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Abstract—Software-defined networking (SDN) has revolution-

ized the landscape of network management by decoupling

control and data planes and becoming the backbone of many

IT infrastructures including data centers, cloud computing,

and enterprise networks. At the same time, however, the control

plane has become a prime target for adversaries due to its

critical role in network operations and centralized control

functions. In this paper, we demonstrate how to discover the

identity of different SDN controllers, which could be leveraged

for more sophisticated attacks by adversaries. Our approach

adopts a timing-based side channel and deep neural networks

(DNN). To achieve this, we analyze real-world SDN traffic

in a research computing center and accurately identify the

controllers, minimizing the impact of random noise. Despite

various factors that influence controller behaviors, our finger-

printing approach achieves an average accuracy of more than

90%. Lastly, the mitigation strategies are also discussed.

1. Introduction

Previous work on SDN fingerprinting has demonstrated
the feasibility of fingerprinting whether or not the target
network leverages SDN by the aforementioned timing-based
side channel [1], [2], [3], [4], [5], [6]. Nevertheless, these
attempts on SDN fingerprinting did not deal with the iden-

tities of SDN controllers such as the name and version of
a controller, and thus is not sufficient for adversaries to
devise an exploit against a target control plane. For example,
controller-specific exploits such as directory traversal and
data storage vulnerabilities heavily rely on prior knowledge
about the exact identity of the target controller [7], [8], [9].

In this paper, we explore the question of how to finger-

print a controller identity as well as estimate the size of flow

paths in a real-world SDN environment. To tackle this chal-
lenge, we observed behaviors of diverse SDN controllers and
noticed that there exist variations in round-trip time (RTT)
between probing packets, exhibiting a distinct distribution
pattern. This distribution pattern is specific to different SDN
controllers, taking into account their versions and the scale
of their flow paths. In other words, any incoming flows
without corresponding flow rules must go through additional
procedures to be handled on the control plane, causing a
delay in setting up a new flow rule, which eventually affects
the response time from servers to clients.

Challenges. However, relying solely on the timing-based
side channel to fingerprint SDN controller identity has two
major challenges. (C1) Architectural restrictions of SDN:

One of the challenges in fingerprinting the SDN controller
is inherited from its architecture design, which separates the
control and data planes. This strict separation prevents direct
packet injections from the data plane to the control plane.
Such restriction poses a challenge for fingerprinting efforts
since traditional methods with direct communication may
not be feasible. (C2) Potential performance fluctuation of

the controller: The performance of SDN controllers can be
affected by several factors including random noise in the
network, the physical hardware on which the controller is
running, and the controller applications. These factors may
create randomness in controller performance measurements,
resulting in inaccuracy in fingerprinting results.
Approach. Previous work on SDN fingerprinting also ex-
plored a similar methods [4], [6], [10] but are limited
to fingerprinting only the logic of the control plane. Our
approach demonstrates how to further fingerprint the identity

of the controllers (i.e., the name and version of a running
controller). To address C1, we employ deep learning models
to analyze the temporal patterns of RTT rather than just indi-
vidual values, thereby enhancing accuracy and reliability in
the non-deterministic nature of networks. In addition to fin-
gerprinting the identity of controllers, we also estimate the
size of flow paths, even under different network configura-
tions, by leveraging deep learning models. Also, we account
for variations in network sizes, SDN applications running on
the controller, and traffic volume to address C2. In summary,
our fingerprinting approach surpasses previous side-channel
attacks against SDN by not only identifying controllers but
also efficiently distinguishing between different flow paths.
This capability enhances the granularity of security analysis
and improves the comprehensive understanding of network
behavior. Also, we found that the size of the data plane is
a factor that has the significant impact on response time
within the network.

We evaluate the effectiveness of our approach us-
ing major commercial-grade open source SDN controllers
used in real-world data centers and enterprise networks—
OpenDaylight (ODL) [11], Open Network Operating Sys-
tem (ONOS) [12], and Ryu [13], [14]. Our experimental
results show that the flow setup delay of each controller
is significantly different from each other and can be used
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as a distinctive feature to identify SDN controllers and
their versions. Moreover, our approach can be employed to
identify the specific flow rules that are assigned to individual
flow paths by utilizing the flow setup delays from multiple
flow paths. This implies that by analyzing the timing of the
flow setup, our method enables the mapping of flow rules
to their corresponding flow paths.
In summary, the contributions of this paper are as follows:

• We present a fingerprinting approach for identifying
SDN controllers. Our approach takes advantage of the
timing side channel in SDN and employs deep learning
to minimize the impact of various factors that affect the
performance of SDN controllers.

