
4716 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

Decouple Ego-View Motions for Predicting
Pedestrian Trajectory and Intention

Zhengming Zhang , Student Member, IEEE, Zhengming Ding , Member, IEEE,
and Renran Tian , Member, IEEE

Abstract— Pedestrian trajectory prediction is a critical com-
ponent of autonomous driving in urban environments, allowing
vehicles to anticipate pedestrian movements and facilitate safer
interactions. While egocentric-view-based algorithms can reduce
the sensing and computation burdens of 3D scene reconstruction,
accurately predicting pedestrian trajectories and interpreting
their intentions from this perspective requires a better under-
standing of the coupled vehicle (camera) and pedestrian motions,
which has not been adequately addressed by existing models.
In this paper, we present a novel egocentric pedestrian trajectory
prediction approach that uses a two-tower structure and multi-
modal inputs. One tower, the vehicle module, receives only the
initial pedestrian position and ego-vehicle actions and speed,
while the other, the pedestrian module, receives additional
prior pedestrian trajectory and visual features. Our proposed
action-aware loss function allows the two-tower model to decom-
pose pedestrian trajectory predictions into two parts, caused by
ego-vehicle movement and pedestrian movement, respectively,
even when only trained on combined ego-view motions. This
decomposition increases model flexibility and provides a better
estimation of pedestrian actions and intentions, enhancing overall
performance. Experiments on three publicly available benchmark
datasets show that our proposed model outperforms all existing
algorithms in ego-view pedestrian trajectory prediction accuracy.

Index Terms— Pedestrian trajectory prediction, scene under-
standing, automated driving, pedestrian intention.

I. INTRODUCTION

AUTONOMOUS driving, also known as driverless or self-
driving cars, is a rapidly growing field that has the

potential to revolutionize transportation. Artificial Intelligence
(AI) plays a critical role in enabling vehicles to navigate roads
safely and make decisions without human input [1]. AI-based
autonomous driving systems involve various subsystems like
perception, control, communication, and others [2], all of
which have seen significant advances [3]. In the area of per-
ception systems, for example, computer vision AI techniques
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have been developed to allow autonomous vehicles to detect
and identify other road users with improved performance [4],
[5], [6], [7], [8], [9]. Accurate perception and understanding of
the environment are critical foundations for safe and efficient
driving decisions.

With the significant advancements in AI technologies in
recent years, autonomous driving systems can now make
more sophisticated decisions in complex and dynamic driving
environments [10]. Machine learning and other AI techniques
allow vehicles to learn from data and improve their per-
formance over time, obtaining the capabilities of real-time
decision-making, handling edge cases and unexpected situa-
tions, and ensuring safety. By learning from human driving
behaviors, autonomous vehicles can analyze sensor data and
make decisions about how to navigate the road appropriately,
such as changing lanes, slowing down, or stopping [11], [12].
In order to deploy autonomous cars safely and reliably in nat-
ural road situations, the AI systems need to be robust enough
to handle the uncertainty, unpredictability, and complexity of
real-world scenarios [2].

Despite the advancements in autonomous vehicles, there
remain many challenges that must be addressed. Interacting
with vulnerable road users, such as pedestrians and bicyclists,
is one of the current challenges facing the development of
fully autonomous driving technology in urban settings [13],
[14]. These road users are more susceptible to injury in
accidents [15]. According to NHTSA (National Highway
Traffic Safety Administration) 2021 data [16], fatalities and
injuries of vulnerable road users (primarily human road users
outside vehicles) kept increasing in the past decade, and
reached the highest numbers in 40 years. There were 7,388
pedestrians killed and 60,577 injured in 2021, highlighting the
need for better protection technologies. As the most common
vulnerable road users, pedestrians can appear at different road
locations during urban driving, move in dynamic ways with
sudden changes, and may not always follow traffic laws. These
characteristics make it challenging for autonomous vehicles to
anticipate their behaviors and plan interaction strategies [17],
[18]. As a result, autonomous vehicle road testing reports
show that 80% to 90% of automation disengagements (failure
of autonomous driving functions) occur in urban settings,
especially with the presence of pedestrians [19], [20].

Thus, in the context of autonomous driving perception, the
prediction of pedestrian trajectories is critical to ensuring the
safety of both pedestrians and vehicle occupants. Accurate
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Fig. 1. Illustration of pedestrian trajectory prediction from egocentric view,
where the left-side is the multi-modality observation and the right-side is the
trajectory prediction.

prediction of pedestrian trajectories can help autonomous
vehicles make better driving decisions, improve the safety of
human-driven vehicles by providing advanced driver warnings,
and smooth the transition from automatic control to manual
control by early detection of challenging situations [21].

Traditionally, bird’s-eye view pedestrian trajectory predic-
tion is a task that aims to predict the trajectory of a pedestrian
from surveillance cameras, typically in an urban environment.
This type of prediction is important for traffic management
and urban planning [9], [22], [23], [24], [25], [26]. Ego-
view pedestrian trajectory prediction, as shown in Figure 1,
on the other hand, is a task that aims to predict the trajectory
of a pedestrian from the perspective of a moving vehicle
based on the observations of prior actions/behaviors of the
pedestrian and the ego-vehicle, as well as other important
scene features [27]. This type of prediction is crucial for safe
navigation and motion planning in autonomous driving.

