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Abstract— We put forth a hybrid-computing solution to a
class of constrained nonlinear optimization problems involving
nonlinear cost and linear constraints. This is accomplished by
realizing gradient-flow dynamics for a reformulated penalty pro-
gram with a combination of operational amplifiers, discrete linear
and nonlinear circuit elements, and a digital microcontroller.
Convergence of the voltages of the circuit to stationary points
of the original mathematical optimization problem, as well as
local asymptotic stability of the equilibria, are established analyt-
ically. Leveraging numerical tools catering to delayed differential
equations, design strategies to ensure the circuit is parametrized
to be robust to delays attributable to the digital microcontroller
are presented. Hardware results for a representative problem
involving minimizing selected harmonics from a pulse-width
modulated waveform validate the analytical developments.

Index Terms— Delayed differential equations, digital microcon-
troller, gradient flow, nonlinear circuits, nonlinear optimization.

I. INTRODUCTION

YBRID circuits are symbiotic combinations of analog

and digital circuits operating in concert [1]. In this paper,
we outline an architectural framework and companion analyt-
ical machinery to realize and benchmark a hybrid-computing
solution to a class of constrained optimization problems
involving nonlinear cost and linear constraints. Our proposed
hybrid-computing solution is composed of a combination of
operational amplifiers (op-amps), discrete linear and nonlinear
circuit elements, and a digital microcontroller. The circuit
realizes gradient-flow dynamics for a penalty-based reformu-
lation of the original nonlinear optimization problem. (See
Fig. 1.) Two primary contributions are offered to the state-
of-the-art. First, we outline a constructive circuit-synthesis
approach that systematically apportions digital and analog
subsystems while establishing a direct correspondence of
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Fig. 1. A Hybrid-computing Solution is put forth for Nonlinear Optimization
Problems. Gradient-flow Dynamics as a solution strategy for a reformulated
Penalty Program are realized with a mix of analog and digital circuits.

the realized hybrid-computing solution with the originating
nonlinear optimization problem and its penalty-program refor-
mulation. Second, we leverage a variety of system-theoretic
constructs to benchmark performance relating to the conver-
gence and stability of the proposed hybrid-computing solution.
We also outline numerical methods to guide parametrization
while ensuring robustness to delays that are uniquely debili-
tating in such applications.

Electronic analog computers used to be the mainstay in
computing for a variety of engineering applications [1], [2],
[3], [4]. Hybrid solutions were subsequently employed to
address real-time control challenges in applications ranging
from aircrafts to power systems [5], [6], [7], [8], [9], [10]. With
advances in semiconductor technology driving unprecedented
gains in digital computing, analog and hybrid computing
fell out of vogue. That said, it can be argued for sev-
eral emerging real-time technologies (e.g., edge computing,
internet-of-things) that hybrid options featuring a combination
of desirable attributes from analog (speed, low power con-
sumption) and digital (programmability) domains serve better
than the endpoints [11], [12], [13].

An overview of the proposed approach is outlined next,
with Fig. 1 providing companion illustrative context. We begin
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by translating the nonlinear optimization problem into an
unconstrained penalty program with the aid of a suitable
penalty function applied to the constraints. Following such
a reformulation, continuous-time gradient-flow dynamics are
adopted as a solution strategy for the penalty program. These
dynamics are then realized with a combination of op-amps,
discrete linear and nonlinear circuit elements, and a digital
microcontroller. Some facets of the solution strategy and
design choices outlined above deserve justification:

1) Why the penalty-program reformulation? Such a refor-
mulation allows the application of a variety of solution
techniques (e.g., the gradient-flow approach we adopt),
even if these are natively designed to handle uncon-
strained problems.

2) Are gradient-flow dynamics the only solution strategy?
Gradient-flow methods are a class of first-order solu-
tion methods (so named since they rely on first-order
derivatives). Typically, first-order methods offer faster
convergence compared to zeroth-order (i.e., derivative-
free) methods (e.g., genetic algorithms) and less com-
putational burden compared to second-order methods
(e.g., Newton’s method) [14].

3) What motivates the particular decomposition into analog
and digital circuits? The architecture is engineered to
emphasize analog elements for their computation speed.
In this regard, we prioritize their utilization to realize
iterative operations, piece-wise nonlinear functions, and
constraints. The digital intervention generates gradients
of the cost function that may involve nonlinear algebraic
terms which are challenging to realize in analog.

With the approach presented above, we offer two key
contributions at the intersection of disciplinary boundaries
of linear and nonlinear circuit theory, numerical optimization
methods, and linear and nonlinear control theory—all of which
are key to engineering circuits and systems:

o Generalized Architecture. The outlined hybrid-computing
solution is generalized and the class of optimization
problems features prominently in a variety of engineering
applications, including power systems, power electronics,
artificial neural networks, and the process industry. The
approach we adopt clearly demonstrates the need for
appropriate digital inputs as well as the role of (non)linear
analog circuit elements in realizing (non)linear mathemat-
ical operations and energy-storage elements in realizing
dynamic elements in the gradient-flow dynamics.

o Benchmarking Performance. We comment on the corre-
spondence of the equilibria of the hybrid circuit with
optimizers of the nonlinear optimization problem and
validate the local asymptotic stability of circuit solutions.
Furthermore, we derive a lower bound on convergence
time, which depends on the circuit and problem param-
eters. Finally, we outline strategies to counter delays
(stemming from digital inputs) leveraging theory and
methods from so-called delayed differential equations.

With regard to validation and applications, we pursue two
directions. First, we present a running example adopted
from [15] to outline our analytical and algorithmic develop-
ments in a tutorial and repeatable fashion. Second, we provide
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results from an experimental hardware prototype of a
hybrid-computing solution to the selective harmonic mini-
mization (SHM) problem. This problem involves minimizing
harmonics in a pulse-width modulated switching waveform
and is of interest in power-electronics circuits [16], [17],
[18], [19], [20]. Its formulation involves a nonlinear cost
function (with trigonometric terms stemming from Fourier-
series coefficients) and linear constraints; therefore, it is of the
general form our approach can handle. Due to the limitations
on the speed of digital circuits, offline optimization is usually
employed to solve SHM [21]. Our previous work introduced
a hybrid circuit allowing real-time optimization, and demon-
strated high speed and low power consumption [11], [12].
However, we neither put forth the requisite analytical machin-
ery to discuss convergence and stability (particularly relevant
due to computational delays and delays attributable to analog-
to-digital (A/D) and digital-to-analog (D/A) conversions) nor
did we recognize the fact that the solution was solving a
penalty-program reformulation of the original problem with
gradient-flow dynamics. We do both in the present effort and
as the forthcoming discussion will reveal, the latter aspect
is particularly relevant to accurately characterize solutions
of the circuit in relation to the originating optimization
problem.

