal Design Standards. These standards were carefully established

by taking into account both analytical reasoning and practical limitations of existing devices.

Throughout the development process, the proposed design standards not only served as ambitious

yet attainable design goals but also acted as guiding principles to make near-optimal design

choices. By adhering to these standards, the dissertation demonstrated how Reconfigurable

Memory-Centric Array Processor FPGA Overlays can approach an optimal solution for deep

learning applications.

Initially, our research focused on developing PiCaSO, a Processor-in-Memory (PIM)

architecture designed to meet stringent Ideal Design Standards. We evaluated PiCaSO across

diverse computing platforms, aiming to validate its portability, performance, and scalability. Our

comparative studies, which included benchmarking against existing overlay and custom

BRAM-based PIM architectures, consistently showcased that PiCaSO can provide higher clock

speed and memory efficiency.

Using PiCaSO as the foundation, we developed IMAGine, a high-performance PIM

array-based GEMV accelerator. The IMAGine case study demonstrated that achieving the Ideal

Design Standard is feasible at the system level. IMAGine showcased its capability to fully exploit

the total internal bandwidth of the device operating at the maximum frequency supported by the

BRAM. Additionally, scalability studies highlighted that IMAGine’s processing capacity scales

linearly with increasing BRAM density, even in devices with low LUT-to-BRAM ratios.

In the last chapter, we developed a comprehensive deep-learning accelerator, DA-VinCi,

extending IMAGine with support for efficient vector-vector operations and activation functions.

Implementation and design analysis showed that DA-VinCi retains all the benefits of IMAGine,

while satisfying the complete computing needs of deep-learning applications. Latency and
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utilization studies were presented between DA-VinCi, SPAR-2, PIM accelerators, and custom

FPGA accelerators. The comparative study revealed that DA-VinCi has a significantly faster

execution latency compared to existing overlays and custom-BRAM PIM accelerators. It also

surpassed many custom FPGA accelerators in terms of latency providing portability and rapid

development benefits, making it a better choice given it meets performance requirements within

the allocated resources.

The work presented in this study paves the way for several promising avenues of future

research. While significant progress has been made in developing the array processor, a notable

challenge that persists is ensuring efficient data transfer to sustain its operations. Addressing this

challenge involves exploring various strategies such as designing optimal memory hierarchies for

the array processors, implementing optimal compression techniques, and developing efficient

encoding schemes. These efforts are crucial for maintaining a steady data flow to thousands of

processing elements within the array processor, thereby preventing array stalls and reducing

latency.

Programming DA-VinCi, like any other novel accelerator, is relatively difficult due to the

absence of a standard compiler infrastructure. Overcoming this hurdle requires significant

research efforts aimed at refining application mapping techniques that can effectively harness

DA-VinCi’s computational capabilities. Moreover, DA-VinCi’s reconfigurable overlay nature

introduces opportunities for innovative software-hardware co-design approaches. This flexibility

enables the optimal selection of implementation parameters tailored to specific application

requirements, thereby improving both performance and resource utilization. Future advancements

in these areas hold the potential to streamline programming workflows and enhance the

adaptability of DA-VinCi across a wide range of computational tasks and platforms.

Lastly, novel FPGA device families can be designed taking advantage of the PiCaSO and

DA-VinCi architectures. PiCaSO, for instance, offers a compelling solution that can be

seamlessly integrated as a custom BRAM block within FPGA designs. This integration not only

enhances memory utilization and computing efficiency but also facilitates the deployment of
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in-memory computing architectures directly on FPGA hardware. Moreover, custom device

families, such as AMD’s Versal ACAP, exists that are specifically designed to cater to the unique

requirements of domain-specific applications. By leveraging DA-VinCi and IMAGine as

reference designs, there is a promising opportunity to develop a new family of domain-specific

FPGA architectures tailored for memory-intensive applications and in-memory computing

paradigms. Incorporating these innovations into future FPGA designs could significantly enhance

performance, scalability, and versatility of diverse computational tasks and applications.
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