
 
 1 © 2024 by ASME 

Proceedings of the ASME 2024 
International Design Engineering Technical Conferences and  

Computers and Information in Engineering Conference 
IDETC/CIE2024 

August 25-28, 2024, Washington, DC 

IDETC2024-146330 
 

MULTILEVEL DECISION SUPPORT FRAMEWORK FOR THE SIMULTANEOUS DESIGN 
EXPLORATION OF MATERIAL STRUCTURES AND PROCESSES 

 

 
ABSTRACT 

Traditional manufacturing, such as steel manufacturing, 
involves a series of processes to realize the final product. The 
properties and performance of the final product depend on the 
material processing history and the microstructure generated at 
each of the processes. Realizing target product performance 
requires the simultaneous design exploration of the material 
microstructure and processing, taking into account the multilevel 
interactions between the material, product, and manufacturing 
processes. This demands the capability to co-design, which 
involves sharing a ranged set of solutions through design 
exploration across multilevel and providing design decision 
support.   

In this paper, we present a co-design exploration framework 
for multilevel decision support. Using the framework, we model 
the interactions and couplings between the levels and facilitate 
simultaneous decision-based design exploration. The framework 
integrates the coupled compromise Decision Support Problem 
(c-cDSP) construct with interpretable Self-Organizing Maps 
(iSOM) to facilitate (i) the formulation of the multilevel decision 
support problems taking into account the interactions and 
couplings between levels, (ii) the simultaneous visualization and 
exploration of the multilevel design spaces, and (iii) decision-
making across levels for multilevel designers. The efficacy of the 
framework is tested using a hot rod rolling problem focusing on 
the interactions between the dynamic and metadynamic phases 
of material recrystallization and the thermo-mechanical 
processing during the hot rolling process. The framework is 
generic and supports the co-design exploration of systems 
characterized by multilevel interactions, couplings, and 
multidisciplinary designers. 
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1. FRAME OF REFERENCE 

Traditional manufacturing processes, such as steel 
manufacturing, involve a sequence of processes to realize the 
final product. The design of such systems needs to consider the 
information flow and interactions between the disciplines of 
material, product, and manufacturing processes. Designers are 
required to consider the interrelated variables, the conflicting 
goals and constraints, and the interactions and couplings between 
these different disciplines, making the design of these systems 
complex. Due to this, coming up with comprehensive system-
wide satisfying solutions that take into account the information 
flows, process interrelations, conflicting goals, and couplings 
between the disciplines is a challenge. One approach to 
managing the design complexity is to decompose the system-
level problem into a set of interdependent and distributed 
subsystem-level problems, where the multiple levels correspond 
to the different disciplines of material, product, and 
manufacturing process. The multiple design levels are 
characterized by the respective multidisciplinary designers, such 
as manufacturing process, materials, and product designers, who 
are equipped with domain-specific tools and knowledge to 
formulate the distributed design problems specific to their 
discipline. Such a multilevel design approach focuses on 
coordinating the couplings between the levels and finding 
solutions that satisfy the designers' requirements at the individual 
levels of the multiple design levels. Multidisciplinary design 
optimization (MDO) approaches [1-4] are used to address such 
problems. The focus in MDO approaches is to identify single-
point design solutions via extensive optimization methods and 
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detailed analysis models for each of the disciplines. The MDO 
approaches also require compliance with a formal design 
framework, which often entails substantial iteration within and 
between the design levels. In the early stages of design, when the 
designer’s focus is on quickly finding a satisfying region of the 
design space for the multiple design levels, these characteristics 
of the optimization approaches create a challenge [5]. Therefore, 
we need approaches that facilitate the simultaneous design 
exploration of complex design spaces across multiple levels and 
efficient identification of satisfactory solution regions for 
decision-making. This involves facilitating 'co-design 
exploration', that is, the capability of distributed designers or 
decision makers (material, product, and manufacturing process 
designers, respectively) at multilevel to collaboratively share 
their information, knowledge, and resources in an integrated 
fashion to achieve the simultaneous design exploration of the 
material, product, and associated manufacturing processes. 

The properties and performance of a product are defined by 
the material processing history and the microstructure generated 
at each of the processes. An example is the hot rod rolling 
process of steel, where the properties of the semi-product rod are 
defined by the microstructure developed at various stages of the 
hot rolling process and the associated thermo-mechanical 
processing history during the reheating, rolling, and cooling 
stages. Due to the relations existing between the material 
processing history, microstructure generated, and the product 
property and performance, achieving targeted product 
performance requires considering the design of the overall 
system, which includes the co-design exploration of the product, 
material, and manufacturing process systems, and their 
interrelations and couplings [6].  

 
FIGURE 1:  Olson’s PSPP relations and co-design between 

manufacturing process, material, and product 

An integrated, top-down, systems-based approach is needed 
to co-design these multilevel systems, starting with the 
performance required for the product and then inversely 
designing the levels of material microstructures and thermo-
mechanical processing history to realize the target performance. 
Olson's Processing-microStructure-Property-Performance 
(PSPP) relations [7] establish the basis for the inverse, systems-

based co-design exploration by linking the disciplines of 
product, materials, and manufacturing processes, as shown in 
Figure 1. According to the PSPP relations, the manufacturing 
processing history determines the material microstructure and 
properties, which determines the product properties and 
performance. The Integrated Computational Materials 
Engineering (ICME) effort offers guidance for the simulation-
supported design of material, product, and manufacturing 
process systems. ICME emphasizes using simulation-based 
design to realize products and materials concurrently in a top-
down fashion using the PSPP relations generated through 
integrated material and process models across various lengths 
and time scales. By utilizing simulation-supported systems 
design approaches, designers are able to comprehend the 
complex relationships in materials design better and make well-
informed design decisions [8]. Materials design for ICME is 
essentially viewed as a decision-making process using 
simulation-based design. However, simulation models used in 
materials design are typically incomplete, inaccurate, and not of 
equal fidelity. They are abstractions of the real physical material 
phenomena [9] and embody uncertainty. Single-point solutions 
based on optimization are sensitive to uncertainty and do not 
hold when conditions change. Therefore, the multilevel design 
necessitates exploring the solution spaces and identifying 
solution regions, rather than single-point solutions, that satisfy 
and suffice the designer’s requirements across multiple levels 
and are relatively insensitive to uncertainties. Such solution 
regions are defined as “satisficing solutions” [10].  

From a systems design perspective, we view design as a top-
down, goal-oriented, decision-based process supported by 
simulations [11, 12]. We advocate the Decision-Based Design 
(DBD) paradigm advocated by Mistree and co-authors [13]. In 
DBD, design problems are modeled as Decision Support 
Problems (DSP) using Decision Support Problem Techniques 
(DSPT) and constructs, see [14, 15]. The DSP technique is based 
on the notion of bounded rationality proposed by Herbert Simon 
[16]. In DBD, decisions are made using information generated 
from simulation models. The compromise Decision Support 
Problem (cDSP) [17] construct is used to formulate and solve 
design problems involving many conflicting goals and seek 
satisficing solutions through design exploration and trade-off. 

Several recent works address the inverse design of material 
structures from a top-down systems perspective. A framework 
presented by Adams and co-authors [18] addresses the inverse 
relations between the material microstructure, properties, and 
processing path and uses spectral representations to establish the 
invertible linkages. Kalidindi and co-authors [19, 20] present a 
materials knowledge system approach that facilitates the flow of 
high-fidelity information in both directions between the 
constituent length scales, offering a new technique for 
concurrent multiscale modeling, supporting inverse design. A 
probabilistic inverse design machine learning framework is 
presented by Ghosh and co-authors [21] to carry out explicit 
inverse design using conditional invertible neural networks. A 
deep reinforcement learning (DRL) scheme is presented by Sui 
and co-authors [22] to automate the inverse design of composite 
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material structures for realizing target performance. Kim and co-
authors [23] introduce an Artificial Neural Network (ANN) 
based design method to achieve specific user-defined features 
through an inverse design approach for zeolites. Chen and co-
authors [24] introduce a generative deep neural network that 
utilizes inverse design, backpropagation, and active learning to 
support the design of composite materials. A machine learning-
based inverse design technique is also presented by Kumar and 
co-authors [25] to design the topology of metamaterials with 
tailored properties. All these approaches use advanced machine 
learning and data-driven techniques to help establish invertible 
linkages for material design using the PSPP relations that can be 
further used in engineering design for decision-making. These 
approaches are focused on problems where the structure-
property relations can be inverted in some manner. 

Even though there are advanced materials modeling 
techniques to establish inverse relations, it is noticed that the 
decision-making for materials design using engineering design 
techniques is mostly sequential. In the current techniques, the 
design spaces for the different disciplines, namely product 
design, materials design, and manufacturing process design, are 
formulated and solved sequentially without taking into 
consideration the complex interactions and couplings between 
the different disciplines. The sequential, discipline-specific 
design process results in decisions at one level/discipline that can 
cause unintended consequences to other levels/disciplines since 
the interactions are not captured and decisions are not made 
simultaneously [26, 27]. Therefore, the independent decisions 
across individual levels fail to consider the multilevel 
interactions and could cause design conflicts, impacting the 
overall system performance. 