To place our work in the context of the state of the art, it is
necessary to narrow focus to the presently considered applica-
tion, i.e., analog and hybrid circuits that have been proposed
to seek the solution of constrained nonlinear optimization
problems. In [22], [23], [24], [25], and [26], analog circuits
without any dynamic elements are designed such that specific
voltages (and/or currents) present solutions of the Karush-
Kuhn-Tucker (KKT) conditions for constrained optimization
problems. (KKT conditions are first-order necessary condi-
tions, and seeking solutions to them is a reasonable approach
to tackle problems with limited structure, e.g., convexity.) The
guiding design philosophy in these approaches is to leverage
the fact that circuits naturally settle into an equilibrium state
that minimizes energy loss. Even though this class of circuits
does not explicitly involve dynamic elements, the convergence
of the solutions is affected by factors such as the op-amps’
slew rates and parasitic capacitances. This observation appears
to have prompted the deliberate introduction of capacitance to
counteract parasitic elements and ensure stability [11], [12],
[15], [27], [28]. (It is worth pointing out that [15] is inspired
by [24], [29], [30].) However, while efforts in [11], [12], and
[15] demonstrate solving the KKT conditions of the original
nonlinear optimization problem, they did not establish that
the dynamics of the proposed circuits were, in fact, solving
a penalty-program reformulation of the original nonlinear
optimization problem. Although reference to the connection
between penalty methods and the circuit realization in [15]
is made in [31], a detailed exploration of how exactly these
circuits’ dynamics align with the penalty program reformula-
tion, and thereby satisfy the KKT conditions of the original
problem, is less apparent. This distinction is relevant in context
since the KKT points for the original problem, and those
for the penalty program reformulation are not necessarily the
same.
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The contributions of this effort fill the gaps indicated in
the literature surveyed above. They span the synthesis of a
generalized system architecture to realize hybrid circuits for
computation as well as the application of system-theoretic
methods and numerical tools to benchmark performance.
Overall, our work is aligned with a significant body of con-
temporary research that has focused on uncovering synergies
between optimization problems and dynamical systems [32],
[33], [34], [35], [36], [37], [38]. It is also worth pointing out
that there remains persistent interest in synthesizing analog
circuits to solve optimization problems for a variety of engi-
neering applications [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51].

The remainder of this paper is organized as follows.
Section II introduces the nonlinear optimization problem,
its penalty-based reformulation, and gradient-flow dynam-
ics as a solution strategy for the penalty program. The
circuit-based realization for the gradient-flow dynamics is
derived in Section III. Approaches for performance analysis,
benchmarking the hybrid-computing solution, and parameter
selection are in Section IV. Simulation and hardware results
for the SHM problem are presented in Section V. The paper is
concluded in Section VI with some directions for future work.

II. NONLINEAR OPTIMIZATION PROBLEM,
PENALTY-BASED REFORMULATION, AND
GRADIENT-FLOW SOLUTION DYNAMICS

This section introduces the general nonlinear optimization
problem that is examined in the work. A reformulated penalty
problem and gradient-flow dynamics targeting the solution of
the penalty-based reformulation are presented subsequently.

A. Optimization Problem & Penalty-Based Reformulation

The general optimization problem we attempt to solve with
the proposed circuit-based solution is presented below

m[gllv fx) (1a)
s.t. Ax > b. (1b)

The optimization variables are collected in vector x =
[x1, X2, ...,xy]T € RV, the nonlinear cost function is denoted
f :RY — R, and we suppose K affine inequality constraints
captured via A € RE*N b e RK. In what follows, we denote
Ar to be the kM row of A, ar¢ to be the entry in the
k™ row and ¢M column of A, and by to be the k™ entry
of b. We assume f(-) is twice continuously differentiable,
ie., f € C2. This is because we will leverage the gradient,
V f(-), in the synthesis of the gradient-flow dynamics. Fur-
thermore, the Hessian, V2 f(-), features in a result on local
asymptotic stability.

To illustrate all developments that follow, we consider a
running example, Example 3, adopted from [15].

Running Example (i): Nonlinear Optimization Problem
Jrom [15]. Consider the optimization problem

min 04 x; + xlz + x% —X1x2 + 3—10xf (2a)
xeR?
s.t. 0.5x1 +x2 > 0.5, (2b)
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x; +0.5x2 > 04, (20)
x1,x3 > 0. (2d)

Note that it fits the template in (1) with

() = 0.4 x2 4+ xf +x3 — x1x2 + 7547, (3)
05 1 0.5
1 05 0.4

A= e b= o | ()
0 1 0

We revert to this example in Section II-B to establish
continuous-time gradient-flow dynamics for its solution. Wl

The first step in our proposed solution approach is to convert
the constrained problem (1) into an unconstrained penalty
program by penalizing infringements in the constraints via an
augmented cost function that invokes a penalty function. Such
a reformulation takes the form

K
min f(0) + g k;mAkx — by, ®)

where ¢ : R — R is a penalty function that is set up to
minimize violations of the constraints, and p € R.g is a
penalty parameter that prioritizes the extent to which such
violations are penalized viz-a-viz the cost function. As with
the cost function, the only structure we assume about the
penalty function is continuous differentiability. To guarantee
that constraints Agx > by are met Vk =1, ..., K, we must
pick p such that

K
g > ¢ (Akx — i) > 0.

k=1
This would ensure that the penalty for any violations of
Apx — by > 0 is substantial relative to f(x), compelling the
solution strategy employed to solve (1) to satisfy Axx > by,
Vk=1,...,K.

Without loss of generality, we adopt the following quadratic

penalty function for all subsequent developments:

¢ (Axx — by) = (min(0, Agx — by))>. (6)

The function (min(0, Axx — bk))2 returns zero as long as the
kth inequality constraint, Agx > by, is satisfied; otherwise,
it imposes a quadratic cost on Agx — bg. Several other choices
for the penalty function are possible [14].

