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A Novel Visualization Enabled Decision Support

Framework for Data-Driven Integrated Design

Space Exploration

Abstract

Design preferences or targets are typically available at the system level. A designer
is usually interested in understanding patches of the design space at compo-
nent levels, across different stages and processes that correspond to such system
targets or preferences. This demands a thorough design space exploration per-
mitting both forward and inverse designs. Such exploration becomes cumbersome
with a large number of variables and complex systems with many conflicting
goals. Hence a decision support framework that permits seamless navigation in
high dimensions, especially with a visual aspect for enhanced comprehension, is
desirable. Current work proposes using a data-driven interpretable self organis-
ing map (iSOM) as a visual enabler in decision support systems for exploring the
design space and understanding the trade-off in system goals. The novelty lies in
being able to use a visual form to compare greater than three conflicting goals
simultaneously while accounting for design variables. The proposed approach is
demonstrated using two test problems: i) hot rolling and cooling process chain
design for the production of steel rods, and ii) head and neck-injury risk eval-
uations for vehicular crash-worthiness. Using the first problem, we demonstrate
the capability of iSOM to support the solution space exploration of a many-goal
steel manufacturing process chain problem to realize the design of a steel prod-
uct, in the context of a compromise Decision Support Problem formulation. In
the second problem, we demonstrate the capability of iSOM to support early-
stage Design Space Exploration (DSE) to identify critical injury-risk regions of
interest for different car crash scenarios. These two test problems illustrate the
capability to carry out a forward and inverse design, by the proposed approach.

Keywords: Design Space Exploration, Interpretable Self Organizing Maps,
Compromise Decision Support Problems

1 Introduction

The design of complex systems such as automobiles, aircraft, and ships requires mul-
tidisciplinary knowledge and expertise [1]. Such systems are characterized by the
presence of many design variables, constraints, and goals across multiple disciplines,
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and their complex interactions. Hence, during such design, designers ‘make deci-
sions’ that meet multiple conflicting goals while simultaneously accounting for the
constraints. In the early stages of the design of complex multidisciplinary systems,
designers often have a limited understanding of the complex interactions and their
influence on the design spaces of the system. Given the limited understanding, the
designer’s interest lies in quickly identifying a ranged set of design solutions that meet
their requirements, and not in identifying unique single-point solutions. The identifi-
cation of a ranged set of solutions that meet the designer’s requirements is facilitated
by carrying out design space exploration (DSE). To effectively carry out DSE for com-
plex systems, designers require an understanding of the complex system in terms of
the trade-off between many conflicting goals, and the relations between the design
variables and system responses. The use of visualization techniques helps enhance the
designer’s understanding of the complex system by supporting the visualization of the
trade-offs between conflicting goals and the complex relations between the variables
and goals in the system. Therefore, by performing DSE assisted by visualization tech-
niques, designers are able to make informed design decisions in identifying a ranged
set of design solutions that meet their requirements.

The visualization of the design spaces of complex systems is challenging, given
the large dimensions of the design spaces that arise from the many variables and
goals involved. Different techniques are discussed in the literature to support the
visualization of the design spaces of complex systems. In the past, researchers have used
dimension reduction techniques to deal with large dimensions [2] and used techniques
such as parallel coordinates plots, nested axis plots, ternary plots, and t-Stochastic
Neighbour Embedding (t-SNE), among others, for visualization. These visualization
techniques developed in the past are useful [3] but are usually limited to comparing
three or four parameters ([4, 5]) at a time. The parameters could be input variables
or output responses. A detailed comparison of such techniques is provided in [6].

Previous attempts at supporting DSE for complex engineered systems, using multi-
dimensional visualization techniques [7] lack the capability to visualize design/solution
spaces simultaneously with all objectives ([8, 9]). In [10], the solution space is explored
using ternary plots, which enable navigation in 3 dimensions/goals. [11] uses scatter
plots and parallel coordinate plots for visualizing multiple objectives and attributes,
respectively. As the dimensions increase, the plots are difficult to interpret, computa-
tionally demanding, and in some cases, not able to capture the information correctly
in reduced dimensions as well [12]. Owning to the above limitations in the existing
visualization techniques ([13, 14]), it is desirable to develop visualization techniques
that permit DSE with limited computation and are inherently interpretable so that
one can address DSE of complex systems characterized by a large number of goals,
constraints, variables, and their complex interactions. The importance of enhancing
visualization techniques has been further heightened due to the availability of intricate
and high-dimensional data, which is used in studying complex phenomena in different
fields of research [15].

To support the design of complex systems, multidisciplinary optimization (MDO)
techniques are proposed ([16–19]). Some examples include analytical target cascading
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(ATC) [20], collaborative optimization (CO) [21], and bilevel integrated system syn-
thesis (BLISS) [22]. These MDO approaches generally employ rigorous optimization
techniques to identify ‘point solutions’ at each discipline and usually involve a substan-
tial number of iterations within and between disciplines using optimization loops until
convergence is achieved. This is particularly challenging in early-stage design explo-
ration, where the focus is on quickly identifying satisfactory design spaces (regions
or sets) instead of a unique single-point solution [23]. An alternative to optimization
and optimization-based techniques is the ‘satisficing’ philosophy that is anchored in
the notion of ‘bounded rationality’ proposed by Herbert A. Simon [24]. In the ‘sat-
isficing school of thought,’ the designer’s focus is not on meeting the requirements
in the best possible manner but rather on meeting acceptability thresholds for the
requirements by exploring the available alternatives and identifying a ‘ranged set of
satisficing solutions’.

A satisficing solution [25] is a solution that ‘satisfy’ and ‘suffice’ the designer’s
requirements for the conflicting goals present. Mistree and co-authors [26] propose the
Decision-Based Design (DBD) paradigm that is based on the satisficing philosophy. In
DBD, design is considered a decision-making process wherein designers make a series
of decisions, some sequentially while others concurrently. Muster and Mistree [27] pro-
pose the Decision Support Problem (DSP) technique to support the DBD paradigm.
The DSP Technique is anchored in the notion of bounded rationality. The designer’s
focus when employing the DSP technique is on identifying a ‘set of satisficing solu-
tions’, rather than identifying a unique single-point solution. The compromise Decision
Support Problem (cDSP) [28] is a well-established DSP technique in the literature
that is used to explore satisficing solutions for many conflicting goals. Inductive Design
Exploration Method (IDEM) [29] and Goal-oriented Inverse Design (GoID) [10] are
two DBD methods that have been discussed in the literature to support the design of
complex multi-level systems. Both methods make use of the cDSP construct to iden-
tify satisficing solutions for many conflicting goals across multiple levels. The IDEM
is especially suitable for hierarchical design problems and is suitable for managing the
propagation of different sources of uncertainty across levels in complex multilevel sys-
tems. Using the IDEM, the designer’s goal is to identify satisficing solution sets within
a feasible solution space and communicate these sets across multiple levels. However,
IDEM has certain limitations, as outlined in [30]. These include: i) limitations in terms
of flexibility in design as IDEM does not facilitate the incorporation of new goals or
requirements at different levels during the design process as the method is based on
top-down mapping to feasible spaces, ii) discretization errors since IDEM discretizes
the design space resulting in an inability to capture the feasible boundary accurately,
iii) increased computational expense if the accuracy is increased by adding more dis-
cretized points, iv) limitation in terms of the number of design variables that can be
studied (impossible beyond nine variables) thus limiting the problem size, v) limita-
tions in exploration and visualization as only a maximum of three design variables can
be studied at a time by assigning fixed values to the other variables. The GoID method
is also a multilevel design method where decisions are made separately at each level
(using separate cDSPs), and the output from one level, becomes the input (goals) for
the preceding level in the sequence. This method addresses the limitations of IDEM
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by offering improved flexibility (in terms of the capability to define new goals and
requirements) as separate cDSPs are used for different levels of decision-making, and
it can also handle n number of design variables (an improvement over IDEM, which
is limited to nine).

In the GoID method, the designer makes use of ternary plots to visualize the solu-
tion space at each level. Using the ternary plot, the designer visualizes a continuous
feasible solution space of a goal, across different design scenarios by only considering a
maximum of 3 goals. Hence, the GoID approach is limited by the ability of the ternary
plot to visualize a solution space. The use of ternary plots limits the designers to have
a maximum of 3 goals in cDSP problem formulations, and any additional goals are
required to be formulated as constraints that are hard requirements that always have
to be satisfied. This limitation, when using ternary plot-based visualization to sup-
port DSE, can potentially result in the loss of some satisficing design solutions. Hence,
there is a need to overcome this limitation to ensure a more thorough exploration of
the design spaces during the early stages of design. This requires the use of visualiza-
tion techniques that permit visualization of higher-dimensional (more than 3) design
spaces.

The key focus in this paper is on presenting a visual enabler that can overcome the
limitations associated with the use of ternary plot-based visualization during design/-
solution space exploration to identify satisficing solution sets and, at the same time,
is inherently interpretable. But comparing the ease of interpretability of different
visualization techniques is not an easy task [31]. It is usually subjective, as different
individuals have different preferences and abilities to interpret information presented
visually. It is desirable that the plots from the visualization technique are based on
simple logic and do not get cumbersome with large data or large dimensions. Sev-
eral visualization techniques, such as Contour plots, Heat Maps, Scatter plots, PCP,
RadViz, t-SNE, Kohonen’s Self Organizing Map (SOM), and interpretable Self Orga-
nizing Map (iSOM) among others, are discussed in the literature that supports the
visualization of high-dimensional design spaces. Kohonen’s SOM is a class of artificial
neural networks commonly used to visualize high-dimensional data in 2D planes [20].
In the recent past, SOM has been used successfully for DSE that involves visualizing
tradeoffs in Pareto solutions [32], selection of data for multi-objective optimization
[33], and sampling-driven design space reduction [34, 35]. [36] developed a variant
of SOM named iSOM, where the outputs are inherently interpretable while avoiding
self-aberration. [6] provides a comprehensive comparison of PCP, Heat maps, RadViz
plots, t-SNE plots, and iSOM. iSOM has distinct advantages such as scalability and
interactiveness as discussed in [6], making it the suitable choice for exploring design
space in real-world problems. The utility of iSOM in aiding design space exploration
of real-world problems is presented in [37] and [38]. In [37], the use of iSOM for design
space exploration of a manufacturing supply network design problem is presented. In
[38], the authors present the utility of the iSOM visualization in the design of a steel
hot-rod rolling system involving products, materials, and manufacturing processes.

