

1 https://doi.org/10.1130/G52679.1
2 Manuscript received 13 August 2024
3 Revised manuscript received 1 October 2024
4 Manuscript accepted X Month 2024
5 Brenna Halverson[[ID](#)]<https://orcid.org/0009-0009-7766-7384>
6 *halversonbrenna@gmail.com
7 CITATION: Halverson, B.A., and Whittington, A., 2024, From flow to furnace: Low viscosity
8 of three-phase lavas measured at Kīlauea 2018 eruption conditions: *Geology*, v. XX, p. XXX–
9 XXX, <https://doi.org/10.1130/G52679.1>
10 Printed in the USA
11 ¹Supplemental Material. **[Please provide a brief description here.]** Please visit
12 <https://doi.org/10.1130/GEOL.S.XXXX> to access the supplemental material; contact
13 editing@geosociety.org with any questions.
14 © 2024 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY
15 license ([remove if not applicable](#)).
16 From flow to furnace: Low viscosity of three-phase lavas
17 measured at Kīlauea 2018 eruption conditions
18 **Brenna A. Halverson^{1,*} and Alan Whittington¹**
19 ¹*Department of Earth and Planetary Sciences, The University of Texas at San Antonio, One
20 UTSA Circle, San Antonio, Texas 78255, USA*
21 **ABSTRACT**

22 Melt composition, temperature, and crystallinity are often seen as the three most
23 important characteristics driving lava rheology, which controls eruptive behavior. Traditional
24 methods of measuring the viscosity of crystallizing basalts often yield different mineral
25 characteristics to natural samples and are typically bubble-free. To quantify the viscosity of
26 basalts inclusive of bubble and crystal cargo, we developed a new technique to measure high-
27 temperature three-phase isothermal lava viscosity and applied it to samples from the 2018
28 eruption of Kīlauea. This new experimental technique begins at subliquidus temperatures,
29 preserving original phenocrysts. A short experimental duration allows for the retention of most
30 of the original bubble population (19%–31% vs. 36% in the original lava) and accurate
31 replication of crystal textures from field samples, as documented in quenched postexperiment
32 samples. The observed rheological behavior in these experiments, conducted at syneruptive
33 temperatures (1150–1105 °C) and strain rates (0.4–18 s⁻¹), should therefore be representative of
34 the lava flows. We measured **red** average viscosities of 116 Pa·s at 1150 °C to 167 Pa·s at 1115 °C,
35 **i.e.**, only 10%–25% higher than calculated liquid viscosities at those temperatures, and a
36 maximum of 1800 Pa·s at 1105 °C. These results are much lower than viscosity measured in
37 traditional bubble-free experiments, which plateaued at ~14,000 Pa·s at 1115 °C. Our results
38 suggest the effect of bubbles in three-phase magmas may be greater than predicted by models
39 based on two-phase bubbly liquids, and **this effect** must be included in realistic lava flow
40 rheology models. The method proposed here supplies a framework for providing the necessary
41 experimental constraints.

42 INTRODUCTION

43 Characterization of lava viscosity is crucial for modeling lava flow emplacement and
44 hazards (e.g., Cappello et al., 2016; Chevrel et al., 2018[[Not in the reference list.]]). Lavas

45 consist of crystals and/or bubbles in a silicate melt, where changes in temperature, melt
46 chemistry, and size, shape, and abundance of bubbles and crystals can result in large variations in
47 rheological behavior (e.g., Mader et al., 2013; Kolzenburg et al., 2022). Experiments on two- and
48 three-phase analog materials (e.g., Truby et al., 2015; Pistone et al., 2016; Birnbaum et al., 2021)
49 are used to measure the impact of bubbles and crystals on suspension rheology but are limited in
50 their ability to emulate the complexity of magmatic systems.

51 Laboratory experiments measuring the viscosity of basaltic lavas near eruption
52 temperatures (~1200–1100 °C) account for changes in temperature and melt composition (e.g.,
53 Sehlke et al., 2014; Soldati et al., 2016; Kolzenburg et al., 2022). Traditional isothermal
54 subliquidus experiments first heat samples above the liquidus and then cool to and hold samples
55 at the target temperature until viscosity plateaus, which often takes ≥ 10 h (e.g., Ryerson et al.,
56 1988; Ishibashi and Sato, 2007; Chevrel et al., 2015[[Not in the reference list.]]; Sehlke and
57 Whittington, 2015). The initial high temperatures and long experimental duration result in a loss
58 of bubbles, phenocrysts, and phases such as olivine, which are difficult to grow in atmospheric
59 conditions (e.g., Mourey and Shea, 2019), creating a measured lava with very different textural
60 characteristics than the parent lava.