B. Gradient-Flow Dynamics
We consider the following gradient-flow dynamics targeting
the solution of (5):
dx P £
& (v PN V(A — b ) 7
—=—7( SO+ 5 X e =) D)
where y € R~ is a constant (that is analogous to a step-size in

discrete-time implementations), V f (x) € RY <1 s the gradient
of the function f(-) given by

Vf(x) = [afm 3f (x)

ox; > dxp

3f(x)]T

’ 3){}\/
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and Vo (Arx — by) € RV*! is the gradient of the penalty
function. The box labeled Gradient-flow Dynamics in Fig. 1
illustrates a block-diagram representation of these dynamics.
For the existence and uniqueness of solutions to (7), we require
the cost function, f, and penalty function, ¢, to be such that
the vector field driving the gradient-flow dynamics is locally
Lipschitz continuous [52].

In essence, (7) nudges the optimization variables to evolve
in the direction of the steepest descent of the cost function
in (5). Equilibria of the dynamics (7) coincide with stationary
points of the optimization problem (5). Stationary points are
the collection of all maxima, minima, and saddle points of
an optimization problem, and they are referred to as KKT
points, provided they satisfy additional regularity conditions.
Since no assumptions are imposed on the structure of f(-),
we cannot comment on the number of equilibria, whether they
correspond to local/global minima in the context of (5), and/or
their local/global stability in the context of dynamics (7). Note
also that no claims are made at this stage about whether such
equilibria are feasible in the sense of the original problem (1).
With these qualifiers out of the way, the general thought
process to formulating (7) is to target a stationary solution
to (5); with the understanding that for high enough p, the
solutions of (5) and (1) coincide. Further discussion on the
nature of equilibria is reserved for Section IV-B.

For the choice of penalty function ¢(-) in (6), the corre-
sponding gradient-flow dynamics in (7) are given by

dx K
3= —y(Vf(x) +p ;min(o, Apx — bk)A,"j). ®)

In what follows, we will periodically reference the dynamics
element-wise. For the ¢! variable, x,, we get

dxy .
dr

af (x) o

—y (5.7 + o 2 min(0, Awx —boace). ()
dx¢

k=1

where ay ¢ is the entry in the k™ row and £ column of A.
Running Example (ii): Gradient-flow Dynamics. The

gradient-flow dynamics targeting the solution to (2) involve
the following differential equations of the form (9):

der _ ) 1.2 :

o _—y( x| —x2+ 15X + ,0(0.5 min(0, 0.5 x1+x,—0.5)
+ min(0, x; + 0.5 x2 — 0.4) + min(0, x1))),  (10a)

dx

d—tz = —y(0.4+ 2x2 — x; + p(min(0, 0.5 x| + x5 — 0.5)

+0.5min(0, x; + 0.5 x2 — 0.4) + min(0, x2))).
(10b)

These are readily obtained with the aid of the gradient of f(x)
from (3) given by

VF(x) = [2x] — x2 + 157, 0.4 4 25 — xq]7, (11)
and A and b specified in (4). We will revert to this example

subsequently in Section III with a circuit that realizes the
above dynamics. |
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III. CIRCUIT-BASED REALIZATION OF
GRADIENT-FLOW DYNAMICS

In this section, we synthesize a circuit with dynamics that
align with (8). Parametric equivalences between the dynamics
and circuit elements are established to facilitate realization.
Implementation details that are relevant to realizations in
practice are also discussed.

A. Synthesis of Circuit

We wish to synthesize a hybrid circuit that presents volt-
ages vp, V2, ..., vy which align with optimization variables
X1, X2, ..., xy that have dynamics given in (8). Consider N
capacitors, each with capacitance C), with the ¢ capacitance
sporting voltage, vy, and featuring K + 1 current withdrawals,
if ,k €0,...,K. We focus the remainder of the discussion
around the £™ capacitance. A sketch of an elemental portion
of the overall hybrid circuit that can be utilized to contextualize
the discussion is given in Fig. 2. The voltage across this
capacitance, vg, has dynamics given by:

K
c, ¥ _ > it (12)
Yde ~

Suppose i? is the current resulting from applying voltage
df (v)/0dve across some resistance, Ry, i.e.,
19
L AO (13)
R, 0vg

The choice of subscript y in C}, and R, will soon be justi-
fied via the connection established with parameter y in (8).
The synthesis of the remainder of the current withdrawals,
iéf ,kel,..., K, is presented next. The discussion is tailored
to some k™ current, iéf, and we recommend digesting the
presentation alongside Fig. 2. We begin by applying volt-
age —(Axv — by) to an op-amp-based circuit (composed of
op-amps O,f” ° and O,Icni“ in Fig. 2) to generate the voltage
b = min (0, 2 (Aw = b)), (14)
. R,/Ro . . .
As the terminology suggests, O, """~ realizes an inverting
amplifier with gain —R,/R,, while O;™" realizes the min(, -)
function. The choice of subscript o in R,will soon be justified
via the connection established with parameter p in (8); on the
other hand, R, is a nominal resistance that will be utilized
across several amplifier stages. We then scale the voltage vﬁlin
(at the output of O;™") by gain a; ¢ with the aid of another
inverting op-amp circuit involving op-amp O;**. In particular,
Ozk’z realizes an inverting amplifier with gain
Ri¢

ak’g = — .
R,

If ax¢ > 0, additional inverting stages will be needed. The
current that results by applying the output of this latest manip-
ulation across resistance, R, , constitutes iéf . In particular,

1 Ri s
-k k .
g = __Ryvmin R
1. R Rie
=——min (0, 2 (Arv —b ) —, 15
Ryl( R (Akv = bi) Ro (15
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_ R,/Ro i
Oz‘v b7 OZ o/ 70;111[17 OZA ¢

Fig. 2.  Circuit realization (and shorthand) for the dynamics of the gth optimization variable. In particular, dynamics of voltage vy across capacitance C)
coincide with the dynamics of optimization variable x¢ given in (9) for R, C) = y~1 and Rp/Ro = p.

Substituting all K instances of iéf

iY from (13) in (12) yields:

68 (PO S i o0 ecar ) B,

from (15) along with

(16)

Recognizing that

min (0, I;—Z(Akv — bk)) = % min (0, Apv — bk)7

o
we can rewrite (16) as

K

dve =— ! (Bf(v) — &Zmin (0 Apv —bk) Rk’()
dr R,Cy\ dve R, & ’ R,/

A7)

Collecting all N instances of (17), we get the system-level
dynamics for the interconnected circuit:

dv 1 R, &
w___ ' (v hiv ' (o,A —b)AT).
% RyCy( f) + R. émln KV — br ) Ay

(18)

Notice that the dynamics (18) can be placed in exact corre-
spondence with (8) with the design choices:

1 R, (19)

The overall system architecture of the hybrid circuit is
illustrated in Fig. 3, with constraints duplicated for clarity.
It is obtained by stitching together multiple instances of the
shorthand illustrated in Fig. 2. In summary, the dynamics of
voltages v coincide with those of optimization variables x
given in (8) with the design choices (19).