In this paper, we present a framework to help designers visualize the design space
of complex systems with many goals and variables, in order to aid designers in car-
rying out design/solution space exploration and identifying a ranged set of satisficing

5



solutions for design problems formulated using the cDSP construct. We present the
use of iSOM as the visualization enabler for supporting design/solution space explo-
ration in identifying a ranged set of satisficing solutions. We demonstrate the utility
of the proposed framework using a material processing problem [10] and evaluation
of an occupant’s neck and head injury criteria for varied inputs in a car crash con-
text. [10] presents an inverse method to achieve the integrated design exploration of
materials, products, and manufacturing processes through the vertical and horizontal
integration of models. In the above work, in the cDSP for the desired end mechanical
properties of the product, one of the four goals (Impact Transition Temperature, ITT)
is formulated as a constraint due to the use of the ternary plots to support design/so-
lution space exploration. Ternary plots limit the designers to visualize a maximum of 3
goals at a time. In this paper, we use iSOM to visualize all 4 goals of the material pro-
cessing problem simultaneously and demonstrate the utility of iSOM in enhancing the
confidence of designers in making design decisions. Using the car crash example, we
showcase the utility of iSOM in aiding designers to explore the problem design space
to identify the high-risk region based on five neck and head injury values determined
by two input variables, namely the impact velocity and impact angle. In the process,
iSOM provides the visualization of 5 injury metrics (responses) for 2 input variables.

The novelty of the work presented in this paper lies in combining iSOM with cDSP
construct to support the designers in exploring the design/solution spaces of high-
dimensional design problems and identifying a ranged set of satisficing solutions that
meet the many (more than 3) conflicting goals, which is not possible using ternary
plots. Using the examples we also demonstrate the scope of using iSOM as a decision
support aid that helps designers in identifying Regions of Interest (RoI) in the design/-
solution space for further exploration during i) forward design, where the focus on
understanding the impact of design variables on system goals, and ii) inverse design,
where the focus is on identifying the design variables that help achieve the target
solutions. The proposed visualization framework for design/solution space exploration
provides seamless scaling as the number of dimensions increases. In addition, compar-
isons such as analyzing trends or identifying correlations between variables, between
goals, or between variables and goals are supported using the proposed visualization
framework, as demonstrated using the test examples.

The rest of the paper is organized as follows: In Section 2, we discuss the con-
ventional SOM implementation, followed by a discussion of the iSOM visualization
employed in this work. In Section 3, we present a framework to visualize the high-
dimensional design space and thereby aid designers in carrying out design/solution
space exploration and identifying a ranged set of satisficing design solutions in the
early-stage design of complex systems. The solution space exploration for hot rod
rolling and car crash problems using iSOM-based visualization is discussed in Section
4 and Section 5, respectively, followed by concluding remarks.

2 Self Organizing Maps

Among various existing neural network architectures and learning algorithms, Koho-
nen’s SOM is one of the most popular neural network models. Developed for an
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Fig. 1 Working of SOM algorithm

associative memory model, it is an unsupervised learning algorithm with a simple
structure and computational form [39, 40]. It is an efficient algorithm for the visual-
ization of multidimensional numerical data [41]. One of the important characteristics
of the mapping is that it preserves topology [42] such that similar data points will be
mapped to nearby locations on the map, thus conserving relative distances between
input data points. This permits the user to identify the pattern in the input data.

2.1 Conventional Self Organizing Maps (cSOM)

Figure 1 presents a pictorial layout of the basic working of SOM. It consists of a mesh
of nodes, arranged in a hexagonal or rectangular topology. Each input DoE sample
point corresponds to an input vector in SOM. Let vi = [xi1, xi2, ..., xin, yi], where xi’s
are input variables and yi is the corresponding output. Each node is associated with
a weight vector, wj= [mj1, mj2, ..., mjn, mjout] where the first n weights correspond
to design variables and the last weight corresponds to the response. In SOM, weight
vectors have the same dimension as the input data vector. Values of weights are
usually initialized by linear initialization. We note the conventional implementation
of SOM as cSOM to differentiate it from iSOM. In cSOM implementation, for each
vi, the node that has the minimum Euclidean distance from vi, is selected as the
best matching unit (BMU). Based on an update rule, the weight of the neighborhood
nodes corresponding to the BMUs change. The BMU selection and update continue
until a prescribed number of iterations or error convergence metrics are met. Trained
SOM weights are obtained as the output once the iteration is over. These weights
are used to construct component plane plots. In the component plane, the position
of each node remains the same regardless of which attribute is being visualized, thus
it helps one to visualize the weights of the selected variable, input, or output and
compare it with the rest of the variables. Similar-looking component planes indicate
that the corresponding variables may be correlated. Thus a trained SOM network
efficiently represents how data is distributed in the design space.

Some earlier works demonstrate the use of cSOM for visualizing trade-offs and
Pareto fronts in multi-objective formulations [32, 33]. Also, [43] illustrates the use
of cSOM, parallel coordinate plot, and hyper radial visualization for visualization of

7



Pareto data related to shape optimization application. cSOM has been used to under-
stand correlations among design variables and responses [44]. [1] proposes using cSOM
on the optimization data to get an idea of the relationship between design variables
and objectives to work in reduced design space. cSOM has also found applications in
the area of adaptive sampling and feasible sample generation [45]. Techniques such as
growing hierarchical self-organizing maps (GHSOM), a variant of cSOM are developed
for visualizing Pareto optimal solutions [46]. All of the work above uses cSOM, but
its implementation is known to experience aberration or self-folding, which leads to
compromises in the visualization of component planes, though topology is preserved
mathematically.

2.2 Interpretable Self Organizing Maps (iSOM)

In order to address the issues associated with cSOM, [36] developed iSOM, where
component planes are inherently interpretable and avoid self-intersections. iSOM
implementation differs from cSOM in the selection of data for BMU estimation. In
iSOM, only the input data is considered as against input and output data in cSOM.
In addition, the update step employs only the response value and not the input vari-
ables. These changes avoid the self-intersection or folding in iSOM. An added benefit
observed is that the component plane plots obtained are in an ordered fashion per-
mitting a simplified understanding of component planes. For further details on iSOM,
the reader is referred to [36].

Plots generated using iSOM can be used to visualize the underlying correlations
among variables. Figure 2 provides an overview of iSOM outcomes for a simple z =
x2+y2 function. The arrows in the X and Y component planes represent the increasing
direction of the axes’ values. For instance, if one is interested in the region marked by
the circle, in the z component plane, the corresponding x and y values are bounded
by the circles placed in the x and y component planes. Such a scheme permits forward
and inverse DSE. It is to be noted that the shape of the function is also preserved in
the z component plane. [36] discusses how RoI can be selected based on iSOM plots
irrespective of the number of dimensions. The reduced ranges of input design variables
are then identified where RoI lies, allowing targeted sampling to fit a metamodel and
perform optimization. The work in [47] shows that iSOM can also be used to visualize
Pareto solutions for a multi-objective problem. Both these studies utilize the inherent
interpretability of iSOM to explore design/solution space.

3 PROPOSED DESIGN APPROACH

Oftentimes, a designer needs to identify regions in the design space that corre-
spond to target outputs. But the design space itself could be complex, with multiple
processes and design elements. Also, mapping one target region in performance space
might mean different regions across different processes or elements, which is referred
to as horizontal and vertical communication as discussed in [10].The methodology
introduced aims to facilitate intuitive visualization of such intricate systems for
enhanced analysis.The iSOM implementation discussed here is akin to that in [6],
where iSOM is trained to visualize conflicting outputs related to different input
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Fig. 2 An example of plots generated using iSOM for the function z = x2 + y2

variables. A key modification is in the initialization step, where a unified map grid is
employed instead of separate grids for each objective function during iSOM training.
The process is as follows:

Initilization: Let there be n input vectors [a1, a2, ..., an], each of d dimensions:
ai = [ai1, ai2, ..., aid], i from 1 to n . Correspondingly, each input vector has m out-
puts, yi = [yi1, yi2, ...., yim]. To analyze the correlation of m outputs with d input
dimensions, we create a common iSOM grid. Each input vector ai is augmented with
a single output gi, which is a weighted average of all outputs: gi=

∑m
j=1 kjyij , where

kj are the weights proportional to the range of outputs respectively.

Training: Each objective function is subsequently trained independently using the
unified grid established during initialization. The input vector for training is struc-
tured as: [ai, yi].

Output: iSOM generates m output plots corresponding to n input variables. This
approach allows interpretation of output plots among themselves and in relation to all
input dimensions. MATLAB code [48] is modified and utilized for generating iSOM
results. Figure 3 illustrates the schematic overview of the proposed design method.