In contrast to the bird’s-eye view trajectory, ego-view pre-
diction needs to consider the movement of the ego-vehicle in
addition to pedestrian movements, as the pedestrian position
changes captured in the scene camera are affected by the
two motions combined. When the car is stopped or moving
at low speed, the captured pedestrian movements may be
primarily caused by pedestrian motions; whereas when the car
is running at high speed, the movement of the on-board camera
may contribute greatly to the captured pedestrian position
changes. The situation can become much more complicated
when the car is turning, as small camera angle changes can
cause significant pedestrian position changes in the captured
view when there is a longer distance between the two.
Current models in ego-view pedestrian trajectory prediction
barely consider the contributions of the two separate motions
explicitly, which limits the model’s flexibility to fit different
interaction situations with varying motion patterns.

Aside from jeopardized prediction accuracy, the intertwined
motion prediction also makes it difficult to interpret pedestrian
intentions and estimate their future moving directions, wors-
ening the already-critical interpretability issues of adopting
deep learning models in autonomous driving [28]. When the
ego-view pedestrian trajectory prediction model only outputs
pedestrian position changes in the captured camera view,
such translations may be caused by different combinations of
possible car and pedestrian motions at different distances. For
example, a position change towards the center of the camera

screen may be caused by the car turning or a change in distance
instead of actual pedestrian crossing actions. Thus, it may be
impossible or misleading to infer pedestrian intentions and
future moving directions accurately.

Decoupling the pedestrian and car motions may be a viable
solution to address the above-mentioned limitations for ego-
view pedestrian trajectory prediction. Although 3D scene
reconstruction-based or bird’s-eye view-based trajectory pre-
diction algorithms can achieve similar results [29], [30], [31],
[32], these algorithms rely on significantly increased sensing
requirements and higher computational capacity, leading to
system complexity and reliability concerns.

In this paper, we present a novel approach for ego-view
pedestrian trajectory prediction that utilizes a two-module
structure. The first module, the vehicle module, models the
trajectory prediction from the perspective of the ego-vehicle,
while the second module, the pedestrian module, considers
the perspective of the pedestrian. Incorporating our innovative
loss function allows the model to decompose the trajectory
prediction into two separate parts. The contributions of the
proposed model are summarized in three points:

• First, we separate the contributions of vehicle motions
and pedestrian motions when predicting the ego-view
pedestrian trajectories, without requiring separate data
inputs. This design increases the model’s flexibility to
fit different interaction situations where the two objects
contribute differently to the final relative motions, with-
out significantly increasing computational and system
complexity.

• Second, the proposed model outperforms existing
ego-view pedestrian trajectory prediction algorithms by a
significant margin on three publicly available benchmark
datasets, particularly with an improvement of over 15%
on the JAAD dataset.

• Finally, this motion decomposition explains the trajectory
prediction, giving insights into how the overall prediction
is influenced by the ego-vehicle and pedestrian motions,
and providing better inferences of pedestrian intentions
and future moving directions.

II. RELATED WORKS

In the area of automated driving, pedestrian behavior predic-
tion models focus on different outputs like trajectories, actions,
and intentions. Trajectory prediction usually provides greater
spatio-temporal granularity, which can directly support driving
motion planning and control strategies. Action and intention
predictions can provide longer-duration estimations of future
pedestrian behaviors to guide trajectory prediction and support
higher-level vehicle decisions and path planning. There are a
large number of studies published on all of these tasks.

A. Pedestrian Intention/Action Prediction

Pedestrian intention prediction and action prediction are
closely related, but they differ in terms of their level of
detail. Intention prediction focuses on predicting the ultimate
destination of a pedestrian, whereas action prediction is more
detailed and aims to forecast the specific intermediate actions
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that a pedestrian will take. Some studies even use action labels
as a proxy for pedestrian intentions [33], [34]. A key similarity
between these two tasks is that both aim to understand and
predict pedestrian behavior, which is crucial for improving
decision-making in autonomous driving and intelligent trans-
portation systems. The PIE [35], JAAD [36], and PSI [37]
datasets are well-known benchmarks for pedestrian behavior
prediction in the field of autonomous driving and intelligent
transportation systems. Many existing models [38], [39], [40],
[41], [42] have been evaluated on these datasets, making
them standard benchmarks for comparing and evaluating the
performance of different approaches.

Kotseruba et al. [40] demonstrated in their work that models
incorporating trajectory information outperform video-based
action recognition methods for pedestrian action prediction.
Some studies [35], [39], [42] found that incorporating multiple
modalities and learning multiple tasks can greatly improve
performance in action prediction. Furthermore, Chen et al. [37]
leveraged a graph convolutional neural network to incorporate
pedestrian posture information and achieved improved perfor-
mance on intention prediction. Additionally, Zhang et al. [41]
employed a transformer-based evidential learning approach,
achieving state-of-the-art results on both action and intention
prediction, while also including uncertainty estimation in their
predictions.