B. Implementation Details

The gradient terms df(v)/dve in the realization may be
nonlinear functions of the voltages. (See, e.g., (11).) In princi-
ple, it is possible to realize a wide range of mathematical

_|92f(v) of(v) of(v) | T
Vi) _|: ovy ’ Oug > Odun }
R, R, C,
—> Wy R, l—‘
i TR w :
|<] R'y O1C
Oflvfb’ OFP/R(), C)rlnin7 O?k.l
i R, SR, C,
— w | R, [
i B,
K R, os
(92417—b7 Ofﬂ/RO , (Qénin7 OZ"?-,@
- i o=r, o
—>

G
=0

Av—b RP/RO min Ak, N
ON ’ ON ’ ON ’ ON

Fig. 3.  System-level architecture of hybrid-computing solution. Op-amp

- — Rp/Ro i . .
circuits (O?v b, 0, el , O?““, Ozk‘z) are the shorthands in Fig. 2.
Dynamics of the N voltages v = [vy, ..., vy, ..., vNJT coincide with those
of optimization variables x in (8) with: R, C) = y_l and Ry/Ro = p.

operations with analog circuitry. However, it is natural to
leverage a digital microcontroller to generate these terms.
Delays introduced by this digital intervention can compromise
the stability of the overall system dynamics, and we devote
special attention to this aspect in Section IV-C.

The circuit realization also invokes terms of the form
—(Axv — by), which can readily be realized with inverting
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af(v)

vy

Fig. 4. Hybrid circuit that implements dynamics (18) built follow-
ing the templates in Figs. 2 and 3. The circuit component values are
Ro = Rjim = Ry, = Ry =Ry =10kQ, Ry =1 MQ, and Cy, = 100 nF.

op-amp-based circuits since they involve linear manipulation
of the voltages. These op-amp-based circuits are denoted by
the shorthand O?“_b in Fig. 2. Finally, resistances, Ry, that
appear in Fig. 2 limit the currents flowing through the output
terminal of op-amps Og‘i“ and associated diodes.

Evidently, the architecture is programmable to a degree.
Gradient terms that arise from the digital microcontroller can
be reprogrammed for different optimization problems. Digital
potentiometers can be utilized to realize different coefficients
for the constraint-related circuits built with op-amps.

With regard to choices of parameters, Ry, C,, Ry, Ro,
we recognize from the dynamics (18) that the rate of change
of v is affected by R, C,,. As the product R, x C,, is reduced,
we observe a faster transient response of the circuit to reach
the equilibrium point. However, this cannot be indiscriminately
decreased. In Section I'V-C, we will find that in the presence of
(unavoidable) delays due to the digital intervention discussed
above, R, x C, should be selected considering both the
convergence speed and stability. We also note that the ratio
R,/R, governs the enforcement of the constraints per the
discussion in Section II-A. As the ratio R,/R, is increased,
we observe a stronger emphasis on satisfying constraints.

Running Example (iii): Circuit Realization. The hybrid
circuit that realizes the dynamics (10) for the optimization
problem introduced in Running Example (i) is in Fig. 4. W

IV. PERFORMANCE ANALYSIS AND BENCHMARKING
CIRCUIT-BASED REALIZATION

In this section, we comment on the nature and number of
the equilibria of the dynamics of the hybrid circuit. We also
explore stability under nominal conditions and in the face of
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delays that may creep in due to a digital interface computing
the partial derivatives of the nonlinear cost function. We also
offer some comments on parameter selection.

A. Equilibria of Circuit Dynamics

In this section, we examine the equilibria of (18) and
comment on their relationship to the optimization problems
we set out to solve. We also investigate the stability of the
equilibria. All discussions are presented in the context of (18)
and the circuit realization in Fig. 3; but they equally apply to
the dynamics (8).

Setting the derivatives in (18) to zero, we see that the
equilibria of (18), denoted v* = [v},.. 17, satisfy the
nonlinear algebraic equations given by:

*
LUy

K
R
V) + R—’O’ ];min (0, Ay — bk)AkT —0y.  (20)
These are the KKT conditions for the optimization problem

min f(0) + %’ i (min (0, Ay — bk))2 Q1)

With the equivalence v = x and the design choice (19),
we see that (21) is the same as (5) (assuming the choice
of the quadratic penalty function (6)). Solutions to the KKT
conditions are merely stationary points, and they are not
necessarily optima of the corresponding optimization problem;
therefore, in what follows, we refer to v* as KKT points.
Given the limited structural limitations we impose on f(-),
it is circumspect not to expect KKT points to correspond to
optima. Additionally, given the potentially nonlinear nature of
V f(-) and the complexity introduced by the terms min(-, -),
it becomes challenging to definitively qualify the existence of
or quantify the number of potential solutions to (20).

B. Relationship of Equilibria to Constrained Optimization
Problem and Local Stability

Recall that the optimization problem we originally set out
to solve was (1). With the equivalence v = x, we restate this
in terms of the circuit voltages as

min  f(v) (22a)
veRN
s.t. Av > b. (22b)

We are interested in qualifying when (and whether) the KKT
points v* for the optimization problem (21) as characterized by
the solution of (20) are also the KKT points for problem (22).
To that end, we will find the definition of the feasible set
useful:

F={veR":Av>b}. (23)

The boundary of F is denoted dF. The result presented next
establishes the correspondence of feasible equilibria of the
circuit dynamics with the KKT conditions of the original
nonlinear optimization problem.

Lemma 1: If an equilibrium point of the dynamics (18),
v*, is feasible, i.e., v* € F, then it is a KKT point of the
problem (22).
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Proof: Since v* is an equilibrium point of (18), we know it
is the solution of (20), which, with the following definition

N R,
£y = pomin (0 At — bk) (24)
can be rewritten as
K
VW + D Np AL =0y (252)
k=1
Since v* € F and with A\, , in (24), we also have
Av* > b, (25b)
P=INE o AR k] = 0. (25¢)
Finally, the combination of (25b) and (25c) yields
(Av* —b) o N\ = Ok, (25d)

where o denotes element-wise multiplication. The collec-
tion (25a), (25b), (25c), and (25d) are precisely the KKT
conditions of (22), with A7 denoting the Lagrange multipliers.
In particular, (25a) is the stationarity condition, (25b) captures
primal feasibility, (25¢) captures dual feasibility, and (25d) is
the complementary slackness condition [53]. In sum, v* is a
KKT point of (22). ]

The next result establishes local asymptotic stability of
feasible equilibria.