• Our approach enables the identification of different
flow paths within the network. By distinguishing and
understanding the various paths through which network
traffic flows, an attacker can assess the presence of
conflicts in network policies. These conflicts can then
be exploited to craft more sophisticated and targeted
attacks.

• We evaluate our approach on major commercial-grade
open source controllers—ODL, ONOS, and Ryu—
with different network configurations in terms of the
size of the network and SDN applications running on
the controller. Our experiments demonstrate that our
fingerprinting is efficient in a real-world SDN-based
computing environment.

2. Background

An OpenFlow-enabled switch in a data plane contains
Match-Action flow tables, in which match-fields of each flow
entry are paired with corresponding actions (directly forward

to destination, forward to controller, or drop). For example,
OpenFlow 1.3 supports 40 match fields [15], supporting
various L2/L3 field values such as TCP/UDP ports, MAC
and IP src/dst addresses, etc. Simply by matching the flow
rule entries stored in flow tables to the incoming packets, the
data plane forwards the packets to the next hop according
to network policies defined by the controller, and the in-
telligence of various network functions (including routing,
load-balancing, IDS/IPS, etc.) are offloaded to centralized
network operating systems, i.e., SDN controllers. When a
switch receives a new packet that does not match any flow
rule entries stored in its flow tables, the switch forwards
the packet to the controller encapsulated in a Packet-In

message, requesting appropriate action regarding the packet.
The controller decodes the received Packet-In message,
retrieves policy and network status information from the
data storage to analyze and generate corresponding rules
regarding the packet, generates flow rules, and finally pushes
the flow rules into the data plane by sending out Flow-

Mod message. Therefore, the process of installing flow rules
involves sequences of network elements (switch, controller,
and links between switch and controller) and modules inside
the controller to process the new flow. Due to the extra
packet processing or an initial packet, the delays caused by

flow rule installation are detected to fingerprint whether the
given network is SDN or not [1].

Data stores and OpenFlow APIs are the major factors
leading to different delays between SDN controllers. The
data storage in ODL is built based on Model-Driven Service
Adaptation Layer (MD-SAL), which is an abstracted SDN
data storage component implemented using Java and YANG.
The main purpose of MD-SAL in ODL is to provide a
common API to define data storage access and definition of
data, along with the ease of flexible extension of the control
plane. ONOS also implements its data storage in a similar
manner, which is based on YANG management system to
implement RESTCONF and NETCONF. The design of the
data storage in ONOS, however, specifically focuses on the
seamless scaling of the network and optimization of syn-
chronization between distributed data storages. This design
for data storage in ONOS is implemented as a separate
Dynamic Configuration Manager module along with the
YANG management system [16]. For Ryu, the data storage
is also implemented simply for centralized management of
the OpenFlow switch. As a result, an API for OpenFlow
configuration protocol (i.e., NETCONF) is implemented in
Python.

In addition, the implementation of OpenFlow API is
different from controller to controller. When ODL receives
a Packet-In message, an OpenFlow protocol plugin called
openflowjava translates the message and passes it to the
OpenFlow configuration API in MD-SAL. MD-SAL gen-
erates flow rules containing actions to be performed on
the flow through communication with appropriate network
service implementations (e.g., router, Access Control List
(ACL), IDS/IPS, etc.), and registers the router information
in the configuration data storage. After generating the flow
rules, the OpenFlow plugin is called again to translate the
message into Flow-Mod message, and then, the message is
sent and installed in the flow tables in switches. Similarly,
the flow processing in the other two controllers involves dif-
ferent implementations of OpenFlow APIs and data storages
to generate appropriate flow rules. In ONOS, FlowRule-

Service API is involved in the generation and modification
of flow rules, along with DynamicConfigStore modules to
support configuration in the data storage. Lastly, the listener
implemented in Ryu detects the Packet-In event and utilizes
multiple libraries in OpenFlow API implementations. These
libraries include Packet, OF-Config, and OVSDB libraries.

3. Fingerprinting SDN Controllers

We first present the threat model followed by the attack
scenarios. We then discuss our approach to collecting and
analyzing flow setup delays.

3.1. Threat Model

Our threat model assumes that the attacker performs re-
connaissance in an SDN-based network by injecting and
sniffing the traffic to collect information in the data plane.
Conceptually, the attacker achieves this goal by actively
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Figure 1. Advanced Attack Scenario.

sending probing flows with various match fields for which
corresponding flow entries do not exist in the data plane.
Subsequently, the SDN controller is invoked for processing
the new flows while disclosing the information regarding
the control plane through its processing delay. The attack
takes place only at end hosts without compromising any
component in the data plane.