Multidisciplinary design optimization (MDO) approaches 
such as bi-level integrated system synthesis (BLISS) [1, 2], 
collaborative optimization (CO) [3], and analytical target 
cascading (ATC) [4] are discussed in the literature to address the 
optimization of the multilevel system while considering the 
interactions across the multiple levels. Martins and Lambe [28] 
describe that the overall system performance is influenced by 
individual-level performance and their interactions, which serves 
as the primary motivation for MDO. MDO problem formulations 
focus on optimizing the entire system rather than individual 
levels or subsystems sequentially [27]. In MDO, subsystems are 
formulated by combining data generated from multi-fidelity 
models [29], such as empirical models for manufacturing 
processes, physics-based material models, and data-driven 
surrogate models that are abstractions of the physical phenomena 
for a defined design space [9]. These models are used to establish 
quantitative links and interrelations between the individual 
levels/disciplines in MDO. Ituarte and co-authors use MDO with 
surrogate models [27] to establish a computer-aided expert 
system that couples the design exploration and trade-off of 
product, material, and manufacturing process designs for digital 
manufacturing.  

However, these MDO approaches employ rigorous and 
iterative optimization techniques involving extensive 
optimization loops within and between levels to identify unique 

single-point solutions. As discussed above, when designers are 
focused on design exploration in the early stages of design and 
interested in quickly identifying satisfactory regions of interest, 
such intensive MDO approaches are not appropriate. Addressing 
the challenges of MDO for early-stage design exploration, 
satisficing design strategies are proposed.  

Multilevel approaches that support identifying satisficing 
design solutions are discussed in the literature. The Inductive 
Design Exploration Method (IDEM) is proposed by Choi and co-
authors [30] to support the design of multilevel systems.  Using 
IDEM, robust ranges of satisficing solutions are identified and 
sequentially mapped across the multilevel in an inverse manner. 
IDEM, however, has restrictions in the number of design 
variables and responses that can be considered, errors due to 
discretization, increased computational expense for improved 
accuracy, and limited design flexibility due to sequential 
mapping of design spaces [31]. Nellippallil and co-authors [32]  
present the Goal-oriented Inverse Design (GoID) method that 
addresses some of the limitations of IDEM. GoID method 
supports the design of multilevel systems through compromise 
decision support problem (cDSP)-based sequential design 
exploration. Using GoID, robust satisficing solutions are 
identified and propagated sequentially across levels as goal 
targets for the DSP in an inverse manner. Both IDEM and GoID 
methods are sequential in nature, with a focus on realizing the 
goals and satisfying the constraints of the individual 
discipline/level at a time. These methods do not address the 
coupled interactions, the management of design conflicts 
between levels, and the simultaneous exploration of the 
multilevel design spaces for decision-making.  Recent works 
address some of the above-mentioned limitations. Sharma and 
co-authors [33, 34] showcase the utility of coupled cDSP (c-
cDSP) for modeling problems with different forms of coupled 
interactions between levels. Further, Baby and Nellippallil [35] 
present an information-decision framework to detect and manage 
design conflicts in a systematic manner for multilevel problems. 
However, the above-discussed approaches do not address the 
simultaneous design exploration of the multilevel for decision-
making. In a recent work, Baby and co-authors [36] present a 
Co-Design Exploration of Multilevel systems under Uncertainty 
(CoDE-MU) framework to support the co-design exploration of 
multilevel design spaces and identify satisficing solutions that 
are common within and between the levels. The CoDE-MU 
framework as presented by Baby and co-authors, did not address 
coupled interrelations between levels.  

In this paper, we use the CoDE-MU framework for the 
simultaneous co-design exploration of material microstructures 
and processing levels, given the coupled interrelations between 
the levels. The CoDE-MU framework facilitates (i) modeling the 
level-specific information flow and the interactions between 
levels of the disciplines (material processing and material 
microstructure) and (ii) simultaneous exploration of the 
multilevel solution spaces to identify common satisficing design 
solutions for all the disciplines. The coupled-cDSP construct is 
used in the framework to formulate the multilevel problem. The 
objective function of c-cDSP involves a combination of 
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preemptive and Archimedean formulations. By combining the 
two formulations, designers are able to account for many 
conflicting goals (more than three goals) within a single design 
level and consider the couplings and interrelations between 
multiple design levels. In this paper, we propose consistency 
constraints in the coupled cDSP formulation to model the 
couplings between the levels/disciplines. These constraints 
ensure the consistency of coupled variables shared between 
levels. The simultaneous visualization and exploration of the 
many goals within and between design levels is facilitated by the 
integration of interpretable Self-Organizing Maps (iSOM) in the 
framework [37]. iSOM facilitates the co-design exploration by 
allowing the designer to simultaneously visualize the high-
dimensional solutions spaces in two dimensions and easily 
navigate the multilevel design spaces to identify common 
satisficing solution regions, thus facilitating decision support. 
The efficacy of the multilevel decision support framework is 
tested using a hot rod rolling problem focusing on the 
interactions between the dynamic and metadynamic phases of 
material recrystallization and the thermo-mechanical processing 
during the hot rolling process. The sections of the paper are 
discussed below. 

In Section 2, we describe the hot rod rolling problem and the 
design approach used to formulate the multilevel hot rod rolling 
problem. In Section 3, we discuss the multilevel decision support 
framework for simultaneous co-design exploration. In Section 4, 
we showcase the efficacy of the framework in the simultaneous 
multilevel co-design exploration and decision support using the 
hot rod rolling problem. We close the paper by summarizing the 
key functionalities and with our remarks in Section 5. 

  
2. PROBLEM DESCRIPTION 
2.1 Co-design of hot rod rolling process chain and 

steel microstructures 
Steel manufacturing involves a sequence of manufacturing 

processes. The hot rolling process is a major manufacturing 
process in the steel manufacturing process for producing semi-
products like rods and sheets. Hot rolling is generally used to 
obtain fine grains of austenite through the thermo-mechanical 
hot deformation process. The fine grains of austenite help 
achieve fine grains of ferrite through phase transformation 
during the cooling process that follows rolling. The formation of 
the fine grains of ferrite supports the achievement of improved 
mechanical properties in the hot-rolled product. From a design 
perspective, our interest in this problem lies in co-designing the 
steel manufacturing process chain, involving hot rolling and 
cooling processes, with the steel microstructures.   

One of the requirements identified in the problem is to 
achieve a target final austenite grain size (AGS) after the hot 
rolling process. To achieve a target final AGS, several 
microstructural phenomena during rod rolling need to be 
considered, which include dynamic recovery, dynamic 
recrystallization, metadynamic recrystallization, static recovery, 
static recrystallization, and grain growth after recrystallization 
[38]. It is understood that static recrystallization plays a major 

role in plate rolling. However, for the hot rod rolling process, 
dynamic recrystallization plays a major softening role for the 
microstructures due to the higher strain rates and shorter 
interpass time involved with the rod rolling process [39]. The 
dynamic recrystallization phenomenon is followed by 
metadynamic recrystallization, which removes the dynamically 
recrystallized microstructure. It is identified that metadynamic 
recrystallization kinetics is highly dependent on strain rate and is 
weakly dependent on the deformation temperature [39]. The high 
strain rate sensitivity of metadynamic recrystallization plays a 
major role in defining the final austenite grain size and the 
recrystallization kinetics. Following complete metadynamic 
recrystallization, the coarsening of the equiaxed austenite grains 
happens through the grain growth phenomenon. The grain size 
after grain growth defines the microstructure of the steel after hot 
rod rolling. The conditions of the final steel microstructure are 
defined by the effects of the interrelationships and couplings 
involved in the above-discussed microstructural and material 
processing phenomena.    