Although significant progress has been made for predicting
pedestrian intentions and actions, such outputs are not suf-
ficient to support vehicle motion planning and ensure safety
without pedestrian trajectory information. Also, intention and
action datasets require large amounts of labor-intensive man-
ual annotations for algorithm training and evaluation, which
are difficult to scale up. Another primary concern is the
subjectivity involved in annotating intentions and actions,
which can introduce inconsistencies and biases due to different
interpretations by various annotators. Moreover, many of these
datasets are derived from controlled environments or specific
geographical locations, resulting in a lack of real-world diver-
sity. This limitation is critical as it can adversely affect the
generalizability of the models trained on such datasets.

B. Ego-View Pedestrian Trajectory Prediction

The use of multiple input modalities in ego-view pedestrian
trajectory prediction has become a common practice, where
information about the pedestrian’s behavior and surrounding
environment is simultaneously utilized [38], [39], [43]. Tradi-
tionally, Recurrent Neural Networks (RNNs) are commonly
used to model pedestrian trajectories for the sequence-to-
sequence task [35], [38], [44], [45]. A method proposed by
Yao et al. [46] estimates pedestrian goals in both forward
and backward directions, decoding multi-modal future trajec-
tories. Another method [47] also utilizes a recurrent structure
by setting stepwise goals to guide the trajectory prediction.
To further improve the accuracy of trajectory prediction in
egocentric view, we believe that it is important to separately
process vehicle and pedestrian trajectories through a two-tower
structure and an action-aware loss function, which will be
introduced in detail in Chapter III.

Recent works have adopted transformer-based architectures
for modality fusion, such as Yin et al. two-stage transformer
approach, to improve the fusion of modalities [48]. Incorpo-
rating additional information, such as reachability priors, as in
Makansi et al. work [43], or intention prediction [35], [49], has
been proposed to further improve trajectory prediction. Multi-
task learning has also been found to be effective, with many
works incorporating final destination [38] or action/intention
prediction as additional tasks [39].

Although previous methods have attempted to use
transformer-based techniques for feature extraction and multi-
modal fusion, none have applied transformer networks for
sequential modeling. Additionally, existing pedestrian behav-
ior prediction algorithms usually treat the observed trajectory
as a single entity, neglecting that an egocentric trajectory
comprises two distinct components: the pedestrian’s movement
and the movement of the ego-vehicle.

In contrast, our approach employs a transformer-based
architecture for both feature extraction and fusion, and
sequence-to-sequence modeling. More importantly, the pro-
posed model recognizes the distinct components that make up
an ego-view pedestrian trajectory. We introduce a two-module
architecture with an innovative action-aware loss function
that enables the model to separate the trajectory components,
enhancing accuracy and interpretability.

III. THE PROPOSED METHOD

A. Problem Formulation

Pedestrian trajectory prediction is typically framed as a
supervised learning problem, where the aim is to learn a
mapping function from past observations to the pedestrian’s
future trajectory. Notably, this problem is inherently temporal,
so capturing temporal dependencies is a crucial factor for
accurate predictions.

Formally, let X = {x0, x1, · · · , xτ } be a sequence of obser-
vations of the pedestrian from the starting time to time τ . Each
observation xi is a quadruplet, composed of four modalities of
information: visual information vi , pedestrian initial location
l0, pedestrian motion mi , and ego-vehicle action ai . The
visual information is the images captured by an egocentric
camera. The pedestrian initial location l0 is represented by a
pixel-wise bounding box location at the first frame x0 denoted
as {(uT L

0 , vT L
0 ), (u B R

0 , vB R
0 )}, where TL and BR represent

the top-left and bottom right point of the bounding box.
The pedestrian motion mi is computed by subtracting the
pedestrian location li at time i from the initial pedestrian
location l0. Thus, the observation xi can also be represented
as a quadruplet {v, l0, m, a}, where v is the visual sequence,
l is the initial pedestrian location, m is the motion sequence,
and a is the ego-vehicle action sequence. The pedestrian and
vehicle trajectories are mutually dependent, as the following
Equation 1:

lvehicle
i+1: ∼ π(.|lvehicle

:i , l ped
:i ), (1)

where the future trajectory of vehicle lvehicle
i+1: follows a

distribution π(.) which is conditioned on the past vehicle
trajectory lvehicle

:i and pedestrian trajectory l ped
:i . The goal
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Fig. 2. The overall model architecture consists of four different types of input modalities: pedestrian bounding box motion, the initial bounding box location,
ego-vehicle action, and video clips of the pedestrian. These modalities are independently encoded using a transformer encoder, two multi-layer perceptrons
(MLPs), and a 3D convolutional backbone network. The location and ego-action embeddings are then concatenated and fed into the vehicle decoder, while all
four embeddings are concatenated and fed into the pedestrian decoder. The vehicle-caused trajectories and overall trajectories are trained using an action-aware
loss and a regular regression loss, respectively.

is to predict a sequence of egocentric pedestrian locations
Lη = {lτ+1, lτ+2, · · · , lτ+η} given the sequence of observa-
tions {x0, x1, · · · , xτ }, where η is the prediction duration.

B. Framework Overview

Our proposed model predicts the pedestrian’s future trajec-
tory in a single pass. The overall architecture of the model
is illustrated in Figure 2. Three sequential modalities of
information are encoded using two different temporal-aware
methods. A pre-trained 3D convolutional neural network is
used to encode the visual information, while the motion and
ego-vehicle actions are encoded using a transformer encoder.
The initial location (bounding box coordinates of the starting
point), as a static feature, is transformed through a feed-
forward layer. Following feature encoding, the model adopts
a two-tower structure, comprising a vehicle module and a
pedestrian module, with a late fusion strategy.