Lemma 2: If an equilibrium point of the dynamics (18), v*,
is feasible, i.e., v* € F, and sz(v*) > 0, then it is locally
asymptotically stable.

Proof: The dynamics of Av = v — v* obtained by lineariz-
ing (18) around v* are given by

dAv 1 2w
—_— == Ve f @) Av.
dr R,C,
In deriving the above, we have leveraged the fact that
v* € F which renders min(0, Agv* — b)) = 0, Vk. Since
we assume V2 f(@*) > 0, we infer from (26) that the matrix
- C,, VZf(v*) € RN*N is Hurwitz, and therefore, v* is
locally asymptotically stable. (]
The above results apply to the case where the equilib-
rium point of the dynamics (18) is assumed to be feasible,
i.e., v* € F. The dynamics (18) do not innately guarantee this.
However, if the set F is positively invariant—by which we
mean that v(f = 0) ¢ F — wv(t) € F, Vt > O—then it is
possible to ensure v* € F by engineering the initial condition
to be feasible. If v* ¢ 9F, one straightforward means to
verify positive invariance is to check whether v - n < 0,
for all v € dF and vectors n € RN that are outward
normal to F. In our problem setting, this condition amounts
to V() TAT <0f, Yv e dF.
The linearized dynamics (26) also affords us the opportunity
to establish limits on time to converge to the optimal solution.
The solution to (26) can be expressed as

(26)

2 *
Av(t) =e RVCVV fov )[Avo.

Applying the Euclidean norm on both sides and using the
sub-multiplicative property of matrix norms,

V2 f*)e

lAv(@O]l2 = lle 22 Avel2

fnt
21l Avs |2

< ||e RVCV

27
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Define the convergence time, 7., to be the time taken for the
voltage vector to be within € > 0 away from the optimal, i.e.,

[Av(T)l2 < e.
To isolate 7., we consider the right-hand side of (27):

1 o2k
RVCVV f )Tc” |

lle 2llve — v*2 < e. (28)

Since we assume V2 f(v*) > 0, we obtain the eigendecompo-
sition V2 f(v*) = QAQT, where Q is an orthogonal matrix
and A is a diagonal matrix with non-negative eigenvalues.
Using this eigendecomposition and the unitarily invariant norm
property, we can write

CVV f* )rc” At Cy At

-
= Qe %5 Q'lla=le ®
Amin (V2 f (v*)7e

[

lI2
, (29)

1
<e RrC&

where Amin(V2 f(v*)) denotes the smallest eigenvalue of
V2 f(v*). Utilizing the inequality from (29) in (28) and
rearranging terms, we see that the convergence time is lower
bounded as follows

R, C, | (||vo—v*||2)
Tc = n .
)\mm(vzf(v*)) &

Equation (30) provides a lower bound on the convergence time
to reach an e-neighborhood of the optimal solution v*. We see
that the convergence time depends on the product R, C,,
the minimum eigenvalue of the Hessian matrix V2 f(v*),
Amin (V2 f(v*)), and the initial condition v, (specifically, the
distance between the initial condition and the optimal solution,
lvo — v*|l2). This lower bound can guide the selection of
circuit parameters R, , C), to achieve a desired convergence
time, given properties of the optimization problem encoded
within Apin (V2 f(v*)). It highlights, e.g., that problems with
a shallow optimum (smaller A\pi,) will take longer to converge
for a given R, C,.

Running Example (iv): Equilibria and Stability. Equilibria
of the circuit in Fig. 4 are given by the solution of the
following nonlinear algebraic equations

0] — vy + ll—o(v’f)2 +

(30)

2(0.5min(0, 0.5 v} + v3 — 0.5)
+ min(0, v + 0.5 v; — 0.4) + min(0, v})) =0, (3la)
0.4 + 203 — v} + 2 (min(0, 0.5 v} + v} — 0.5)

+ 0.5min(0, vj + 0.5 v5 — 0.4) + min(0, v3)) = 0,
(31b)

which are obtained by substituting V f(-), A, and b from (11)
and (4) in (20). These equations do not yield analytical closed-
form solutions, however, we can attempt to obtain solutions
numerically. For R,/R, = 102, we obtain a single solution:
(v],v3) = (0.336,0.325) that is very close to boundary 0.F
and we deem feasible. The Hessian at v* is

-1

2]

2 2 + T =1 _|2.067

viron =[P =[P
Evidently, V2 f (v*) > 0, which, given the result in Lemma 2,
indicates v* is locally asymptotically stable. Figure Sa illus-

trates contours of f(-) superimposed to vector fields of the
dynamics (18) within and outside the feasible set, F. Clearly,

(32)
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Fig. 5. Vector fields corresponding to dynamics (31) for:

@ Rp/Ro = 102 and (b) Rp/Ro = 10 superimposed to contours of
f (). Arrow lengths are rescaled for clarity; they are colored green within the
feasible set (marked F) and red outside (shaded gray and separated from F
by boundary dF). Optimal solution, v* = (0.336, 0.325) for R,/R, = 102
and v* = (0.302, 0.283) for R,/R, = 10. With higher R, /R,, there is more
impetus provided to the dynamics to migrate into the feasible set.

we have a unique minimum, and the trajectories are engineered
to drive the system to it. In Fig. 5b, we repeat the exercise, but
with R, /R, = 10. In this case, we obtain a minimum outside
the feasible set F; evidently, the trajectories that originate from
outside the feasible set do not receive as much of a nudge
into it as before. This illustrates the impact of parameter p
(congruently, R,/R,) on the circuit dynamics. ]

C. Impact of Delays

Taking particular care to annotate time parameterization,
the circuit dynamics in question are given collectively by the
ordinary differential equations (ODEs):

do(t)
&t R,C, (vf(”(’))

S 0,40 - 0)al). @
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Per the discussion in Section III-B, we suppose the gradi-
ent Vf(-) in (33) is sourced from a digital microcontroller
which presents a worst-case time delay of 7 > 0. This
delay originates from analog-to-digital (A/D) and digital-to-
analog (D/A) conversions and computation latency in the
digital microcontroller [54]. The circuit dynamics with such a
setup take the form

dv) 1

dr R,C,

(Vrwe -

K
+ % > min (0, Agv(r) — bk)AZ). (34)
° k=1

Dynamics of the form (34) are commonly called as delayed
differential equations (DDEs) in the literature [55], [56], [57].
They present non-trivial complexities compared to ODEs;
however, there is vibrant research in DDEs, with numerical
toolboxes available for their analysis and simulation [58], [59].

