
communications earth & environment Article
A Nature Portfolio journal

https://doi.org/10.1038/s43247-025-02449-0

Climate-induced losses of surface water
and total water storage in Northeast Asia

Check for updates

Chenchen Zhang 1, Xiangming Xiao 1 , Xinxin Wang 2, Shuang Yi 3, Cheng Meng1,
Yuanwei Qin 1,4, Yuan Yao1, Leikun Yin5, Jorge Celis1, Li Pan1, Baihong Pan1, Xuebin Yang6 &
Jinwei Dong 7

Water shortages are intensifying globally due to climate change and human activities. Northeast Asia,
with diverse ecosystems and transboundary water systems, is particularly sensitive to these
pressures. Yet, the region’s water resource changes and drivers remain largely unknown. Here, we
integrate Landsat andSentinel-2 images,Gravity Recovery andClimate Experiment and its Follow-On
observations, climate and anthropogenic data, finding a net surface water area loss of 16 × 103km2 in
Far East Russia over 2000−2023, primarily driven by rising temperature and evaporative demand, and
a net surface water area gain of 3 × 103km2 in Northeast China, primarily driven by increasing
precipitation and irrigation infrastructure. Approximately 1004 0.5° gridcells (1.4 × 106km2) have
concurrent losses of surface water area and total water storage. Approximately 185 million people
reside in watersheds with surface water area or total water storage loss, underscoring the need for
sustainable water management under intensifying climate change and human activities.

Water resources are important for food security, energy production, eco-
nomics, biodiversity, and human and animal health1–3. Both surface water
(lakes, rivers, and reservoirs, etc.) and total water storage (TWS) are two of
the major metrics for water resources. Surface water is a major component
of the TWS4,5. Surface water area (SWA) and TWS are strongly inter-
connected and influenced by many processes, including precipitation,
runoff, evapotranspiration, and seepage. Many studies reported that some
regions in the world had losses of SWA and/or TWS, for example, the
Western United States6,7, North China8,9, and the Middle East10. Extreme
climatic events (floods, droughts) have considerable impacts on SWA and
TWS11,12. Continued global warming has increased the frequency and
severity of extreme climatic events13, causing devastating impacts on water
resources, natural ecosystems, and socio-economics14.

More thanhalf (52%)of global surfacewater is foundabove44°N latitude
of the Northern Hemisphere15, which includes Northeast Asia (NEA),
encompassing Far East Russia, Mongolia, Northeast China, Japan, South
Korea, and North Korea. NEA has abundant surface water and large trans-
boundary water systems, which are highly sensitive to human activities and

climate change, especially to extreme climatic events16. In addition, surface
water bodies andnearbywetlands inNEAserve as vital stopover and breeding
sites for migratory waterbirds along the East Asia–Australasia Flyway17, and
migratory waterbirds are victims and vectors of highly pathogenic avian
influenza (e.g., H5N1)18. Moreover, NEA remains relatively understudied in
terms of its contribution to the global water cycle19. Several local-scale studies
reported spatial-temporal dynamics of SWA in the NEA (< 60°N) and
explored their drivers20,21. A few regional-scale studies reported the spatial-
temporal dynamics of SWA and TWS, for example, China8 and Mongolia22.
Todate, the inter-annual trends anddrivers of SWAandTWS inNEAremain
poorly quantified, which prevents the community from fully understanding
thewater resources and implementing effectivemeasures for sustainablewater
use and management. As NEA is projected to have higher climate warming
and more extreme climate events23, which can amplify the changes of SWA
and TWS24, analyses of SWA and TWS dynamics in NEA are thus critical for
understanding the water-climate interaction and feedback.

Most analyses on the spatial-temporal dynamics of surface water used
the regional and global surface water datasets that were generated by
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analyzing satellite images, for example, MODIS25, Landsat26, and Sentinel-
227. However, the use of these data products in NEA often faces several
problems associated with the datasets, including moderate spatial
resolution25, infrequent update15,26, short temporal duration27, large and
irregular gaps in time series data25, and inaccuracies and uncertainties
caused by the datasets used in algorithm training26. To date, most of the
previous studies onwater resources inNEAhave been conducted at local or
regional scales22,28, and some of them reported on specific water types,
especially on lakes22,29. The limited spatial coverage and surface water types
could not reflect the overall information on the spatial-temporal dynamics
of water resources in NEA.

In this study, we aim to study the spatial-temporal dynamics of SWA
and TWS inNEA and investigate how climate change and human activities
affect the decadal-scale variability and trends in SWAandTWS.Wefirst use
all available Sentinel-2A/B and Landsat 5/7/8/9 imagery and a simple and
robust surface water mapping algorithm6,8,30 to identify surface water in
individual images and then calculate annual surface water frequency (SWF)
and generate annual yearlong surface water maps (SWF ≥ 0.75). We report
SWA calculated from annual yearlong surface water maps in NEA over the
period 2000–2023, as Landsat imagery in 1984–1999 could not fully cover
NEA (Supplementary Figs. 1, 2). Second, we quantify temporal SWA var-
iations and changes at multiple scales during 2000−2023 and estimate the
relative roles of climatic and anthropogenic drivers in determining these
variations and trends. Third, we explore the relationship between TWS and
SWA, where TWS was derived from the Gravity Recovery and Climate
Experiment and its Follow-On (GRACE/GRACE-FO) satellites31. We also
investigate the impact of extreme climate events (drought, flood) on SWA
andTWSbyusing the StandardizedPrecipitationEvapotranspiration Index
(SPEI) data, which takes into account both precipitation and potential
evapotranspiration32. Finally, we quantify the number of human popula-
tions and their growth living in those areas with SWA and TWS losses at
multiple scales.

Results
Annual maps of yearlong surface water at 10m/30m spatial
resolution during 2000–2023
We generated annual maps of surface water in NEA during 2000−2023
(Supplementary Fig. 3, Supplementary Note 1). Our annual maps of year-
long surfacewater for 2015–2023 at 10m spatial resolution and 2000−2014
at 30m spatial resolution have high accuracies with producer’s and user’s
accuracies of 97% and 98%, respectively, based on validation samples col-
lected in this study, and 91% and 98% using the GLanCE land cover sample
dataset (Supplementary Figs. 4, 5).

We cross-compared the annual yearlong surface water layers from
our datasets with the 250m MODIS land/water product (MOD44W) in
2000–201525, the 30m global surface water datasets released by the Joint
Research Center (JRC) in 2000–202115, the 90m global OSMWater Layer
in 201733, and the 10m ESRI global land cover dataset in 2017–202327

(Fig. 1, Supplementary Note 2). At the NEA scale, the SWA from
MOD44Wdatasetwas slightly smaller (4% ± 2%) than that from this study
(Fig. 1a), which can be attributed to the coarse spatial resolution (250m)
that may fail to identify small surface water bodies covering a limited
portion of the pixel (Supplementary Fig. 6a). The SWA from the JRC
dataset was 9%± 2%more than that from this study, particularly for those
years after 2013. The SWAfrom theOSMWater Layer (40%) and the ESRI
dataset (30% ± 3%) were much higher than that from our dataset, which
can be mainly attributed to the misclassification of seasonal or ephemeral
surface water (SWF < 0.75) to yearlong surface water (Supplementary
Fig. 6a–c). At the watershed level, the MOD44W and JRC were highly
consistent with our dataset with small deviation (slope = 0.96 × 103 and
1.08 × 103km2 year-1, R2 = 0.98 and 0.99, standard error (SE) = 0.004 × 103

and 0.003 × 103km2, respectively) (Fig. 1b). The SWA from the OSM
Water Layerwas inmoderate agreementwith those in our dataset with aR2

of 0.56. The SWA from the ESRI dataset was substantially higher than that
from our dataset with a slope of 1.20.