3.2. Attack Scenarios

We define three attack scenarios where our approach can
be used to obtain the identity of controllers (Scenario 1)
and sizes of flow paths (Scenario 2). Then we present an
advanced attack case in which the information fingerprinted
from the first two scenarios is leveraged to find conflicts in
network policies (Scenario 3).
Scenario 1. Fingerprinting controller identity (S1). To
fingerprint the identity of the controller, an attacker injects
probing packets into the network and calculates flow setup
delays. By comparing the obtained pattern of delays in
different controllers, the attacker can determine the distinc-
tiveness of the target controller. To that end, we design our
fingerprinting approach by leveraging DNN models to ex-
tract features and specific patterns related to each controller,
and precisely classify the obtained flow setup delays.
Scenario 2. Revealing the sizes of flow paths (S2). From
our observation, we find that the delay caused by flow rule
installation is mainly affected by the number of switches
in the flow path: The more switches that exist in the flow
path, the more distinctive patterns emerge from a set of
flow setup delays of an SDN controller. Thus, the attacker
can estimate the size of flow paths (i.e., the number of
switches in flow paths) by analyzing the patterns of flow
setup delays from multiple flow paths. In other words, the
attacker can differentiate one flow path from another based
on the different sizes of the flow path.
Scenario 3. Advanced attack (S3). Finally, we show that
our SDN fingerprinting method can also discover possible
policy misconfiguration in the network and leverage it to
perform a more advanced attack. The ability to estimate
the size of a flow path from S2 enables the attacker to
differentiate each flow path and can fingerprint match fields
that are specific to each flow path. This method provides
a way to bypass flow rules (e.g., firewall rules) that are
installed to prevent the establishment of a communication

channel between two hosts. The attacker can abuse this
method to establish the communication channel from a
compromised host (at which the attacker is positioned) to
the target system and send over the malicious traffic.

In our scenario illustrated in Figure 1, the attacker is
located at an end host (Host A), and any packets from Host
A are disallowed to be forwarded to Host C, which is the
target host. However, the attacker can discover a flow rule
between Host B and Host C by crafting the match fields in
the probing packets that contain the network address of Host
B, which is not captured by the network administrator. As
a result, the attacker can leverage this uncaptured exception
in network policies and send the malicious packets that flow
through from Host B to Host C. Once the attacker obtains
the relevant information, the attacker can initiate attacks
targeting both Host B and Host C based on security postures
placed in each host.

3.3. Analysis of Delay with Deep Learning

We first collect two types of RTT from probing packets
sent into the data plane: Base RTT and RTT with Flow Rule

Installation denoted as T1 and T2, respectively. T1 is the
RTT of probing flows without having any involvement of
the control plane. It is used to calculate a flow setup delay
after T2 is collected. To that end, it is necessary for an
attacker to send probing packets that should be responded
to by some hosts.

We collect T1 by simply sending probing packets to
a host or network service (e.g., web server or data node)
and measuring RTT for each packet. To collect T2, probing
packets are crafted with random or spoofed values in match
fields that force the control plane to install flow rules in
the data plane. After receiving the responses, we determine
whether a flow rule installation has been processed by
applying a t-test on the collected RTTs. In our t-test, if the
p-value is less than 0.05, then we conclude that T1 and T2

are significantly different from each other.
After collecting the RTTs, one of the three possible

outcomes is observed as follows, where R1 and R2 denote a
set of flow rules in the match fields of probing packets and a
set of flow entries in the flow tables of switches, respectively.
Also, RTTchange implies that there exists a significant delay
in RTT.

(i) If R1 ∩ R2 = True && Forward Packets

Then RTTchange = False

As a result, there is no change in the collected RTT
value.

(ii) If R1 ∩ R2 = True && Drop Packets

Then RTTchange = False

Obviously, no responses do not contribute to the RTT
value.

(iii) If R1 ∩ R2 = False && Install Flow Rules

Then RTTchange= True

Therefore, the process of flow rule installation causes
a delay that will be added to the RTT value.

After obtaining T1 and T2, we calculate the flow setup delay
denoted as ∆T , which means ∆T = T2 - T1.
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Even if the ∆T of SDN controllers induced by flow
installation significantly varies, simply comparing the dis-
tribution pattern of flow setup delay lacks the granularity
and accuracy required for determining the identity of con-
trollers, particularly between different versions of the same
controller. This is because there exist potential overlaps
in the distribution of flow setup delays between different
controllers and versions. In addition, a flow setup delay is
not strictly static for all network environments, and thus,
simple pattern matching may have biases in the final results.