Both the vehicle and pedestrian modules are constructed
using feed-forward layers. The vehicle module utilizes the
initial location and ego-vehicle action features to predict the
trajectory changes caused by the vehicle’s movement. In con-
trast, the pedestrian module is more complex and handles a
wider range of information. It incorporates all four modali-
ties of information, including visual features, initial location
features, motion features, and ego-vehicle action features,
to predict the trajectory caused by the pedestrian’s movement,
and to compensate for the prediction made by the vehicle
module. The final prediction is the sum of the outputs of the
vehicle and pedestrian modules.

C. Multi-Modal Feature Encoding

Our approach utilizes three distinct feature encoders
designed to handle different modalities of features.

The first encoder is a pre-trained 3D convolutional network,
which extracts pedestrian motion features and traffic con-
text information. We leverage the effectiveness of 3D CNNs
in action recognition tasks, where they have demonstrated
the ability to capture both spatial and temporal information
from video data [50], [51]. In our approach, the 3D CNN
is pre-trained on a large dataset of video data to learn a
representation of pedestrian motion and traffic context infor-
mation. This is a crucial component of our method, as 3D
CNNs are capable of learning spatio-temporal features by
applying convolutional filters in both the spatial and temporal
dimensions.

One of the advantages of using a 3D CNN is that it can
effectively capture the temporal information of the pedestrian’s
motion without the need for time-consuming optical flow fea-
ture extraction. Optical flow is a technique used to estimate the
movement of pixels between consecutive frames, which can
be computationally expensive. By using a 3D CNN, we can
bypass this step and still capture the temporal information of
the pedestrian’s motion.

Another advantage of using a 3D CNN is that it can learn
spatiotemporal features that are invariant to viewpoint changes.
The 3D CNN can learn features that are robust to changes in
the camera perspective, which is crucial for the egocentric
viewpoint of our approach. This makes our method more
robust to occlusions and changes in viewpoint which are
common in dash cam footage.

The second type of feature encoder we use in this work
is a transformer encoder [52]. The transformer architecture
has been a rising star in the field of sequence-to-sequence
processing and has been shown to be superior to recur-
rent neural networks in many applications, particularly in
natural language processing [53]. In our study, we apply
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the transformer encoder to capture the temporal relationship
of location changes. The motion embedding represents the
change of the pedestrian’s bounding box, which is processed
through a transformer encoder to capture the dynamic temporal
characteristics of pedestrian behavior.

Transformer encoders consist of multi-head self-attention
mechanisms, which allow the model to weigh different parts
of the input sequence according to their importance. In our
case, the transformer encoder uses self-attention to weigh
the importance of different location and ego-vehicle action
changes in the input sequence, allowing it to learn a more
comprehensive representation of the temporal relationship.

Additionally, the transformer encoder is able to handle
longer input sequences than traditional RNNs which makes it a
great choice for capturing the temporal relationship of longer
trajectory predictions. The transformer’s architecture allows
the model to process the entire sequence at once, which is
beneficial for the task of trajectory prediction, where the whole
sequence is needed to make the prediction.

In addition to the two temporal-aware feature encoders we
previously discussed, we also utilize a feed-forward layer to
transform the pedestrian’s initial location feature and the ego
vehicle’s action into a representation that is more suitable for
our model. This feed-forward layer is a simple yet effective
method for converting the initial location feature, which is a
static feature, into a form that can be effectively utilized by the
model in its prediction. We also found that, even though the
ego vehicle’s action is sequential data, it is not as dynamic in
the granularity of trajectory prediction. In other words, the ego
vehicle’s action such as speed does not change much within
the time span of trajectory prediction, so we model it without
using a temporal-aware feature encoder.

D. Two-Tower Structure

The two-tower structure is a neural network architecture
consisting of two separate components, or “towers”, that work
together to achieve a specific task [54], [55]. In our case, the
two-tower structure is used to predict pedestrian trajectories
from an egocentric viewpoint using a dash cam. The first
tower, the vehicle module, predicts the egocentric pedestrian
trajectory caused by the ego vehicle’s movement; and the
second tower, the pedestrian module, predicts the trajectory
caused by the pedestrian’s movement. The two-tower structure
allows for the separation of the prediction into two parts, which
is a natural way of thinking about trajectory changes in an
egocentric view and provides better explanations for the result.

To make each tower work in this natural way, we employed
two techniques. The first technique is the use of different fea-
ture modalities as inputs. For the vehicle module, the ego-view
trajectory caused by the vehicle only requires the ego-vehicle
action and the pedestrian’s initial location to be estimated.
Since the camera is fixed on the ego-car, these features will
predict the movements of the camera and the changes of
camera angles, which result in corresponding egocentric view
pedestrian position changes. The pedestrian module needs
additional information such as pedestrian motion and visual
features to generate a comprehensive scene representation

and predict the trajectory changes caused by the pedestrian’s
movement.

Additionally, we devised an innovative loss function to
ensure that the model decomposes the trajectory into two parts
as intended. This is the second technique we used, and it will
be discussed in the next subsection.