We are particularly interested in the stability of (34) as a
function of the delay, 7. To this end, one can linearize the
dynamics around an equilibrium point and compute eigenval-
ues of the resultant linearized model to glean insights into local
asymptotic stability. Denoting such an equilibrium point by v*,
and assuming it to be feasible, i.e., v* € F, the eigenvalues, A,
are given by the solution of the characteristic equation:

det ()\I] N+ eV f(v*)) —0, (35)

where det(-) denotes the determinant and Iy is the N x N
identity matrix. An important clarifying remark is in order.
Without the delay, the characteristic equation is given by

det ()\I]N + e sz(v*)) —0,

and we are assured A\ € CV. However, depending on the
problem setup and parameters, (35) may offer infinitely many
solutions to .

To improve the transient response of the realized hybrid
circuit, it is important to tune the product R, x C, . Decreasing
R, x C, makes the transient response faster. However, it is
crucial to ensure that the eigenspectrum of the circuit has all
eigenvalues lying strictly on the left-hand side of the complex
plane for the circuit to remain stable. If R, x C,, is set too
low for a fast transient response, the eigenvalues might move
to the right half of the complex plane, causing the circuit to
become unstable.

Running Example (v): Stability with Delays. Substituting

sz(v*) from (32) in (35) we get:
-1
])-o

A0 L |24 1t
det (|:0 )\} + &G, ¢ 3

which evaluates to the nonlinear algebraic equation:
1 - 1 2 =X
(vaye ' (2+ gvf) + )\) (RVCVe i )\)
2
1 - _
- (wee™) =0
The above equation is solved numerically for A within

the DDE-BIFTOOL MATLAB package, which facilitates
numerical bifurcation and stability analysis of DDEs [59].

. Downloaded on December 05,2024 at 16:57:30 UTC from IEEE Xplore. Restrictions apply.



SAWANT et al.: HYBRID-COMPUTING SOLUTION TO NONLINEAR OPTIMIZATION PROBLEMS

. x10°
b 4 X10°
X % 9] XX XX
Lot X x %
: X* >2<>2< 0
£ %;5 27 %% XX
0.5 V249 9 74_ ~ T
X >2<§< 2-10 1 2
X0 A
< 00 -
;?()& x>2(x
=0.5 % Xx >>S(<
)s:)(( >S<§ X 7 =500 us
—1.01 x)S( X& X T =525 ps
x X X 7 =575 pus
X 7 =600 pus
-15 : : — , | |
-8 -7 —6 -5 —4 -3 -2 -1 0 1
Re()\) %103

Fig. 6.

6563

0.6
E " 0.336
®0.21

0.0

06
=" AAAAAANAPARN o
= [V AR A Y Vo

021 A

0.0 I — 575 (5

0 10 20 f?fb ‘] 10 50 60

(Left) Eigenspectrum of the dynamics for the hybrid circuit in Fig. 4 for different delays T computed following the discussion in Running Example (v).

(Right) Time-domain simulations from PSpice for two delays, T = 525 us (stable, and settles to the optimal) and T = 575 us (oscillatory) are aligned with the
instability suggested by the eigenspectrum. Steady-state values from PSpice simulations for the stable case match those computed numerically and reported

in Running Example (iv). Initial conditions are (v, vp) = (0 V,0 V).

Figure 6 (Left) plots the eigenvalues for different delays, t.
For delays less than or equal to 550 us, all eigenvalues
remain in the left half of the complex plane, implying stable
dynamics. This is confirmed by the time-domain trajectories in
Fig. 6 (Right), which plots voltage trajectories for two different
delays, one verified to be stable (t = 525 us) and one unstable
(r =575 ps) per the analysis. |

D. Selection of Circuit Parameters

Three key circuit parameters featured in the dynamics (34),
R,,Cy, Ry, have to be designed. Note that R, appears as a
ratio and merely establishes a baseline for normalization. First,
we dwell on the design of parameters R, C), (equivalently,
hyperparameter y). Our approach involves determining the
Hopf bifurcation point attributable to tuning the parame-
ter y = (R),Cy)_l. This can be accomplished using the
DDE-BIFTOOL in MATLAB, given the known delay 7 intro-
duced by the digital circuit. Hopf bifurcation happens when a
pair of complex conjugate eigenvalues crosses the imaginary
axis, causing oscillatory behavior [52], [60]. We solve (34)
numerically using DDE-BIFTOOL to determine the critical
value of y. at which Hopf bifurcation occurs for the given
delay t [61]. Note that the penalty term p %, which
enforces constraint satisfaction, does not affect the H(;pf bifur-
cation point at the equilibrium point v* when the constraints
are satisfied. It suffices to select parameters R, C, such that
y < Y. to guarantee stability in the face of delays.

Next, we comment on the design of the penalty parameter p.
Several options may be considered [62], [63], [64], one that
we pursue is to tune this via frequency-domain analysis.
Since the penalty method requires high gain for constraint
enforcement, the natural impulse is to go with a high value
of p. However, this can have detrimental impacts on the gain
and phase margins of pertinent transfer functions. A natural set
of transfer functions to consider is the ones from the nodes
in the circuit, which establishes the constraints (nodes with
voltage —(Axv — by) in Fig. 2) to the optimization variables

(nodes with voltage vy in Fig. 2). Such analysis can readily
be performed in circuit simulation software such as PSpice.

Running Example (vi): Selection of Circuit Parameters.
The simulation results for determining the Hopf bifurcation
point and selecting y are as shown in Fig. 7a. The critical
value y. = 1000 s~! at which the Hopf bifurcation occurs
corresponds to a critical value of capacitance C,, = 100 nF
for R, = 10 k2. Any value of y < y. (C, > C,,) ensures
stability by keeping the eigenvalues in the left-half of the
complex plane up to a maximum delay of 550 us.