61 While field measurements of basaltic lava viscosity have been conducted in situ (e.g.,
62 Chevrel et al., 2018[[Not in the reference list.]]; Harris et al., 2024), these are limited to lava
63 flow margins, where thermal gradients and flow advance result in brief measurements of cooling
64 lava. The lack of high-temperature three-phase lava measurements thus leaves a gap in our
65 ability to accurately model lavas at flow conditions.

66 Here, we present a new technique for the measurement of high-temperature three-phase
67 isothermal (HTTPI) lava viscosity at syneruptive temperatures (~1145 °C; Gansecki et al., 2019)

68 and strain rates (2–3 s⁻¹; Dieterich et al., 2021), in which the original textures of the basaltic
69 lavas are well replicated, and our results demonstrate that viscosities of lavas at emplacement
70 conditions are likely lower than estimates from traditional experimental methods.

71 **METHODS**

72 Samples along the fissure 8 flow field of the 2018 eruption of Kīlauea (Neal et al., 2019)
73 were collected in January 2020, with emplacement dates determined from unoccupied aircraft
74 system (UAS) video and thermal imaging during the eruption (Desmither et al., 2021; Patrick,
75 2024). A single sample (F8.13) collected ~2 m below the flow surface was used as the starting
76 material for all viscosity experiments. This sample is chemically indistinct from the rest of the
77 flow (see X-ray fluorescence [XRF] data in Supplemental Material¹) and provides a
78 homogeneous, highly crystalline, and moderately vesicular (~34%) starting material.

79 Viscometry experiments were conducted using an Orton 1700 RSV viscometer, with a
80 Brookfield HB head. A wide-gap concentric cylinder geometry was used, with iron-saturated
81 Pt90:Rh10 alloy crucibles of ~70 mm height by 31 mm internal diameter, and alumina spindles
82 sheathed in 7.4-mm-external-diameter iron-saturated Pt90:Rh10. At the start of each
83 measurement, the spindle was immersed to 20 mm depth. Rotation rate was determined by the
84 user, and the viscometer recorded the torque. This resulted in pairs of stress and strain rate data,
85 the ratio of which is referred to as “apparent viscosity,” as the material is often non-Newtonian.

86 We first conducted a “traditional” isothermal experiment. For this, an ~60 g aliquot of
87 roughly crushed (5 mm to 2 cm diameter) F8.13 was heated to 1500 °C at 10 °C/min, held for 30
88 min, cooled to 1115 °C at 10 °C/min, and then held for 9 h until viscosity stabilized.

89 In contrast, the HTTPI experiments began by placing the crucible directly into a
90 preheated furnace at 1175 °C (below the experimentally determined liquidus of 1200–1190 °C)

91 for ~20 min, until a visual inspection indicated no solid rock remaining. The spindle was
92 immersed in the sample, and the furnace temperature was lowered at 10 °C/min to the target
93 temperature (1150 °C, 1115 °C, or 1105 °C) immediately thereafter. Thermal equilibration of the
94 sample was determined by a plateau in the apparent viscosity, ~5 min after the furnace reached
95 the target temperature in each experiment. This is consistent with the experimental dimensions
96 and low thermal diffusivity of basaltic lava, i.e., ~0.3–0.5 mm² s⁻¹ (Hofmeister et al., 2016).

97 Once viscosity stabilized, the strain rate was varied every 2–3 min between 0.44 and 18
98 s⁻¹, depending on the experiment, to quantify non-Newtonian behavior (see Supplemental Data).
99 The spindle was subsequently removed, and the sample quenched within 3 min of the end of
100 experiment by partial immersion of the crucible in water for ~30 s. Total duration above room
101 temperature was constrained to <1 h to ensure minimum bubble loss and oxidation.