From an engineering design perspective, there needs to be a 
fundamental understanding of the interdependent nature of the 
multilevel materials, manufacturing process, product design 
decisions, and the couplings between product, material, and 
manufacturing process levels. Towards this, in this paper, we 
study the co-design of the hot rod rolling process of steel and the 
hot rolled rod microstructures after dynamic and metadynamic 
recrystallizations. We consider the hot rolling process chain 
(multiple stages) as one manufacturing process and the dynamic, 
metadynamic recrystallizations and grain growth as different 
material microstructure phases to realize the rod (product). To 
frame the design problem, we assume that dynamic 
recrystallization occurs first and metadynamic recrystallization 
follows complete dynamic recrystallization. Since our interest is 
in inverse top-down design, we start with the requirements of the 
product and map these requirements to the material 
microstructure and material processing during the manufacturing 
process. For the hot rod rolling problem, the austenite grain sizes 
and recrystallization kinetics after metadynamic recrystallization 
and grain growth are considered as the end requirements and will 
be considered in design level 1 to facilitate inverse co-design. 
These requirements depend on the microstructure factors after 
dynamic recrystallization and material processing variables 
during rolling. The dynamic recrystallized grain size and 
recrystallization kinetics requirements are considered in design 
level 2 in an inverse manner. These requirements depend on the 
coupled information from design level 1, the microstructure 
information before rolling, and the material processing variables 
during rolling. More details on the problem are discussed in 
Section 4. To address the co-design problem, decisions need to 
be made by coordinating and investigating the interactions 
among the product designer (for the rod), materials designer (for 
the microstructure), and manufacturing process designer (for 
material processing), using computational process-structure-
property-performance models for hot rod rolling.  
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2.2 Multilevel co-design exploration approach in the 
context of the problem 

In Figure 2, we show a generic schematic of the co-design 
exploration approach for problems involving product, material, 
and manufacturing processes and their interactions. The 
approach involves establishing a forward processing-structure-
property-performance (PSPP) workflow for the problem. For the 
hot rod rolling problem, we focus on the hot deformation of the 
material during rolling, the recrystallization of austenite grains 
during dynamic recrystallization, and the recrystallization of 
austenite grains during metadynamic recrystallization and grain 
growth. The forward PSPP workflow is established using well-
established integrated mathematical models from the literature 
for the hot rolling process and microstructure evolution; see 
details in Appendix A. Once the PSPP linkages are established, 
a model-based information workflow is developed to capture the 
interrelation and couplings between the manufacturing process, 
material, and product; see Figure 2. We discuss this in detail in 
Section 3. We begin the multilevel co-design process once the 
forward information workflow is generated. The decision-based 
co-design exploration of the manufacturing process chain is 

carried out starting from the end product requirements. Co-
design between distributed designers is facilitated through 
shared solution spaces of a coupled multilevel decision support 
problem with the capability to explore, evaluate, and modify 
ranged sets of design specifications across multilevel. 
Specifically, a coupled compromise Decision Support Problem 
is used to formulate the multilevel goals and requirements. Using 
the c-cDSP, the interactions between the different disciplines are 
captured, and satisficing solutions regions across the coupled 
design spaces are sought through co-design exploration. Design 
Level ‘1’ is defined by formulating a multi-objective product-
level design problem to achieve the mechanical property goals 
of the product. The microstructure variables from the materials 
discipline serve as the input variables for the product decision 
support problem. Design Level ‘2’ is defined at the material level 
by considering the multiple microstructure requirements. The 
processing variables from the manufacturing discipline serve as 
input for the materials problem. Design Level ‘3’ considers the 
requirements from the manufacturing process level given the 
coupled information from the material microstructure and 
product.  

 

 
FIGURE 2: Forward information workflow and the inverse coupled design for the multilevel problem involving manufacturing process, 

material, and product.  
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As discussed in Section 1, sequential decision-making of the 
levels in an isolated manner will result in design conflicts. 
Design conflicts will result in reduced overall system 
performance. Therefore, it is essential to co-design the multiple 
levels considering their interactions and couplings. In this paper, 
we present a co-design exploration framework for multilevel 
decision support. Using the framework, we model the 
interactions and couplings between the levels and facilitate 
simultaneous decision-based design exploration. The framework 
integrates the coupled compromise Decision Support Problem 
(c-cDSP) construct with interpretable Self-Organizing Maps 
(iSOM) to facilitate (i) the formulation of the multilevel decision 
support problems taking into account the interactions and 
couplings between levels, (ii) the simultaneous visualization and 
exploration of the multilevel design spaces, and (iii) decision-
making across levels for multilevel designers. We discuss the 
multilevel decision support framework in the next section.  
 
3. MULTILEVEL DECISION SUPPORT FRAMEWORK 

FOR THE SIMULTANEOUS DESIGN 
EXPLORATION OF MATERIAL STRUCTURES AND 
PROCESSES 
In this section, we present a multilevel decision support 

framework for the simultaneous design exploration of material 
structures and processes. The framework facilitates the decision-
based simultaneous design exploration of multilevel. The 
framework is modified from the Co-Design Exploration of 
Multilevel systems under Uncertainty (CoDE-MU) framework 
presented by Baby and Co-authors [36]. We discuss the design 
constructs used in the framework below. 

3.1 Construct and tools used in the framework 
The primary constructs used in the framework are: (i) the 

coupled cDSP (c-cDSP) construct and (ii) the iSOM 
visualization tool.  

3.1.1 The coupled cDSP (c-cDSP) construct 
The coupled cDSP [34] is a decision support problem (DSP) 

construct that supports designers in modeling multiple goals 
within and between multiple levels. The coupled cDSP construct 
is used to model the relationships and consider the decisions 
across various design levels/disciplines.  The decisions made at 
individual levels are focused on achieving the multiple goals 
within the levels through trade-offs. We capture the level-
specific information in a c-cDSP using the keywords - Given, 
Find, and Satisfy of a c-cDSP formulation. The information 
pertains to the design variables, goals, and constraints specific to 
the level. The primary focus of using the c-cDSP is to identify 
solutions that minimize the total deviation of all the design goals 
in the system from their target values, referred to as the 'deviation 
function.' The deviation function in c-cDSP is modeled using a 
combination of preemptive and Archimedean formulations. A 
preemptive formulation is used to capture the relations among 
the multiple levels of a decision hierarchy. Design goals at 
multiple design levels are categorized into different ordered sets 
in the preemptive formulation. The order of the sets defines their 
priority. The design level 1 is given higher priority and defined 

first in the set, followed by the rest of the levels in their order of 
priority. In c-cDSP, design goals at the higher priority set are 
realized first before goals at subsequently lower levels [17]. The 
Archimedean formulation allows the consideration of multiple 
goals at the design level. The multiple goals at a level are 
considered by assigning different weight preferences. The 
weights are values between 0 and 1 (summing up to 1) and 
signify differences in preferences amongst the goals at a level. 
By combining the Preemptive and Archimedean formulations, 
designers are able to formulate the multilevel problem with 
multiple goals at each level. Designers use the Archimedean 
formulation at the individual levels to address the many design 
goals that require trade-offs. The Archimedean formulation 
works by assigning weight to goals in a priority set to account 
for the goal's relative priority at the level. A higher weight value 
to a goal indicates more importance for that goal at a specific 
level compared to others. The Decision Support in the Design of 
Engineering Systems (DSIDES) platform is used to formulate 
and execute the coupled-cDSP. 

3.1.2 iSOM tool for visualization and co-design exploration 
interpretable Self Organizing Map (iSOM) [40] is a 

machine-learning-based visualization tool that helps to 
efficiently visualize high-dimensional data using two-
dimensional (2D) plots. Specifically, it is a modified form of the 
artificial neural network algorithm developed by Kohonen [41] - 
conventional Self-Organizing Map (SOM) [42]. The 
modifications to SOM help avoid self-intersection, making the 
iSOM plot interpretable. iSOM is a scalable visualization tool 
that can be used to visualize any number of dimensions as 
presented by Sushil and co-authors [37]. The advantages of 
iSOM in terms of being easily scalable and interpretable make it 
an ideal choice to facilitate design space exploration in real-
world problems. In the framework, we used iSOM to visualize 
the solution space of our decision support problem across 
multiple levels to support co-design. The iSOM tool is available 
in the form of a MATLAB code [40]. 

3.2 Decision support using the framework 
The structure of the framework is described in detail in this 

section. The framework is comprised of four blocks - Blocks A, 
B, C, and D. The framework and its blocks are depicted in Figure 
3. A detailed description of each block follows. 

Block A: Design problem and level-specific information 
collection.  

In Block A, the designer gathers information regarding the 
multilevel design problem, its levels, and their relations using the 
following steps – Steps A1 to A3. 

Step A1: The designer begins by identifying the different 
levels of the decision hierarchy in the problem.  

Step A2: The designer then proceeds to collect information 
specific to the decisions at each level identified in Step A1. The 
level-specific information collected includes (i) design variables 
and bounds, (ii) design goals and targets, (iii) models relating the 
variables and goals, and (iv) level constraints.  

Step A3: Based on the level-specific information gathered in 
Step A2, the designer established the relations between the levels 
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in terms of the flow of information. The flow of information 
between levels includes i) shared design variables and ii) 
propagated values of design variables and other parameters. At 
the lower level of the decision hierarchy, copies of shared design 
variables are used as level-specific design variables. A 
consistency constraint ensures that the shared design variable at 
the lower level stays consistent with the upper level.  

Block B: Modeling decision support problems across 
multiple levels and their interactions. 

Using the information from Block A, in Block B, the 
decision problems across multiple levels and their interactions 
are modeled as a c-cDSP by the designer. This step, Step B1, is 
detailed below.  