We present two scenarios where designers can benefit from the proposed iSOM visu-
alization approach. One is a post-design analysis to understand the tradeoffs among
the conflicting goals, while the second is the early-stage DSE before making final
design decisions. In the first example, we discuss solution space exploration, where
one has a set of samples and corresponding goal values obtained after running the
cDSP, and, the designer needs to select samples based on the goals. iSOM provides
plots of all goals of the design problem. This makes the selection of RoI convenient
and the designer understands where in the solution space can the maximum number of
goals be satisfied simultaneously and which all goals need to be compromised to meet
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Fig. 3 Flow chart for the proposed design approach

the designer’s requirement in the best possible manner. The second example discusses
dealing with design space exploration during early stage design. Instead of sampling
in the entire design space, which has a large computational cost associated with it, the
present work shows how iSOM permits reducing the design space for further sampling
during the later stages of design. This has been demonstrated using a car crash design
problem which is known to be inherently complex in nature. The focus is to identify
the regions in input space that corresponds to maximum risk by analyzing many neck
and head injury metric plots generated using iSOM, thus leading to a more informed
decision as the designer progresses further into the design.
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4 TEST PROBLEM 1: THE HOT ROD ROLLING
PROCESS CHAIN PROBLEM

Steel is one of the most widely used alloys globally and finds application across a large
variety of sectors such as construction, automotive, shipbuilding, and refining [49]. In
recent times, there has been a rising demand from customers for grades of steel that
offer superior performance across different sectors, especially the automotive industry
[49, 50]. This rising demand for newer steel grades with improved properties and per-
formances poses a challenge for the steel manufacturing industry as they are required
to design the steel manufacturing processing chain to yield the right microstructure
and resultant properties that lead to better performance [51].

Hot Rod Rolling (HRR) is a manufacturing process used by steel industries to pro-
duce steel rods (semi-products) that are subsequently used to produce other artifacts
or products, such as gear blanks. HRR system is characterized by a series of processes
that are executed sequentially, starting at reheating steel obtained from the casting
unit in the form of slabs or blooms followed by several passes of plastic deformation
through rolling mills and cooling carried out in a run-out table, as represented in
Figure 4. During the thermo-mechanical process, micro-structural evolution occurs in
the material along with macro-structural changes, resulting in a steel rod with specific
microstructural characteristics and corresponding mechanical properties.

In this paper, we consider a problem on the HRR of C-Mn steels for the production
of steel rods, addressed by [10]. The original HRR problem formulation was composed
of two separate sub-problems, the first for the structure-property relationships at the
end of the cooling stage and the second for the process-structure relations during the
rolling and cooling processing stages. In this paper, the original HRR problem formu-
lation has been modified to account for the processing-structure-property relations in
an integrated manner by combining the sub-problems into a single formulation where
both the rolling and cooling processing stages are considered. For this use case, four
important mechanical properties requirements that the semi-product needs to satisfy
are identified and set as overall HRR system-level requirements. The requirements are
to maximize the Yield Strength (YS), Tensile strength (TS), and Hardness (HV) of
the rod and minimize the Impact Transition Temperature (ITT) of the material [10].
The steel microstructure design variables of the first sub-problem (Ferrite grain size
after cooling - dα, Pearlite interlamellar spacing after cooling - S0, and Ferrite fraction
after cooling - (Xf )) that determine the YS, TS, HV, and ITT mechanical properties
of hot rolled steel rod material are set as functions of the design variables of the sec-
ond sub-problem (steel composition, microstructure and processing variables: Carbon
concentration [C], Manganese concentration after rolling [Mn], Austenite grain size
after rolling [dγ ], and Cooling Rate [CR]). Hence, the mechanical properties are mod-
eled as functions of the steel composition, steel microstructure, and processing design
variables of the second sub-problem, thereby permitting the integrated consideration
of processing-structure-property relations in the HRR test problem. The correlations
between the material processing (during the cooling stage defined in terms of cooling
rate (CR)), the microstructure of the steel (defined in terms of austenite grain size
after rolling (dγ); ferrite fraction (Xf ), ferrite grain size (dα), and pearlite interlamellar
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spacing after cooling (S0)), and the mechanical properties are studied in this problem.
The cooling stage processing variable (cooling rate), the steel microstructure after the
rolling process (austenite grain size), and elemental composition (in terms of C and
Mn concentration) at the start of the cooling stage influence the steel microstruc-
ture achieved after the cooling process (identified in terms of ferrite grain size, ferrite
fraction and pearlite interlamellar spacing). The steel microstructure after cooling
defines the mechanical properties of the rod. Empirical models from the literature are
used to define the processing-microstructure-property relations of the rod after the
rolling and cooling process. One of the requirements identified is to manage the forma-
tion of banded microstructure, which includes alternate layers of ferrite and pearlite
microstructures. The banded microstructure is one of the reasons for distortion in gear
blanks. Therefore, a preferred Region of Interest (RoI) for the microstructure is one
which has a high ferrite fraction (FF) or a high pearlite fraction region (corresponding
to a low FF region). In the current work, constraints are defined for Xf , dα, and S0 to
ensure that the microstructure generated after the rolling and cooling processes obeys
the physical characteristics of the C-Mn steels and meets the microstructural require-
ments identified. The empirical models for these mechanical properties are listed in
Table 1, and the empirical models for material microstructure achieved at the end of
the cooling stage processing are listed in Table 2.

In the previous study by [52], ternary plots were used to visualize the solution space
generated for the HRR design problem. Due to the limitations associated with visual-
ization and exploring the solution space for more than three goals using ternary plots,
only three of the mechanical property requirements (YS, TS, and HV) are considered
as design goals in the multi-objective design problem formulated. The requirements on
ITT and the steel microstructure are formulated as constraints in the previous study.
Having the capability to consider these design requirements as goals and visualize
their individual solution spaces will provide opportunities for the designer to explore
and identify new and improved solution spaces that satisfice the many conflicting
requirements of the problem. The capability will allow the designer to consider the
interactions between the many goals and their relations with the many variables for
the problem, allowing them to make informed design changes. From the problem per-
spective, the requirement is to study the solution space exploration of the multilevel
manufacturing problem integrating the design of the material, product, and manufac-
turing processes, using an approach that: a) considers the multiple variables and the
many-goal interactions, and b) helps identify solution regions of interest to generate
satisficing design solutions for the many goals.

We view design as a decision-making process and use the compromise Decision
Support Problem (cDSP) [53] construct to formulate the HRR problem. The design
problem is formulated using the four keywords in the cDSP – Given, Find, Satisfy,
and Minimize. We define targets for the four mechanical property goals in the cDSP.
The designer seeks to achieve these targets using the cDSP by minimizing a deviation
function that includes the deviations from the goal targets, defined as a weighted
sum of individual goal deviations from their corresponding targets. The Adaptive
Linear Programming (ALP) algorithm is used to solve the cDSP, executed in the
DSIDES computational environment [54]. The details on solving the cDSP and the
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Fig. 4 The sequence of processes in steel manufacturing and the goals defined for the rod produced
after rolling and cooling processes

ALP algorithm are available in [53] and are not repeated in this paper. The HRR
problem cDSP reads as follows.

Given:

1. End requirements of HRR process in terms of Mechanical properties required
(a) Goal G1: Maximize Y S [MPa]
(b) Goal G2: Maximize TS [MPa]
(c) Goal G3: Maximize HV
(d) Goal G4: Minimize ITT [K]

2. Well-established mathematical models for these properties in terms of the design
variables (see Tables 1 and 2) and well-defined elemental composition (identified
by P, Si, and N concentration - [P ], [Si], and [N ]).

3. Design Variables (Xj) and their bounds
(a) X1: Carbon concentration [C] (%)
(b) X2: Manganese concentration after rolling [Mn] (%)
(c) X3: Austenite grain size, dγ (µm)
(d) X4: Cooling Rate, CR (K/s)

Find values of :

1. Design variables: Xj (for j = 1,...,4)
2. Deviation Variables: di (for d1, d2, d3 and d4)

Satisfy:

1. System Constraints
(a) 220 ≤ Y S ≤ 330 (MPa)
(b) 450 ≤ TS ≤ 750 (MPa)
(c) 131 ≤ HV ≤ 170
(d) 8 ≤ dα ≤ 25 (µm)
(e) 0.15 ≤ S0 ≤ 0.25 (µm)
(f) 0.5 ≤ Xf ≤ 0.9
(g) Ceq ≤ 0.35
(h) 30 ≤ dγ ≤ 100 (µm)
(i) 0.1833 ≤ CR ≤ 1.66 (K/s)

2. System Goal:
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(a) Y S(Xj)/Y Starget + d−1 − d+1 = 1
(b) TS(Xj)/TStarget + d−2 − d+2 = 1
(c) HV (Xj)/HVtarget + d−3 − d+3 = 1
(d) ITTtarget/ITT (Xj) + d+4 − d−4 = 1
where, Y Starget = 330MPa, TStarget = 750MPa, HVtarget = 170 And, ITTtarget =
293K

3. Variable bounds
(a) 0.18 ≤ X1 ≤ 0.3 (%)
(b) 0.7 ≤ X2 ≤ 1.5 (%)
(c) 30 ≤ X3 ≤ 100 (µm)
(d) 0.1833 ≤ X4 ≤ 1.66 (K/s)

4. Deviation variable bounds
(a) d+i , d

−
i ≥ 0

(b) d+i × d−i = 0

Minimize:
The deviation function Z is given as

Min Z =
∑

Wi(d
+
i + d−i ) (1)

where,
∑

Wi = 1 and i = 1, 2, 3, 4

Table 1 Empirical models for mechanical properties in terms of microstructural characteristics at
the end of the cooling process ([55–57]) (Average austenite to ferrite transition temperature, Tmf =
700oC, Pearlite colony size, p = 6 µm, Carbide thickness, tcarb = 0.025 µm, [N ]= 0.007%, [Si] =
0.23%, [P ] = 0.024%)