Inter-annual variations and changes of SWA across multiple
spatial scales
At the NEA scale, the inter-annual trend of SWA in NEA was large,
declining from ~204 × 103km2 in 2000 to ~188 × 103km2 in 2023, a net loss
of 16 × 103km2 or ~8% of SWA in 2000 (Fig. 2a). Specifically, the inter-
annual trends of SWA can be divided into two phases: an insignificant
slightly increasing phase between 2000−2010 and a significantly decreasing
phase between 2011−2023 (slope = -0.96 × 103km2 year-1). At the country/
sub-country scale, the inter-annual trends of SWA vary substantially. SWA
in Far East Russia accounts for 80% ± 0.3% of the total SWA in NEA and
experienced the largest loss, with a ~ 10% decline from 2000−2023 or a net
loss of 16× 103km2. SWA inFar East Russia dominated the overall net SWA
loss in NEA (Supplementary Fig. 7a), primarily due to its large land area
(SupplementaryFig. 7a, b).Mongolia and Japanhad significantlydecreasing
trends of SWA since 2000 with small trends of < 0.1 × 103km2 year-1.
Northeast China had a significantly moderate increasing SWA trend
(0.16 × 103km2 year-1), and North Korea had a slightly increasing SWA
trend. SWA in South Korea varied a lot over the years with no trend.

At the watershed scale, 37 watersheds (47% of the total of 79 water-
sheds) had significant SWA loss during 2000−2023, 14 watersheds (18%)
had significant SWA gain, and the remaining 28 watersheds (35%) showed
no trends (Fig. 2b, c). The SWA gain wasmainly found in watersheds along
Amur (Heilongjiang), Songhuajiang, and Herlen Rivers, and SWA loss was
primarily distributed in most of Far East Russia, west and north Mongolia,
and Japan.

At the 0.5° gridcell scale, 2509 gridcells (34%of the total 7321 gridcells)
had significantly decreasing SWA trends, whereas 786 gridcells (11%) had
significant increasing SWA trends. The remaining 4026 gridcells (55%)
showed no trends (Fig. 2d, e). Overall, the high latitudes inNEAhad a SWA
loss, whereas the polar region (north of 66°33’ N) and the mid-latitude
region (between 35° N and 55° N) gained SWA during 2000−2023.

Driving factors for inter-annual variationsand changes of SWAat
0.5° resolution
Air temperature and PET dominated 64% (33% plus 31%) of the gridcells
with SWA loss, whereas precipitation changes contributed 34% (Fig. 3a).
Agricultural water infrastructure34 and increased precipitation mainly
contributed to SWAgain inNortheast China (Fig. 3b). Air temperature and
PET changes dominated the SWA gain in regions excluding North-
east China.

Overall, the SWA in NEA declined at a net annual rate of -342.6 km2

year-1, of which air temperature and PET contributed 83% to the decline
(Fig. 3c). Within the total rate of -658.5 km2 year-1 in grids with SWA loss,
70% (-461.3 km2 year-1) is attributable to increasing air temperature and
PET (Fig. 3d). Gridcells with SWA loss had lower precipitation trends than
the overall average trend, but higher air temperature and PET trends than
the overall average trend (Fig. 3f, g). In contrast, amuchhigherprecipitation
trend than the overall and SWA loss regions resulted in 40% of the total
SWAincreasing trend,while a lowerwarming trend togetherwith anegative
PET trend led to 56% of the total increasing trend (Fig. 3e, h). The reservoir
construction explained 4% of the total increasing trend (Fig. 3e). In sum-
mary, increased air temperature and PETweremajor reasons for SWA loss,
while increased precipitation and agricultural water infrastructure devel-
opment dominated SWA gain.

Relationships between spatial-temporal changes of SWA and
TWS during 2002–2023 across multiple scales
We investigated the spatial-temporal changes of SWA and TWS and their
relationship during 2002–2023 in NEA. At the 0.5° grid scale, TWS
decreased significantly (P < 0.05) in 2629 gridcells (40% of 6555 gridcells)
with decline rates from -0.1 cm year-1 to -4.1 cm year-1. 896 gridcells (14%)
had significantly increasing TWS trends ranging from 0.1 cm year-1 to
1.1 cm year-1 (Fig. 4a, e). SWA trends during 2002–2023 (Fig. 4b, f) showed
similar spatial patterns with those during 2000–2023 (Fig. 2d, e) at 0.5°
gridcell scale, with 2006 gridcells (31%) showing a significant decrease with
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rates from -17.2 km2 year-1 to -10.3m2 year-1, and 731 gridcells (11%)
showing a significant increasewith rates from3.7m2 year-1 to 12.2 km2 year-1

(Fig. 4b). 1625 gridcells (25%)were experiencingTWS loss (SWAgain or no
trend), while 1004 gridcells (15%) experienced both TWS and SWA losses
(Fig. 4g). The linear regression models between TWS and SWA showed
significant positive correlations in 1245 gridcells (19%) with r-values ≥ 0.4
(Fig. 4c, d, h).

At the watershed scale (a total of 74 watersheds), hotspots of TWS
depletion (shown by large declining TWS trends,P < 0.05)were found in 32
watersheds in north Far East Russia and south Mongolia with declines
ranging from -2.0 to -0.1 cm year-1, and TWS gain was found in 10 water-
sheds along Amur (Heilongjiang) River and Songhuajiang River and in
centralMongoliawith rates from0.2 to 0.7 cmyear-1 (Fig. 4i, Supplementary
Fig. 9a). Significant SWA losses were found in 36 watersheds, whichmostly
overlap with, but extend beyond, the TWS losses, covering additional areas
in watersheds in northeast Far East Russia, west and north Mongolia, and
Japan with rates from -163 km2 year-1 to -636m2 year-1 (Fig. 4j, Supple-
mentary Fig. 9b). SWA gain was mainly found in 12 watersheds along the
Amur River and Songhuajiang River with rates from 0.007 km2 year-1 to
157 km2 year-1. 15watershedswere experiencingTWS loss (SWAgain or no
trend), which raised the concern for excessive groundwater withdrawal due
to agricultural irrigation or mining (Supplementary Fig. 9c). 17 watersheds
experienced both TWS and SWA losses, posing more serious challenges to
the environment and communities. The linear regression models between

TWS and SWA showed significant positive correlations (P < 0.05) in 20
watersheds (27%) with r-values ≥ 0.5 (Fig. 4k, l, Supplementary Fig. 9d).