102 After quenching, samples were removed from crucibles using a diamond-coated core
103 drill, mounted on glass slides, and polished. These were imaged in reflected light with a Meiji
104 Techno MT9000 polarizing microscope, at a resolution of 0.36 µm/pixel. Images were mosaiced
105 using Fiji® Image Stitching (Preibisch et al., 2009) and Adobe Photoshop®. Characterization of
106 the abundance, size, and shape of crystals and bubbles was done using Dragonfly® software.
107 Deep learning methodology (Halverson, 2024) was used for fast, large-scale segmentation across
108 the samples. This image segmentation, with 30 min of manual refinement, resulted in
109 uncertainties of <<1% area crystallinity. Subsequent **crystal size distribution (CSD)** calculations
110 to examine crystal size and shape similarity between experimental and natural samples used
111 HabitEST (Liu et al., 2018[[Not in the reference list.]] to approximate crystal habit, and
112 CSD Corrections (Higgins, 2000) to calculate CSD graphs. Uncertainties were approximated by
113 $2\sigma = 2\sqrt{N}$, where N is the number of crystals in each size range (Higgins, 2000; Gualda, 2006).

114 **RESULTS**115 **Textural Analysis**

116 Crystallinity of the recovered HTTPI samples decreased from ~14% at 1175 °C to ~6% at
117 1150 °C, indicating continued melting during cooling to target temperature (Table 1). However,
118 crystallinity increased to ~13% at 1115 °C and surpassed the zero-time sample to reach ~31% at
119 1105 °C. Material recovered from the 1115 °C traditional method was different to both the zero-
120 time and HTTPI experimental products, with little to no vesicularity, plagioclase, or olivine, and
121 higher oxide and pyroxene contents relative to HTTPI samples. This matches the assemblage
122 from traditional experiments in controlled fO_2 conditions obtained by Soldati et al. (2021b).

123 Vesicularity decreased from 36% at 1175 °C to ~19% at 1150 °C and 1115 °C. The 1105
124 °C experiment retained 31% bubbles, likely related to its higher crystal fraction. Recovered
125 vesicles in the 1150 °C and 1115 °C HTTPI experiments were spherical, due to a calculated
126 relaxation time of <1 s, while at 1105 °C, the bubbles were more deformed (Fig. 1). The latter
127 experiment had a maximum relaxation time of <3 s, indicating that crystal impingement may
128 have contributed more than bulk viscosity to their morphology (Supplemental Data).

129 Comparison of natural and experimental textures indicates that we can re-create natural
130 crystalline modal abundances and morphologies and achieve similar vesicularities to those seen
131 in distal portions of the flow (Table 1). The crystal assemblage of the 1105 °C experiment
132 resembles the quenched margin of sample F8.11, collected 14 km downflow. This surface-
133 quenched ooze-out structure provides the best estimate for textures present within the flow
134 without overprinting from postemplacement crystallization, which was seen in F8.13. While
135 crystallinity is lower in the HTTPI experiment than in F8.11 (31 vs. 42 area %), we achieved
136 very similar phase assemblages to those seen in the natural sample (Fig. 2; Table 1). CSDs

137 calculated for both **assemblages** show that plagioclase distributions are statistically
138 indistinguishable (Fig. 2). The narrow (<2 mm) quenched margin in the natural sample precludes
139 the presence of large pyroxene crystals.

140 The vesicularities of the samples, especially at 1105 °C, were similar to F8.25b, an ‘a’ā
141 sample collected ~13 km from the vent on the lava delta of the fissure 8 flow. This sample has
142 ~26% vesicularity, falling within those recorded from the experimental samples. It also exhibits
143 partially spherical and merging bubbles, similar to those in HTTPI **lava at** 1105 °C (Fig. 1).

144 **Viscosity Measurements**

145 The viscosity measured during the traditional experiment started at 262 Pa·s, which is
146 slightly higher than the HTTPI experiment at the same temperature. It slowly increased after this,
147 with some brief plateaus at ~970, ~1365, and ~7780 Pa·s, until reaching ~14,000 Pa·s 9 h later.
148 This experiment is consistent with previous subliquidus studies on Kīlauea 2018 lavas, as we
149 measured ~82 Pa·s at 1130 °C during cooling, compared to 77–132 Pa·s measured while holding
150 at 1130 °C by Soldati et al. (2021b).

151 The apparent viscosity of the HTTPI experiments increased with decreasing temperature,
152 from an average of 116 Pa·s at 1150 °C, to 167 Pa·s at 1115 °C, to 397–1800 Pa·s at 1105 °C,
153 depending on strain rate. Viscosity became strongly shear-thinning at 1105 °C, as indicated by
154 large variations with changing strain rate (Fig. 3A; Supplemental Material).