Mechanical
Property

Mathematical Model Source

Y S (MPa) Xf (77.7+59.9[Mn] + 9.1(dα × 0.001)−0.5)+ 478[N ]
0.5

+1200[P ] +
(1−Xf )(145.5 + 3.5S−0.5

0 )
Kuziac
et.al.(1997)
[55]

TS (MPa) Xf (20 + 2440[N ]
0.5

+ 18.5(0.001× dα)
−0.5 + 750(1 −Xf ) + 3(1 −

X0.5
f )S−0.5

0 + 92.5× [Si]
Kuziac
et.al.(1997)
[55]

HV Xf (361− 0.357Tmf + 50[Si]) + 175(1−Xf ) Yada(1987)
[56]

ITT (K) 273 +Xf (−46 − (11.5(dα × 0.001)−0.5) + (1 −Xf )(−335 + (5.6 ×
0.001))S−0.5

0 −13.3p−0.5+(3.48E6)×(tcarb0.001)+49[Si]+762[N ]
0.5

Gladman
et.al.(1972)
[57]

The above cDSP formulation is exercised for different design scenarios to explore
the design space and identify a set of satisficing design variable values (processing
parameter, microstructure characteristics, and elemental concentrations) that meet
the conflicting goals. These scenarios (45 scenarios, see Table 3 for sample scenarios)
are created using the Latin Hypercube Sampling (LHS) design of experiments with
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Table 2 Empirical models for microstructural characteristics at the end of the cooling stage
processing ([58, 59])
(Assuming retained strain after the rolling process, ϵr = 0)

End of cooling microstructure
characteristics.

Mathematical Model Source

Ferrite grain size, dα (1− 0.45ϵ0.5r )(−0.4 + 6.37Ceq)+
(24.2–59Ceq)CR−0.5+ 22(1− e−0.015dγ )

Hodgson and
Gibbs (1992)
[59]

Pearlite interlamellar spacing, S0 0.1307 + 1.027[C] − 1.993[C]2 − 0.1108[Mn] +
0.0305CR−0.52

Kuziac
et.al.(1997)
[58]

Ferrite fraction equivalent, Xfeq 1 − ([C]/(0.789 − 0.1671[Mn] + (0.1607[Mn]2) −
(0.0448[Mn]3)))

Kuziac
et.al.(1997)
[58]

Ferrite fraction, Xf Xfeq − 5.48(1− e(−0.0106CR))−
(0.723(1− e(−0.0009dγ)))

Kuziac
et.al.(1997)
[58]

Carbon equivalent, Ceq ([C] + [Mn])/6 Hodgson and
Gibbs (1992)
[59]

Table 3 Sample scenarios with weight for goals

Scenarios YS: W1 TS: W2 HV: W3 ITT: W4

3 0.08 0.55 0.36 0.01
11 0.26 0.02 0.07 0.65
27 0.33 0.34 0.16 0.17
41 1 0 0 0
45 0.25 0.25 0.25 0.25

5 additional design points added based on the designer’s judgment to effectively cap-
ture the solution space by assigning different weights to the four goals such that the
sum of the weights equals one. The different weight values for the four goals repre-
sent the varying preferences of the designer amongst the four different goals, with a
larger weight value indicating a higher priority or importance. The relevance and char-
acteristics of some sample design scenarios are detailed in the next section, Section
4.1.

4.1 Integrated solution space exploration using iSOM for the
HRR problem

Scenarios in Table 3 are selected so that the design space is sufficiently sampled for
exploration using iSOM. We explain the significance of these scenarios using the
cDSP for the end product. For the cDSP, scenario 3 represents a situation where the
designer has different preferences for different goals. Scenario 11 represents a situation
where one goal i.e., minimizing ITT, is given a very high preference over the others
by the designer. A scenario where pairs of goals are given nearly equal preferences,
with one pair of goals having a higher weightage over the other pair, is represented in
scenario 27. Scenario 41 depicts a situation where the designer’s interest is to achieve
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Fig. 5 Input and output component planes for the HRR problem

the target of a single goal i.e., maximizing YS, as closely as possible. Scenario 45
represents a situation where the designer gives equal preference to all the goals.

The weights shown in Table 3 are used in the deviation function of the cDSP
formulation, as discussed above, as a weighted sum of individual goal deviations from
their corresponding targets. Figure 5 shows the component planes of four output goals
obtained with respect to weights given to each goal during the formulation of cDSP
problem. As explained earlier, in the cDSP formulation, a deviation function that
includes the deviations from the goal targets, defined as a weighted sum of individual
goal deviations from their corresponding targets, is minimized. Here W1 corresponds
to the weight given to YS, W2 to TS, W3 to HV, and W4 to ITT. Using the iSOM
plots, designers will be able to understand the relations among input weights (W1 to
W4) and corresponding cDSP goals. For example, it can be observed that when W1
or W4 is above 0.8, high values of YS and low values of ITT are obtained. Similarly, a
high value of either W2 or W3 results in high values for both TS and HV. The iSOM
plots also permit designers to understand the relations among the cDSP goals. For
example, from the output component planes obtained using iSOM and presented in
Figure 5 (see YS, TS, HV, and ITT iSOM plots), it is evident that high values of YS
correspond to low values of TS and HV. Also, ITT and YS exhibit similar variation,
and HV and TS also exhibit similar variation, but it is opposite to that of YS and
ITT. Hence, one can observe the conflict in achieving all the goals, i.e., maximizing
YS, TS, and HV and minimizing ITT simultaneously. In the section below, we discuss
the approach to identifying feasible solutions as per the designer’s requirement using
iSOM visualization.

On analyzing the results in [10] for the mechanical property goals and require-
ments, it is observed that the Ferrite Fraction (FF) variable plays a key role in
defining the mechanical properties. A major requirement is to manage the banded
microstructure of ferrite and pearlite. This requirement can be satisfied by identifying
regions with high FF or low FF (meaning high pearlite fraction). Hence, the compo-
nent plane of FF, which is set as a constraint in the cDSP formulation, is plotted
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Fig. 6 RoI shown by the red rectangle and hits shown by red dots

in Figure 6. The Ferrite Grain Size (FGS) and Pearlite Interlamellar spacing (PIS)
also influence the mechanical properties achieved, and hence constraints are placed
in the cDSP formulation for these microstructural characteristics in order to achieve
the required mechanical properties. The component planes for FGS and PIS are also
plotted in Figure 6. Important design insights regarding the influence of material
microstructural characteristics (other than the design variables) on the cDSP goals
can be drawn from these iSOM plots. A high weightage on YS (W1) will result in
high FF, low FGS, and low PIS. Similarly, a high weightage on TS (W2) will result
in lower FF, and larger FGS and PIS. It is observed that the requirements for maxi-
mizing tensile strength and hardness are achieved in the high pearlite fraction region
(i.e. low FF), while the requirements for maximizing yield strength and minimizing
impact transition temperature are satisfied at the high ferrite fraction region. Hence,
the designer is faced with the dilemma of choosing from either the region of high
ferrite or high pearlite that satisfies the corresponding goals.

To make a decision, the region where FF is maximum is selected as RoI. The red
rectangle in Figure 6 shows RoI on the ferrite component plane and the correspond-
ing ranges in YS, TS, HV, and ITT component planes. The solution points are then
identified by finding the sample points that fall in the RoI to analyze the extent to
which the goals are met. The red dots indicate samples mapped to nodes. If a node
gets selected as BMU, it is considered that the node has a hit. Depending on how
many hits a node has the size of the red dot increases. A large number of hits implies
more samples got mapped to that particular node. In the RoI, nodes that had hits
correspond to 6 solution points. Results associated with each of these solution points
are summarized in Table 4.

In [10], the ternary plots for individual goals and their superposed version were
used to make design decisions. The ternary plot-based approach offers the limited
capability to visualize the entire solution space, as only three goals can be studied
at a time. Further, developing a superposed plot to explore the solution space is
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Table 4 Solution points selected in RoI for HRR problem

SCENARIO W1 W2 W3 W4 YS TS HV ITT Xf (FF) dα (FGS) S0 (PIS)
(MPa) (MPa) (K) (µm) (µm)

1 0.46 0.23 0.23 0.08 282.34 582.51 145.59 297.45 0.56 9.93 0.12
28 0.32 0.09 0.49 0.1 275.78 604.35 148.88 316.04 0.49 9.91 0.11
32 0.35 0.19 0.34 0.12 280.61 589.58 146.59 302.05 0.54 9.84 0.12
37 0.37 0.05 0.33 0.25 284.26 573.34 144.35 282.81 0.58 10.11 0.12
41 1 0 0 0 289.58 527.82 139.01 276.6 0.68 11.95 0.11

tedious and cannot be easily interpreted. Most importantly, with the ternary plots,
the designers are only able to visualize the relations between inputs and outputs of
a single sub-problem, i.e., the sub-problem involving the microstructure-property
relations. Ternary plots fail to assist designers in visualizing the relations between the
processing, microstructure, and properties across the two sub-problems that involve
the processing-microstructure and microstructure-property relations. iSOM-based
solution space exploration addresses these limitations since one is able to visualize
the solution space for problems characterized by many goals and requirements across
multiple sub-problems and make design decisions by identifying RoI. The approach
offers the capability to easily interpret regions of interest and determine the corre-
sponding cDSP weight combinations that meet the designer’s target or preference.
In the case of the hot rod rolling problem, the requirements are to maximize the
mechanical properties of the rod. However, based on the iSOM analysis, designers can
observe that these goals are conflicting in nature, and a common region that satisfices
all the goals simultaneously is not available. Using the iSOM-based solution space
exploration carried out, the weight combinations that best satisfice the many-goal
problems are identified.