To overcome this challenge, we utilize DNN models to
classify the given dataset of ∆T based on the patterns of
specific controllers. Specifically, we utilize three different
DNN models and compare their performance—Feedforward
Neural Network (FNN) [17], Convolutional Neural Network
(CNN) [18], and Recurrent Neural Network (RNN) [19].
All three models can extract additional abstract features
from our dataset of control plane flows, enabling robust
classification capabilities that extend beyond relying solely
on ∆T . In our classification, RNN is utilized to consider
the temporal dynamics and historical context of the flow
setup delay values (∆T ). RNN is particularly suitable for
achieving accurate classification when the order and histor-
ical behaviors of the ∆T sequence are crucial.
Identifying Controllers Given the potential for multiple
distributions of ∆T to exhibit similar patterns, relying
solely on comparing ∆T as a single feature is insufficient.
Therefore, we employ DNN models to classify the dataset,
allowing us to identify distinctive features associated with
the controllers. To that end, we label categorical variables
such as field values, protocol, IP addresses, etc, along
with ∆T . This labeling enables the DNN models to ex-
tract relevant features. We collect training data not only
from a controlled lab environment but also from a campus
computing infrastructure (Section 4). We split the captured
dataset into training and test sets, with 30% of the data
allocated for training and the remaining 70% for testing.
Finally, we attempt to optimize the hyperparameters of the
DNN models through random search. Unlike grid search,
which exhaustively evaluates all possible combinations of
hyperparameters, random search selects a random subset of
parameter values. This approach not only saves computa-
tional resources but also facilitates effortless parallelization,
as randomly selected samples can be trained separately.
Estimating Size of Flow Paths Once the controller is
identified, our analysis extends to the input dataset from
multiple flow paths. Estimating the size of flow paths fol-
lows a similar approach to identifying controllers. First, we
match the distribution pattern of the collected ∆T to that of
the corresponding flow paths associated with the identified
controller utilizing the DNN.

Nevertheless, accurately determining the exact size of
flow paths in terms of the number of switches poses chal-
lenges, even with the assistance of DNN models. This
difficulty arises from various factors that can influence the
measurement of ∆T , such as random network noise, link
capacity between nodes, and data plane traffic volume. Thus,
in the case where the input set of ∆T is classified into more

than one flow path, we estimate the size of flow paths in the
form of a numeric range. The accuracy of estimation can be
improved as the number of switches in flow paths varies.
This variance allows for distinguishing between different
flow paths based on the increasing pattern observed in ∆T .

4. Evaluation

We performed our analysis in both lab and real-world SDN-
based networks that are used as the research computing
infrastructure [20]. The infrastructures consist of more than
500 nodes with Intel Broadwell and CascadeLake CPUs,
each of which has at least 64GB RAM. All hosts in our
experiment ran desktop and server version of Ubuntu 16.04
LTS. Also, it has two supercomputers with more than 34,000
CPU cores and over 580 GPU accelerators as well as 4PB
data storage platform. Within this environment, the amount
of traffic directed to the SDN-based network is more than
500,000 packets per day with 50 active users.

For different SDN configurations, networks of differ-
ent sizes were tested using various numbers of Open
Vswitch [21] and HP Openflow Switch [22], ranging from 1
to 30. For applications, load-balancer and L2 firewall were
run on top of each controller, while network traffic was also
limited to 100, 500, 1000, and 2000 packets per second for
each period. The duration of each period is approximately
15 minutes, depending on the traffic rate. Due to ethical
considerations, we did not collect any sensitive data that
could identify or track specific individuals in our study.

4.1. Analysis of Flow Setup Delay

Probing Control Plane We first conducted an experiment
to observe if the flow setup delays incurred by three major
SDN controllers were different from each other through
statistical analysis. To show that flow setup delays can be
leveraged to identify controllers, we first collect the delays
by measuring the Base RTT values without invoking the
control plane. We crafted packets with match fields as ex-
isted in the flow entries in flow tables. Then, we sent out 100
packets per second to a target server and measured the RTT.
In an actual reconnaissance, the attacker could either send
packets in a large amount to accelerate the scanning process
or send packets at a low rate (for example, 10 packets per
second) to evade detection. Upon receiving responses, we
applied a t-test to confirm whether or not the RTT of the
first packet was significantly different from the RTT value
of the second packet. In our t-test, if the resulting p-value
from the test was less than 0.05 then we concluded that T1

and T2 were significantly different from each other, meaning
that flow rules corresponding to the ones in match fields
of the probing packets did not exist and the control plane
was invoked. Therefore, we did not use the obtained value
as Base RTT. In other words, if there exists no significant
difference in RTT, then the flow is not sent to the control
plane for additional packet processing such as flow rule
installation.