155 At 1115 °C, the viscosity of the HTTPI experiment was nearly two orders of magnitude
156 lower than that at the end of the traditional method. This difference is far greater than could be
157 explained by the difference in total crystallinity (17% traditional vs. 13% HTTPI). Even if the
158 long equilibration time of the traditional method is ignored, and viscosity is recorded at the first
159 plateau, there was still a more than factor of 5 difference between the two methods (~955 Pa·s

160 for traditional method vs. \sim 167 Pa·s for HTTPI). This difference reflects two key textural
161 differences: the crystal size and shape distribution, and the presence of bubbles.

162 DISCUSSION

163 Our measured three-phase lava viscosities ~~were~~ \sim 116 Pa·s at 1150 °C and \sim 167 Pa·s at
164 1115 °C, for <15% crystals and <20% bubbles. Liquid viscosities for fissure 8 calculated using
165 the VFT **[[Please spell out VFT here.]]** fit to the data of Soldati et al. (2021a) ~~were~~ 86 and 162
166 Pa·s, i.e., only slightly lower, indicating that the effects of crystals and bubbles largely offset
167 each other in these experiments (Supplemental Data). Higher bubble fractions, as seen in the
168 active channel (e.g., 71%; Dietterich et al., 2021), are expected to result in even lower effective
169 **[[apparent?]]** viscosities, which severely increase rapid inundation hazards.

170 While bubble loss occurred in all HTTPI samples, it only noticeably affected viscosity
171 measurements at 1150 °C, where viscosity decreased by 0.15 log units over 14 min. This is
172 commensurate with the lower bound of a 8 ± 2 mm decrease in the immersion depth of the
173 spindle calculated from the 16% vesicularity decrease from the zero-time material.

174 The apparent viscosity of the 1115 °C HTTPI experiment was a factor of \sim 5 to \sim 70 lower
175 than the apparent viscosity of the 1115 °C traditional experiment, depending on which viscosity
176 plateau was chosen. Contributing factors included a small difference (\sim 4.5%) in crystal fraction,
177 a difference in crystal assemblage, and the addition of \sim 20 vol% bubbles. Previous experimental
178 studies of bubbly lavas indicated that the maximum effect of bubbles on viscosity is up to one
179 order of magnitude difference (e.g., Lejeune et al., 1999; Stein and Spera, 2002). Using the
180 traditional method with a crystal-bearing fluid as the effective medium (Mader et al., 2013) and
181 applying the equation of Llewellyn and Manga (2005) for the effect of bubbles, ~~we would predict~~
182 a relative viscosity of 0.71–0.87 for the 1115 °C HTTPI experiment (dependent on strain rate and

183 effective medium viscosity; see Supplemental Data). This is at most a 29% decrease in viscosity
184 relative to the traditional method, whereas we measured an 82%–99% lower relative viscosity.

185 In principle, three-phase lava rheology can also be modeled starting from the liquid
186 viscosity, using the fit to data from Soldati et al. (2021a). We first applied the Maron and Pierce
187 (1956) equation using these values to calculate the crystal liquid suspension viscosity. We used
188 this as the effective medium and applied Llewellyn and Manga (2005) as above. The predicted
189 viscosities agree with our measurements at 1150 °C, and 1105 °C, where both model and
190 measurements vary strongly with strain rate (Fig. 3B). At 1115 °C, however, this method still
191 resulted in a 70%–80% overestimation in three-phase viscosity. This indicates that bubbles may
192 have a stronger effect upon viscosity of crystal-bearing suspensions than is suggested by current
193 models, in certain crystallinity/vesicularity regimes. This effect should be greater in samples with
194 larger bubbles and higher total vesicularity, especially at low crystallinity as seen in active flows,
195 indicating that current models may overestimate lava flow viscosity.