Our proposed model combines the outputs of the vehicle
and pedestrian modules by point-wise summation to form the
final prediction. The two-tower structure enables the use of
specific combinations of features as input, allowing the model
to make the most of the strengths of each feature modality
and to follow a natural decomposition. This leads to a more
accurate prediction of the pedestrian’s trajectory.

E. Action-Aware Loss

To further ensure that each tower captures its responsi-
bility for ego-vehicle-caused and pedestrian-caused trajectory
components, we decompose the overall trajectory change at
any time i in egocentric view as shown in the following
Equation (2):

li = lvehicle
i + l ped

i , (2)

where lvehicle
i represents the trajectory change induced by

the movement of the ego-vehicle, l ped
i denotes the trajectory

change resulting from the actions of the target pedestrian, and
li is the trajectory as observed from an egocentric viewpoint.

We propose an innovative loss function based on the
assumption that vehicle-caused ego-view pedestrian movement
dominates pedestrian-caused movement when the ego-vehicle
is traveling at high speeds. As a result, the trajectory caused
by the movements of pedestrians shrinks towards zero as the
vehicle’s speed increases with the following objective function:

lim
speed→σ

lvehicle
i

li
= 1, (3)

where σ is a large number. Thus, in addition to the commonly-
used loss, we have added an auxiliary task to account for
this observation. The overall objective function consists of two
parts shown as:

loss = RMSE(lη, l̂η) + ω(a)RMSE(lη, l̂V ehicle
η ), (4)

where ω(·) is a monotonically increasing function of the ego
vehicle’s speed, and a can be a variable related to the vehicle’s
speed, acceleration, or speed changing actions.

The first term in Equation (4) focuses on the final outputs,
l̂η, as the combination of the vehicle and pedestrian modules.
Using a Root Mean Square Error loss (RMSE), shown in
Equation (5), this commonly used loss minimizes the differ-
ence between the target and overall predicted trajectory:

RMSE(lη, l̂η) =

√√√√1
η

τ+η∑
i=τ

(li − l̂i )2. (5)

The second term of the loss function (Equation (4)) is
an ego-action weighted Root Mean Square Error (Action-
RMSE). This loss focuses on the differences between the
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output of the vehicle module, l̂V ehicle
η , and the target ground-

truth, lη, and is weighted by the ego vehicle’s speed or
accelerating/decelerating actions. The Action-RMSE penalizes
the overall loss more as the vehicle speed increases, meaning
that the vehicle-caused ego-view trajectory change dominates
the pedestrian-caused changes. At lower vehicle speeds, the
weighting function, ω(·), will reduce the effects of the second
term, so the overall model is optimized mainly based on the
first term in Equation (4).

With a good selection of ω(·), this loss function is designed
to train the vehicle module to capture the pedestrian position
changes caused by the vehicle’s movement while optimizing
the overall prediction. Moreover, as a consequence of the
trade-off between the overall errors (which are based on a
sum of outputs from the pedestrian module and the vehicle
module) and the errors from the vehicle module, the pedestrian
module is primarily trained to predict the contributions of
pedestrian movements to the ego-view pedestrian position
changes. Intuitively, the model is expected to perform well
in both lower and higher vehicle speed situations as the two
modules focus on separate contributions:

• When the vehicle speed is low, such as when the car
is stopped, the vehicle module with ego-motion features
as inputs does not have much information to predict
pedestrian position changes. Consequently, the entire
model relies primarily on the pedestrian module to predict
pedestrian trajectories and prioritize minimizing the first
term in Equation (4). Since the car’s contribution is
limited, the pedestrian module also mainly predicts actual
pedestrian motions. In this scenario, the vehicle module
plays a passive role in compensating for the portion of
pedestrian trajectories that the pedestrian module cannot
predict.

• When the vehicle speed is high, the vehicle module will
be more penalized and will also have more information
from the ego-action features to predict observed pedes-
trian trajectories. As the second term in Equation (4)
gains more weight, the model will rely more on the vehi-
cle module in this scenario, and the pedestrian module
becomes more passive to compensate for the portion of
pedestrian trajectories that cannot be predicted using only
vehicle action data. We can assume that the pedestrian
module is mainly predicting actual pedestrian movements
in this scenario as well.

Note that although there is no direct loss function supervis-
ing the output of the pedestrian module, the rationale for this
design choice stems from our model’s framework. We base
our approach on the understanding that the trajectory change
of the pedestrian, as seen from the egocentric perspective,
is influenced by the movements of both the ego vehicle and
the pedestrian. Consequently, even in the absence of a direct
loss function for pedestrian movement, the pedestrian output
is indirectly shaped as intended. This is achieved as long
as the two other loss functions effectively penalize both the
combined trajectory changes and the component attributed
solely to the vehicle. We have tried different functions for
ω(·) and will report the results in later sections. The loss
function presented is for a single sample, and the overall

TABLE I
SUMMARY OF PEDESTRIAN DATASETS

objective function is obtained by summing up the loss over all
samples.

IV. EXPERIMENT

A. Datasets

We conducted experiments to evaluate the effectiveness
of our model using three widely-used benchmark datasets,
namely JAAD, PIE, and PSI. All of these datasets are prepared
for pedestrian trajectory prediction tasks from an egocentric
view with captured dash cam video clips. JAAD and PSI
comprise dash cam video clips, while PIE was collected from
a 6-hour drive in downtown Toronto. While PIE and JAAD
contain more pedestrians, PSI has more interactive cases. The
number of unique pedestrians are shown in Table I.

