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ABSTRACT

Traditional manufacturing, such as steel manufacturing,
involves a series of processes to realize the final product. The
properties and performance of the final product depend on the
material processing history and the microstructure generated at
each of the processes. Realizing target product performance
requires the simultaneous design exploration of the material
microstructure and processing, taking into account the multilevel
interactions between the material, product, and manufacturing
processes. This demands the capability to co-design, which
involves sharing a ranged set of solutions through design
exploration across multilevel and providing design decision
support.

In this paper, we present a co-design exploration framework
for multilevel decision support. Using the framework, we model
the interactions and couplings between the levels and facilitate
simultaneous decision-based design exploration. The framework
integrates the coupled compromise Decision Support Problem
(c-cDSP) construct with interpretable Self-Organizing Maps
(iSOM) to facilitate (i) the formulation of the multilevel decision
support problems taking into account the interactions and
couplings between levels, (ii) the simultaneous visualization and
exploration of the multilevel design spaces, and (iii) decision-
making across levels for multilevel designers. The efficacy of the
framework is tested using a hot rod rolling problem focusing on
the interactions between the dynamic and metadynamic phases
of material recrystallization and the thermo-mechanical
processing during the hot rolling process. The framework is
generic and supports the co-design exploration of systems
characterized by multilevel interactions, couplings, and
multidisciplinary designers.
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1. FRAME OF REFERENCE

Traditional manufacturing processes, such as steel
manufacturing, involve a sequence of processes to realize the
final product. The design of such systems needs to consider the
information flow and interactions between the disciplines of
material, product, and manufacturing processes. Designers are
required to consider the interrelated variables, the conflicting
goals and constraints, and the interactions and couplings between
these different disciplines, making the design of these systems
complex. Due to this, coming up with comprehensive system-
wide satisfying solutions that take into account the information
flows, process interrelations, conflicting goals, and couplings
between the disciplines is a challenge. One approach to
managing the design complexity is to decompose the system-
level problem into a set of interdependent and distributed
subsystem-level problems, where the multiple levels correspond
to the different disciplines of material, product, and
manufacturing process. The multiple design levels are
characterized by the respective multidisciplinary designers, such
as manufacturing process, materials, and product designers, who
are equipped with domain-specific tools and knowledge to
formulate the distributed design problems specific to their
discipline. Such a multilevel design approach focuses on
coordinating the couplings between the levels and finding
solutions that satisfy the designers' requirements at the individual
levels of the multiple design levels. Multidisciplinary design
optimization (MDO) approaches [1-4] are used to address such
problems. The focus in MDO approaches is to identify single-
point design solutions via extensive optimization methods and
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detailed analysis models for each of the disciplines. The MDO
approaches also require compliance with a formal design
framework, which often entails substantial iteration within and
between the design levels. In the early stages of design, when the
designer’s focus is on quickly finding a satisfying region of the
design space for the multiple design levels, these characteristics
of the optimization approaches create a challenge [5]. Therefore,
we need approaches that facilitate the simultaneous design
exploration of complex design spaces across multiple levels and
efficient identification of satisfactory solution regions for
decision-making. This involves facilitating 'co-design
exploration', that is, the capability of distributed designers or
decision makers (material, product, and manufacturing process
designers, respectively) at multilevel to collaboratively share
their information, knowledge, and resources in an integrated
fashion to achieve the simultaneous design exploration of the
material, product, and associated manufacturing processes.

The properties and performance of a product are defined by
the material processing history and the microstructure generated
at each of the processes. An example is the hot rod rolling
process of steel, where the properties of the semi-product rod are
defined by the microstructure developed at various stages of the
hot rolling process and the associated thermo-mechanical
processing history during the reheating, rolling, and cooling
stages. Due to the relations existing between the material
processing history, microstructure generated, and the product
property and performance, achieving targeted product
performance requires considering the design of the overall
system, which includes the co-design exploration of the product,
material, and manufacturing process systems, and their
interrelations and couplings [6].