Step B1: The multilevel decision problems and interactions 
across levels are modeled using the c-cDSP construct. In the c-
cDSP, separate instances of the c-DSP construct are used to 
model decision problems at the individual levels. The Given, 
Find, and Satisfy keywords of the cDSP constructs help capture 
level-specific information. The interactions among the cDSPs 
for each level are modeled using the shared design variables and 
other propagated information connecting the levels, as 
determined in Step A3. The deviation function of the c-cDSP is 
modeled using a combination of Preemptive and Archimedean 
formulations. Decisions in manufacturing process systems are 
made hierarchically across multiple levels. For a design problem 
with two design levels, decisions at Design Level 1, which are 
made first, take higher priority. This is followed by decisions at 
Design Level 2 being given lower priority. We use the 
preemptive formulation to assign different priority levels to the 
design goals at Levels 1 and 2. At a level, the difference in 
preferences among the many conflicting design goals is modeled 
using the Archimedean formulation. In the Archimedean 
formulation, different weights are assigned to the various goals. 
The weights assigned are values between 0 and 1 (summing up 
to 1), with higher values indicating higher preference. By 
combining the Preemptive and Archimedean formulations in the 
c-cDSP, designers can consider many design goals requiring 
trade-offs at each level and relations across levels of a multilevel 
decision problem. A detailed explanation of the c-cDSP is 
provided in the following section, Section 4. DSIDES platform 
is used to formulate the c-cDSP. 

Block C: Generation of multilevel design solutions 
In Block C, the c-cDSP formulation created in Block B is 

executed for different multilevel design scenarios to generate 
different multilevel design solutions. Block C is implemented in 
two steps. 

Step C1: We create different multilevel design scenarios to 
execute the c-cDSP in this step. Sample multilevel design 
scenarios are depicted in Step C1 of Block C, Figure 3. A 
multilevel design scenario is created by combining individual-
level design scenarios for Design Levels 1 and 2, which are 
created using Latin hypercube sampling in all possible 
combinations. In each individual-level design scenario, different 
weights (values between 0 and 1 that add up to 1) are assigned 
to the design goals at the level. The weights indicate the 

difference in preferences amongst the goals, with higher values 
indicating higher preference. If there are ‘n’ unique design 
scenarios at an individual level and ‘m’ levels, there exist nm 
distinct multilevel design scenarios. In this paper, n2 multilevel 
design scenarios are considered for the two-level problem. 

Step C2: We execute the formulated c-cDSP in the DSIDES 
platform for each of the 𝑛𝑛𝑚𝑚 multilevel design scenarios to 
generate design solutions across the levels. 

Block D: Visualization and co-design exploration. 
In this block, we use the iSOM plots to visualize the solution 

spaces at individual levels. We then perform a co-design 
exploration of the solution spaces to find a common satisficing 
solution for the goals across the levels. Block D is executed in 
two steps, as detailed below. 

Step D1: In this step, we train the iSOM algorithm with the 
weights assigned to the goals in each design scenario and the 
corresponding values for the goals at multiple levels. The trained 
iSOM generates 2D plots for each input weight and output goal 
across multiple levels. Designers use the iSOM plots of the 
output goals to carry out co-design exploration in Step D2.  

Step D2: The iSOM plots for the goals are explored in this 
step to determine common satisficing solution regions for the 
goals across multiple levels. The designer begins by setting 
satisficing limits for the individual goals to identify satisficing 
design regions for each goal. The dots on the grid represent the 
design scenarios associated with those specific grid points. The 
dot's size corresponds to the number of design scenarios mapped 
to the specific iSOM grid point. Hexagonal grid points with red 
borders in the individual output iSOM plots indicate the 
satisficing solutions regions for each goal; see Step D2 of Block 
D in Figure 3. Using the initial satisficing solution regions of the 
individual goals, the designer carries out co-design exploration 
to identify common satisficing solutions for all the goals across 
the levels. 

A systematic approach is used to carry out the co-design 
exploration. Systematic co-design exploration requires three 
steps.  

Step 1: Determination of whether relaxation of the 
satisficing goal limit is required. 

To determine this, the designer needs to ask, "Is there a 
common region in the satisficing solution for all the goals across 
the levels?" 
• If the answer is "No," the designer proceeds to Step 2. 
• If the answer is "Yes," the co-design exploration is 

complete. The designer has identified a common satisficing 
solution for all the goals across the levels. 
Step 2: Identify the goal to be excluded from the satisficing 

limit relaxation. 
The designer identifies a goal across the different levels 

whose satisficing goals cannot be relaxed due to the formulation 
of the problem. This goal is a critical goal that the designer 
identifies. All the remaining goals are collectively called the 
non-excluded goals.  
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FIGURE 3: Multilevel decision support framework [36] 

  
Step 3: Relaxation of satisficing limit for the non-excluded 

goals. 
• Based on the designer's judgment, a goal from the non-

excluded region is selected. 
• The designer then looks for any common iSOM grid points 

in the satisficing solution region between the chosen and 
excluded goals. 
After the end of Step 3, the designer identifies common 

satisficing solution regions for all goals across the multiple 
levels. The designer determines the design scenarios mapped to 
those regions using the identified common regions. From the 
design scenarios, the designer then identifies the corresponding 
design variables and goal values for the satisficing design 
solutions. The designer can also understand the effect of weight 
on different goals and the change of variable values on the goals 
across multiple levels by analyzing the iSOM input and output 
plots.  

This framework is generic in nature. Designers are able to 
use the framework to formulate design problems that include 
interactions between multiple levels and many conflicting goals 
at individual levels and carry out co-design exploration. In the 
next section, we demonstrate the efficacy of the framework in 
supporting the co-design of multilevel systems using a hot rod 
rolling problem.  

 
4. EXAMPLE PROBLEM: MULTILEVEL CO-DESIGN 

EXPLORATION OF HOT ROD ROLLING PROCESS 
CHAIN AND MICROSTRUCTURE 
The efficacy of the proposed multilevel decision support 

framework is tested using the hot rod rolling problem, focusing 
on the co-design of the material microstructure and the hot 
rolling process chain. In Figure 4, we show the hot rolling 
process and the microstructural information at different time and 
space points of the manufacturing process and material/product, 
respectively. The steel manufacturing process chain involves the 
hot rod rolling process and cooling of the rod. In hot rod rolling, 
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a preheated billet from a casting unit is passed through a set of 
rollers. The steel billet is thermo-mechanically deformed as it 
passes through the rollers. The high strain rate and high-
temperature process results in the evolution of the microstructure 
of steel. Two major microstructure evolution phenomena, 
namely, dynamic recrystallization and metadynamic 
recrystallization, occur during the rolling process. 

 
FIGURE 4: Schematic showing the hot rod rolling process chain 

and the microstructure at different stages 

Recrystallization involves the formation of new grains from 
old grains. The dynamic recrystallization is initiated during the 
deformation process as the steel billet is in contact with the roller. 
Metadynamic recrystallization typically follows dynamic 
recrystallization and replaces the dynamically recrystallized 
grains. To formulate the design problem, we assume that 

dynamic and metadynamic recrystallization occur sequentially, 
with dynamic recrystallization occurring first and metadynamic 
recrystallization following it. This assumption allows us to 
model the information workflow of the material microstructure 
and helps define the decisions that need to be made, given the 
information flow. Grain growth occurs after recrystallization, 
defining the final austenite grain size after rolling. The hot rolled 
rod is further passed to the cooling process, where the material 
is cooled, and different phases of steel are obtained. Each of 
these sequential processes influences the microstructure of the 
end product. We focus on the hot rolling process problem and 
define the metadynamic recrystallization and grain growth stage 
as “Design Level 1” and the dynamic recrystallization stage as 
“Design Level 2.” 
In Figure 5, we depict the forward information workflow for the 
problem connecting the manufacturing process and the material 
structure. The multilevel inverse co-design is shown using the 
two design levels defined. In the forward flow of information, 
we see that the information from the manufacturing process 
chain defines the material microstructure. Dynamic and 
metadynamic recrystallization are considered sequentially as 
microstructure phases 1 and 2, respectively. Manufacturing 
process variables, namely strain rate (𝜀𝜀̇ 𝑑𝑑), temperature (𝑇𝑇𝑑𝑑), and 
strain (𝜀𝜀), and material microstructure variable, namely initial 
austenite grain (AGS), determine the dynamic grain size (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 
and grain fraction (𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑) during dynamic recrystallization. 