196 The larger effect of bubbles on the three-phase viscosities seen in experiments over
197 modeled viscosity may be due to strain partitioning into highly deformable bubbles (e.g.,
198 Holtzman et al., 2012). During three-phase rheology experiments on haplogranites, Pistone et al.
199 (2012) **[Not in the reference list.]** observed shear-thickening behavior at low strain rates (5.13
200 $\times 10^{-5}$ to $1.04 \times 10^{-4} \text{ s}^{-1}$), and shear-thinning behavior at high strain rates (4.81×10^{-4} to $9.25 \times$
201 10^{-4} s^{-1}) for “dilute” suspensions of <44% crystals and 10%–12% vesicularity. The transition
202 between shear thickening and thinning was attributed to strain partitioning into deformable
203 bubbles at high strain rates, where the small bubble radii (~ 5 – $50 \mu\text{m}$) and low strain rates of
204 those experiments likely drove the shear-thickening behavior. Given the fact that our HTTP1
205 experiments had higher bubble contents, lower crystallinity, and larger average bubble radii

206 (~200–300 μm), the 4-log-unit higher strain rate of our experiments would result in strain
207 partitioning into the bubble phase, causing strong deformation and viscosity decreases.

208 The HTTPI experiments presented here resulted in very similar crystal populations to
209 those seen in distal samples from the fissure 8 flow field and retained significant bubble volume
210 fractions. In order to match lower-crystallinity and/or much higher-vesicularity samples from
211 closer to the vent, it may be necessary to use a starting material that is more similar to those
212 textures. While we found it easier to retain bubble populations at higher crystallinity, highly
213 vesicular samples from basaltic lava flows are often very crystal poor. The effect of bubbles may
214 be particularly large in the channelized portion of the flow, where lavas exhibit 60%–80%
215 vesicularity and 3%–20% crystals in the first 8 km. Future work should determine the crystal and
216 bubble textures that can be consistently retained in the laboratory, providing three-phase data to
217 improve models of conduit processes, lava flow emplacement, and hazards.

218 ACKNOWLEDGMENTS

219 This work was supported by National Science Foundation grant EAR-1928923 to
220 Whittington and the National Aeronautics and Space Administration (NASA) Minority
221 University Research and Education Project (MUREP) Institutional Research
222 Opportunity (IRO) (MIRO) Center for Advanced Measurements in Extreme Environments,
223 grant 80NSSC19M019. We thank three anonymous reviewers for their feedback.

224 REFERENCES CITED

225 Birnbaum, J., Lev, E., and Llewellyn, E.W., 2021, Rheology of three-phase suspensions
226 determined via dam-break experiments: Proceedings: Biological Sciences, v. 477, no. 2254,
227 <https://doi.org/10.1098/rspa.2021.0394>.

228 Cappello, A., Ganci, G., Calvari, S., Pérez, N.M., Hernández, P.A., Silva, S.V., Cabral, J., and
229 Del Negro, C., 2016, Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape
230 Verde: *Journal of Geophysical Research: Solid Earth*, v. 121, no. 4, p. 2290–2303,
231 <https://doi.org/10.1002/2015JB012666>.

232 **[[Not cited in the text]]**Castro, J.M., and Feisel, Y., 2022, Eruption of ultralow-viscosity
233 basanite magma at Cumbre Vieja, La Palma, Canary Islands: *Nature Communications*, v. 13,
234 <https://doi.org/10.1038/s41467-022-30905-4>.

235 **[[Not cited in the text.]]**Chevrel, M.O., Pinkerton, H., and Harris, A.J.L., 2019, Measuring the
236 viscosity of lava in the field: A review: *Earth-Science Reviews*, v. 196, 102852,
237 <https://doi.org/10.1016/j.earscirev.2019.04.024>.

238 Desmither, L., **Diefenbach, A.K., and Dietterich, H.R.**, 2021, Unoccupied Aircraft Systems
239 (UAS) Video of the 2018 Lower East Rift Zone Eruption of Kīlauea Volcano, Hawaii: U.S.
240 Geological Survey Data Release, <https://doi.org/10.5066/P9BVENTG>.

241 Dietterich, H.R., Diefenbach, A., Soule, S.A., Zoeller, M., Patrick, M., Major, J., and Lundgren,
242 P., 2021, Lava effusion rate evolution and erupted volume during the 2018 Kīlauea lower
243 East Rift Zone eruption: *Bulletin of Volcanology*, v. 83, 25, <https://doi.org/10.1007/s00445-021-01443-6>.

244 Gansecki, C., Lee, R.L., Shea, T., Lundblad, S.P., Hon, K., and Parcheta, C., **2022 2019**, The
245 tangled tale of Kīlauea’s 2018 eruption as told by geochemical monitoring: *Science*, v. 366,
246 <https://doi.org/10.1126/science.aaz0147>.