Product
designer

) C/
Materials =~ = T _ e @
designer I

I

P

- - - - - - (- -

\ Perfomance
1 Material Property

I

1

1 i

1 Processing

|
-G 1P
ov10
Manufacturing EFFECT

processdesigner

FIGURE 1: Olson’s PSPP relations and co-design between
manufacturing process, material, and product

An integrated, top-down, systems-based approach is needed
to co-design these multilevel systems, starting with the
performance required for the product and then inversely
designing the levels of material microstructures and thermo-
mechanical processing history to realize the target performance.
Olson's Processing-microStructure-Property-Performance
(PSPP) relations [7] establish the basis for the inverse, systems-

based co-design exploration by linking the disciplines of
product, materials, and manufacturing processes, as shown in
Figure 1. According to the PSPP relations, the manufacturing
processing history determines the material microstructure and
properties, which determines the product properties and
performance. The Integrated Computational Materials
Engineering (ICME) effort offers guidance for the simulation-
supported design of material, product, and manufacturing
process systems. ICME emphasizes using simulation-based
design to realize products and materials concurrently in a top-
down fashion using the PSPP relations generated through
integrated material and process models across various lengths
and time scales. By utilizing simulation-supported systems
design approaches, designers are able to comprehend the
complex relationships in materials design better and make well-
informed design decisions [8]. Materials design for ICME is
essentially viewed as a decision-making process using
simulation-based design. However, simulation models used in
materials design are typically incomplete, inaccurate, and not of
equal fidelity. They are abstractions of the real physical material
phenomena [9] and embody uncertainty. Single-point solutions
based on optimization are sensitive to uncertainty and do not
hold when conditions change. Therefore, the multilevel design
necessitates exploring the solution spaces and identifying
solution regions, rather than single-point solutions, that satisfy
and suffice the designer’s requirements across multiple levels
and are relatively insensitive to uncertainties. Such solution
regions are defined as “satisficing solutions” [10].

From a systems design perspective, we view design as a top-
down, goal-oriented, decision-based process supported by
simulations [11, 12]. We advocate the Decision-Based Design
(DBD) paradigm advocated by Mistree and co-authors [13]. In
DBD, design problems are modeled as Decision Support
Problems (DSP) using Decision Support Problem Techniques
(DSPT) and constructs, see [14, 15]. The DSP technique is based
on the notion of bounded rationality proposed by Herbert Simon
[16]. In DBD, decisions are made using information generated
from simulation models. The compromise Decision Support
Problem (cDSP) [17] construct is used to formulate and solve
design problems involving many conflicting goals and seek
satisficing solutions through design exploration and trade-off.

Several recent works address the inverse design of material
structures from a top-down systems perspective. A framework
presented by Adams and co-authors [18] addresses the inverse
relations between the material microstructure, properties, and
processing path and uses spectral representations to establish the
invertible linkages. Kalidindi and co-authors [19, 20] present a
materials knowledge system approach that facilitates the flow of
high-fidelity information in both directions between the
constituent length scales, offering a new technique for
concurrent multiscale modeling, supporting inverse design. A
probabilistic inverse design machine learning framework is
presented by Ghosh and co-authors [21] to carry out explicit
inverse design using conditional invertible neural networks. A
deep reinforcement learning (DRL) scheme is presented by Sui
and co-authors [22] to automate the inverse design of composite
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material structures for realizing target performance. Kim and co-
authors [23] introduce an Artificial Neural Network (ANN)
based design method to achieve specific user-defined features
through an inverse design approach for zeolites. Chen and co-
authors [24] introduce a generative deep neural network that
utilizes inverse design, backpropagation, and active learning to
support the design of composite materials. A machine learning-
based inverse design technique is also presented by Kumar and
co-authors [25] to design the topology of metamaterials with
tailored properties. All these approaches use advanced machine
learning and data-driven techniques to help establish invertible
linkages for material design using the PSPP relations that can be
further used in engineering design for decision-making. These
approaches are focused on problems where the structure-
property relations can be inverted in some manner.