The simulation results containing Bode plots of the transfer
function from the constraint —(0.5 v; +v,—0.5) (at the bound-
ary of which the optimal solution lies) to the optimization
variable v; and v; for selecting p are as illustrated in Figs. 7b
and 7c. Note that of the four constraints, we pick the one on
which the solution lies to consider a worst case. The choice
p = 107 gives a phase margin of approximately 68° and a gain
margin of 27 dB for vy, and a phase margin of roughly 58° and
a gain margin of 29 dB for v,. This frequency domain analysis
uses a loop-at-a-time approach, which ensures stability if each
loop independently shows good margins. ]

V. VALIDATION: SELECTIVE HARMONIC MINIMIZATION

In this section, we provide simulation results and
experimental results from a hardware prototype of a
hybrid-computing solution to the selective harmonic mini-
mization (SHM) problem. As discussed in Section I, this
problem, in general, aspires to minimize an a priori-specified
number of harmonics from a pulse width modulated (PWM)
waveform (of relevance in power electronics circuits [65],
[66]). We begin with an overview of the problem, then present
results from a hardware prototype, and finally, we conclude
with simulation results that investigate scalability.

A. Optimization Problem

To introduce ideas, we examine the specific case of mini-
mizing the third harmonic in a quarter-wave symmetric PWM

Authorized licensed use limited to: California Polytechnic State University San Luis Obispo. Downloaded on December 05,2024 at 16:57:30 UTC from IEEE Xplore. Restrictions apply.



6564

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:

REGULAR PAPERS, VOL. 71, NO. 12, DECEMBER 2024

2000 = p=10] & p=10
= —_— =1 = —_ =10
3 S Ui 1= T p=10°
1000 £ ot 0| £ g
s 50 & —50
= =
= —100 : - —100 : .
= 04~ 10! 107 10° 10! 10° 10° 10! 107 10° 10! 10° 10°
k3
= | 180 180
i
! %
—1000 i = 0
1 2
i £ 180
i
—200! ! o e
S0 A 1500 2500 3500 4500 30 107 10° 10° 10° 0 %0 107 10° 10° 10° 100
v [571] Frequency (Hz) Frequency (Hz)
(a) (b) v1 (c) v
Fig. 7. (a) Bifurcation diagram showing the trajectory of the real part of the eigenvalue closest to the imaginary axis as a function of the parameter, y, for the

Running Example with a delay T = 550 us, obtained using DDE-BIFTOOL in MATLAB. Hopf bifurcation occurs at the critical value, yc

1000 s~ !; this

corresponds to a critical value of capacitance Cy, = 100 nF for R, = 10 k<. (b), (c) Bode plots of the transfer function from the circuit node corresponding
to constraint —(0.5 vy 4+ v, — 0.5) to the optimization variables vy, v, using PSpice simulation with LM324 op-amp model for various p values. The value
of p = 10?2 is selected based on the gain and phase margins denoted by Gy, and &y, respectively.

waveform with two switching angles while fixing the ampli-
tude of the fundamental frequency. Consider such a waveform,
o (wt), with switching angles denoted x1, x3, and the ampli-
tude of the fundamental frequency denoted u. Figure 8
provides an illustration for the case. The Fourier-series expan-
sion of o (wt) is given by

4 .
o(wt) = Z o (1 4+ 2 (cos(nxy) — cos(nxy))) sin(nwt).
n odd

By construction (see Fig. 8), we require

x1 20, x2>x1, x2<7.

(36)

Enforcing the amplitude of the fundamental frequency to u
(0 < u < 1) requires satisfying

u =142 (cos(x2) —cos(xy)). 37

Minimizing the third harmonic requires minimizing the
function

1 + 2 (cos(3xp) — cos(3x1)) . (38)

Problem objectives discussed in (36)—(38) can be combined
into the single optimization problem below (which fits the
template established in (1)):

min (1 4 2(cos(xz) — cos(x1)) — u)?
X1,X2
+ (1 + 2(cos(3xp) — cos(3x1)))2 (39a)
s.t. x1 >0, (39b)
x2—x1 >0, (39¢)
x> _%‘ (39d)

The generalized form of this SHM optimization problem,
which aims to minimize up to the N th harmonic is: [66]

N+1

xenul?ipglﬂ fx) = (1 +2 g(—l)i cos(x;) — M)2
2N+1 _N+1 ) 2
+ > (142D cose) oa)
n=3,5,7... i=1

o(wt) 2 Tt
+1 * ¢ — - —
ub - ]- k-
0 % T 3'27r 2 :Jt
—1 L L
} A

X ™=

Fig. 8. Quarter-wave symmetric PWM waveform, o (wt), with two switching
angles, x, x2, and amplitude of the fundamental frequency, .

E[]:
9f(v) 9f(v)
vy vy
R,22R, ‘.

o EPRTRTIE
LM741-based Circuit

Fig. 9. (Top) The circuit schematic to solve the SHM problem (39). The
circuit component values are Ro = Rjjm = Ry 1 = R35 = Ry = 10 kQ,
Ry 10 M€, and Cy 100 nF. (Bottom) Picture of the hardware
setup highlighting Plexim’s RT Box (that realizes the digital portion of the
hybrid-computing solution) and the LM741-based analog circuit.

s.t.0§x1§x2§~-~§xN+1§% (40b)

In this generalized formulation, the optimization variables are
collected in the vector x = [x, x7, . e RN*L
Recall that x; represents the i™

coanpl’
switching angle. The cost
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Fig. 10.

conditions are (v, vp) = (0.1 V,0.1 V) in all cases.

function, f(x), now includes the minimization of multiple
harmonics up to the N™ harmonic.

B. Hardware Prototype: Minimizing the 3'¢ Harmonic

A schematic of the hardware prototype of the hybrid circuit
intended to solve (39) is illustrated in the top portion of
Fig. 9. The gradient of the objective function is computed
using Plexim’s RT Box CE [67]. This choice is merely to

Eigenspectrum (left) and comparison of LTspice and experimental waveforms (right) for the hybrid computing solution with varying . Initial

facilitate rapid prototyping with different values of delay and
is not representative of a low-cost digital microcontroller that
can be leveraged for such an application. (In our prior work
that focused on demonstrating low power consumption and fast
convergence, we utilized the TI Delphino F28379D [12].) The
constraint and integrator circuits are realized with LM741 op-
amps. We also insert unity-gain op-amp circuits at the output
of op-amps implementing the min(:, -) function to ensure
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TABLE I

COMPARISON OF OPTIMA FOR VARYING p, DETERMINED
USING FMINCcON IN MATLAB COMPARED WITH
HYBRID-CIRCUIT SIMULATION IN LTSPICE

o fmincon LTspice

z7 [rad] 3 [rad] o [V] of [V]
0.4 0.696 1.084 0.696 1.084
0.6 0.685 0.959 0.685 0.959
0.8 0.524 0.698 0.523 0.698

adequate buffering [12], [15]. To ensure all op-amps operate
within the linear regime, even when dealing with high penalty
values for starting points outside the feasible region, we utilize
+15 V supply rails.