247 Gualda, G.A.R., 2006, Crystal size distributions derived from 3D datasets: Sample size versus
248 uncertainties: *Journal of Petrology*, v. 47, no. 6, p. 1245–1254,
249 <https://doi.org/10.1093/petrology/egl010>.

251 Halverson, B.A., 2024, Textural and Rheological Evolution of Basalts [Ph.D. dissertation]: San
252 Antonio, Texas, University of Texas at San Antonio, 178 p.

253 Harris, M., Kolzenburg, S., Sonder, I., and Chevrel, M., 2024, A new portable penetrometer for
254 measuring the viscosity of active lava: The Review of Scientific Instruments, v. 95,
255 <https://doi.org/10.1063/5.0206776>.

256 Higgins, M.D., 2000, Measurement of crystal size distributions: The American Mineralogist,
257 v. 85, no. 9, p. 1105–1116, <https://doi.org/10.2138/am-2000-8-901>.

258 Hofmeister, A.M., Sehlke, A., Avard, G., Bollasina, A.J., Robert, G., and Whittington, A.G.,
259 2016, Transport properties of glassy and molten lavas as a function of temperature and
260 composition: Journal of Volcanology and Geothermal Research, v. 327, p. 330–348,
261 <https://doi.org/10.1016/j.jvolgeores.2016.08.015>.

262 Holtzman, B., King, D., and Kohlstedt, D., 2012, Effects of stress-driven melt segregation on the
263 viscosity of rocks: Earth and Planetary Science Letters, v. 359–360, p. 184–193,
264 <https://doi.org/10.1016/j.epsl.2012.09.030>.

265 Ishibashi, H., and Sato, H., 2007, Viscosity measurements of subliquidus magmas: Alkali olivine
266 basalt from the Higashi-Matsuura district, southwest Japan: Journal of Volcanology and
267 Geothermal Research, v. 160, no. 3–4, p. 223–238,
268 <https://doi.org/10.1016/j.jvolgeores.2006.10.001>.

269 **[[Not cited in the text.]]** Jeffreys, H., 1925, The flow of water in an inclined channel of
270 rectangular section: The London, Edinburgh and Dublin Philosophical Magazine and
271 Journal of Science, v. 49, no. 293, p. 793–807, <https://doi.org/10.1080/14786442508634662>.

272 Kolzenburg, S., Chevrel, M.O., and Dingwell, D.B., 2022, Magma/suspension rheology:
273 Reviews in Mineralogy and Geochemistry, v. 87, p. 639–720,
274 <https://doi.org/10.2138/rmg.2022.87.14>

275 Lejeune, A.M., Bottinga, Y., Trull, T.W., and Richet, P., 1999, Rheology of bubble-bearing
276 magmas: Earth and Planetary Science Letters, v. 166, p. 71–84,
277 [https://doi.org/10.1016/S0012-821X\(98\)00278-7](https://doi.org/10.1016/S0012-821X(98)00278-7).

278 **[[Not cited in the text.]]** Lev, E., and James, M.R., 2014, The influence of cross-sectional
279 channel geometry on rheology and flux estimates for active lava flows: Bulletin of
280 Volcanology, v. 76, no. 7, <https://doi.org/10.1007/s00445-014-0829-3>; correction available
281 at <https://doi.org/10.1007/s00445-020-1356-z>.

282 **[[Not cited in the text.]]** Li, J., Yang, Z.F., and Wang, Y., 2022, HabitEst3D: A user-friendly
283 software for estimating mixed crystal habits from two-dimensional sections in igneous
284 rocks: Minerals (Basel), v. 12, no. 8, <https://doi.org/10.3390/min12081001>.

285 Llewellyn, E., and Manga, M., 2005, Bubble suspension rheology and implications for conduit
286 flow: Journal of Volcanology and Geothermal Research, v. 143, p. 205–217,
287 <https://doi.org/10.1016/j.jvolgeores.2004.09.018>.

288 Mader, H.M., Llewellyn, E.W., and Mueller, S.P., 2013, The rheology of two-phase magmas: A
289 review and analysis: Journal of Volcanology and Geothermal Research, v. 257, p. 135–158,
290 <https://doi.org/10.1016/j.jvolgeores.2013.02.014>.