We selected three representative watersheds with different SWA trends
to study SWA and TWS variations (Fig. 5a). Northeast China is China’s
important grain production base, and the Songhuajiang River Basin, located
in this region, is one of China’s seven major river basins35. The inter-annual
variations of SWA anomalies in the Songhuajiang River Basin reveal distinct
cycles of dry and pluvial periods (Fig. 5b), which aligned with documented
droughts (2001, 2007, 2011, 2014, 2017) and floods (2005, 2010, 2013,
2020)36–38. The first three droughts caused SWA to reach its lowest in 2002,
2008, and 2011, and then recovered to close to the 24 year average in 2006,
2010, and 2012 as SWA gradually increased. The 2014 drought caused SWA
to drop largely from 2013, leading to an extended drop in the following years
with negative SPEI values. This prolonged impact was further compounded
byanotherdrought in2017, resulting ina continuedSWAdecline. In contrast
to droughts, floods brought large and rapid SWA increases, and aided the
recovery of SWA to the average level in 2005 and 2010 with higher pre-
cipitation (Supplementary Fig. 10a). The 2013 and 2021 floods, in particular,
causedSWAto rise sharply,making itwell above theaverage.TWS followeda
similar pattern to SWA, more aligned in later years. This relationship high-
lights the sensitivity of regional water storage to climatic conditions.

SWA in the Great Lakes Depression in Mongolia declined during
2000−2002 due to La Niña-induced drought, and then recovered in 2003
because offlooding in that yearwithhighpositive SPEI (Fig. 5c). SWA in the
Great Lakes Depression started to decline substantially from 2003 onwards
with a rebound since 2016 and reached the lowest in2023, suggesting a long-
term reduction in SWA in the past two decades. TWS showed a similar
decrease with SWA but with larger variations during 2006−2013. Sig-
nificant SWA and TWS depletions are mainly attributed to exacerbated
water loss due to climate change-related temperature warming, reduced
precipitation, and intensified drought22,39 (Supplementary Fig. 10b). In
addition, the retreat of snowpack and glaciers in theAltaiMountains caused
by rising temperatures has diminished thewater inflow to rivers and lakes40.

SWA in awatershed in the arctic of Far East Russia experienced a slight
increase with fluctuation during 2000−2009 as SPEI increased (Fig. 5d).
Significantly warmer temperatures led to thermokarst (ground collapse and
subsidence) in ice-rich permafrost environments that subsequently filled
with water, leading to lake expansion and SWA increase in this phase41,42.
SWA experienced a significant decrease from 2009 through 2017 as lake
water rapidly drained into the subsurface due to thinning and eventual
breaching of permafrost near lakes43–45. The 2018 extreme flood aided SWA
to rapidly recover to average levels. TWS showed a similar pattern with
SWA but with larger variations.

Human populations affected by the spatial-temporal changes of
SWA and TWS
Water resources are important for human society. In 2020, about 109
million people (32% of the total population in NEA, 338million) resided in
0.5° gridcellswith SWAloss,whereas 63million (19%)people resided in 0.5°
gridcells with TWS loss (Fig. 6a, Supplementary Fig. 11a–c). Given the
spatial complexity ofwater allocation systems and the fact that humanwater
use behavior often extends beyond local water sources near settlements and
relies on wider networks of water resources, we further analyzed the rela-
tionship between changes in water resources and population at the water-
shed scale (Supplementary Fig. 11d-f). 140million (42%) people were living
in watersheds with SWA loss. In comparison, 56million (17%) people were
living in watersheds with TWS loss (Fig. 6b). During 2000−2020, the
population in NEA had grown by 17million with a rate of 0.84 million
year-1. Among this, it was estimated that there were over half (51%) of the
population growth was in gridcells with SWA loss and over one-quarter
(26%) in gridcells experiencing both significant SWA and TWS losses
(Fig. 6c, Supplementary Fig. 12a–c). 15% of the population growth was
found in watersheds with SWA loss, and roughly one-third (31%) in
watersheds with TWS loss (Fig. 6d, Supplementary Fig. 12d–f).

a

b

Fig. 1 | Inter-annual dynamics of yearlong surface water area (SWA) inNortheast
Asia during 2000−2023. a SWA comparison with other surface water datasets at
the Northeast Asia level. b SWA comparison with other surface water datasets at the
watershed level. SE indicates standard error. Linear regressions used data from the
years available for each dataset, i.e., MOD44W (2000−2015), JRC (2000−2021),
OSM Water Layer (2017), and ESRI (2017−2023).
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In 2020, densely populated countries/sub-countries, including Japan,
Northeast China, and South Korea, had large numbers of people affected by
SWA loss and/or TWS loss (Fig. 6e, f). In contrast, sparsely populated
countries/sub-countries, including Far East Russia and Mongolia, experi-
enced relatively fewer people impacted by water resource losses. Although
North Korea had a large population density, the number of people affected
by SWA or TWS loss was comparatively low, as most 0.5° gridcells and
watersheds within the country did not show significant water loss. During
2000–2020, Japan, Northeast China, and South Korea experienced sub-
stantial population growth in both 0.5° gridcells andwatersheds undergoing
SWA and/or TWS decline (Fig. 6g, h). This was followed by moderate
population increases in Mongolia and North Korea. In contrast, Far East
Russia exhibited population decline in regions affected by water resource
loss. All estimates involving TWS are conservative because pixels at the sea-
land boundary are removed due to leakage errors across coastlines.

Discussion
We used 24-year satellite observations to investigate long-term SWA and
TWS dynamics, revealing widespread declines in SWA and TWS in NEA.
Prior to this study, SWA and TWS changes in Far East Russia, Japan, and
North and South Korea remained poorly understood, as previous studies
have mainly focused on water quality rather than water resource
availability46,47. Our study could provide a basis and insights for water
resource changes in these regions.

The resultant yearlong surface water maps of 10m resolution post-
2015and30mresolutionpre-2015 in this studyprovide a robust foundation
for capturing fine-scale SWA changes. In regions with complex and frag-
mented water bodies, finer spatial resolution (10m) Sentinel-2 data may
showslightlymore informationon the edgeof surfacewaterbodies or small-
sized surface water bodies (< 30m) than does 30m Landsat data. However,
for the large spatial scales and annual aggregation used in our analysis, the
impact of spatial resolution differences on long-term trend consistency is
minimal. Therefore, while some local discrepancies are possible, the overall
SWA change trends presented are robust (Supplementary Note 3, Supple-
mentary Fig. 13).

Our findings extend previous knowledge onTWSdynamics48. First, we
update the assessment period to 2023 by integrating GRACE and GRACE-
FO data, thereby extending the work48 on TWS up to 2016. Extending the
observational record is critical for capturing more recent trends, especially
under intensifying climate change. Second, in addition to TWS, our study

simultaneously analyzes SWAdynamics, a key component of thewater cycle
that directly influences ecosystem health and biodiversity. Third, our results
are complementary to the previous work48, collectively demonstrating a
continuousdecline inwater resources acrosshigh-latitude regions from2002
to 2023. Together, these contributions provide a more comprehensive and
up-to-date understanding of long-term water resource changes in NEA.

Our results reveal consistent losses of SWA and/or TWS across several
countries/sub-countries. While Far East Russia exhibited an overall
decreasing trend in SWAduring 2000–2023, the polar region experienced a
SWA increase, aligningwith previous studies that reported rising lake water
levels49 and increasing water storage50. These findings provide multi-
dimensional evidence of water gain in the polar region. SWA in Mongolia
has been decreasing since 2000, whichwas also observed in a study focusing
on the SWA in the Mongolian Plateau from 1987 to 2010, despite different
water identification methods being applied22. Reduced precipitation and
drier andwarmer climates have been recognized as themajor drivers for the
SWA decline in Mongolia22,39, which is consistent with the attribution
analysis in our study (Fig. 3a). We found that warmer temperatures and
increased PET accounted for 70% of SWA losses, which, together with
projected drier and warmer climate51,52 and resulting increased drought,
emphasizes the importance of considering climate change impacts in the
management of future surface water resources.