Even though there are advanced materials modeling
techniques to establish inverse relations, it is noticed that the
decision-making for materials design using engineering design
techniques is mostly sequential. In the current techniques, the
design spaces for the different disciplines, namely product
design, materials design, and manufacturing process design, are
formulated and solved sequentially without taking into
consideration the complex interactions and couplings between
the different disciplines. The sequential, discipline-specific
design process results in decisions at one level/discipline that can
cause unintended consequences to other levels/disciplines since
the interactions are not captured and decisions are not made
simultaneously [26, 27]. Therefore, the independent decisions
across individual levels fail to consider the multilevel
interactions and could cause design conflicts, impacting the
overall system performance.

Multidisciplinary design optimization (MDO) approaches
such as bi-level integrated system synthesis (BLISS) [1, 2],
collaborative optimization (CO) [3], and analytical target
cascading (ATC) [4] are discussed in the literature to address the
optimization of the multilevel system while considering the
interactions across the multiple levels. Martins and Lambe [28]
describe that the overall system performance is influenced by
individual-level performance and their interactions, which serves
as the primary motivation for MDO. MDO problem formulations
focus on optimizing the entire system rather than individual
levels or subsystems sequentially [27]. In MDO, subsystems are
formulated by combining data generated from multi-fidelity
models [29], such as empirical models for manufacturing
processes, physics-based material models, and data-driven
surrogate models that are abstractions of the physical phenomena
for a defined design space [9]. These models are used to establish
quantitative links and interrelations between the individual
levels/disciplines in MDO. Ituarte and co-authors use MDO with
surrogate models [27] to establish a computer-aided expert
system that couples the design exploration and trade-off of
product, material, and manufacturing process designs for digital

manufacturing.
However, these MDO approaches employ rigorous and
iterative  optimization techniques involving extensive

optimization loops within and between levels to identify unique

single-point solutions. As discussed above, when designers are
focused on design exploration in the early stages of design and
interested in quickly identifying satisfactory regions of interest,
such intensive MDO approaches are not appropriate. Addressing
the challenges of MDO for early-stage design exploration,
satisficing design strategies are proposed.

Multilevel approaches that support identifying satisficing
design solutions are discussed in the literature. The Inductive
Design Exploration Method (IDEM) is proposed by Choi and co-
authors [30] to support the design of multilevel systems. Using
IDEM, robust ranges of satisficing solutions are identified and
sequentially mapped across the multilevel in an inverse manner.
IDEM, however, has restrictions in the number of design
variables and responses that can be considered, errors due to
discretization, increased computational expense for improved
accuracy, and limited design flexibility due to sequential
mapping of design spaces [31]. Nellippallil and co-authors [32]
present the Goal-oriented Inverse Design (GoID) method that
addresses some of the limitations of IDEM. GoID method
supports the design of multilevel systems through compromise
decision support problem (cDSP)-based sequential design
exploration. Using GolD, robust satisficing solutions are
identified and propagated sequentially across levels as goal
targets for the DSP in an inverse manner. Both IDEM and GolD
methods are sequential in nature, with a focus on realizing the
goals and satisfying the constraints of the individual
discipline/level at a time. These methods do not address the
coupled interactions, the management of design conflicts
between levels, and the simultaneous exploration of the
multilevel design spaces for decision-making. Recent works
address some of the above-mentioned limitations. Sharma and
co-authors [33, 34] showcase the utility of coupled c¢cDSP (c-
cDSP) for modeling problems with different forms of coupled
interactions between levels. Further, Baby and Nellippallil [35]
present an information-decision framework to detect and manage
design conflicts in a systematic manner for multilevel problems.
However, the above-discussed approaches do not address the
simultaneous design exploration of the multilevel for decision-
making. In a recent work, Baby and co-authors [36] present a
Co-Design Exploration of Multilevel systems under Uncertainty
(CoDE-MU) framework to support the co-design exploration of
multilevel design spaces and identify satisficing solutions that
are common within and between the levels. The CoDE-MU
framework as presented by Baby and co-authors, did not address
coupled interrelations between levels.