After obtaining the base RTT value, we generated and
sent additional probing flows with randomly generated
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(a) Flow Setup Delay with 5 Switches
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(b) Flow Setup Delay with 10 Switches
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(c) Flow Setup Delay with 15 Switches
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(d) Flow Setup Delay with 20 Switches
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(e) Flow Setup Delay with 25 Switches
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(f) Flow Setup Delay with 30 Switches

Figure 2. Flow setup delay of ODL, ONOS, and Ryu with different numbers of switches in a flow path. The performance overhead caused by the control
function is reflected in the flow setup delay. As the number of switches involved in the flow path increases, the flow setup delay also increases.

match fields that triggered flow rule installation in the
data plane. When the probing flow caused new flow rule
installation, a significant change in RTT values between T1

and T2 was observed. We calculated the difference between
the two RTT values, which was the flow setup delay, ∆T .
After obtaining the ∆T dataset, we applied the t-test again to
determine if the ∆T from each controller was significantly
different from each other. We repeated the process 50 times
for each controller to obtain enough empirical datasets to
train the DNN models. For hyperparameters of DNN mod-
els, we used adam as the optimizer. We also used batch
sizes of 32 or 64 and epochs ranging from 5 to 15. For
CNN, kernel sizes ranged from 3 to 10.

Delays of different controllers We first measured the flow
setup delays of each controller: ODL Oxygen, ONOS 1.15.0,
and Ryu 4.30. Figure 2 shows the probabilistic distributions
of flow setup delays (∆T ) of each controller. The result
also shows the distribution of ∆T with different sizes of
the network. It is evident that, as the size of a flow path in-
creases, the flow setup delay also increases as the controller
needs to install corresponding flow rules to the switches in
parallel. The results show a trend of increasing patterns in
∆T as the configuration size of flow paths increases. The
results also show that the distributions of upper and lower
quartiles around the median value (i.e., the most frequent
range of ∆T ) are significantly distant from each other.
Overall, we observed that the flow setup delays of ODL

were the shortest, while those of Ryu were the longest. The
average and median of ∆T from the controllers were distant
from each other with a p-value less than 0.01.

Figure 2 also indicates that there exists a slight but
distinctive performance overhead in terms of flow setup
delay between the three SDN controllers as the size of the
flow path increases, which can be leveraged by an attacker
to fingerprint each controller. Although all major controllers
take less than 16 seconds to install over 6,000 flow rules to
30 switches, the differences in the statistical distribution of
flow setup delays for the controllers become more distinctive
as the size of flow paths increases. In other words, the
delays induced by the flow installation process from the
SDN controllers are negligible in terms of performance and
end-user experience, but significant enough for an attacker
to fingerprint the controllers.

However, random jitters in the network can affect the
collection of ∆T value1. Such a case is illustrated in Fig-
ure 2(d), in which the distribution of ONOS exhibits disper-
sion and overlaps with the distribution of RYU. Therefore,
relying solely on univariate fingerprinting is not considered
reliable in real-world SDNs, where multiple factors influ-

1. During our experiments, we observed that there were dispersed dis-
tributions in a few cases while most of our experiments showed distinctive
distributions. The root causes for such cases include the host application
and other network services running on the host OS.
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TABLE 1. ACCURACY, PRECISION, AND RECALL VALUES OF FNN, CNN, AND RNN FOR ODL, ONOS, AND RYU CONTROLLERS WITH 30

SWITCHES. HIGH PERFORMANCE RESULTS > 93% IS IN BOLD.

Accuracy Precision Recall

Controller Name Version FNN CNN RNN FNN CNN RNN FNN CNN RNN

ONOS
1.15.0 88.1% 91.1% 90.0% 87.9% 89.5% 90.3% 88.6% 92.9% 89.8%
1.13.1 89.6% 91.1% 87.1% 89.5% 89.8% 91.5% 89.7% 92.6% 82.9%
1.11.12 89.6% 91.4% 89.8% 89.7% 91.0% 90.3% 89.4% 92.1% 89.3%

OpenDaylight
Oxygen 81.5% 93.3% 93.7% 85.5% 93.3% 90.6% 80.2% 93.3% 93.2%
Carbon 83.5% 90.0% 94.6% 87.5% 90.3% 93.5% 82.0% 90.0% 96.0%
Beryllium 83.6% 89.5% 92.6% 80.1% 88.7% 91.6% 88.7% 90.6% 98.1%

RYU
4.30 94.6% 94.7% 92.1% 92.0% 91.9% 91.8% 95.0% 98.0% 92.8%
4.20 92.1% 93.2% 91.5% 91.9% 90.0% 92.8% 91.3% 95.2% 89.9%
4.10 89.4% 92.0% 95.6% 90.0% 88.3% 90.4% 91.2% 87.9% 96.1%

ence the flow setup delay. We incorporate DNN to capture
additional temporal relationships among data points.