Our results also reveal that climate change and human activities have
increased SWA in certain countries/sub-countries. For example, in North-
east China, increased precipitation and agricultural water infrastructure
construction dominated the SWA gain4 (Fig. 3b). This finding is consistent
with the previous study which investigated SWA trends across China from
1989 to 20168. When combined with our results extending to 2023, the
evidence suggests a continuous increase in SWA in Northeast China since
the 1980s. However, some previous studies have reported varying decreases
in SWA or TWS in certain lakes and reservoirs53,54. As China’s largest
granary, agricultural development in Northeast China plays an important
role in China’s social economy, and thus extensive agricultural water
infrastructure (irrigation) has been developed. The water resources in
NortheastChina could be further enriched due to positive SPEI (Fig. 5b) and
agricultural structure adjustment in recent years, which has gradually
reduced the cultivation area of paddy rice, themostwater-consuming crop55.

While climate-driven factors were identified as the primary drivers of
SWA changes across NEA, the influence of human activities may be
underestimated, particularly in densely populated countries/sub-countries
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trends of SWA at the 0.5° gridcell scale.

https://doi.org/10.1038/s43247-025-02449-0 Article

Communications Earth & Environment |           (2025) 6:479 4

www.nature.com/commsenv


such as Northeast China, Japan, and South Korea. Limited long-term
datasets on groundwater use, agricultural practices, and food production
across NEA over the full study period (2000–2023)56–58 constrained our
ability to fully quantify anthropogenic impacts. Future studies should
incorporate emerging datasets on irrigation, groundwater depletion, and
land use change to better separate human and climate influences on water
dynamics.

The water system can become vulnerable due to an imbalance in
supply and demand, caused by a changing climate and increasing popu-
lation. The water demand increases with the increasing population growth
and concentration, rising temperature59, and extreme events60, but the
water supplymay decrease as a result of climate change (Figs. 3, 5). Regions
with large population densities but TWS and/or SWA losses should pay
more attention to water source conservation and management. One
obvious example is Japan. Even though Japan has constructed many dams
and associated reservoirs (Supplementary Fig. 14), SWA still faces sig-
nificantlydecreasing trends (Fig. 2a),whichmay indicate that the reliability
of water supply from reservoirs is decreasing in Japan, presenting chal-
lenges to water managers. In addition, climate change has increased the
frequency of extreme events61, posing additional water management
challenges6,8,62. Given the changing climatic conditions, risk analysis and

sustainable water management practices are required to better match
available supplies and future demand63.

Water resource shortage has been becoming more severe worldwide,
and land-water systems in NEA are more sensitive to global change and
human activities. Our surface water dataset at 30m/10m spatial resolution
for NEA during 2000−2023 is a reasonably accurate, updated, reliable, and
spatially detailed dataset. Temporal SWA dynamics in NEA had a stagnant
but varying phase between 2000−2010 and a significantly large decreasing
phase between 2011 and 2023, attributedmostly to the large loss in Far East
Russia. Increased air temperature andPETare responsible for the SWA loss.
Increased precipitation and agricultural water infrastructure dominate
SWAgain, as shownby themoderate gain inNortheastChina.TWSshowsa
similar temporal dynamic with SWA but differs in significance. As a large
number of people (e.g., 185million in 2020) reside in those watersheds with
SWA or TWS loss, our surface water dataset and the research findings on
SWA and TWS dynamics can be used to support data-driven sustainable
watermanagement inNEA.The observed SWA/TWSdeclines, especially in
densely populated countries/sub-countries like Japan,Northeast China, and
South Korea, highlight growing water stress under climate change and
human pressure, emphasizing the need for integrated management strate-
gies that consider both environmental and demographic changes.
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Fig. 3 | Attribution of net change, gross loss, and gross gain of yearlong surface
water area (SWA) inNortheast Asia at 0.5° gridcells. aDominant drivers for SWA
loss. b Dominant drivers for SWA gain. The insert pie charts in (a and b) show the
proportion of each driver. c Trends in SWA net change induced by each driver in
Northeast Asia. dTrends in SWA loss induced by each driver. eTrends in SWA gain
induced by each driver. f Trends of annual total precipitation (mm year-1), annual
total potential evapotranspiration (mm year-1), annual average air temperature (°C

year-1), and reservoir area (km2 year-1) in Northeast Asia. g Trends of each predictor
in gridcells with SWA loss. h Trends of each predictor in gridcells with SWA gain.
Error bars represent the trend uncertainties at a 95% confidence interval. Precip,
Temp, and PET denote precipitation, air temperature, and potential evapo-
transpiration, respectively. Note that temperature and PET are highly correlated
(Supplementary Fig. 8), but they were plotted separately.
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Methods
Study area
NEA includes 6 countries and sub-country regions: Far East Russia, Mon-
golia, Northeast China, Japan, South Korea, and North Korea (Supple-
mentary Fig. 15a). NEA covers > 10million km2 of land and comprises 338
million (about one-twentieth) of the world population in 2020. Its topo-
graphy varies substantially, ranging from the mountainous regions (Mon-
golian Plateau, Stanovoy Range, Verkhoyansk Mountains, Kolyma
Mountains, Greater KhinganMountains) to the immense plains (Northeast
China Plain, Kanto Plain) and the coastal regions (Supplementary Fig. 15b).
Its climate also varies extensively from the arctic climate in Far East Russia to
the temperate climate in Japan. Air temperature varies from extremely cold
in the north to warm in the south, and precipitation is relatively low in Far
East Russia and Mongolia, moderate in Northeast China and the Korean
Peninsula, and high in Japan (Supplementary Fig. 15c, d).

Landsat and Sentinel-2 image data
We acquired all available Landsat 5/7/8/9 surface reflectance (SR) images
from January 1, 1984, to December 31, 2023, in NEA (~ 592,000 images)

in the Google Earth Engine (GEE) platform. Observations with cirrus,
clouds, and cloud shadows were identified as bad-quality observations by
using the observation quality attributes (QA_PIXEL band) generated
from the CFMASK algorithm. Observations with snow/ice were also
identified by using the criteria that SRnear-infrared >0.11 and normalized
difference snow index (NDSI) > 0.4. The Copernicus 30 m Digital Ele-
vation Model data (GLO-30), along with the solar azimuth and zenith
angles of each Landsat image, were used to identify those pixels with
terrain shadows6,8. The resultant bad-quality, snow-affected, and terrain-
shadow observations were then excluded from data analyses for identi-
fying surface water.