291 Maron, S.H., and Pierce, P.E., 1956, Application of Ree-Eyring generalized flow theory to
292 suspensions of spherical particles: Journal of Colloid Science, v. 11, p. 80–95,
293 [https://doi.org/10.1016/0095-8522\(56\)90023-X](https://doi.org/10.1016/0095-8522(56)90023-X).

294 Mourey, A.J., and Shea, T., 2019, Forming olivine phenocrysts in basalt: A 3D characterization
295 of growth rates in laboratory experiments: *Frontiers of Earth Science*, v. 7,
296 <https://doi.org/10.3389/feart.2019.00300>.

297 Neal, C.A., et al., ~~Brantley, S.R., Antolik, L., Babb, J.L., Burgess, M., Calles, K., Cappos, M.,~~
298 ~~Chang, J.C., Conway, S., Desmither, L., Dotray, P., Elias, T., Fukunaga, P., Fuke, S.,~~
299 ~~Johanson, I.A., Kamibayashi, K., Kauahikaua, J., Lee, R.L., Pekalib, S., Miklius, A.,~~
300 ~~Million, W., Moniz, C.J., Nadeau, P., Okubo, P., Parcheta, C., Patrick, M.R., Shiro, B.,~~
301 ~~Swanson, D.A., Tollett, W., Trusdell, F., Younger, E.F., Zoeller, M.H., Montgomery~~
302 ~~Brown, E.K., Anderson, K.R., Poland, M.P., Ball, J.L., Bard, J., Coombs, M., Dietterich,~~
303 ~~H.R., Kern, C., Thelen, W.A., Cervelli, P.F., Orr, T., Houghton, B.F., Gansecki, C., Hazlett,~~
304 ~~R., Lundgren, P., Diefenbach, A., Lerner, A.H., Waite, G., Kelly, P., Clor, L., Werner, C.,~~
305 ~~Mulliken, K., Fisher, G., and Damby, D.~~, 2019, The 2018 rift eruption and summit collapse
306 of Kīlauea Volcano: *Science*, v. 363, p. 367–374, <https://doi.org/10.1126/science.aav7046>.

307 Patrick, M.R., 2024, Thermal Maps of the 2018 Lower East Rift Zone Eruption of Kīlauea
308 Volcano, Island of Hawai‘i: U.S. Geological Survey Data Release,
309 <https://doi.org/10.5066/P9C8W3NT>.

310 Pistone, M., Cordonnier, B., Ulmer, P., and Caricchi, L., 2016, Rheological flow laws for
311 multiphase magmas: An empirical approach: *Journal of Volcanology and Geothermal*
312 *Research*, v. 321, p. 158–170, <https://doi.org/10.1016/j.jvolgeores.2016.04.029>.

313 Preibisch, S., Saalfeld, S., and Tomancak, P., 2009, Globally optimal stitching of tiled 3D
314 microscopic image acquisitions: *Bioinformatics* (Oxford, England), v. 25, no. 11, p. 1463–
315 1465, <https://doi.org/10.1093/bioinformatics/btp184>.

316 Ryerson, F.J., Weed, H.C., and Piwinski, A.J., 1988, Rheology of subliquidus magmas: 1.
317 Picritic compositions: *Journal of Geophysical Research*, v. 93, no. B4, p. 3421–3436,
318 <https://doi.org/10.1029/JB093iB04p03421>.

319 Sehlke, A., and Whittington, A.G., 2015, Rheology of lava flows on Mercury: An analog
320 experimental study: *Journal of Geophysical Research: Planets*, v. 120, no. 11, p. 1924–1955,
321 <https://doi.org/10.1002/2015JE004792>.

322 Sehlke, A., Whittington, A., Robert, B., Harris, A., Gurioli, L., Médard, E., and Sehlke, A., 2014,
323 Pahoehoe to ‘a‘a transition of Hawaiian lavas: An experimental study: *Bulletin of
324 Volcanology*, v. 76, no. 11, <https://doi.org/10.1007/s00445-014-0876-9>.

325 Soldati, A., Sehlke, A., Chigna, G., and Whittington, A., 2016, Field and experimental
326 constraints on the rheology of arc basaltic lavas: The January 2014 eruption of Pacaya
327 (Guatemala): *Bulletin of Volcanology*, v. 78, no. 6, <https://doi.org/10.1007/s00445-016-1031-6>.