Analyzing delays of different versions of controllers Upon
confirming that ∆T can be leveraged in identifying the SDN
controllers, we extended the same experiment to different
versions of each controller to determine if flow setup delays
can also be leveraged to fingerprint different versions of
the controllers. We used three different versions from each
controller running on a physical host—ODL (Oxygen, Car-
bon, Beryllium), ONOS (1.15.0, 1.13.1, 1.11.12), and Ryu
(4.30, 4.20, 4.10). We collected ∆T from the three versions
of each controller and compared them with the analysis
results from FNN, CNN, and RNN. In our experiments,
we collected more than 40, 000 packets in total to train
the models. Table 1 shows the average accuracy, precision,
and recall of fingerprinting SDN controllers with different
versions.

For fingerprinting the name and version of an SDN
controller, each DNN model generated at least 80% for
accuracy, precision, and recall values as shown in Table 1.
For example, the accuracy for identifying OpenDaylight
Oxygen was 81.5%, 93.3%, and 93.7% for FNN, CNN,
and RNN, respectively. The difference between the highest
and lowest accuracy is 14.1%. Although all three models
performed similarly achieving the accuracy of the lowest
81.5% from FNN, and the highest 95.6% from RNN. The
high overall accuracy of RNN may be attributed to how
its network functions. RNN is designed to process time-
dependent sequences with a recurrent structure that allows
them to maintain internal memory. The internal memory also
captures long-term dependencies in the data over multiple
time steps. In addition, all models showed the highest ac-
curacy for fingerprinting the identity of RYU. Our interpre-
tation of the result is that RYU can be distinguished from
other controllers easily because its performance is clearly
reflected in ∆T , compared to the other two controllers.

4.2. Analyzing the Impact of SDN Environment

Two major factors affect the performance of SDN controllers
and flow setup delay—the size of network and SDN applica-

tions running on the controller. To investigate the impact of
these factors on the effectiveness of our fingerprinting, we

evaluated our approach in different network environments
considering these two factors.

To evaluate our model comprehensively, we initially
constructed a network with a scale varying from 1 to 30
switches. Each controller operates either a load-balancer, an
L2 firewall, or concurrently running both. Following this
setup, we sent probing flows toward multiple destinations
and collected ∆T .

Fingerprinting Controller Identity (S1) As we discussed
our attack scenarios in Section 3, we investigated the ef-
fectiveness of our fingerprinting with different sizes of the
network. The size of the network is determined by the
number of switches in the data plane. Thus, we increased
the size of the network by deploying a different number of
switches. Each switch was connected to a fixed number of
hosts, creating its own subnet, increasing the total number
of hosts at a fixed rate.

Figure 3 shows the average accuracy for different sizes
of the network. As the results clearly show, the accuracy
of the fingerprinting is proportional to the size of the
network. For instance, the accuracy increases significantly
from 67.3% to 91.4% for ONOS as the number of switches
increased from 5 to 30. This is because the corresponding
flow rules that need to be installed in the flow path impose
additional performance overhead on the controller, which
creates more distinctive temporal patterns in ∆T . The over-
head subsequently translates into the processing time, which
affects ∆T . Therefore, even seemingly negligible overhead
is sufficient to fingerprint the identity of controllers with
high accuracy, generating a unique pattern in the dataset.

In addition to different sizes of networks, we also
evaluated the effect of SDN applications on the accuracy
of fingerprinting. Table 2 shows the average accuracy for
fingerprinting the identity of controllers with different com-
binations of applications. Compared to the impact of the
size of the network, applications running on top of the
controllers do not significantly impact the accuracy of the
fingerprinting. Even though we used two applications, the
results comply with findings from previous work [10].

Revealing the Sizes of Flow Paths (S2) If our fingerprinting
method could identify the controller accurately, it should
also be capable of inferring the size of flow paths given the
fact that the size of the network has the most significant
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Figure 3. Accuracy of Fingerprinting SDN Controllers in Different Sizes
of Network.

TABLE 2. ACCURACY OF FINGERPRINTING SDN CONTROLLERS WITH

DIFFERENT APPLICATIONS.

Accuracy

Controller

Name No App Firewall Load-Balancer

Firewall

&

Load-balancer

ONOS 91.4% 90.3% 90.6% 88.2%

ODL 93.3% 89.6% 87.3% 88.0%

Ryu 94.7% 93.6% 90.6% 90.5%

impact on flow setup delay.

To assess this hypothesis, we used various sizes of flow
paths ranging from 1 to 30 switches and measured how accu-
rately the size of a flow path could be estimated. The results
of estimating the size of flow paths are shown in Figure 4.
We could distinguish one flow path from another when the
difference between two flow paths was less than 5 switches.
The accuracy of estimation with an acceptable margin of
error was at most 79%. However, as the difference in the
size of flow paths increased, the accuracy of estimation also
increased up to 97% because there existed differences in
both the delay itself and the distribution pattern of delay.
Another observation from our experiments was that the flow
setup delay to install 100 new flow rules in the data plane
takes less than a second for all three controllers. Even so, the
delays obtained from our experiments are significant enough
to distinguish one flow path from another.