Plots in Fig. 10 show the eigenspectrum for three different
values of w; 0.4, 0.6, and 0.8, as well as corresponding
time-domain waveforms collected from LTspice and the exper-
imental prototype for three cases: (a) C, =470 nF, T = 6 us,
(b) C, =100 nF, T = 6 us, and (¢) C,, = 100 nF, T = 30 us.
As with Running Example (v), the eigenspectrum is obtained
via DDE-BIFTOOL in MATLAB [59]. We can make the
following inferences:

e Reducing C, for a fixed T makes the response faster

(compare Figs. 10(a) and (b)). Increasing t for a fixed
C, pushes the eigenvalues into the complex right-half
plane (compare Figs. 10(b) and (c)). Both simulations
and experiments feature oscillatory behavior in such a
setting.

o Steady-state values of the LTspice simulations for both
stable cases (i.e., Figs. 10(a)-(b)) are the same, and all
reported in Table I. (This is to be expected since the
equilibria of dynamics (18) are independent of C,.)
The steady-state values match numerically computed
optima obtained via MATLAB’s fmincon function, also
reported in Table I.

« Slight variations aside (to be expected with uncertainty
in estimating precise values of t applied using the RT
Box), trajectories from the physical hybrid circuit align
with the LTspice waveforms (particularly well in steady
state; steady-state values from the hardware realization
are reported alongside the trajectories in Figs. 10(a)-(c)).

« Even for the same values of R,, C,, and starting from
the same initial conditions, we get different rates of
convergence with different problem parameters w. This is
consistent with the theoretical convergence time 7. bound
in (30), which depends on the minimum eigenvalue Ap;,
of the Hessian matrix V2f(v*). For 4 =0.4,0.6,and 0.8,
we computed Api, to be approximately 7.1, 2.7, and 0.2,
respectively. The larger Api, for smaller p values aligns
with the faster convergence observed in experiments. This
highlights the influence of the problem parameters on the
convergence time, even when circuit parameters are fixed.

C. Simulation Study: Minimizing up to N™ Harmonic

Figure 11 depicts the generalized circuit realization that can
tackle the problem in (40) to minimize N harmonics with
N + 1 switching angles as optimization variables. Figure 12
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Fig. 11.  Circuit schematic for the generalized SHM problem. The circuit
parameters are R, = 10 k2, C;, = 100 nF (y = 1000 s_l) and Ry, = 10 k€,
Cy =470nF (y =213 s7h, Ry, = 10MQ, and Ry = Rjjm = Ry ¢ = 10k<2.

B 5 = 1000 7! (C, = 100 nF) 125
E 4 =2135! (C, =470 nF)

B 4 = 100057 (C, = 100 nF)
5 =2135! (O, =470 uF)

Time Delay, 7 (us)

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of Harmonics (N) Number of Harmonics (V)
(a) (b)
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% 48 8 ;
:i 36 6 %
b 7z
= 1A
2 £ Zom
=
0 -l 0.00 -
1 2 3 4 5 6 7 1 2 3 ! 5 6 7
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Fig. 12.  Key performance indicators and attributes of the hybrid computing
solution for SHM as a function of the number of harmonics minimized, N, for
modulation index, u = 0.9: (a) convergence time, 7, with initial conditions
identically set to zero in all cases (b) permissible digital-subsystem delay, t,
(c) required number of op-amps and associated power dissipation, and (d) error
in solutions compared to MATLAB’s fmincon function.

depicts a variety of performance indicators and attributes
as a function of N, the total number of harmonics that
are minimized, based on simulations performed in LTspice.
Figure 12a shows convergence time for two different choices
of y = (R, C,)~!. The two choices of y are the same as the
ones utilized in the experimental prototype in Section V-B. The
results illustrate that the higher value of N typically leads to a
longer convergence time for both choices of y. As illustrated
in Fig. 12b, the circuit exhibits a diminishing tolerance for
delays t introduced by the digital subsystem as the number
of optimization variables increases. The maximum bound on
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T required to maintain the stability of the output switching
angles (i.e., the optimization variables) was determined using
the delay function in LTspice simulations. While these two
trends are exponential, we recognize scalability in terms of
the required number of op-amps and power dissipation, both
of which grow linearly with N as indicated in Fig. 12c. The
power dissipation analysis was performed using the Universal
OpAmp2 model in LTspice with a power supply voltage of
415 V. It is worth noting that the power dissipation is a
function of the supply voltage and op-amp parameters, and
the reported values are specific to the chosen voltage level
and op-amp model. Finally, Fig. 12d indicates that the hybrid
computing solution achieves switching angles that closely
approximate those determined by fmincon (implementing
an interior-point algorithm) in MATLAB. The 2-norm of the
error between the two solutions is no more than 5% across
the board, validating the accuracy of the proposed hybrid
computing solution for real-time applications.

VI. CONCLUDING REMARKS & FUTURE WORK

This article presented a hybrid-computing solution for
solving constrained nonlinear optimization problems. By com-
bining operational amplifiers, discrete linear and nonlinear
circuit elements, and a digital microcontroller, we demon-
strated the construction of a hybrid circuit that realizes
gradient-flow dynamics for a penalty-based reformulation of
the original optimization problem. Analytical results estab-
lished the correspondence of the circuit’s equilibrium voltages
with the stationary points of the nonlinear optimization prob-
lem and the local asymptotic stability of these equilibria.
We also analyzed the stability of the circuit when time delays
representing the digital microcontroller were introduced. This
analysis is crucial for real-time applications where any delay
in the implementation of the gradient of the objective function
(whether analog or digital) can significantly impact the stabil-
ity of the circuit. The performance of this hybrid circuit was
validated with hardware experiments focusing on minimizing
the third harmonic from a pulse-width modulated waveform.

Future work includes investigating the stability of such
hybrid circuits in conjunction with the physical plant(s) they
are intended to operate alongside, benchmarking speed and
performance (e.g., energy efficiency) alongside digital solu-
tions in a systematic manner, as well as developing customized
solutions for real-time applications pertaining to power elec-
tronics (which is what prompted our forays into this area).
Putting forth circuit synthesis approaches and corresponding
analytical machinery for other problems, e.g., non-convex
problems and multi-objective problems, can also be pursued.
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