We also acquired Sentinel-2A/B SR data for 2019–2023 (~ 1,506,000
images) and top of atmosphere (TOA) data for 2015–2018 (~ 558,000
images) inNEA (note that no SRdatawere available prior to 2019 inNEA
at the time we did image data analyses). Bands of QA60 bitmask band,
Sentinel-2 associated Cloud Probability Collection (S2_CLOUD_-
PROBABILITY), blue band (SRblue > 0.2), and SceneClassification (SLC)
band were integrated to identify clouds, cloud shadows, and cirrus in the
SR images. QA60 bitmask band, Cloud Probability Collection, and blue
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Fig. 4 | Trends of yearlong surface water area (SWA) and total water storage
(TWS) and their linear regression at 0.5° gridcell and watershed levels during
2002−2023 with t-test at the 5% significance level. a Trends of TWS at the 0.5°
gridcell scale. b Trends of SWA at the 0.5° gridcell scale. c Slopes of linear regression
of TWS (dependent variable) over SWA (independent variable) at the 0.5° gridcell
scale. d r-values of linear regression of TWS over SWA at the 0.5° gridcell scale.
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gridcell scale. i Trends of TWS at the watershed level. j Trends of SWA at the
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band were used to identify clouds and cirrus in the TOA images,
as the SLC band is not available in Sentinel-2 TOA images.
Observations affected by snow/ice and terrain shadows in Sentinel-2
images were identified by the same algorithms applied in Landsat
images. The bad-quality, snow-affected, and terrain-shadow
observations were then excluded from data analyses for identifying
surface water.

The availability of Landsat and Sentinel-2 images varies in space and
time (Supplementary Figs. 1, 2).We analyzed all the images for 1984−2023.
As large proportions of NEA were not covered fully with Landsat images
during 1984−1999, in this study we only reported the results for the entire
NEA over 2000−2023.

Normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), and modified normalized difference water index (mNDWI)
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Fig. 6 | Percentages of population and their trend inNortheastAsiawith different
water resource conditions. a, b Percentages of population inNortheast Asia in 2020
residing in (a) 0.5° gridcells and (b) watersheds with different surface water area
(SWA) and total water storage (TWS) trend conditions. c, d Percentages of popu-
lation trends during 2000–2020 in (c) 0.5° gridcells and (d) watershedswith different

SWAandTWS trend conditions. e, fPopulation in 2020 affected by SWA loss and/or
TWS loss in each country/sub-country summarized by (e) 0.5° gridcells and (f)
watersheds. g, h Population trend in (g) 0.5° gridcells and (h) watersheds with SWA
loss and/or TWS loss in each country/sub-country.

a

d

b

c

d

c b

0 1,000
km

P <0.05
Significance

-143 -20 400 10 20 150

SWA slope (km2 year-1)

-40 -10

Fig. 5 | Yearlong surface water area (SWA), total water storage (TWS), and the
standardized precipitation-evapotranspiration index (SPEI) at the
watershed scale. a Distribution of the selected watersheds, background is SWA

trend slopes during 2000–2023. b-d Time series SWA anomaly, TWS anomaly, and
SPEI for (b) Songhuajiang River Basin in Northeast China, (c) Great Lakes
Depression in Mongolia, and (d) a watershed in the Arctic in Far East Russia.

https://doi.org/10.1038/s43247-025-02449-0 Article

Communications Earth & Environment |           (2025) 6:479 7

www.nature.com/commsenv


were calculated for individual good-quality observations using Eqs. (1)–(3).

NDVI ¼ NIR� Red
NIRþ Red

ð1Þ

EVI ¼ 2:5×
NIR� Red

NIRþ 6Red � 7:5Blueþ 1
ð2Þ

mNDWI ¼ Green� SWIR
Greenþ SWIR

ð3Þ

where Blue,Green, Red,NIR, and SWIR are values of blue, green, red, near-
infrared, and shortwave-infrared bands for Landsat and Sentinel-2 images.

Total water storage (TWS) data
TheGravity Recovery and Climate Experiment (GRACE) and its follow-on
(GRACE-FO)GRCTellus JPLMascon products (RL06.1Mv03)31 were used
to measure and monitor total water storage (TWS) during 2002–2023.
GRACE/GRACE-FO missions provide monthly liquid water equivalent
thickness (LWET) anomalies relative to the 2004.0-2009.999 time-mean
baseline, which represents the deviations of mass in terms of the vertical
extent of water in centimeters. The datasets have a spatial resolution of 0.5°
by 0.5° (latitude and longitude). Missing epochs in GRACE/GRACE-FO
were filled using the Singular SpectrumAnalysis (SSA) gap-fillingmethod64,
which handles time series data with missing samples by exploiting the
temporal correlation of the available ones. LAND_MASK.CRI file was
applied to mask out the ocean pixels to avoid leakage errors across coast-
lines. The gap-filledmonthly LWETdata during 2002–2023were then used
to calculate annual average TWS, which were used to explore trends and
their relationship with SWA over the same period.

We also calculated the annual average TWS without gap-filling and
compared TWS trends with and without gap-filled data to quantify the
impacts of gap-filling (Supplementary Note 4, Supplementary Fig. 16).

Climate data
The Standardized Precipitation Evapotranspiration Index (SPEI) was
designed to consider both precipitation and potential evapotranspiration
and can capture the major impacts of increased temperatures on water
demand. The 12month accumulative SPEI (the sum of the SPEI for
December and the previous 11months) during 2000−2022 was acquired
from the global 0.5° SPEI database (SPEIbase) v2.932 to investigate the effect
of climate change on SWA and TWS in NEA at the watershed scale.

0.1° daily accumulated precipitation (liquid and frozen water, includ-
ing rain and snow) and 2m air temperature were derived from
fifth-generation reanalysis (ERA5-Land) daily aggregated data from the
European Center for Medium-Range Weather Forecasts (ECMWF) to
calculate the annual total precipitation and annual average temperature
during 2000–2023, which were used as predictor variables in the ridge
regression models for inter-annual variations of SWA in NEA.

Monthly potential evapotranspiration (PET) data were acquired from
the TerraClimate datasets65. We calculated the annual total PET during
2000−2023.

Reservoir data
Reservoir datawere acquired from theGlobalDamWatch (GDW)database
v1.066. There were 1225 reservoirs in NEA, and 869 of them had the
information on construction year (Supplementary Fig. 14). We calculated
the reservoir area for each year to explore its contribution to the changes of
SWA at the 0.5° gridcell scale during 2001−2022.

Human population data
We acquired 30 arc-second ( ~ 1 km) human population data for the years
2000, 2005, 2010, 2015, and 2020 from the Gridded Population of World
Version 4 Revision 11 (GPWv4.11)67. This dataset contains estimates of the

number of persons per square kilometer consistent with national censuses
and population registers.

Surface water body identification algorithm
In this study we used the mNDWI/VIs-based surface water detection
algorithm, defined as [water = (mNDWI >NDVI or mNDWI > EVI) and
(EVI < 0.1)]6,68, to detect and map surface water bodies in NEA, which has
already been implemented to study surface water changes in the state of
Oklahoma, US30, the contiguous United States6, and China8 with high
accuracy. The surfacewater bodywasfirst identified using themNDWI/VIs
algorithm in individual pixels of each image in a single year, and then we
calculated the annual surface water frequency (SWF) for each pixel for
2000−2023, respectively. SWF, ranging from 0 to 1, is the ratio of the
number of surface water body observations to the number of good-quality
observations in a year. For each year, water pixels with SWF ≥ 0.75 were
defined as yearlong surface water bodies6,68. Landsat images were used to
generate surfacewatermaps for 2000–2014with a spatial resolutionof 30m,
andLandsat andSentinel-2 imageswere integrated to generate surfacewater
maps for 2015−2023with a spatial resolution of 10m as Sentinel-2 imagery
has been available since 2015 onwards. The Landsat images since 2015were
resampled to 10m using the nearest neighbor method to be spatially con-
sistent with the Sentinel-2 images.