Advanced Attack (S3) Subsequently, we evaluate the ad-
vanced attack scenario explained in Section 3.2, in which
we fingerprint match fields of ACL policies in each flow
path. First, we set up the ACL policy in a flow path from
Hosts A to C that blocked packet forwarding from Host A
to C. At the same time, we installed another ACL policy in
a different flow path from Hosts A to C that allowed Host B
to send packets to Host C. As a result, there exists a pitfall
in the ACL policy that enables an attacker to bypass the
policy installed in the first flow path.

We evaluated if we could find policy conflicts in the
campus network by setting up a number of flow paths
between Host A and Host C with the real flow rules installed
in the flow paths. The sizes of the flow paths ranged from 1

to 30, throughout 50 trials. We deliberately embedded policy
conflicts in randomly selected flow paths and measured the
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Figure 4. Accuracy of Estimating the Size of Flow Paths.

correctness and accuracy of fingerprinting. Note that we
attempted to detect conflicts in a pair of flow paths. The
goal of this experiment is to demonstrate the capability of

our fingerprinting method that enables deducing valuable
information such as policy conflicts, instead of checking
our ability to detect exact types of policy violations. Im-
plementing such a capability is beyond the scope of tasks
in our work.

Throughout the experiment, we observed that we could
detect the conflicts in ACL policies more accurately as the
difference in sizes of flow paths increased. Specifically, the
number of trials in which we detected conflicts significantly
increased once the numeric gap of switches between the two
flow paths exceeded 10. As a result, we noticed an increase
in conflict detection accuracy from 14% to 94% at the line
rate when the difference in the number of switches ranged
from 1 to 30, respectively. The detection accuracy for policy
conflicts across diverse controller versions is presented in
Table 3. Furthermore, our findings highlight that the success
rate of conflict detection is contingent upon the volume of
∆T data gathered.

In summary, we showed that the flow setup delays
generated by three major SDN controllers were significantly
different so that the attacker can utilize them to identify
controllers. In addition, we observed that the size of the
network affects flow setup delay. Leveraging the finding
from our experiments, we also found that the attacker can
estimate the size of each flow path with the highest accuracy
of 97%. Lastly, from our evaluation of the advanced attack
scenario, we showed that we could isolate ACL policies
installed in each flow path by fingerprinting the size of the
flow paths with the highest accuracy of 94% depending on
the sizes of flow paths.

5. Discussion

In this section, we discuss the limitations of our fingerprint-
ing method followed by potential mitigation strategies to
defeat this attack.
Fingerprinting with a single flow path. In our experiments,
we notice that the size of a flow path has a significant impact
on flow setup delays. Therefore, the attacker must collect
flow setup delays from multiple flow paths to compensate
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TABLE 3. ACCURACY OF POLICY CONFLICT DETECTION WITH DIFFERENT SIZES OF FLOW PATH.

Size of flow path
ODL ONOS Ryu

Oxygen Carbon Beryllium 1.15.0 1.13.1 1.11.1 4.30 4.20 4.10

1 16% 18% 16% 22% 18% 14% 20% 20% 20%
5 24% 20% 22% 44% 32% 40% 50% 32% 32%
10 50% 46% 50% 80% 62% 70% 48% 42% 60%
20 88% 90% 90% 94% 86% 74% 72% 68% 60%
30 92% 90% 94% 94% 90% 88% 78% 60% 66%

for the variations caused by different sizes of flow paths. As
a result, our approach will manifest a low accuracy when
fingerprinting SDN controllers by collecting flow setup de-
lays from only one flow path.

Estimating flow path sizes. While the size of a flow path
greatly impacts flow setup delays, random noises in net-
works are inevitable, which makes it harder to accurately
determine the size of any flow path in a real-world network.
Therefore, we can only estimate ranges of flow path sizes
instead of accurately determining the sizes. The range varies
based on the collected ∆T s. It may be as low as 1 if no
obvious overlaps are observed, or as high as 11 when sig-
nificant overlaps exist. Nevertheless, our approach identifies
each controller and its version with high accuracy since the
delay measurements over backbone networks, in which SDN
resides, are fairly stable without being significantly affected
by congestion and traditional quality-of-service [23].

Other influential factors. The flow setup delay can also be
influenced by the running instances of applications on the
host that runs the controller, the performance of hardware in
the network, and network loads. In this work, however, we
have not taken into consideration the potential variations
in processing time caused by different levels of hardware
performance. Recognizing the significance of this factor, we
intend to address it in future research endeavors.