 
FIGURE 5: Multilevel co-design problem for hot rod rolling considering the couplings between the material microstructure and manufacturing 

processes 
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In metadynamic recrystallization, the strain rate (𝜀𝜀̇ 𝑚𝑚𝑚𝑚) and 
temperature (𝑇𝑇𝑚𝑚𝑚𝑚), during the metadynamic phase along with 
time (𝑡𝑡) after the billet comes out of the roller, define the 
metadynamic grain size (𝐷𝐷𝑚𝑚𝑚𝑚) and grain fraction (𝑋𝑋𝑚𝑚𝑚𝑚). This 
phase is followed by grain growth. Information on dynamic grain 
size (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑) from the dynamic phase and metadynamic grain size 
(𝐷𝐷𝑚𝑚𝑚𝑚) and the grain fraction (𝑋𝑋𝑚𝑚𝑚𝑚) from the metadynamic phase 
is used to calculate the grain size after grain growth (𝐷𝐷𝑔𝑔𝑔𝑔). The 
empirical models used to define these relations and their sources 
are included in the Appendix. We notice in the problem that there 
exist interrelations between the microstructure phases when 
viewed as an inverse design problem. The manufacturing process 
variables influence the microstructure formed at each of the 
phases, and the final austenite microstructure is determined by 
the microstructures formed in the preceding phases. Therefore, 
realizing hot rolled rods with a targeted microstructure requires 
the collective consideration of the (i) manufacturing processing 
history, (ii) material microstructure, and (iii) the interactions 
between them. The co-design exploration of the problem is 
carried out by formulating a coupled cDSP formulation 
considering the manufacturing process-material microstructure-
product interactions, as shown in Figure 5 (see the coupled cDSP 
in Figure). Next, we explain the usage of the multilevel decision 
support framework presented in Section 3 to formulate and 
explore the co-design problem. 
Block A: Formulating the design problem by collecting level-
specific information. 

The design of the two phases of the rolling process starts at 
Step A1 of the given framework.  

Step A1: The two microstructural phases of the rolling 
process are considered as two design levels in this problem. 
Level 1 involves decisions regarding the formulation of grain 
size after grain growth and grain size and grain fraction after 
metadynamic recrystallization. Level 2 involves decisions 
regarding the dynamic phase of the rolling process, which affects 
the design of the end microstructure.  

Step A2: Information specific to design levels 1 and 2 is 
collected in this step. At design level 1, decisions are made for 
the design variables identified by strain rate (𝜀𝜀̇ 𝑚𝑚𝑚𝑚) and 
temperature (𝑇𝑇𝑚𝑚𝑚𝑚) for the metadynamic phase and time passed 
(𝑡𝑡) after the billet comes out of the roller. The strain rate (𝜀𝜀̇ 𝑑𝑑), 
and temperature (𝑇𝑇𝑑𝑑) for the dynamic phase are considered as 
coupling variables from design level 1. These variables define 
the microstructure goals after metadynamic recrystallization and 
grain growth. The microstructure requirements for metadynamic 
grain size (𝐷𝐷𝑚𝑚𝑚𝑚), grain fraction (𝑋𝑋𝑚𝑚𝑚𝑚) and recrystallized grain 
size after grain growth (𝐷𝐷𝑔𝑔𝑔𝑔) defined at design level 1 are to 
achieve the target values of 14 µm, 0.996, and 20µm, 
respectively. The empirical models used to establish the relations 
are provided in Appendix A1.  

At design level 2, decisions are made for strain rate (𝜀𝜀̇ 𝑑𝑑𝑑𝑑), 
temperature (𝑇𝑇𝑑𝑑𝑑𝑑), strain (𝜀𝜀) during the dynamic recrystallization 
process, and initial austenite grain size (IAGS) before rolling to 
achieve the required microstructure at the end of the dynamic 
recrystallization phase. The microstructure requirements for 

dynamic grain size (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and grain fraction (𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑) defined at 
design level 2 are to achieve the target values of 11 µm and 0.9, 
respectively. The empirical models used to establish the relations 
are provided in Appendix A2. 

Step A3: Dynamic grain size is a parameter that is used to 
define the goals in both design levels and hence acts as a 
coupling variable. The strain rate and temperature design 
variables during the dynamic recrystallization phase define 
dynamic grain size and are therefore used as the coupling 
variables between the levels in our formulation. To maintain 
consistent dynamic grain size values throughout both design 
levels, the design variables, strain rate, and temperature must be 
the same for the dynamic phase in both design levels 1 and 2. 
Therefore, a consistency constraint is defined for these variables. 
The consistency constraints ensure that the dynamic phase's 
temperature and strain rate values are the same in design levels 
1 and 2.  

Block B: Modeling decision support problems across 
multiple levels and their interactions. 

Step B1: In this step, a decision support problem is 
formulated using the information from block A. The decisions of 
the design level 1 and 2 and their interactions are modeled using 
the c-cDSP construct. In design level 2, a copy of design 
variables is used for the two coupling variables - strain rate and 
temperature. To maintain consistency, two consistency 
constraints are defined in design level 2 for these design 
variables. This is used to analyze the interactions between the 
two levels and is mentioned in the Satisfy section of the c-cDSP 
construct. The target values of the goals for the c-cDSP are 
defined in Step A2. Constraints are defined in the Satisfy section 
of the c-cDSP construct to account for the manufacturing 
processing conditions. 

  The deviation function used in the c-cDSP formulation 
combines the preemptive and Archimedean formulations. The 
decisions in the rolling process of the manufacturing systems are 
made hierarchically, with decisions at level 1 being made before 
decisions at level 2. This hierarchical relation between the two 
levels is captured using the preemptive formulation. The priority 
of the multiple goals at the individual level is modeled using the 
Archimedean formulation. The preemptive and Archimedean 
formulation is defined in the Minimize section of the c-cDSP 
construct. Designers use the combination of preemptive and 
Archimedean formulations to consider many goals at design 
levels and the relation between design levels 1 and 2 in a coupled 
decision problem formulation.  

The formulated coupled-cDSP (c-cDSP) for the hot rod 
rolling process considering interactions between design levels 1 
and 2 is given below: 

 
Given 
(a) Constants 

(i)  Gas Constant, 𝑅𝑅 =  8.314 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(ii) Activation Energy, 𝑄𝑄𝑑𝑑 = 312000 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   

 
(b) Design variables (𝑥𝑥𝑖𝑖) and their bound at design level 1 

(i) 1250 𝐾𝐾 ≤ 𝑥𝑥1(𝑇𝑇𝑚𝑚𝑚𝑚  ) ≤ 1600 K  
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(ii) 9.000 𝑠𝑠−1 ≤ 𝑥𝑥2(𝜀𝜀𝑚̇𝑚𝑚𝑚) ≤ 18.000 𝑠𝑠−1  
(iii) 0.05 𝑠𝑠 ≤ 𝑥𝑥3(𝑡𝑡) ≤ 0.100 𝑠𝑠  
(iii) 1250 𝐾𝐾 ≤ 𝑥𝑥4(𝑇𝑇𝑑𝑑  ) ≤ 1600 𝐾𝐾  
(iv) 9.000 𝑠𝑠−1 ≤ 𝑥𝑥5(𝜀𝜀𝑑̇𝑑) ≤ 18.000 𝑠𝑠−1  
Design variables (𝑥𝑥𝑖𝑖) and their bound at design level 2 
(i) 40 𝜇𝜇𝜇𝜇 ≤ 𝑥𝑥6(𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴 ) ≤ 100 𝜇𝜇𝜇𝜇  
(ii) 0.65 ≤ 𝑥𝑥7(𝜀𝜀 ) ≤ 1.000  
(iii) 1250 𝐾𝐾 ≤ 𝑥𝑥8(𝑇𝑇𝑑𝑑𝑑𝑑) ≤ 1600 𝐾𝐾  
(iv) 9.000 𝑠𝑠−1 ≤ 𝑥𝑥9(𝜀𝜀𝑑̇𝑑𝑑𝑑) ≤ 18.000 𝑠𝑠−1  

(c) End requirements at design level 1 
(i) Achieve target metadynamic recrystallized grain 
fraction (𝑋𝑋𝑚𝑚𝑚𝑚) = 0.996 
(ii) Achieve target metadynamic grain size (𝐷𝐷𝑚𝑚𝑚𝑚) =
14 𝜇𝜇𝜇𝜇  
(iii) Achieve target value for austenite grain size after 
grain growth, 𝐷𝐷𝑔𝑔𝑔𝑔 = 20 𝜇𝜇𝜇𝜇 

End requirements at design level 2 
(i) Achieve target dynamic recrystallized grain fraction 
�𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑� = 0.9 
(ii) Achieve target dynamic grain size (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 11 𝜇𝜇𝜇𝜇 
 

The models used to find the end requirements at design levels 
1 and 2 are provided in the appendix. 
Find 
(a)  Design Variables: 𝑥𝑥𝑖𝑖, where 𝑖𝑖 = 1,2,3,4,5,6,7,8,9 
(b) Deviation Variables: 𝑑𝑑𝑘𝑘

+and 𝑑𝑑𝑘𝑘
−, where 𝑘𝑘 = 1,2,3,4,5 

Satisfy 
(a) Level 1 Design Constraints: 