Accuracy assessment of surface water body maps
The stratified random sampling approach was used to collect validation
sample points for the accuracy assessment of our yearlong surface water
maps. Referring to the validation strategy of the Joint ResearchCenter (JRC)
surface water dataset15 which considered the small spatial extent of inland
water surfaces and its intrinsic spatial-temporal variability, we collected one
reference dataset to estimate the producer’s accuracy (PA, the measure of
omission error) and one to estimate the user’s accuracy (UA, themeasure of
commission error). To generate the sample collection for PA estimation, we
first divided NEA into 7321 gridcells (0.5° × 0.5°). Using the 2000 global
30m inlandwater bodydataset (GLCF)69 as the reference surfacewatermap
to indicate areas with a high probability of surface water occurrence, a
potential yearlong surface water point was randomly selected within the
GLCF layer in each gridcell. We randomly assigned each point a year of
2000−2023 and then visually examined the time series of Landsat/Sentinel-
2 imagery in GEE and very high spatial resolution (VHSR) imagery in
Google Earth for that year, only points with confirmed year-round pre-
sences of water were used to estimate the PA of yearlong surface water.

To generateUA estimation samples, we first assigned a randomyear of
2000−2023 for each gridcell. For each gridcell, the yearlong surface water
map generated using our mNDWI/VIs algorithm for that year was used as
the reference map, and a point was randomly generated within the surface
water map. The year-round presence of surface water for each point in the
assigned year was visually checked by the time series of Landsat/Sentinel-2
and Google Earth VHSR imagery. Finally, 4424 samples were collected for
PA estimates and 6680 samples for UA estimates (Supplementary Fig. 4).

Cross-comparison with other surface water datasets
Surfacewater thematicdatasetsand surfacewater layers fromtheglobal land
cover products were used for cross-comparison with our yearlong surface
water dataset in terms of accuracy, area, and spatial distribution (Supple-
mentary Note 2, Supplementary Figs. 5, 6). We acquired the MODIS land/
water mask 250m product (MOD44W V6)25 which is derived using a
decision tree classifier trained with MODIS data and is available for 2000-
2015. We also acquired the permanent water layers from the 30m global
surface water datasets released by the JRC from 2000 to 202115, which were
generated using Landsat 5/7/8 images. The global 90mOSMWater Layer33

was generated by extracting surface water features from OpenStreetMap
(OSM) as of January 2018, so its area was compared with our 2017 water
map. Yearlong surface water layers from ESRI 10m global land cover for
2017−202327were collected, whichwere generated through 10mSentinel-2
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annual scene collections, billionsof human-labeledpixels, anddeep learning
models.

We conducted accuracy assessments for the yearlong surface water
maps from this study, MOD44W, JRC, OSM water layer, and ESRI land
covermaps, using bothmanually collected validation samples and the global
land cover sample dataset (GLanCE)70 (Supplementary Note 2, Supple-
mentary Fig. 5).

Statistical analyses
Yearlong SWA was calculated based on the annual yearlong surface water
maps during 2000−2023 for each 0.5° gridcell, watershed, country/sub-
country, and entire NEA. The SWA trends during 2000−2023 and
2002−2023 and TWS trends during 2002−2023 were analyzed using the
Mann-Kendall test with a confidence level of 95%. The relationships between
TWS and SWA at 0.5° gridcell and watershed scales were calculated and
analyzed through linear regression with a t-test at the 5% significance level.

Ridge regression was conducted to quantify the contribution of the
potential climatic and anthropogenic predictors to SWA changes during
2001−2022. We constructed the ridge regression model between annual
SWA change and climatic (annual total precipitation, annual average
temperature, and annual total potential evapotranspiration) and anthro-
pogenic (reservoir area) predictors for 0.5° gridcells. The annual SWA
changewas calculatedas the difference between the SWA in the current year
and that in the previous year. The relative contribution of each driver was
calculated as the absolute value of the standard ridge regression coefficient
for each factor divided by the sum of the absolute values of all standardized
regression coefficients for all drivers. The dominant driver was defined as
the driver with the largest relative contribution, which explains the most
variation in SWAchanges. The contribution of each driver to SWAchanges
is calculated by multiplying the slope of the SWA trend by its relative
contribution. We summarized the contribution of each driver in gridcells
with significant SWA trends. Before performing ridge regression, all inde-
pendent variableswereZ-scorenormalized to facilitate comparisonbetween
independent variables of different units and magnitudes.

Data availability
The annual yearlong surface water maps71 can be accessed at Figshare.
Landsat images, including Landsat 5 ThematicMapper, Landsat 7 Enhanced
Thematic Mapper-plus, Landsat 8 Operational Land Imager, and Landsat 9
Operational Land Imager 2, are available from the US Geological Survey at
http://earthexplorer.usgs.gov. Sentinel-2 images, including Sentinel-2A and
Sentinel-2B, are available from the Copernicus Data Space Ecosystem at
https://dataspace.copernicus.eu/. The GRACE and its follow-on (GRACE-
FO) GRCTellus JPL Mascon products (RL06.1Mv03) can be downloaded
from NASA Jet Propulsion Laboratory (JPL) at https://grace.jpl.nasa.gov/.
The Standardized Precipitation Evapotranspiration Index (SPEI) dataset is
available from http://sac.csic.es/spei/. The ECMWF fifth-generation reana-
lysis (ERA5-Land) daily aggregated data are available at https://developers.
google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_
DAILY_AGGR. The TerraClimate dataset is available fromClimatology Lab
at https://www.climatologylab.org/terraclimate.html. The Global Dam
Watch (GDW) database v1.0 is available at https://www.globaldamwatch.
org. The Gridded Population of World Version 4 Revision 11 (GPWv4.11)
can be downloaded from https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4. All the data except the GDW dataset are also available from the
Google Earth Engine platform at https://earthengine.google.com.

Received: 7 February 2025; Accepted: 5 June 2025;

References
1. Brown, C. & Lall, U. Water and economic development: The role of

variability and a framework for resilience. Nat. Resour. forum. 30,
306–317 (2006).

2. Ahrens, A. K., Selinka, H.-C., Mettenleiter, T. C., Beer, M. & Harder, T.
C. Exploring surface water as a transmission medium of avian
influenza viruses–systematic infection studies in mallards. Emerg.
Microbes Infect. 11, 1250–1261 (2022).

3. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water
CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9,
222–226 (2016).

4. Tao, S. et al. Changes in China’s water resources in the early 21st
century. Front. Ecol. Environ. 18, 188–193 (2020).

5. Getirana, A., Kumar, S., Girotto,M. &Rodell,M.Rivers and floodplains
as key components of global terrestrial water storage variability.
Geophys. Res. Lett. 44, 10,359–310,368 (2017).

6. Zou, Z. et al. Divergent trends of open-surface water body area in the
contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci.
USA 115, 3810–3815 (2018).

7. Averyt, K. et al. Sectoral contributions to surface water stress in the
coterminous United States. Environ. Res. Lett. 8, 035046 (2013).

8. Wang, X. et al. Gainers and losers of surface and terrestrial water
resources inChina during 1989–2016.Nat. Commun. 11, 1–12 (2020).