To ensure a fair comparison with existing methods on
JAAD and PIE datasets, we adopted the time-to-event setup
in our evaluation as [38]. We clipped the pedestrian tracks
up to the crossing event frames and sampled sequences with
a 50% overlap and with time to event between 1 to 2 sec-
onds (30 to 60 frames), as suggested in [8]. The prediction
length was set at 45 frames (η = 45) given 16 frames of
observation (τ = 16). In the PIE dataset, we used 3,980
training sequences, 995 of which were crossing cases. On the
other hand, the JAAD dataset had 3,955 training sequences,
including 805 crossing cases. For the ego-vehicle action, the
JAAD dataset provided the driver’s behaviors, while the PIE
dataset recorded the speed of the ego-vehicle. Therefore, the
ego vehicle action sequence is defined as the vehicle’s speed
in km/h in the PIE dataset, while in the JAAD dataset, it refers
to the driver’s actions. We re-encoded the driver’s behaviors
in JAAD as 0-stop, 1-slow down, 2-maintain speed, and 3-
speed up, capturing partial speed information while keeping it
simple.

For the PSI dataset, we followed the original task setup
since it had different annotations compared to JAAD and PIE.
We sampled the clips with an overlap ratio of 0.8 across
the entire video as long as the pedestrian appeared. The PSI
dataset did not provide any ego-vehicle action annotations. The
dataset contained 6,262 training sequences with 3,927 crossing
cases.

B. Implementation

The proposed model architecture employs a powerful pre-
trained Inflated 3D convolution (I3D) [51] on the Kinetics
400 dataset [56] for action recognition, as a means of con-
verting the visual input into a tensor of 2048 × 4 × 8 × 8.
This tensor is then fed through a two-layer convolutional
neural network with batch normalization and a 3D adaptive
average pool for further processing. The model also features
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TABLE II
COMPARISON OF NUMBER OF PARAMETERS, AND INFERENCE TIME

a transformer encoder with a one-head attention layer and an
embedding size of 16, as well as a location and action encoder
with embedding sizes of 16 and 32, respectively.

The vehicle and pedestrian decoders, which are respon-
sible for generating the predicted trajectories, are imple-
mented as two-layer feed-forward networks. Additionally, the
action-aware weight function is designed as a power function
with a normalized vehicle speed, v, and a hyperparameter
p = 1, denoted as the formulation ω(v) = vp.

To train the model, the Adam optimizer is employed with a
learning rate of 3e-3 for 1000 epochs and a batch size of
128. During the first 50 epochs, the pedestrian module is
kept frozen and only the parameters along the action-aware
loss are updated. This allows the model to initially learn the
action-aware trajectory prediction without interfering with the
pedestrian module’s pre-trained weights. Overall, this architec-
ture and training procedure provides an efficient and effective
means of accurately predicting trajectories for complex action
sequences.

C. Model Efficiency and Scalability

Excluding the fixed backbone of I3D, our model consists
of approximately 4 million parameters, which is comparable
to other state-of-the-art models in this domain (Table II). This
parameter efficiency ensures that our model can be trained
on standard hardware without excessive resource demands.
We conducted experiments to measure the average inference
time per frame on two NVIDIA RTX Titan GPUs. Our model
processes each sequence in approximately 30 milliseconds,
making it suitable for real-time applications in autonomous
driving systems.

D. Evaluation Metrics

In our evaluation, we adopt two widely-used metrics, Aver-
age Displacement Error (ADE) and Final Displacement Error
(FDE), to assess the model performance, consistent with prior
work [37], [38]. ADE quantifies the average distance between
the predicted and ground truth trajectories for all pedestrians
over the entire prediction horizon, defined as Equation (6):

ADE =
1

N × η

N∑
i=1

t+η∑
j=t+1

||l i
j − l̂ i

j ||2, (6)

where N is the total number of pedestrians, t is the observation
time step, η is the prediction horizon, l i

j is the ground
truth location of pedestrian i at time step j , and l̂ i

j is the
corresponding predicted location.

Similarly, FDE measures the L2 norm between the predicted
and ground truth trajectories for all pedestrians at the final time
step and is defined as Equation (7):

FDE =
1
N

N∑
i=1

||l i
t+η − l̂ i

t+η||2. (7)

Both ADE and FDE are computed based on the cen-
ter coordinates of the bounding boxes. To further evaluate
the accuracy of bounding box predictions, we report the
Average Root Mean Squared Error (ARB) and Final Root
Mean Squared Error (FRB) for bounding box coordinates.
Specifically, ARB measures the average distance between the
predicted and ground truth bounding box coordinates over the
entire prediction horizon, while FRB only considers the final
time step. Both ARB and FRB are reported in pixels, based
on a prediction length of 30 frames (equivalent to 1 second),
which is consistent with prior work.