Mitigation Strategies We discuss three possible counter-
measures in this section — randomizing flow setup delays,
randomizing flow paths, and flow setup optimization to
mitigate the threat introduced in this paper.

Flow setup delay randomization. SDN administrators may
randomize flow setup delays by manually increasing the
delay by a few extra milliseconds, which can be performed
at controllers or ingress/egress switches. Other researchers
have also explored similar strategies, such as introducing
random delays into control planes [24], [25], [26], [27].
However, while delay randomization can remove the dis-
tinctiveness of the fingerprints of each flow, randomization
itself can also depend on random distribution. If a random
distribution that follows a certain probability density func-
tion is implemented and used by an SDN controller, it can
be even easier for an attacker to distinguish the pattern of
delay from other traffic.

Flow path randomization. Flow path randomization, a.k.a a
network randomization technique, can be employed to ob-
struct or increase the complexity of our attack when attempt-
ing to estimate the sizes of flow paths. It is a variant of the
moving target defense, which dynamically and adaptively
prevents adversaries from spying on networks [28]. SDN

administrators may implement flow path randomization by
utilizing an overlay network managed by SDN controllers.
An alternative strategy was also proposed by Barrera et
al. [29] for software-defined wide area networks (SD-WAN).
They advocate for the utilization of multi-path routing to
scatter the traffic over numerous network routes, thereby
hampering the fingerprinting process.
Flow setup optimization. The importance of data transmis-
sion latency is growing, surpassing traditional performance
requirements. This shift is crucial not only to protect against
fingerprinting attacks but also to meet the increasingly strin-
gent end-to-end latency requirements of network applica-
tions and users while ensuring quality of service (QoS).
For instance, strategies such as traffic management [30],
[31], congestion control [32], [33], and flow table manage-
ment [34] have been explored to optimize latency. Although
these techniques primarily aim to enhance network perfor-
mance rather than focus on security, they can also contribute
to preventing fingerprinting.

6. Related Work

Fingerprinting in SDN mostly focuses on identifying the
unique characteristics and behaviors of SDN controllers
and devices. This concept is rooted in the understanding
that SDN controllers (and their implementations) react dis-
tinctively to various network scenarios, thereby emitting
identifiable signals or patterns.
Time-based Fingerprinting in SDN The early SDN finger-
printing is explored by Shin et al. [1] and Bifulco et al. [25].
The authors demonstrated that attackers might infer SDN-
enabled target networks by measuring latency due to flow
table rule mismatches. This method only confirms the target
network environment is SDN by assessing RTT differences
between new and existing flows. Their emphasis, however, is
on the discovery of SDN. In contrast, our research is inclined
towards reconnaissance, gathering refined network data such
as SDN controller identity and flow path dimensions.
Diverse Information Leak Analyzing timing differences
in detail allows attackers to obtain more meaningful infor-
mation about a target network. Sonchack et al. [3] showed
that RTTs can be measured from specific destinations with
packet streams, suggesting the control plane’s involvement
if RTTs are high. Liu et al. [26] proposed a formalized
approach by modeling switch flow tables as a Markov
model, enabling inference of intricate rules among complex
flow rules. Yu et al. [35] also focused on switch parameters
such as flow table size, cache replacement policy, and load.
Achleitner et al. [36] suggested techniques for flow rule
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reconstruction using specially designed probing packets that
mimic specific header fields to determine if they are used
as match fields in flow rules.
Deep Learning-based SDN Fingerprinting Cao et al. [10]
showed that attackers can analyze encrypted control traffic
patterns with deep learning to infer the SDN apps running on
a target controller. Seo et al. [27] inspected the exchange of
traffic amongst the controllers. They studied how attackers
can leverage deep learning techniques to access confidential
details, including the topology and protocols in use within
SD-WAN. Their work aligns closest with ours, leveraging
flow processing time across different controllers.

In summary, the main difference between our approach
and prior research is that we utilize the flow setup delay to
fingerprint the identity of SDN controllers (i.e., controller
name and version), while prior work leverages the time-
based side channel information to fingerprint other control
plane information, such as network policies and topology.
In addition, our approach can also estimate sizes of the flow
paths to draw a partial topology of the network.

7. Conclusion

We presented a fingerprinting attack on SDN controllers
through DNN-based classification of a timing side chan-
nel. In particular, our fingerprinting scheme helped obtain
the identity of the controller and different flow paths. By
evaluating our fingerprinting method on major commercial-
grade SDN controllers, we showed that we could effectively
fingerprint the identity of SDN controllers in a real-world
SDN-based computing environment with high accuracy. In
addition, we discussed potential mitigation strategies to de-
fend the identified side channel on existing SDNs.
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