The utility of the approach is that the designer can easily modify the design
requirements and use the iSOM plots to select regions that meet a new design prefer-
ence defined. For example, let’s assume the design requirement for another designer
is to achieve a high tensile strength for the steel product given the same problem
requirements. In that situation, the designer can easily identify the high TS regions
from the iSOM plots in Figure 6. These correspond to regions identified by the yellow
color on the TS component plot. The same region corresponds to a high weight on
Goal 2 (W2) and Goal 3 (W3) and a low weight on Goal 1 (W1) and Goal 4 (W4).
The region also corresponds to a high pearlite fraction (identified as low FF values in
the FF component plot). Thus, the designer is able to quickly make judgments regard-
ing the weight combinations using the iSOM plots instead of carrying out a separate
analysis. iSOM plots thus serve as a look-up table to be used by process designers to
make informed decisions without actually running the simulations repeatedly, which
in turn saves computational time and cost.

The iSOM-based visualization provides additional functionalities over ternary plots
during design space exploration, as listed below, making it a suitable tool to support
design space exploration.
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Table 5 Critical intercept values used
for normalization in calculation of lateral
Nij [63]

Variable Intercept Value
Fint (Tension) 6810 N
Fint (Compression) 6160 N
Mint (Left) 60 Nm
Mint (Right) 60 Nm

Table 6 Crash variables and their bounds

Crash Variables Lower Bound Upper Bound
Impact Velocity (v) (mph) 10 45
Impact Location (ω) (degree) 0 360
Angle of Impact (θ) (degree) 0 360

1. Visualize the solution space for all the goals simultaneously without having to set
any goal as a constraint (as in ternary plots when there are more than 3 goals)

2. Visualize the design space of important design variables, in addition to the goals.
3. Visualize the relations between the design spaces of related sub-problems.

When using the iSOM-based approach in the context of the HRR problem, the
designer can formulate all four goals as goals themselves and is not required to for-
mulate the ITT goal as a constraint. The designer is able to visualize the relations
among the design spaces of sub-problems that involve the processing-microstructure
and microstructure-property relations. With a better understanding of different cor-
relations between the multiple goals/requirements and the variables for the problem
(which are fully considered) across multiple related sub-problems, the designer is also
more confident about the solutions obtained.

5 TEST PROBLEM 2: CAR CRASH PROBLEM

With 1.35 million deaths and up to 50 million injuries each year, vehicular accidents
are a major contributor to the total number of global accident-related injuries [60]. It
is, therefore, critical to understand injuries resulting from various crash scenarios. In
this study, we utilize Finite Element (FE) models, surrogate models technique, and
visualization using iSOM to investigate the effect of crash variables (impact velocity
(v), impact location (ω), and angle of impact (θ)) on injury metrics. For studying
injuries, Head Injury Criterion (HIC), Neck Injury Criteria (Nij), and its derivatives
(Lateral Nij and Nkm) are used. HIC is one of the most commonly used injury metrics
for predicting head injury response which measures the likelihood of inducing injury
as a factor of sustained linear acceleration [61, 62]. On the other hand, Neck Injury
Criteria (Nij) and its derivatives (Lateral Nij and Nkm) assess neck injury in terms
of axial forces and moments at the occipital condyles.
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5.1 Head Injury Metric Analysis

HIC is used as a criterion to assess the likelihood of inducing head injury [64]. The
following equation is used to calculate HIC for all the crash scenarios [65]:

HIC = max
t1,t2

{
(t2 − t1)

[
1

t2 − t1

∫ t2

t1

a(t)dt

]2.5 }
(2)

where a is the resultant linear acceleration (g) measured from the CG of the head of
the THUMS model and (t2 − t1) is a time duration (ms). HIC15 is calculated with a
time duration of 15ms, and HIC36 is calculated with a time duration of 36ms. In this
study, we use 15ms as time duration for all HIC calculations, as specified by NHTSA
standards [63].

Table 7 Neck injury risk metrics and sub-metrics

Crash Scenarios Front Impact Rear Impact Side Impact
Nij Nkm LateralNij

Metrics and NTF NFA NTL
Submetrics NTE NEA NTR

NCF NFP NCL
NCE NEP NCR

5.2 Neck Injury Metric Analysis

Nij quantifies the neck injury risk within the neck of the driver for front impacts
[62]. Nij measures the likelihood of inducing four loading cases within the cervical
spine with normalized axial forces and sagittal plane bending moments. The four sub-
metrics representing these loading cases are tension-flexion (NTF), tension-extension
(NTE), compression-flexion (NCF), and compression-extension (NCE) [66]. It utilizes
the following equation in the calculation:

Nij =
FZ

Fint
+

MY

Mint
(3)

where FZ is the axial load (N) and MY is the sagittal bending moment (Nm) [63].
Fint and Mint are critical intercept values used to normalize the axial load and lateral
plane bending moment (see Table 5).

As Nij does not sufficiently capture injury risk in all crash scenarios, Nkm and Lat-
eralNij are calculated (for details; see [68]). Nkm is developed to account for injury risk
associated with low-speed rear impacts. Nkm represents four sub-metrics that measure
loading cases within the cervical spine: flexion-anterior shear (NFA), extension-anterior
shear (NEA), flexion-posterior shear (NFP), and extension-posterior shear (NEP) [69].
To account for side impacts, Lateral Nij is used. Lateral Nij also represents four
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Fig. 7 Schematic showing the numerical orientations of the impact location and angle of impact
variables with respect to the dodge neon FE model

Fig. 8 Schematic showing the approach of obtaining the output data from the FE model [67]

loading cases that are measured using four sub-metrics, that are, tension-left lateral
(NTL), tension-right lateral (NTR), compression-left lateral (NCL), and compression-
right lateral (NCR) [70]. The summary of the metrics utilized to capture injury risk
in different crash scenarios is tabulated in Table 7.

5.3 Finite Element Simulation Setup and Data Generation

The FE model consists of an occupant vehicle model, a human model, and an impact-
ing vehicle model (see Figure 9). The locations (ω) are oriented radially from the
center of the vehicle, starting from the front-far side corner (0◦) and rotating counter-
clockwise for a full 360◦. The front, near, rear, and far side are defined as between
0◦ and 50◦, 50◦ and 180◦, 180◦ and 230◦, and 230◦ and 360◦, respectively. The angle
of impact (θ) spans from -45◦ to 45◦ and can be defined at any impact location. For
visualization purposes, the angles of impact are shown at specific locations across
the impact location range of 0◦ to 360◦. A near-side car impact with the Moving
Deformable Barrier (MDB) at an impact location of 120◦ and an angle of impact of
38◦ is also shown [67]. The occupant vehicle is a 1996 Dodge Neon created by the
United States National Crash Analysis Center [71, 72] and modified by researchers at
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the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University
[73, 74]. Within this vehicle, Version 4 adult male 50th percentile Total Human Model
for Safety (THUMS) is belted to the driver’s seat using the three-point seat belt.
Toyota Motor Corporation created this model to represent an adult human male of
average height and weight [75, 76]. The impacting vehicle is an MDB model created
by [74]. This model consists of a deformable aluminum honeycomb front bumper and
a rigid chassis/frame [73, 77] and meets the safety standards specified by the National
Highway Traffic Safety Administration (NHTSA) [78].

As shown in Figure 8, the resultant linear acceleration data required model for the
calculation of the head injury metric is obtained from the Center of Gravity (CG) of
the head of the THUMS. For the calculation of the neck injury metrics, forces and
moments are obtained from the C1 vertebra of the THUMS model (see Figure 8).
In-house Python scripts are used to obtain these data from the simulation output files.

5.4 Problem Formulation

Table 8 Second-order Surrogate Models for HIC15 and NIC

Injury
Metrics

Surrogate Models

HIC15 4330.8479 - 366.42336 * v + 58.405123 * θ + 24.0371 * ω + 6.1426506 * v2 - 0.48959089 * θ2 -
0.16011745 * ω2 - 1.9191392 * v * θ + 0.38787089 * v * ω - 0.034891723 * θ * ω

NTL -0.25276 - 0.023171 * v - 0.00052139 * θ + 0.01967 * ω + 0.00027869 * v2 - 0.00030386 * θ2 -
0.00010487 * ω2 + 0.00010836 * v * θ + 0.0001704 * v * ω - 0.000020892 * θ * ω

NTR -1.6258 + 0.067876 * v - 0.0056195 * θ + 0.015463 * ω - 0.00068404 * v2 + 0.000026671 * θ2 -
0.000052106 * ω2 + 0.000006767 * v * θ - 0.00012076 * v * ω + 0.000020693 * θ * ω

NCL -0.60187 - 0.051335 * v + 0.0047267 * θ + 0.035072 * ω + 0.00059986 * v2 - 0.00039911 * θ2 -
0.00018029 * ω2 + 0.00013257 * v * θ + 0.00029284 * v * ω - 0.000063187 * θ * ω

NCR -1.975 + 0.039712 * v - 0.00037145 * θ + 0.030865 * ω - 0.00036288 * v2 - 0.000068583 * θ2 -
0.00012753 * ω2 + 0.000030982 * v * θ + 0.0000016813 * v * ω - 0.00002160 * θ * ω

We are investigating injury concerns resulting from car crashes, specifically focusing
on HIC and Lateral Nij as design goals to assess injuries (refer to Table 7) during a
car crash. By manipulating crash variables such as impact angle, impact location, and
impact velocity, we generate various crash scenarios. Visualizing the solutions becomes
challenging due to the combination of five design goals and two crash vehicles. To
effectively explore different crash conditions and identify potential injury concerns,
iSOM visualization technique has been used. It acts as a valuable decision support tool
which allows us to study the interaction between design goals and their relationship
with the crash variables.