E. Comparisons With State-of-the-Art Methods

We evaluated our method against eight existing approaches,
including Future Person Localization (FPL) [27], Bayesian
LSTM (B-LSTM) [57], FOL [58], and two variations of
the methods in the PIE dataset [35], PEvT [44], multimodal
transformer networks (MTN) [48], as well as the current state-
of-the-art method, BiPeds [38]. To ensure a fair comparison,
we used the same experimental settings as in BiPeds.

The experiment results are listed in Table III. In our exper-
iments, our method outperformed all existing approaches on
the PIE and JAAD datasets. On the PIE dataset, our method
achieved an ADE of 17.41, which is approximately 1 lower
than that of BiPeds. On the JAAD dataset, the improvement
was more substantial, with ADE and FDE decreased by more
than 3 and 7 respectively, representing an improvement of 15%
and 20%. Therefore, our proposed method has achieved state-
of-the-art performance on both PIE and JAAD datasets when
compared to six existing methods.

In order to ensure a fair comparison with existing methods
on the PSI dataset, we adopted the specific sampling method
used in the dataset for evaluating our proposed model. Our
model achieved a significant improvement in comparison to
the existing PSI models (Table IV), with an ADE reduction
of more than 25%. Overall, our evaluation results on the PIE,
JAAD, and PSI datasets indicate that the proposed model is
able to effectively predict ego-view pedestrian trajectories.

F. Ablation Study

In this section, we conducted an ablation study to com-
prehensively evaluate the impact of various modules and
loss functions on the performance of our proposed model
in Table V. In our model, both the vehicle and pedestrian
modules are capable of independently producing outputs offer-
ing an alternative perspective where each module functions
as a standalone predictive model. Our analysis revealed that
the vehicle module alone performed poorly due to its limited
information input. On the other hand, the pedestrian module,
which utilizes a late fusion model with multiple modalities as
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TABLE III
PERFORMANCE OF THE PROPOSED MODELS AND THE OTHER EXISTING MODELS ON THE JAAD AND PIE DATASETS

TABLE IV
PERFORMANCE OF THE PROPOSED MODELS AND THE OTHER

EXISTING MODELS ON THE PSI DATASETS

TABLE V
PERFORMANCE FOR EACH VARIATION OF THE BASE MODEL ON THE

PIE DATASET. “VEHICLE/PEDESTRIAN MODULE” REFERS TO MODELS
USING A SINGLE MODULE. “RMSE” REFERS TO THE MODEL

USING THE RMSE LOSS. “ACT-RMSE” REFERS TO MODELS
WITH A COMBINATION OF RMSE AND ACTION-RMSE

LOSS, WHERE P REFERS TO THE POWER OF THE ω(a).
“FULL” REFERS TO THE COMPLETE MODEL

input, performed significantly better than most existing meth-
ods, highlighting the importance of incorporating multi-modal
information in behavior prediction.

Additionally, we explored three different loss function vari-
ations. Our findings revealed that simply applying the Root
Mean Square Error (RMSE) to the final output was sufficient
to slightly surpass the performance of the current state-of-the-
art methods. This highlights the robustness and efficacy of our
model’s structure, even without resorting to specialized loss
functions. In our experiments, we also tested two variations of
a power function (ω(v) = vp), with a power of 2 (Act-RMSE
(p = 2)) denoting a convex function and a power of 1

2 (Act-
RMSE (p = 1

2 )) denoting a concave function. These variations
were designed to test different hypotheses regarding how speed
influences the reduction in vehicle-induced movements. Our
results indicated that treating the speed reduction as linear
(power of 1) yielded the best performance, while the quadratic

TABLE VI
MODEL PERFORMANCE ACROSS DIFFERENT PREDICTION HORIZONS ON

THE PIE DATASET. THE METRICS ARE EVALUATED FOR PREDICTION
HORIZONS OF 1 SECOND, 2 SECONDS, AND 3 SECONDS

Fig. 3. One sample of demonstrations. The target pedestrian is bounded
with a yellow bounding box, where the green line represents the ground
truth trajectory, the red line represents the combined predicted trajectory, the
blue line represents the predicted trajectory from the vehicle module, and the
yellow line represents the prediction from the pedestrian module. The ground
truth and predicted bounding boxes are depicted in green and red, respectively.
Note that the images are cropped and magnified for better visualization. The
icons on the top of each image indicate the displacement error (a smiling
icon represents a low error, while a frowning icon represents a high error),
the ego-vehicle speed, and the pedestrian’s walking or standing status and
their facing direction (red arrow indicates a predicted wrong direction).

approach (power of 2) also showed promise, outperforming the
linear assumption in terms of Final Displacement Error (FDE).
Consequently, we adopted a power of 1 for our comprehensive
model (Full (p = 1)).

Finally, the ablation study showed that the two-tower
structure outperformed the pedestrian module alone by approx-
imately 10% in ADE, proving the importance of incorporating
both the vehicle and pedestrian modules.

G. Prediction Horizon

Table VI illustrates our model’s performance on the PIE
dataset across different prediction horizons (1, 2, and 3 sec-
onds), evaluated using metrics such as ADE, FDE, ARB, and
FRB. As the prediction horizon extends, there is an increase
in all error metrics, reflecting the inherent uncertainties in
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Fig. 4. The cases with correct decompositions on the PIE dataset. The target pedestrian is bounded with a yellow bounding box, where the green line
represents the ground truth trajectory, the red line represents the combined predicted trajectory, the blue line represents the predicted trajectory from the vehicle
module, and the yellow line represents the prediction from the pedestrian module. The ground truth and predicted bounding boxes are depicted in green and
red.

long-term pedestrian trajectory prediction, which is consistent
with the findings in related studies. Such challenges highlight
the contributions of the proposed model in predicting pedes-
trian moving directions along with trajectories to better support
driving decision-making ahead of time.