9. Feng, W. et al. Evaluation of groundwater depletion in North China
using the Gravity Recovery and Climate Experiment (GRACE) data
and ground-based measurements.Water Resour. Res. 49,
2110–2118 (2013).

10. Khaki,M. &Hoteit, I. Monitoringwater storage decline over theMiddle
East. J. Hydrol. 603, 127166 (2021).

11. Huang, L., Zhou, P., Cheng, L. & Liu, Z. Dynamic drought recovery
patterns over the Yangtze River Basin. Catena 201, 105194 (2021).

12. Smith, A. B. & Katz, R. W. US billion-dollar weather and climate
disasters: data sources, trends, accuracy and biases. Nat. Hazards
67, 387–410 (2013).

13. Lee, H. et al. IPCC, 2023: Climate Change 2023: Synthesis Report,
Summary for Policymakers. Contribution ofWorkingGroups I, II and III
to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (Core Writing Team, Lee, H. & Romero, J.) 1−34
(IPCC, Geneva, 2023).

14. Koncagül, E., Connor, R. & Abete, V. The United NationsWorldWater
Development Report 2024: Water For Prosperity And Peace, Vol. 153
(UNESCO Digital Library, 2024).

15. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution
mapping of global surface water and its long-term changes. Nature
540, 418–422 (2016).

16. Ha,K.-J.,Kam,J.,Watanabe,M.,Zhou,T.&Dong,W.GrandChallenges in
Earth Science: TheWeather–Climate–SocietyNexus overNortheast Asia.
Bull. Am. Meteorol. Soc. 104, E1956–E1961 (2023).

17. Yi, K. et al. Using tracking data to identify gaps in knowledge and
conservation of the critically endangered Siberian crane
(Leucogeranus leucogeranus). Remote Sensing 14, 5101 (2022).

18. Newman, S. H. et al. Migration of whooper swans and outbreaks of
highly pathogenic avian influenza H5N1 virus in eastern Asia. PLoS
ONE 4, e5729 (2009).

19. Sogno, P., Klein, I. & Kuenzer, C. Remote sensing of surface water
dynamics in the context of global change—a review. Remote Sens.
14, 2475 (2022).

20. Ohba,M., Arai, R., Sato, T., Imamura,M.&Toyoda,Y. Projected future
changes in water availability and dry spells in Japan: Dynamic and
thermodynamic climate impacts.Weather Clim. Extremes 38, 100523
(2022).

21. Zhang, X. et al. Understanding the shift in drivers of terrestrial water
storage decline in the central Inner Mongolian steppe over the past
two decades. J. Hydrol. 636, 131312 (2024).

22. Tao, S. et al. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl
Acad. Sci. USA 112, 2281–2286 (2015).

23. Sun, X. et al. Asian climate warming since 1901: observation and
simulation. Clim. Res. 91, 67–82 (2023).

https://doi.org/10.1038/s43247-025-02449-0 Article

Communications Earth & Environment |           (2025) 6:479 9

http://earthexplorer.usgs.gov
https://dataspace.copernicus.eu/
https://grace.jpl.nasa.gov/
http://sac.csic.es/spei/
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR
https://www.climatologylab.org/terraclimate.html
https://www.globaldamwatch.org
https://www.globaldamwatch.org
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://earthengine.google.com
www.nature.com/commsenv


24. Park, H. et al. Quantification of warming climate-induced changes in
terrestrial Arctic river ice thickness and phenology. J. Clim. 29,
1733–1754 (2016).

25. Carroll, M. et al. MOD44W: Global MODISwater maps user guide. Int.
J. Digit. Earth 10, 207–218 (2017).

26. Pickens, A. H. et al. Mapping and sampling to characterize global
inland water dynamics from 1999 to 2018 with full Landsat time-
series. Remote Sens. Environ. 243, 111792 (2020).

27. Karra, K. et al. Global land use/land cover with Sentinel 2 and deep
learning. In 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS. 4704−4707 (IEEE, 2021).

28. Kim,D. et al.Monitoring river basindevelopmentandvariation inwater
resources in transboundary ImjinRiver inNorthandSouthKoreausing
remote sensing. Remote Sens. 12, 195 (2020).

29. Sumiya, E. et al. Changes in water surface area of the lake in the
Steppe region of Mongolia: a case study of Ugii Nuur Lake, Central
Mongolia.Water 12, 1470 (2020).

30. Zou, Z. et al. Continued decrease of open surface water body area in
Oklahomaduring 1984–2015.Sci. Total Environ.595, 451–460 (2017).

31. Landerer, F. W. et al. Extending the global mass change data record:
GRACE follow-on instrument and science data performance.
Geophys. Res.Lett. 47, e2020GL088306 (2020).

32. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A
multiscalar drought index sensitive to global warming: the
standardized precipitation evapotranspiration index. J. Clim. 23,
1696–1718 (2010).

33. Yamazaki, D. et al. MERIT Hydro: A high-resolution global
hydrographymap based on latest topography dataset.Water Resour.
Res. 55, 5053–5073 (2019).

34. Xinhua News Agency. Building An Efficient Water-saving Irrigation
Network In Northeast China’s Grain-producing Region Holds Promise
For Reducing Reliance On Rainfall-dependent Agriculture. https://
www.gov.cn/jrzg/2011-11/07/content_1987695.htm. (2011).

35. Li, X.,Wellen,C., Liu,G.,Wang, Y. &Wang, Z.-L. Estimationof nutrient
sources and transport using Spatially Referenced Regressions on
Watershed Attributes: a case study in Songhuajiang River Basin,
China. Environ.l Sci. Poll. Res. 22, 6989–7001 (2015).

36. Gao, J. & Gao, H. Influence of the northeast cold vortex on flooding in
Northeast China in summer 2013. J. Meteorol. Res. 32, 172–180
(2018).

37. Wang, H. & He, S. The north China/northeastern Asia severe summer
drought in 2014. J. Clim. 28, 6667–6681 (2015).

38. Chen, X., Jiang, J. & Li, H. Drought and flood monitoring of the Liao
River Basin in Northeast China using extended GRACE data. Remote
Sens.10, 1168 (2018).

39. Kang, S., Lee, G., Togtokh, C. & Jang, K. Characterizing regional
precipitation-driven lake area change in Mongolia. J. Arid Land 7,
146–158 (2015).

40. Pan,C.G. et al. Glacier recession in theAltaiMountains ofMongolia in
1990–2016.Geografiska Annaler Series A Phys. Geogr. 100, 185–203
(2018).

41. Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research.
Permafrost and Periglacial Processes 24, 108–119 (2013).

42. Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E.
Geomorphological and climatic drivers of thermokarst lake area
increase trend (1999–2018) in the Kolyma lowland yedoma region,
north-eastern Siberia. Remote Sens. 13, 178 (2021).

43. Smith, L. C., Sheng, Y., MacDonald, G. & Hinzman, L. Disappearing
arctic lakes. Science 308, 1429–1429 (2005).

44. Webb, E. E. et al. Permafrost thawdrives surfacewater decline across
lake-rich regions of the Arctic. Nat.Clim. Change 12, 841–846 (2022).

45. Liu, A., Chen, Y. & Cheng, X. Monitoring thermokarst Lake Drainage
dynamics in northeast siberiancoastal tundra.RemoteSens.15, 4396
(2023).