The study utilizes crash variables, which are listed in Table 6, to conduct a total
of 97 crash scenarios using a Latin hypercube design. Each scenario is simulated using
LS-DYNA software (LSTC, Livermore, CA, USA). Figure 8 illustrates an example
crash scenario where the FE MDB model collides with the Dodge Neon vehicle model
at an impact location of 120◦ and an impact angle of 38◦. The results obtained from
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these crash scenarios are then used to develop second-order polynomial surrogate
models that establish the relationship between the crash conditions and injury matri-
ces, see Table 8. We use the multivariate polynomial regression method to develop
the surrogate models and employ the coefficient of determination (R-squared) and
Cross-Validated Mean Absolute Error (CVMAE) as the goodness of fit measures,
see Table 9. With the aid of these surrogate models, a many-goal constrained cDSP
is formulated. The formulation of the multigoal cDSP for the problem is presented
below. The cDSP formulation is characterized by the presence of 5 goals and 2 design
variables, with the impact location variable assumed to be fixed at 120 degrees for a
side impact scenario.

Table 9 Error Metrics of Surrogate Models for HIC15

and NIC

Injury Metrics R-
squared

CVMAE

HIC15 0.8703 3.0502
NTL 0.8505 0.4055
NTR 0.7911 0.2376
NCL 0.8985 0.4781
NCR 0.9312 0.2741

Given:

1. Information specific to the car crash problem. Assumption: Impact Location, ω =
120

2. Design variables (Xp) and their bound:
(a) 25 ≤ X1: Impact Velocity, v (mph) ≤ 45
(b) -45 ≤ X2: Impact Angle, θ (degrees) ≤ 45

3. Goals (Gi) and goal targets:
(a) Goal G1: Maximize HIC15

(b) Goal G2: Maximize NTL
(c) Goal G3: Maximize NCR
(d) Goal G4: Maximize NTR
(e) Goal G5: Maximize NCL

4. Models that relate the design variable and goals, see surrogate models in Table 8 .

Find values of

1. Design variables: Xp (for j = 1,2)
2. Deviation Variables: di (for d1, d2, d3, d4 and d5)
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Satisfy

1. System Constraints
(a) 0 ≤ HIC15 ≤ 5200
(b) 0 ≤ NTL ≤ 1.4
(c) 0 ≤ NCR ≤ 1.2
(d) 0 ≤ NTR ≤ 1
(e) 0 ≤ NCL ≤ 1.9

2. System Goal:
(a) G1/G1target

+ d−1 − d+1 = 1

(b) G2/G2target + d−2 − d+2 = 1

(c) G3/G3target
+ d−3 − d+3 = 1

(d) G4/G4target + d+4 − d−4 = 1

(e) G5/G5target
+ d+5 − d−5 = 1

where, Goal Targets:
G1target

= 800; G2target
= 0.8; G3target

= 0.8; G4target
= 0.8; G5target

= 0.8
3. Variable bounds
(a) 25 ≤ X1 (mph) ≤ 45
(b) -45 ≤ X2 (degrees) ≤ -45

4. Deviation variable bounds
(a) d+i , d

−
i ≥ 0

(b) d+i × d−i = 0

Minimize
The deviation function Z given as

Min Z =
∑

Wi(d
+
i + d−i ) (4)

where,
∑

Wi = 1 and i = 1, 2, 3, 4, 5

The multigoal cDSP formulation presented above is exercised for different design
scenarios to generate the different design solutions for the problem. A total of 36
design scenarios are created by changing the assigned weights to the design goals. The
36 design solutions corresponding to the 36 design scenarios are then used to generate
plots using the proposed design methodology, allowing for an analysis of how different
combinations of input variables impact the head and neck injury metrics. In the next
section we focus on discussing the insights and conclusions drawn from the importance
inferences derived from the iSOM visualization.

5.5 Solution space exploration for car crash problem using
iSOM

The plots generated are displayed in Figure 9 and Figure 10. Figure 9 presents the
output component places representing the head and neck injury metrics in relation to
the input component planes, which correspond to the weights assigned to the goals
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Fig. 9 Inputs and output component planes for car crash problem

Fig. 10 Component planes of design variables for car crash problem

in the cDSP formulation. The weights are denoted as W1 for HIC15, W2 for NTL,
W3 for NCR, W4 for NTR, and W5 for NCL. The plots reveal that the injury metrics
exhibit similar trends to the component plane of W4, indicating that a higher value of
this weight results in elevated injury metric values. This suggests a stronger influence
of NTR on the other injury metrics. Hence, the iSOM plots aid the identification of
critical goals and their influence on the other goals of a design problem.

Furthermore, identifying high-risk regions is of interest. To illustrate how this iden-
tification can be discussed using the plots, the RoI is defined as having high head
injury metric values (greater than 1000), as shown in Figure. 11. The red box high-
lights the RoI, indicating that higher head injury values correspond to elevated neck
injury values. By examining the design variables plots of impact angle and impact
velocity within the marked RoI (as seen in Figure 11), the critical ranges of these vari-
ables that contribute to maximum injury can be identified. In this case, the critical
range for impact angle lies between -10 and +5 degrees, while for impact velocity, it
is between 32 and 35 mph. Hence, the iSOM plots can be used by decision-makers to
assess the impacts of variables on the goals of the car crash problem and vice-versa.

The red dots on the nodes of the component plane in Figure 11 represent samples
that are mapped to those nodes. The red rectangle representing the RoI contains some
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Fig. 11 RoI shown by red rectangles and hits shown by red dots

Table 10 Solution points selected in RoI for car crash problem

SCENARIO W1 W2 W3 W4 W5 v θ ω HIC15 NTL NCR NTR NCL
4 0 0 0 1 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
6 0.2 0.2 0.2 0.2 0.2 36.5723 -10.1039 120 1538.27 0.83 0.88 0.55 1.16
7 0.25 0.25 0.25 0.25 0 36.5723 -10.1039 120 1538.27 0.83 0.88 0.55 1.16
8 0 0.25 0.25 0.25 0.25 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
9 0.25 0 0.25 0.25 0.25 36.5723 -10.3531 120 1539.76 0.83 0.88 0.55 1.16
10 0.25 0.25 0 0.25 0.25 36.5723 -10.1039 120 1538.27 0.83 0.88 0.55 1.16
13 0 0.33 0.34 0.33 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
14 0 0 0.33 0.34 0.33 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
15 0.33 0 0 0.33 0.34 36.5723 -10.3531 120 1539.76 0.83 0.88 0.55 1.16
19 0 0 0.5 0.5 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
20 0 0 0 0.5 0.5 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
24 0 0 0.25 0.75 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
25 0 0 0 0.25 0.75 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
29 0 0 0.75 0.25 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
30 0 0 0 0.75 0.25 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
33 0 0.2 0.4 0.4 0 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
34 0 0 0.2 0.4 0.4 36.9234 -7.90175 120 1574.04 0.85 0.88 0.54 1.19
35 0.4 0 0 0.2 0.4 36.5723 -10.3531 120 1539.76 0.83 0.88 0.55 1.16

red dots, which correspond to the scenarios falling within our RoI. These scenarios
can be further sampled to investigate the significance of different neck injury metrics
on head injury metrics. Table 10 provides information on the scenarios falling within
the RoI.
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The utilization of iSOM for solution space exploration demonstrates an enhanced
visualization technique for analysis. Previous studies, such as [79] and [80], have sep-
arately investigated the effects of changing design variable values on neck and head
injury metrics. However, these injury metrics have not been studied and analyzed
together with the design variables. Additionally, previous works used contour plots to
observe the influence of design variables on injury metrics, resulting in multiple con-
tour plots that needed to be studied simultaneously to draw conclusions. In contrast,
using iSOM accelerates and improves the information assessment process, enabling
better decision-making with a broader range of available information. It also opens
up avenues for further exploration of iSOM’s utility for similar problems, providing
opportunities for introspection and advancements in this field.

6 CLOSING REMARKS

In this paper, we propose an approach that combines iSOM visualization with the
cDSP construct to support designers in carrying out design/solution space exploration
for design problems with many conflicting goals and identify ranged set of satisficing
solutions. The iSOM-based visualization allows for better understanding of the trade-
offs among conflicting goals and the relations between design variables and goals,
thereby supporting informed decision-making. The efficacy of the proposed iSOM-
based approach in supporting design/solution space exploration to identify a ranged
set of satisficing solutions is demonstrated using the hot rod rolling (HRR) process
chain design problem and the car crash problem. Using the HRR process chain design
problem, we demonstrate the ability of the proposed approach in supporting design-
ers to better understand the influence of variables other than design variables on the
conflicting goals, the trade offs between many (four) conflicting goals, and explore the
design/solutions spaces to identify a ranged set of satisficing solutions. The car crash
problem is used to demonstrate the ability of the proposed approach in supporting
decision-makers to better understand the relations between variables (two) and many
goals (five) and identify critical goals and assess their influence on other goals to help
make informed decisions. Using these test examples, we demonstrate the capabili-
ties offered by the proposed approach, which include the ability to: i) visualize and
interpret many-goal problems and associated solution spaces in a cDSP framework,
ii) establish relations between the input variables and output responses, and iden-
tify regions of interest, iii) explore regions of interest and identify satisficing solution
regions that meet conflicting requirements, and iv) make informed decisions from the
solution regions identified.