H. Case Study

In this section, our proposed model’s performance was
evaluated using representative examples following the format
illustrated in Figure 3. The target pedestrian is enclosed within
a yellow bounding box, while the ground truth trajectory is
denoted by the green line, the combined predicted trajectory
is denoted by the red line, the predicted trajectory from the
vehicle module is depicted by the blue line, and the prediction
from the pedestrian module is represented by the yellow line.
The ground truth and predicted bounding boxes of the last
prediction are shown in green and red, respectively. Please note
that the images have been cropped and magnified for improved
visualization. Additionally, the icons located at the top of each
image indicate the displacement error (a smiling icon denotes
a low error, while a frowning icon represents a high error), the
speed of the ego-vehicle, and the pedestrian’s status of either
walking or standing, as well as their facial direction (a red
arrow indicates a predicted incorrect direction).

As mentioned in the section on action-aware loss, one
contribution of the proposed model is the ability to decom-
pose the egocentric trajectory prediction into pedestrian-caused
and vehicle-caused components. It is essential to assess
whether the decomposed trajectories are logical or not. There-
fore, we manually label the pedestrian’s action (walking or
standing) and facing direction (left or right) to demonstrate

the validity of the predicted pedestrian-caused trajectory.
We expect the predicted actual pedestrian movements (yellow
lines in Figures 4 to 6) to align with the labeled action and
facing direction. The yellow line should be shorter if the
pedestrian is not walking, and the direction of the line should
point towards the facing direction.

In the first demonstration (Figure 4), the model’s accuracy
in predicting the center and final bounding boxes is excellent.
The majority of the predicted trajectories and bounding boxes
overlap with the ground-truth, indicating a high degree of
trajectory prediction accuracy. Additionally, the yellow line
(predicted trajectory caused by actual pedestrian movements)
has the same direction as the pedestrian facing direction, and
the length aligns with the pedestrian actions as well.

While the combined predictions in Figure 5 are still
accurate, the decomposition of the pedestrian and vehicle
movements is not satisfactory when the yellow lines point
toward the wrong facing directions. For all these cases, the
pedestrian did not walk and the car was moving relatively fast.
The lack of actual pedestrian movements creates challenges
for the pedestrian module to accurately predict pedestrian
trajectories. Although all the yellow lines in these cases are
quite short, which align with the standing action, the results
show that the direction of the yellow line may be more random
and the model lacks the capability to detect pedestrian facing
directions when the pedestrian does not move at all.

The last demonstrations (Figure 6) show some poorer out-
puts from the model, with higher values of ADE and FDE.
These errors highlight the complexities and difficulties of
pedestrian trajectory prediction and will be further investigated
in our future research.
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Fig. 5. The cases with incorrect decompositions on the PIE dataset. The target pedestrian is bounded with a yellow box, where the green line represents the
ground truth trajectory, the red line represents the combined predicted trajectory, the blue line represents the predicted trajectory from the vehicle module,
and the yellow line represents the prediction from the pedestrian module. The ground truth and predicted bounding boxes are depicted in green and red.

Fig. 6. Inaccurate predictions on the PIE dataset. The target pedestrian is bounded with a yellow box, where the green line represents the ground truth
trajectory, the red line represents the combined predicted trajectory, the blue line represents the predicted trajectory from the vehicle module, and the yellow
line represents the prediction from the pedestrian module. The ground truth and predicted bounding boxes are depicted in green and red.

The proposed model is demonstrated to have state-of-the-
art performance in predicting pedestrian trajectories from an
egocentric view and can interpret the predicted trajectories
by separating the contributions from vehicle and pedestrian
movements, as shown in the case study. To the best of
our knowledge, the proposed model is the first to decouple
the ego-view pedestrian motions without requiring additional
inputs and labels in the area of pedestrian behavior prediction
and autonomous driving. Such capability can aid in estimating
actual pedestrian actions and predicting their intentions to
cross the street.

V. CONCLUSION

In conclusion, this paper proposes a novel approach to
pedestrian trajectory prediction from an egocentric view-
point using a two-tower structural multi-modality model. The
proposed action-aware loss function allows the model to
decompose trajectory prediction into two parts, improving per-
formance and providing an explanation for prediction results
based on the contributions of pedestrian and vehicle. This
explanation helps the model to estimate actual pedestrian
actions and facing directions without the need for additional
inputs or 3D scene reconstruction computations.

The results on three publicly available benchmark datasets
demonstrate that our model outperforms existing algorithms
in trajectory prediction and is the first to decouple predicted

ego-view pedestrian trajectories. Overall, this work contributes
to the development of safer autonomous driving systems
by improving the accuracy and interpretability of pedestrian
trajectory prediction. Our future work will focus on ensuring
the safety of implementing pedestrian behavior prediction
algorithms in driving motion planning by monitoring algorithm
uncertainties and better handling tail cases.
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