46. Fan, M. & Shibata, H. Simulation of watershed hydrology and stream
water quality under land use and climate change scenarios in Teshio
River watershed, northern Japan. Ecol. Indicators 50, 79–89 (2015).

47. Mainali, J. & Chang, H. Landscape and anthropogenic factors
affecting spatial patterns of water quality trends in a large river basin,
South Korea. J. Hydrol. 564, 26–40 (2018).

48. Rodell, M. et al. Emerging trends in global freshwater availability.
Nature 557, 651–659 (2018).

49. Xu, N. et al. Satellite observed recent risingwater levels of global lakes
and reservoirs. Environ. Res. Lett. 17, 074013 (2022).

50. Xu, N., Li, W., Gong, P. & Lu, H. Satellite altimeter observed surface
water increase across lake-rich regions of the Arctic. Innovation 5,
100714 (2024).

51. Solomon, S. Climate Change 2007-the Physical Science Basis:
Working Group I Contribution To The Fourth Assessment Report Of
The IPCC. Vol. 4 (Cambridge university press, 2007).

52. Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J. & Di
Cosmo, N. Pluvials, droughts, the Mongol Empire, and modern
Mongolia. Proc. Natl Acad. Sci. USA 111, 4375–4379 (2014).

53. Fang, Y. et al. Assessment of water storage change in China’s lakes
and reservoirs over the last three decades. Remote Sens. 11, 1467
(2019).

54. Yao, F. et al. Satellites reveal widespread decline in global lake water
storage. Science 380, 743–749 (2023).

55. National Bureau of Statistics. China Statistical Yearbook. https://
www.stats.gov.cn/sj/ndsj/ (2024).

56. Yu, Q. et al. A cultivated planet in 2010: 2. the global gridded agricultural
production maps. Earth Syst. Sci. Data Discus.2020, 1–40 (2020).

57. Qin, X., Wu, B., Zeng, H., Zhang, M. & Tian, F. Global gridded crop
production dataset at 10 km resolution from 2010 to 2020. Sci. Data
11, 1377 (2024).

58. Wu, H. et al. AsiaRiceYield4km: seasonal rice yield in Asia from 1995
to 2015. Earth Syst. Sci. Data Discus. 2022, 1–30 (2022).

59. Arnell, N. W. Climate change and water resources in Britain. Clim.
Change 39, 83–110 (1998).

60. Wang, X., Xiao, X., Zhang, C., Dong, J. & Li, B. Effects of the 2022
extreme droughts on avian influenza transmission risk in Poyang
Lake. Innov. Life 1, 100044 (2023).

61. Forsee,W.J. &Ahmad,S. Evaluatingurbanstorm-water infrastructure
design in response to projected climate change. J. Hydrol. Eng. 16,
865–873 (2011).

62. Kalra, A. & Ahmad, S. Evaluating changes and estimating seasonal
precipitation for the Colorado River Basin using a stochastic
nonparametric disaggregation technique.Water Resour. Res. https://
doi.org/10.1029/2010WR009118 (2011).

63. Dawadi, S. & Ahmad, S. Evaluating the impact of demand-side
management on water resources under changing climatic conditions
and increasing population. J. Environ. Manage. 114, 261–275 (2013).

64. Yi, S. &Sneeuw,N. Filling thedata gapswithinGRACEmissions using
singular spectrum analysis. J. Geophys. Res. Solid Earth 126,
e2020JB021227 (2021).

65. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C.
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015. 5, 1–12 (2018).

66. Lehner, B. et al. The Global Dam Watch database of river barrier and
reservoir information for large-scale applications. Sci. Data 11, 1069
(2024).

67. Earth Data. Center for International Earth Science Information
Network Gridded Population of the World Version 4 (GPWv4):
Population Count. https://sedac.ciesin.columbia.edu/data/
collection/gpw-v4 (2024).

68. Wang, X. et al. Mapping coastal wetlands of China using time series
landsat images in 2018 and google Earth engine. ISPRS J. Photogr.
Remote Sens. 163, 312–326 (2020).

https://doi.org/10.1038/s43247-025-02449-0 Article

Communications Earth & Environment |           (2025) 6:479 10

https://www.gov.cn/jrzg/2011-11/07/content_1987695.htm
https://www.gov.cn/jrzg/2011-11/07/content_1987695.htm
https://www.gov.cn/jrzg/2011-11/07/content_1987695.htm
https://www.stats.gov.cn/sj/ndsj/
https://www.stats.gov.cn/sj/ndsj/
https://www.stats.gov.cn/sj/ndsj/
https://doi.org/10.1029/2010WR009118
https://doi.org/10.1029/2010WR009118
https://doi.org/10.1029/2010WR009118
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
www.nature.com/commsenv


69. Feng, M., Sexton, J. O., Channan, S. & Townshend, J. R. A global,
high-resolution (30m) inlandwater bodydataset for 2000: First results
of a topographic–spectral classification algorithm. Int. J. Digital Earth
9, 113–133 (2016).

70. Stanimirova, R. et al. A global land cover training dataset from 1984 to
2020. Sci. Data 10, 879 (2023).

71. Zhang,C.&Xiao,X.AnnualYearlongSurfaceWater inNortheastAsiaFrom
2000 to 2023, https://doi.org/10.6084/m9.figshare.28848458.v1 (2025).

Acknowledgements
This study was in part supported by grants from the U.S. National Science
Foundation (1911955, 2200310), the National Key Research and
Development Program of China (2023YFF0806900), and the Natural
Science Foundation of China (32330065). The publication fee was provided
in part by the University of Oklahoma Libraries’ Open Access Fund.

Author contributions
X.X.andC.Z. conceptualized the study.C.Z. carriedout thedataprocessing.
C.Z. and X.X. led the result interpretation andmanuscript writing. X.W., S.Y.,
C.M., Y.Q., Y.Y., and L.Y. contributed to the data processing. C.M., J.C.,
L.P., B.P., X.Y., and J.D. contributed to the result interpretation and
discussion. All authors discussed and revised the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-025-02449-0.

Correspondence and requests for materials should be addressed to
Xiangming Xiao.

Peer review information Communications Earth and Environment thanks
NanXu, andChaoWang for their contribution to the peer reviewof thiswork.
Primary Handling Editor: Alireza Bahadori. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s43247-025-02449-0 Article

Communications Earth & Environment |           (2025) 6:479 11

https://doi.org/10.6084/m9.figshare.28848458.v1
https://doi.org/10.6084/m9.figshare.28848458.v1
https://doi.org/10.1038/s43247-025-02449-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsenv

	Climate-induced losses of surface water and total water storage in Northeast Asia
	Results
	Annual maps of yearlong surface water at 10 m/30 m spatial resolution during 2000–2023
	Inter-annual variations and changes of SWA across multiple spatial scales
	Driving factors for inter-annual variations and changes of SWA at 0.5° resolution
	Relationships between spatial-temporal changes of SWA and TWS during 2002–2023 across multiple scales
	Human populations affected by the spatial-temporal changes of SWA and TWS

	Discussion
	Methods
	Study area
	Landsat and Sentinel-2 image data
	Total water storage (TWS) data
	Climate data
	Reservoir data
	Human population data
	Surface water body identification algorithm
	Accuracy assessment of surface water body maps
	Cross-comparison with other surface water datasets
	Statistical analyses

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