(i) 1 −  𝑋𝑋𝑚𝑚𝑚𝑚  ≥ 0 
(ii) 𝐷𝐷𝑔𝑔𝑔𝑔 − 𝐷𝐷𝑚𝑚𝑚𝑚 ≥ 0 
(iii) 𝐴𝐴𝐷𝐷𝑅𝑅𝑅𝑅 −  𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0 
  

Level 2 Design Constraints: 
(i) 𝑇𝑇𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 
(ii) 𝜀𝜀𝑑̇𝑑 = 𝜀𝜀𝑑̇𝑑𝑑𝑑 
(iii) 𝜀𝜀 − 𝜀𝜀𝑐𝑐 ≥ 0  
(iv) 1 −  𝑋𝑋𝑑𝑑  ≥ 0 
(v) 𝑋𝑋𝑑𝑑 − 0.7 ≥ 0 
(vi) 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 −  𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 0 
(vii) 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 7 ≥ 0 

(b) Level 1 Goals 
(i) Maximize metadynamic recrystallized grain fraction 
(G1), 
 𝑋𝑋𝑚𝑚𝑚𝑚(𝑋𝑋𝑖𝑖)
𝑋𝑋𝑚𝑚𝑚𝑚,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝑑𝑑1
− − 𝑑𝑑1

+ = 1 

(ii) Minimize metadynamic recrystallized grain size (G2), 
𝐷𝐷𝑚𝑚𝑚𝑚,,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐷𝐷𝑚𝑚𝑚𝑚(𝑋𝑋𝑖𝑖)
− 𝑑𝑑2

− + 𝑑𝑑2
+ = 1 

(iii) Maximize value for austenite grain size after grain 
growth (G3), 
 𝐷𝐷𝑔𝑔𝑔𝑔(𝑋𝑋𝑖𝑖)
𝐷𝐷𝑔𝑔𝑔𝑔,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝑑𝑑3
− − 𝑑𝑑3

+ = 1 

Level 2 Goals 

(i) Maximize dynamic recrystallized grain fraction (G4), 
𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋𝑖𝑖)

𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
+ 𝑑𝑑4

− − 𝑑𝑑5
+ = 1 

(ii) Minimize metadynamic recrystallized grain size (G5), 
𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,(𝑋𝑋𝑖𝑖)
− 𝑑𝑑5

− + 𝑑𝑑5
+ = 1 

 
(b) Variable bounds at Design Level 1 

(i) 1250 𝐾𝐾 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚 ≤ 1600 𝐾𝐾  
(ii) 9.000 𝑠𝑠−1 ≤ 𝜀𝜀𝑚̇𝑚𝑚𝑚 ≤ 18.000 𝑠𝑠−1  
(iii) 0.05 𝑠𝑠 ≤ 𝑡𝑡 ≤ 0.100 𝑠𝑠  
(iii) 1250 𝐾𝐾 ≤ 𝑇𝑇𝑑𝑑 ≤ 1600 𝐾𝐾  
(iv) 9.000 𝑠𝑠−1 ≤ 𝜀𝜀𝑑̇𝑑 ≤ 18.000 𝑠𝑠−1  

Variable bounds at Design Level 2 
(i) 40 𝜇𝜇𝜇𝜇 ≤ 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 100 𝜇𝜇𝜇𝜇  
(ii) 0.65 ≤ 𝜀𝜀 ≤ 1.000  
(iii) 1250 𝐾𝐾 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑 ≤ 1600 𝐾𝐾  
(iv) 9.000 𝑠𝑠−1 ≤ 𝜀𝜀𝑑̇𝑑𝑑𝑑 ≤ 18.000 𝑠𝑠−1   

Deviation variable bounds 
𝑑𝑑𝑘𝑘

+,𝑑𝑑𝑘𝑘
− >= 0 and 𝑑𝑑𝑘𝑘

+ ∗ 𝑑𝑑𝑘𝑘
− = 0 

Minimize 
Preemptive formulation at two levels 
The deviation function Z needs to be minimized. 
Min 𝑍𝑍 = (𝑓𝑓1, 𝑓𝑓2) 

Priority 1: Design Level 1 (Archimedean Formulation) 
𝑓𝑓1 = �𝑊𝑊𝑘𝑘(𝑑𝑑𝑘𝑘

+ + 𝑑𝑑𝑘𝑘
−) 

where 𝑊𝑊𝑘𝑘 = weight assigned to the deviations of the 
individual goals from the target values, ∑𝑊𝑊𝑘𝑘 = 1 and 𝑘𝑘 =
1,2,3 
Priority 2: Design Level 2 (Archimedean Formulation) 

𝑓𝑓2 = �𝑊𝑊𝑘𝑘(𝑑𝑑𝑘𝑘
+ + 𝑑𝑑𝑘𝑘

−) 
where 𝑊𝑊𝑘𝑘 = weight assigned to the deviations of the 
individual goals from the target values, ∑𝑊𝑊𝑘𝑘 = 1 and 𝑘𝑘 =
4,5. 

Block C: Generation of design scenarios across levels 1 and 
2. 

The c-cDSP construct is executed using the DSIDES 
platform for different design scenarios created considering 
design levels 1 and 2.  

Step C1: We formulate different design scenarios for the 
multilevel problem in this step. All possible combinations of 
design scenarios at level 1 and level 2 are considered to create a 
multilevel design scenario. Latin hypercube sampling (LHS) 
design is used to create weight scenarios for individual levels by 
assigning different weight combinations for goals at each level. 
LHS design is used to effectively cover the multilevel design 
space. We considered 13 LHS design scenarios at each level, 
creating 169 multilevel design scenarios. Six more scenarios 
with full weight to one goal and zero to the others for individual 
level are also considered to capture the extreme ends of the 
design scenarios. We have 175 design scenarios with different 
weight preferences assigned to the individual goals within and 
between the levels. We list selected design scenarios in Table 1. 
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TABLE 1. Sample multilevel design scenario 

Design 
Scenario 

# 

Design Level 1 
Weights ∑𝑊𝑊𝑖𝑖  

Design 
Level 2 
Weights  ∑𝑊𝑊𝑖𝑖  

𝑊𝑊1 𝑊𝑊2 𝑊𝑊3 𝑊𝑊4 𝑊𝑊5 
1 0.33 0.13 0.54 1 0.61 0.39 1 
2 0.33 0.13 0.54 1 0.5 0.5 1 
- - - - - - - - 

71 0.26 0.68 0.06 1 0.17 0.83 1 
72 0.26 0.68 0.06 1 0.26 0.74 1 
- - - - - - - - 

174 0 0 1 1 1 0 1 
175 0 0 1 1 0 1 1 

Step C2: We execute the c-cDSP using the DSIDES 
platform for each of the 175 multilevel design scenarios to 
generate solutions for the goals across design levels 1 and 2. 

Block D: Visualization and simultaneous co-design 
exploration of the multilevel solution space.  

The solution space generated in block C is further visualized 
and explored in this block using the following steps. 

Step D1: We begin this step by training the iSOM algorithm. 
iSOM supports the simultaneous visualization of multilevel 
design spaces. We train the algorithm using the different weight 
scenarios across the two levels as input and the corresponding 
goal values as output. The trained iSOM provides a 2-
dimensional visualization of the design and solution spaces, 
namely the five input plots of the input goal weights and five 
output plots of the achieved goal values in design levels 1 and 2. 
The iSOM plots are shown in Figure 6. On the top are the input 
weights, followed by the corresponding goals. The red dots in 
the hexagonal grid of the goal plots indicate the design scenarios 
mapped to the specific grid. 

Step D2: The co-design exploration is carried out using the 
iSOM plots. The iSOM plots allow the designer to study the 
interrelations between the input and output plots and also the 

relations between the output plots. This helps carry out 
simultaneous co-design exploration of the solution space and 
find common satisficing solution regions that satisfy and suffice 
the requirements of the designers at both levels. The co-design 
exploration begins with assigning a satisficing limit for all the 
goals to identify a common satisficing solution. The designer/s 
needs to use their domain expertise to define satisficing limits 
for the goals.  

The initial satisficing limit for the goals for design levels 1 
and 2 are identified as shown in Table 2 below. 

TABLE 2. Initial satisficing limits for the multilevel goals 
Level 1 Level 2 

Goal 1, G1 (𝑋𝑋𝑚𝑚𝑚𝑚) ≥ 0.996 Goal 4, G4 �𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑� ≥ 0.9 
Goal 2, G2 (𝐷𝐷𝑚𝑚𝑚𝑚) ≤ 14 µm Goal 5, G5 (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ≤ 11 

µm Goal 3, G3 (𝐷𝐷𝑔𝑔𝑔𝑔) ≥ 20 µm 
The red-bordered hexagonal grids in Figure 6 are the 

satisficing solution region for individual goals for the assigned 
initial limit. Next, we discuss the steps involved in the systematic 
co-design exploration of the solution spaces to identify 
satisficing solutions.  