329 Soldati, A., Houghton, B.F., and Dingwell, D.B., 2021a, A lower bound on the rheological
330 evolution of magmatic liquids during the 2018 Kilauea eruption: *Chemical Geology*, v. 576,
331 <https://doi.org/10.1016/j.chemgeo.2021.120272>.

332 Soldati, A., Houghton, B.F., and Dingwell, D.B., 2021b, Subliquidus rheology of basalt from the
333 2018 Lower East Rift Zone Kilauea eruption: Isothermal vs. dynamic expression: *Chemical
334 Geology*, v. 581, <https://doi.org/10.1016/j.chemgeo.2021.120363>.

335 Stein, D.J., and Spera, F.J., 2002, Shear viscosity of rhyolite-vapor emulsions at magmatic
336 temperatures by concentric cylinder rheometry: *Journal of Volcanology and Geothermal
337 Research*, v. 113, p. 243–258, [https://doi.org/10.1016/S0377-0273\(01\)00260-8](https://doi.org/10.1016/S0377-0273(01)00260-8).

338 Truby, J.M., Mueller, S.P., Llewellyn, E.W., and Mader, H.M., 2015, The rheology of three-
339 phase suspensions at low bubble capillary number: Proceedings of the Royal Society A:
340 Mathematical, Physical and Engineering Sciences, v. 471,
341 <https://doi.org/10.1098/rspa.2014.0557>.

342

343 Figure 1. Reflected light images of postexperimental samples, oriented with surface of
344 experiment toward top of page. Sample F8.25b (collected from fissure 8 flow field of 2018
345 Kīlauea eruption) is shown for vesicle comparison; its orientation is unknown. All scale bars are
346 2 mm. Experimental samples are from top 1–2 cm of crucible, recording only that material
347 measured by spindle. HTTPI—high-temperature three-phase isothermal.

348

349 Figure 2. (A–B) Reflected light images of high-temperature three-phase isothermal (HTTPI)
350 sample at 1105 °C (A) and sample F8.11, collected from fissure 8 flow field of 2018 Kīlauea
351 eruption (B). (C–D) Crystal size distribution graphs for both samples for plagioclase (C) and
352 pyroxene (D).

353

354 Figure 3. (A) Viscosity data for all high-temperature three-phase isothermal (HTTPI)
355 experiments. Arrows indicate changes in strain rate. (B) Three-phase viscosity calculations
356 compared to HTTPI experiments. MP—Maron and Pierce (1956) equation; Mader—Mader et al.
357 (2013) [[method, medium, equation?]]; VFT—[[Define here.]]. [[Figure edits: Fix spelling of
358 1150 Experiment in legend in B. Define VFT in caption and verify definitions for MP and
359 Mader.]]

360

361 **TABLE 1.** CRYSTALLINITY AND VESICULARITY VALUES FOR EACH HIGH-
 362 TEMPERATURE THREE-PHASE ISOTHERMAL (HTTP1) AND ZERO-TIME (QUENCHED
 363 AFTER THE 20 MIN HOLD AT 1175 °C) EXPERIMENT, A TRADITIONAL ISOTHERMAL
 364 METHOD EXPERIMENT AT 1115 °C, AND TWO OTHER SAMPLES FROM THE
 365 FISSURE 8 FLOW OF THE 2018 KĪLAUEA ERUPTION (F8.11 AND F8.25)

Sample	Vesicle-normalized %					Total crystallinity
	Vesicularity	Plagioclase	Pyroxene	Olivine	Oxides	
1105 °C	31.1%	12.8%	13.8%	3.2%	1.0%	30.8%
1115 °C	18.8%	7.6%	1.9%	2.7%	0.3%	12.6%
1150 °C	19.2%	2.4%	0.2%	2.6%	0.4%	5.6%
1175 °C zero-time sample	36.1%	6.5%	1.9%	5.6%	3.5%	14.3%
1115 °C traditional method	2.0%	0.0%	14.9%	0.0%	2.5%	17.4%
F8.11	13.5%*	21.4%	14.4%	0.0%	0.0%	41.5%†
F8.25b		25.7%*	N/A			N/A

366 *Vesicularity and olivine values from the entire thin section.
 367 †Total crystallinity value only for the olivine-free quenched margin; includes pyroxene and
 368 plagioclase and incipient crystallization, where nanoscale crystallization fronts form around the
 369 larger laths.

370