The proposed approach can be expanded to support robust design of systems with
many conflicting goals, where the focus is on identifying ranged set of robust satisficing
solutions that are relatively insensitive to uncertainties while still meeting the designers
requirements. The robust design can be realized by combining iSOM visualization with
the cDSP and robust design constructs like Design Capability Index (DCI) [81] and
Error Margin Index (EMI) [82]. The proposed approach can also be used to support the
visualization and simultaneous exploration of design spaces across multiple levels of
decision-making, thereby supporting the concurrent design of multilevel systems. This
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can be achieved by combining iSOM visualization with the coupled cDSP construct
[83] and the Preemptive formulation [53].
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9 Replication of results

The 2 examples presented take data from [10] and [70,71]. The codes for generating
the iSOM plots are available upon request.
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[5] Shavazipour, B., López-Ibáñez, M., Miettinen, K.: Visualizations for decision sup-
port in scenario-based multiobjective optimization. Information Sciences 578,
1–21 (2021)

[6] Nagar, D., Ramu, P., Deb, K.: Visualization and analysis of pareto-optimal
fronts using interpretable self-organizing map (isom). Swarm and Evolutionary
Computation 76, 101202 (2023)

28



[7] Simpson, T.W., Miller, S., Tibor, E.B., Yukish, M.A., Stump, G., Kannan, H.,
Mesmer, B., Winer, E.H., Bloebaum, C.L.: Adding value to trade space explo-
ration when designing complex engineered systems. Systems Engineering 20(2),
131–146 (2017)

[8] Sabeghi, M., Smith, W., Allen, J.K., Mistree, F.: Solution space exploration in
model-based realization of engineered systems. In: International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference, vol. 57076, pp. 02–03015 (2015). American Society of Mechanical
Engineers

[9] Balu Nellippallil, A., Berthelson, P.R., Peterson, L., Prabhu, R.K.: Head and neck
injury risk criteria-based robust design for vehicular crashworthiness. In: Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, vol. 84010, pp. 11–11015 (2020). American Society of
Mechanical Engineers

[10] Nellippallil, A.B., Rangaraj, V., Gautham, B., Singh, A.K., Allen, J.K., Mistree,
F.: An inverse, decision-based design method for integrated design exploration of
materials, products, and manufacturing processes. Journal of Mechanical Design
140(11) (2018)

[11] Miller, S.W., Simpson, T.W., Yukish, M.A., Stump, G., Mesmer, B.L., Tibor,
E.B., Bloebaum, C.L., Winer, E.H.: Toward a value-driven design approach for
complex engineered systems using trade space exploration tools. In: International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 46315, pp. 02–03052 (2014). American Society of
Mechanical Engineers

[12] Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y.: Understanding how dimension
reduction tools work: an empirical approach to deciphering t-sne, umap, trimap,
and pacmap for data visualization. arXiv preprint arXiv:2012.04456 (2020)

[13] Johansson, J., Forsell, C.: Evaluation of parallel coordinates: Overview, catego-
rization and guidelines for future research. IEEE transactions on visualization
and computer graphics 22(1), 579–588 (2015)

[14] Sobester, A., Forrester, A., Keane, A.: Engineering Design Via Surrogate Mod-
elling: a Practical Guide. John Wiley & Sons, ??? (2008)

[15] Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., Pascucci, V.: Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions on Visu-
alization and Computer Graphics 23(3), 1249–1268 (2017) https://doi.org/10.
1109/TVCG.2016.2640960

[16] Oakley, D.R., Sues, R.H., Rhodes, G.S.: Performance optimization of multidis-
ciplinary mechanical systems subject to uncertainties. Probabilistic Engineering

29

https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960


Mechanics 13(1), 15–26 (1998)

[17] Sues, R.H., Oakley, D.R., Rhodes, G.S.: Multidisciplinary stochastic optimization.
In: Engineering Mechanics, pp. 934–937 (1995). ASCE

[18] Du, X., Chen, W.: Efficient uncertainty analysis methods for multidisciplinary
robust design. AIAA Journal 40, 545–552 (2002) https://doi.org/10.2514/3.
15095

[19] Gu, X., Renaud, J.E., Batill, S.M., Brach, R.M., Budhiraja, A.: Worst case
propagated uncertainty of multidisciplinary systems in robust design optimiza-
tion. Structural and Multidisciplinary Optimization 20, 190–213 (2000) https:
//doi.org/10.1007/s001580050148

[20] Kim, H.M., Michelena, N.F., Papalambros, P.Y., Jiang, T.: Target cascading in
optimal system design. J. Mech. Des. 125(3), 474–480 (2003)

[21] Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I.: Multidisciplinary opti-
mization methods for aircraft preliminary design. In: 5th Symposium on
Multidisciplinary Analysis and Optimization, p. 4325 (1994)

[22] Sobieszczanski-Sobieski, J., Kodiyalam, S.: Bliss/s: a new method for two-level
structural optimization. Structural and Multidisciplinary Optimization 21, 1–13
(2001)

[23] Shahan, D.W., Seepersad, C.C.: Bayesian network classifiers for set-based collab-
orative design (2012)

[24] Simon, H.: Administrative behavior, McMillan, New York. Thompson, JD (1967),
Organizations in actions. McGraw-Hill, New York (1947)

[25] Simon, H.A.: Rational choice and the structure of the environment. Psychological
review 63(2), 129 (1956)

[26] Mistree, F., Smith, W., Bras, B., Allen, J., Muster, D., et al.: Decision-based
design: a contemporary paradigm for ship design. Transactions, Society of Naval
Architects and Marine Engineers 98(1990), 565–597 (1990)

[27] Muster, D., Mistree, F.: The decision support problem technique in engineering
design. The International Journal of Applied Engineering Education 4, 23–33
(1988)

[28] Mistree, F., Bras, B., Hughes, O.F.: Compromise decision support problem and
the adaptive linear programming algorithm. Structural Optimization: Status
Promise, 247–286 (1993)

[29] Choi, H., McDowell, D.L., Allen, J.K., Rosen, D., Mistree, F.: An inductive design
exploration method for robust multiscale materials design. Journal of Mechanical

30

https://doi.org/10.2514/3.15095
https://doi.org/10.2514/3.15095
https://doi.org/10.1007/s001580050148
https://doi.org/10.1007/s001580050148


Design, 130, 031402 (2008)

[30] Nellippallil, A.B., Mohan, P., Allen, J.K., Mistree, F.: An inverse, decision-based
design method for robust concept exploration. Journal of Mechanical Design
142(8), 081703 (2020)

[31] Qin, X., Luo, Y., Tang, N., Li, G.: Making data visualization more efficient and
effective: a survey. The VLDB Journal 29, 93–117 (2020)

[32] Obayashi, S., Sasaki, D.: Visualization and data mining of pareto solutions using
self-organizing map. In: International Conference on Evolutionary Multi-Criterion
Optimization, pp. 796–809 (2003). Springer

[33] Parashar, S., Pediroda, V., Poloni, C.: Self organizing maps (som) for design
selection in robust multi-objective design of aerofoil. In: 46th AIAA Aerospace
Sciences Meeting and Exhibit, p. 914 (2008)

[34] Ito, K., Couckuyt, I., d’Ippolito, R., Dhaene, T.: Design space exploration using
self-organizing map based adaptive sampling. Applied Soft Computing 43, 337–
346 (2016)

[35] Qiu, H., Xu, Y., Gao, L., Li, X., Chi, L.: Multi-stage design space reduction
and metamodeling optimization method based on self-organizing maps and fuzzy
clustering. Expert Systems with Applications 46, 180–195 (2016)

[36] Thole, S.P., Ramu, P.: Design space exploration and optimization using self-
organizing maps. Structural and Multidisciplinary Optimization 62(3), 1071–1088
(2020)

[37] Baby, M., Guptan, A., Broussard, J., Allen, J.K., Mistree, F., Nellippallil, A.B.:
A decision support framework for robust multilevel co-design exploration of
manufacturing supply networks. Journal of Mechanical Design 146(11) (2024)

[38] Baby, M., Rama Sushil, R., Ramu, P., Allen, J.K., Mistree, F., Nellippallil, A.B.:
Robust, co-design exploration of multilevel product, material, and manufacturing
process systems. Integrating Materials and Manufacturing Innovation 13(1), 14–
35 (2024)

[39] Yin, H.: The self-organizing maps: background, theories, extensions and appli-
cations. In: Computational Intelligence: A Compendium, pp. 715–762. Springer,
??? (2008)

[40] Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocom-
puting 21(1-3), 19–30 (1998)

[41] Vesanto, J.: Som-based data visualization methods. Intelligent data analysis 3(2),
111–126 (1999)

31



[42] Vesanto, J.: Som-based data visualization methods. Intelligent data analysis 3(2),
111–126 (1999)

[43] Witowski, K., Liebscher, M., Goel, T.: Decision making in multi-objective opti-
mization for industrial applications–data mining and visualization of pareto data.
In: Proceedings of the 7th European LS-DYNA Conference, Salzburg, Austria
(2009)

[44] Qiu, H., Xu, Y., Gao, L., Li, X., Chi, L.: Multi-stage design space reduction
and metamodeling optimization method based on self-organizing maps and fuzzy
clustering. Expert Systems with Applications 46, 180–195 (2016)

[45] Ito, K., Dhaene, T., El Masri, N., d’Ippolito, R., Peer, J.: Self-organizing map
based adaptive sampling. In: 5th International Conference on Experiments/Pro-
cess/System Modeling/Simulation/Optimization (IC-EpsMsO-2013), vol. 2, pp.
504–513 (2013)

[46] Suzuki, N., Okamoto, T., Koakutsu, S.: Visualization of pareto optimal solu-
tion sets using the growing hierarchical self-organizing maps. Electronics and
Communications in Japan 100(1), 3–17 (2017)