Step 1: Designers explore the iSOM plots and checks if there 
are grids that are common for all the goals in design levels 1 and 
2. On analyzing Figure 6, we see that there are no common grids 
that satisfy the requirements for all five goals across design 
levels 1 and 2. In such a scenario, the designer moves to Step 2 
to identify satisficing solutions. 

Step 2: In this step, we propose one strategy that designers 
can use to systematically identify satisficing solutions. Since 
there is no common satisficing solution region, the designer 
needs to first identify critical goal/s that cannot be relaxed as per 
design requirements. The designer needs to use their judgment 
and domain knowledge to carry out this process.

Design Level 1 Design Level 2 

     
W1 W2 W3 W4 W5 

     
𝑮𝑮𝑮𝑮 ≥ 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 𝑮𝑮𝑮𝑮 ≤ 𝟏𝟏𝟏𝟏 µm 𝑮𝑮𝑮𝑮 ≥ 𝟐𝟐𝟐𝟐 µm 𝑮𝑮𝑮𝑮 ≥ 𝟎𝟎.𝟗𝟗 𝑮𝑮𝑮𝑮 ≤ 𝟏𝟏𝟏𝟏 µm 

FIGURE 6: iSOM plots showing the design space of the input weights assigned to c-cDSP goals for design levels 1 and 2 (Row 1). iSOM plots 
showing the achieved values of goals in design levels 1 and 2 (Row 2). The hexagonal iSOM grid points highlighted in red indicate satisficing 
solution regions for the individual goals. The red dots indicate design scenarios mapped to the iSOM grid points. The yellow region indicates a 

higher value, and the blue region indicates a lower value in the plots. 
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Design Level 1 Design Level 2 

     
𝑮𝑮𝑮𝑮 ≥ 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 𝑮𝑮𝑮𝑮 ≤ 𝟏𝟏𝟏𝟏 µm 𝑮𝑮𝑮𝑮 ≥ 𝟏𝟏𝟏𝟏 µm 𝑮𝑮𝟒𝟒 ≥ 𝟎𝟎.𝟗𝟗 𝑮𝑮𝑮𝑮 ≤ 𝟏𝟏𝟏𝟏 µm 

FIGURE 7: iSOM plots for all goals across design levels 1 and 2 with the updated satisficing goal limits. The hexagonal iSOM grid points 
highlighted in red indicate satisficing solution regions for the individual goals with new satisficing limits. The red dots indicate design scenarios 

mapped to the iSOM grid points. The common satisficing solutions across design levels 1 and 2 are highlighted using a black dashed border. 
 

TABLE 3. Achieved goal values in the common iSOM grid points for design levels 1 and 2. 

 
TABLE 4. Design variable values corresponding to the common satisficing solutions/design scenarios  

Design 
Scenario 

Design Level 1 Design Level 2 
 𝑻𝑻𝒎𝒎𝒎𝒎 (K) 𝜺̇𝜺𝒎𝒎𝒎𝒎 (s-1) 𝒕𝒕 (s) 𝑻𝑻𝒅𝒅 (K)   𝜺̇𝜺𝒅𝒅 (s-1)  𝑰𝑰𝑨𝑨𝑨𝑨𝑨𝑨 (µm) 𝜺𝜺   𝑻𝑻𝒅𝒅𝒅𝒅 (K)  𝜺̇𝜺𝒅𝒅𝒅𝒅 (s-1) 

22 1250 17.9999 0.099951 1313.95 9.2857 40.0005 0.993005 1313.95 9.2857 
87 1250 17.9999 0.099951 1313.95 9.2857 40.0005 0.993005 1313.95 9.2857 

100 1250.01 17.9987 0.099213 1254.33 9.07117 40.0073 0.990322 1254.33 9.07117 
152 1250 17.9798 0.099994 1313.19 9.18023 40.0005 0.989808 1313.19 9.18023 

 

Design Scenario W1 W2 W3 W4 W5 G1 G2 (µm) G3 (µm) G4 G5 (µm) 
22 0.34 0.42 0.24 0.95 0.05 0.99911 13.4111 13.8728 0.92753 13.44868 
48 0.52 0.24 0.24 0.95 0.05 0.99761 19.4925 20.0061 0.98319 19.48021 
87 0.21 0.58 0.21 0.95 0.05 0.99911 13.4111 13.8728 0.92753 13.44868 

100 0.44 0.44 0.12 0.95 0.05 0.99905 13.4122 13.8645 0.82838 9.894979 
113 0.74 0.1 0.16 0.95 0.05 0.99761 19.4922 20.0061 0.98320 19.46283 
152 0.49 0.29 0.22 0.95 0.05 0.99910 13.4146 13.8762 0.92608 13.43289 

In this problem, G4, the dynamic recrystallization grain 
fraction goal is a critical goal. To obtain a suitable dynamically 
recrystallized microstructure, it is essential to maximize the grain 
fraction. Therefore, the requirement for G4 has to be always 
greater than 0.9. Hence, G4 is kept fixed, and the rest, namely, 
G1, G2, G3, and G5, are selected as goals where the designer can 
make relaxations or design adjustments. 

Step 3: In this step, the designer analyzes the goals identified 
individually and relaxes their satisficing limits in order to 
identify a common satisficing region. Let us consider the 
scenario where the designer picks goal G5. There is no common 
satisficing grid between G4 and G5. The designer must relax the 
goal to find at least one common grid point for both goals. 
However, the designer must also focus on not relaxing the goal 
beyond an allowable limit to find the common grid points. In this 
case, we relax the goal G5 target from 11 µm to 13 µm. This 
results in a few common gird points for both G4 and G5. Now, 
let us say the designer looks into G1. G1 has common grid points 
with G4. Therefore, there is no need to relax the goal G1 as 
satisficing grids are found. Let us consider goals G2 and G3 next. 
We notice from Figure 6 that the values for both these goals are 
very similar. However, the target regions of interest in these two 
goals are conflicting. The conflicting behavior for both these 
goals leads the satisficing solution region to be in opposite 
directions. The red-bordered hexagon in the iSOM plots of 
Figure 6 for G2 and G3 marks the satisficing limit for both goals. 

Therefore, to find a common region, there is a need to relax both 
goals G2 and G3 so that the relaxation does not adversely impact 
both goals and simultaneously identifies a common region for 
goals G4, relaxed G5, and G1. We notice that when the target 
values of G2 and G3 are relaxed to 15 µm, we are able to identify 
two common satisficing grid points for all five design goals 
across design levels 1 and 2. 

With the updated satisficing limits, we see in Figure 7 that 
all five goals have two common satisficing grids, marked with a 
black dotted line. These two grid points are the common 
satisficing solutions for all five goals across design levels 1 and 
2. Six design scenarios are mapped to these common iSOM grid 
points. The goal values associated with the identified common 
grid points are presented in Table 3. 

After analyzing the results presented in Table 3, we identify 
four design scenarios (22, 87, 100, 152; grey shaded in Table 3) 
as common satisficing solutions. Design scenarios 48 and 113, 
from Table 3, have a G2 (𝐷𝐷𝑚𝑚𝑚𝑚) value of 19.49 µm, G5 (𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑) 
value of 19.46 µm. These values exceed the updated satisficing 
limits. Hence, we are excluding these two design scenarios from 
the list of common satisficing solutions.  

On analyzing the goal values for design level 1, we see that 
the four common satisficing design scenarios (22, 87, 100, 152: 
grey shaded in Table 3) achieve very similar values. The goals 
of design level 1, metadynamic grain fraction, 𝑋𝑋𝑚𝑚𝑚𝑚 (G1), 
metadynamic grain size, 𝐷𝐷𝑚𝑚𝑚𝑚  (G2), and grain size after grain 
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growth, 𝐷𝐷𝑔𝑔𝑔𝑔 (G3) achieves the goal values of 0.999, 13.41 µm 
and 13.87 µm, respectively. At design level 2, for three of these 
four design scenarios (22, 87, and 152), the dynamic grain 
fraction, 𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑 (G4) has a value of 0.92, and the corresponding 
dynamic grain size, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (G5) has a value of 13.44 µm. The 
remaining common design scenario (100) has a G4 value of 0.82 
and a G5 value of 9.89 µm. The design variable values 
corresponding to these four common satisficing solutions are 
provided in Table 4. 

The design variables required to achieve the goals in design 
level 1, namely temperature (𝑇𝑇𝑚𝑚𝑚𝑚), strain rate (𝜀𝜀𝑚̇𝑚𝑚𝑚) and the 
time interval (𝑡𝑡), for metadynamic and grain growth goals 
remain similar for all design scenarios with values around 1250 
K, 17.99 s-1, and 0.0999 s, respectively. At design level 2, two of 
the design variables, namely, initial austenite grain size (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) 
and strain (𝜀𝜀), achieve similar values across all four design 
scenarios with values of 40 µm and 0.99, respectively. Design 
scenarios 22, 87, and 152 achieve temperature (𝑇𝑇𝑑𝑑𝑑𝑑) and strain 
rate (𝜀𝜀𝑑̇𝑑𝑑𝑑) values of 1313.95 K and 9.2 s-1, respectively. These 
values result in achieving goal targets for goals G4 and G5 
(values of 0.92 and 13.44 µm, respectively). Design scenario 100 
achieves temperature (𝑇𝑇𝑑𝑑𝑑𝑑) and strain rate (𝜀𝜀𝑑̇𝑑𝑑𝑑) values of 
1254.33 K and 9.07 s-1, respectively. These values result in 
achieving an improved value for goal G5 (value of 9.89 µm) in 
design scenario 100. At the same time, we see that the achieved 
value for goal G4 drops down to 0.82 for this design scenario 
compared to the other three scenarios.  Due to the consistency 
constraint between design level 1 and design level 2 regarding 
the temperature and strain rate for dynamic recrystallization, the 
values for these two variables remain unchanged and consistent 
across both design levels. Based on the analysis of Table 4, 
designers are able to understand the effect of design variables on 
the design goals. After analyzing the results for design levels 1 
and 2, we see that choosing any design scenario from the four 
satisficing design scenarios will meet the goal requirements for 
level 1. However, for design level 2, we can choose either design 
scenario 100 for an improved dynamic recrystallized grain size 
goal (G5) or choose any of the other three design scenarios (22, 
87, or 152) for improved dynamic recrystallized grain fraction 
goal (G4). The selection of these design scenarios will be based 
on the designers' preference for the problem. 

Using the iSOM plots shown in Figures 6 and 7, designers 
are able to understand the relationships among the goals within 
and between the multiple levels. In the plots, the color bar 
exhibits a gradual transition from blue to yellow, where blue 
indicates low values and yellow indicates high values. For 
example, at design level 1 𝐷𝐷𝑚𝑚𝑚𝑚  (G2) and 𝐷𝐷𝑔𝑔𝑔𝑔 (G3) goals exhibit 
similar behavior as depicted in both iSOM plots for G2 and G3. 
Hence, focusing on achieving a lower G2 value will also result 
in a lower G3 value. Similarly, at design level 2, a similar pattern 
is seen in the iSOM plots associated with G4 and G5. Therefore, 
focusing on achieving lower G5 values will also result in lower 
G4 values. This allows the designer to easily interpret any design 
conflicts between the goals and make appropriate design trade-
offs. Moreover, the designer is also able to understand and 

analyze the relationships between the input weights assigned to 
the goals in the c-cDSP and the corresponding achieved values 
of the goals and also the effects of the assigned weights on the 
other goals using the iSOM plots. From Figure 6, a higher value 
in the weight for goal 2, indicated by the yellow region in W2, 
results in a lower value for that goal, as shown by the blue region 
for goal G2. This shows that the designer’s requirement to 
minimize goal 2 is captured appropriately in the iSOM plots, as 
a higher value of the input weight results in a lower value for the 
goal.  

The proposed framework, thus, supports designers in 
modeling the multilevel design problem and performing 
simultaneous co-design exploration to identify satisficing design 
solutions. The framework supports understanding (i) the 
relationships between the goals within and between levels, and 
(ii)identifying satisficing regions of interest given the multilevel 
interactions, couplings, and multidisciplinary designers.  
 
5. CLOSING REMARKS 

In this paper, we present a co-design exploration framework 
for multilevel decision support. The framework involves the 
integration of two design constructs, namely the coupled 
compromise Decision Support Problem (c-cDSP) and a machine 
learning-based visualization tool called interpretable Self 
Organizing Map (iSOM). Using the framework, designers are 
able to (i) model a multilevel design problem with conflicting 
goals at individual levels and interactions between levels as a 
coupled compromise decision support problem, and (ii) 
simultaneously explore the multilevel solution spaces to identify 
common sets of satisficing design solutions that support co-
design.  

The key functionalities of the framework that we present in 
this paper include: 

(a) facilitating the formulation of the multilevel design 
problems with many conflicting goals at individual levels and 
interactions and couplings between the levels. The functionality 
is achieved using consistency constraints and combining the 
preemptive and Archimedean formulations in the c-cDSP. The 
use of consistency constraints between the levels helps to capture 
the interactions and couplings between the levels by keeping a 
common set of design variables constant for both levels. By 
combining the preemptive and Archimedean formulation in the 
formulated c-cDSP, the designers are able to connect the 
multiple levels and account for the conflicting goals in each level 
into a coupled decision support problem.  

(b) facilitating the visualization and co-design exploration 
of multilevel design spaces. The functionality is achieved with 
the help of the interpretable self-organizing map (iSOM) 
construct. iSOM offers the capability of simultaneous solution 
space visualization of the design scenarios formulated using c-
cDSP by generating two-dimensional plots for all the goals. 
Efficient co-design exploration is realized using the iSOM tool 
to visualize and explore the multilevel design spaces 
simultaneously. Co-design exploration has an advantage over 
other multilevel design exploration approaches based on 
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sequential design as it supports the management of design 
conflict and ensures system performance. 

We test the efficacy of the framework using the hot rod 
rolling problem, focusing on the interactions between the 
dynamic and metadynamic phases of material recrystallization 
and the thermo-mechanical processing during the hot rolling 
process. The framework is generic and supports the co-design 
exploration of systems characterized by multilevel interactions, 
couplings, and multidisciplinary designers. 
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APPENDIX A: Mathematical models for hot rolling of 
steel rods 
A1. Models used in Design Level 1.  
 Zenner Holloman Parameter metadynamic [43], 

𝑍𝑍𝑚𝑚𝑚𝑚 = 𝜀𝜀̇ 𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄𝑑𝑑

𝑅𝑅 × 𝑇𝑇𝑚𝑚𝑚𝑚
� 

 Time for 50% recrystallization after metadynamic [43],   

𝑡𝑡0.5 = 1.12 𝑍𝑍𝑚𝑚𝑚𝑚−0.8𝑒𝑒𝑒𝑒𝑒𝑒 �
230000
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚

� 

 Volume fraction of meta dynamic recrystallized material 
[43], 

𝑋𝑋𝑚𝑚𝑚𝑚 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−0.693 �
𝑡𝑡
𝑡𝑡0.5

�
1.3
� 

 Grain Size after meta dynamic recrystallization [43], 
𝐷𝐷𝑚𝑚𝑚𝑚 = (2.6 × 104)𝑍𝑍−0.23 

 Zenner Holloman Parameter metadynamic [43], 

𝑍𝑍𝑑𝑑 = 𝜀𝜀̇ 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄𝑑𝑑

𝑅𝑅 × 𝑇𝑇𝑑𝑑
� 

 Grain Size after dynamic recrystallization [43], 
𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 = (1.6 × 104)𝑍𝑍𝑑𝑑−0.23 

 
 Average grain size after Dynamic and Metadynamic 

Recrystallization [43],  
𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 + (𝐷𝐷𝑚𝑚𝑚𝑚 − 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑) 𝑋𝑋𝑚𝑚𝑚𝑚  

 Grain Growth [44], 
𝐷𝐷𝑔𝑔𝑔𝑔2 =  𝐴𝐴𝐷𝐷𝑅𝑅𝑅𝑅2 +  1.2 × 107 × (𝑡𝑡 −
2.65𝑡𝑡0.5)exp �−113000

𝑅𝑅𝑅𝑅
�  if 𝑡𝑡 < 1 

 A2. Models used in Design Level 2.  
 Critical Strain to decide whether dynamic recrystallization 

will take place or not [43],  
𝜀𝜀𝑐𝑐 = (4 × 10−4)(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)0.5𝑍𝑍𝑑𝑑𝑑𝑑0.15 

 Zenner Holloman Parameter [43], 

𝑍𝑍𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑑̇𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄𝑑𝑑

𝑅𝑅 × 𝑇𝑇𝑑𝑑𝑑𝑑
� 

 Volume fraction of recrystallized material [43], 

𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−0.8�
𝜀𝜀 − 𝜀𝜀𝑐𝑐
𝜀𝜀𝑝𝑝

�
1.4

� 

 Peak Strain [43], 

𝜀𝜀𝑝𝑝 = 1.23𝜀𝜀𝑐𝑐 
 Grain Size after dynamic recrystallization [43], 

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (1.6 × 104)𝑍𝑍𝑑𝑑𝑑𝑑−0.23 
We use 𝜀𝜀𝑑̇𝑑𝑑𝑑,𝑇𝑇𝑑𝑑𝑑𝑑 ,𝑍𝑍𝑑𝑑𝑑𝑑 ,𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  as copies of the values calculated in 
design level 1 to ensure consistency.  
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