[47] Nagar, D., Ramu, P., Deb, K.: Interpretable self-organizing maps (isom) for visu-
alization of pareto front in multiple objective optimization. In: International
Conference on Evolutionary Multi-Criterion Optimization, pp. 645–655 (2021).
Springer

[48] Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map
in matlab: the som toolbox. (1999). https://api.semanticscholar.org/CorpusID:
15746005

[49] Baluch, N., Udin, Z.M., Abdullah, C.S.: Advanced high strength steel in auto
industry: an overview. Engineering, Technology & Applied Science Research 4(4),
686–689 (2014)

[50] Jin, Y.: Development of advanced high strength steels for automotive applications.
La Metallurgia Italiana (2011)

[51] Olson, G.B.: Computational design of hierarchically structured materials. Science
277(5330), 1237–1242 (1997)

[52] Nellippallil, A.B., Rangaraj, V., Gautham, B., Singh, A.K., Allen, J.K., Mistree,
F.: A goal-oriented, inverse decision-based design method to achieve the vertical
and horizontal integration of models in a hot rod rolling process chain. In: Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, vol. 58134, pp. 02–03003 (2017). American Society of
Mechanical Engineers

32

https://api.semanticscholar.org/CorpusID:15746005
https://api.semanticscholar.org/CorpusID:15746005


[53] Hughes, O.F.: Compromise decision support problem and the adaptive linear
programming algorithm. Progress In Astronautics and Aeronautics: Structural
Optimization: Status and Promise 150, 251 (1993)

[54] Reddy, R., Smith, W., Mistree, F., Bras, B., Chen, W., Malhotra, A., Badhrinath,
K., Lautenschlager, U., Pakala, R., Vadde, S.: Dsides User Manual. Systems Real-
ization Laboratory. Woodruff School of Mechanical Engineering, Georgia Institue
of Technology . . . (1996)

[55] Kuziak, R., Cheng, Y., Glowacki, M., Pietrzyk, M.: Modeling of the microstruc-
ture and mechanical properties of steels during thermomechanical processing.
technical note. Technical report, National Inst. of Standards and Technology
(MSEL), Boulder, CO (United . . . (1997)

[56] Yada, H.: Prediction of microstructural changes and mechanical properties in
hot strip rolling. In: Proceedings of the Metallurgical Society of the Canadian
Institute of Mining and Metallurgy, pp. 105–119. Elsevier, ??? (1988)

[57] Gladman, T., FB, P.: Some aspects of the structure-property relationships in
high-carbon ferrite-pearlite steels (1972)

[58] Kuziak, R., Cheng, Y.-W., Glowacki, M., Pietrzyk, M.: Modeling of the
microstructure and mechanical properties of steels during thermomechanical
processing. NIST Technical Note(USA) 1393, 72 (1997)

[59] PD, H.: A mathematical model to predict the mechanical properties of hot rolled
c-mn and microalloyed steels. ISIJ international 32(12), 1329–1338 (1992)

[60] Organization, W.H.: Global Status Report on Road Safety 2015. World Health
Organization, ??? (2015)

[61] Henn, H.-W.: Crash tests and the head injury criterion. Teaching mathematics
and its applications 17(4), 162–170 (1998)

[62] Kleinberger, M., Sun, E., Eppinger, R., Kuppa, S., Saul, R.: Development of
improved injury criteria for the assessment of advanced automotive restraint
systems. NHTSA Docket 4405(9), 12–17 (1998)

[63] Soltis, S.: An overview of existing and needed neck impact injury criteria for
sideward facing aircraft seats. In: The Third Triennial International Aircraft Fire
and Cabin Safety Research Conference, vol. 12 (2001)

[64] Berthelson, P., Ghassemi, P., Wood, J., Stubblefield, G., Al-Graitti, A., Jones,
M., Horstemeyer, M.F., Chowdhury, S., Prabhu, R.: A finite element–guided
mathematical surrogate modeling approach for assessing occupant injury trends
across variations in simplified vehicular impact conditions. Medical & Biological
Engineering & Computing 59(5), 1065–1079 (2021)

33



[65] Versace, J.: A review of the severity index (1971)

[66] Eppinger, R., Kuppa, S., Saul, R., Sun, E.: Supplement: development of improved
injury criteria for the assessment of advanced automotive restraint systems: Ii
(2000)

[67] Nellippallil, A.B., Berthelson, P.R., Peterson, L., Prabhu, R.: A computational
framework for human-centric vehicular crashworthiness design and decision-
making under uncertainty. ASCE-ASME J Risk and Uncert in Engrg Sys Part B
Mech Engrg (2022)

[68] Berthelson, P.R., Ghassemi, P., Wood, J.W., Liu, Y., Al-Graitti, A.J., Jones,
M.D., Chowdhury, S., Prabhu, R.K.: Evaluation of occupant neck injury response
to varied impact conditions using a finite element-mathematical surrogate mod-
eling approach. International Journal of Crashworthiness, 1–17 (2021)

[69] Muser, M., Walz, F., Niederer, P., et al.: Nkm-a proposal for a neck protection
criterion for low-speed rear-end impacts. Traffic Injury Prevention 3(2) (2002)

[70] Soltis, S.J.: The third triennial international aircraft fire and cabin safety research
conference october 22–25, 2001 an overview of existing and needed neck impact
injury criteria for sideward facing aircraft seats (2001)

[71] Zaouk, A., Marzougui, D., Bedewi, N.: Development of a detailed vehicle finite
element model part i: Methodology. International Journal of Crashworthiness
5(1), 25–36 (2000)

[72] Zaouk, A., Marzougui, D., Kan, C.-D.: Development of a detailed vehicle
finite element model part ii: Material characterization and component testing.
International Journal of Crashworthiness 5(1), 37–50 (2000)

[73] Horstemeyer, M., Ren, X., Fang, H., Acar, E., Wang, P.: A comparative study of
design optimisation methodologies for side-impact crashworthiness, using injury-
based versus energy-based criterion. International Journal of Crashworthiness
14(2), 125–138 (2009)

[74] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.: A comparative study of
metamodeling methods for multiobjective crashworthiness optimization. Com-
puters & structures 83(25-26), 2121–2136 (2005)

[75] Iwamoto, M., Kisanuki, Y., Watanabe, I., Furusu, K., Miki, K., Hasegawa,
J.: Development of a finite element model of the total human model for
safety (thums) and application to injury reconstruction. In: Proceedings of the
International IRCOBI Conference, pp. 18–20 (2002)

[76] Iwamoto, M., Omori, K., Kimpara, H., Nakahira, Y., Tamura, A., Watanabe,
I., Miki, K., Hasegawa, J., Oshita, F., Nagakute, A.: Recent advances in thums:

34



development of individual internal organs, brain, small female and pedestrian
model. In: Proceedings of 4th European LS Dyna Users Conference, pp. 1–10
(2003)

[77] Fang, H., Solanki, K., Horstemeyer, M.: Numerical simulations of multiple vehicle
crashes and multidisciplinary crashworthiness optimization. International Journal
of Crashworthiness 10(2), 161–172 (2005)

[78] Kahane, C.J.: Evaluation of fmvss 214-side impact protection: Dynamic perfor-
mance requirement; phase 1: Correlation of tti (d) with fatality risk in actual
side impact collisions of model year 1981-1993 passenger cars; plan for phase 2:
Effect of fmvss 214 and correlation of tti (d) with actual fatality risk in model
year 1992-2000 passenger cars. Technical report (1999)

[79] Berthelson, P.R., Ghassemi, P., Wood, J.W., Liu, Y., Al-Graitti, A.J., Jones,
M.D., Chowdhury, S., Prabhu, R.K.: Evaluation of occupant neck injury response
to varied impact conditions using a finite element-mathematical surrogate mod-
eling approach. International Journal of Crashworthiness, 1–17 (2021)

[80] Berthelson, P., Ghassemi, P., Wood, J., Stubblefield, G., Al-Graitti, A., Jones,
M., Horstemeyer, M.F., Chowdhury, S., Prabhu, R.: A finite element–guided
mathematical surrogate modeling approach for assessing occupant injury trends
across variations in simplified vehicular impact conditions. Medical & Biological
Engineering & Computing 59(5), 1065–1079 (2021)

[81] Chen, W., Simpson, T.W., Allen, J.K., Mistree, F.: Satisfying ranged sets
of design requirements using design capability indices as metrics. Engineering
Optimization 31(5), 615–619 (1999)

[82] Choi, H.-J., Austin, R., Allen, J.K., McDowell, D.L., Mistree, F., Benson, D.J.:
An approach for robust design of reactive power metal mixtures based on non-
deterministic micro-scale shock simulation. Journal of Computer-Aided Materials
Design 12, 57–85 (2005)

[83] Sharma, G., Allen, J.K., Mistree, F.: A method for robust design in a coupled
decision environment. Design Science 7, 23 (2021)

35


	Introduction
	Self Organizing Maps
	Conventional Self Organizing Maps (cSOM)
	Interpretable Self Organizing Maps (iSOM)

	PROPOSED DESIGN APPROACH
	TEST PROBLEM 1: THE HOT ROD ROLLING PROCESS CHAIN PROBLEM
	Integrated solution space exploration using iSOM for the HRR problem

	TEST PROBLEM 2: CAR CRASH PROBLEM
	Head Injury Metric Analysis
	Neck Injury Metric Analysis
	Finite Element Simulation Setup and Data Generation
	Problem Formulation
	Solution space exploration for car crash problem using iSOM

	CLOSING REMARKS
	Competing interests
	Acknowledgments and funding information
	Replication of results