In this paper, we use the CoDE-MU framework for the
simultaneous co-design exploration of material microstructures
and processing levels, given the coupled interrelations between
the levels. The CoDE-MU framework facilitates (i) modeling the
level-specific information flow and the interactions between
levels of the disciplines (material processing and material
microstructure) and (ii) simultaneous exploration of the
multilevel solution spaces to identify common satisficing design
solutions for all the disciplines. The coupled-cDSP construct is
used in the framework to formulate the multilevel problem. The
objective function of c-cDSP involves a combination of
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preemptive and Archimedean formulations. By combining the
two formulations, designers are able to account for many
conflicting goals (more than three goals) within a single design
level and consider the couplings and interrelations between
multiple design levels. In this paper, we propose consistency
constraints in the coupled cDSP formulation to model the
couplings between the levels/disciplines. These constraints
ensure the consistency of coupled variables shared between
levels. The simultaneous visualization and exploration of the
many goals within and between design levels is facilitated by the
integration of interpretable Self-Organizing Maps (iISOM) in the
framework [37]. iISOM facilitates the co-design exploration by
allowing the designer to simultaneously visualize the high-
dimensional solutions spaces in two dimensions and easily
navigate the multilevel design spaces to identify common
satisficing solution regions, thus facilitating decision support.
The efficacy of the multilevel decision support framework is
tested using a hot rod rolling problem focusing on the
interactions between the dynamic and metadynamic phases of
material recrystallization and the thermo-mechanical processing
during the hot rolling process. The sections of the paper are
discussed below.

In Section 2, we describe the hot rod rolling problem and the
design approach used to formulate the multilevel hot rod rolling
problem. In Section 3, we discuss the multilevel decision support
framework for simultaneous co-design exploration. In Section 4,
we showcase the efficacy of the framework in the simultaneous
multilevel co-design exploration and decision support using the
hot rod rolling problem. We close the paper by summarizing the
key functionalities and with our remarks in Section 5.

2. PROBLEM DESCRIPTION

2.1 Co-design of hot rod rolling process chain and
steel microstructures

Steel manufacturing involves a sequence of manufacturing
processes. The hot rolling process is a major manufacturing
process in the steel manufacturing process for producing semi-
products like rods and sheets. Hot rolling is generally used to
obtain fine grains of austenite through the thermo-mechanical
hot deformation process. The fine grains of austenite help
achieve fine grains of ferrite through phase transformation
during the cooling process that follows rolling. The formation of
the fine grains of ferrite supports the achievement of improved
mechanical properties in the hot-rolled product. From a design
perspective, our interest in this problem lies in co-designing the
steel manufacturing process chain, involving hot rolling and
cooling processes, with the steel microstructures.

One of the requirements identified in the problem is to
achieve a target final austenite grain size (AGS) after the hot
rolling process. To achieve a target final AGS, several
microstructural phenomena during rod rolling need to be
considered, which include dynamic recovery, dynamic
recrystallization, metadynamic recrystallization, static recovery,
static recrystallization, and grain growth after recrystallization
[38]. It is understood that static recrystallization plays a major

role in plate rolling. However, for the hot rod rolling process,
dynamic recrystallization plays a major softening role for the
microstructures due to the higher strain rates and shorter
interpass time involved with the rod rolling process [39]. The
dynamic recrystallization phenomenon is followed by
metadynamic recrystallization, which removes the dynamically
recrystallized microstructure. It is identified that metadynamic
recrystallization kinetics is highly dependent on strain rate and is
weakly dependent on the deformation temperature [39]. The high
strain rate sensitivity of metadynamic recrystallization plays a
major role in defining the final austenite grain size and the
recrystallization kinetics. Following complete metadynamic
recrystallization, the coarsening of the equiaxed austenite grains
happens through the grain growth phenomenon. The grain size
after grain growth defines the microstructure of the steel after hot
rod rolling. The conditions of the final steel microstructure are
defined by the effects of the interrelationships and couplings
involved in the above-discussed microstructural and material
processing phenomena.

From an engineering design perspective, there needs to be a
fundamental understanding of the interdependent nature of the
multilevel materials, manufacturing process, product design
decisions, and the couplings between product, material, and
manufacturing process levels. Towards this, in this paper, we
study the co-design of the hot rod rolling process of steel and the
hot rolled rod microstructures after dynamic and metadynamic
recrystallizations. We consider the hot rolling process chain
(multiple stages) as one manufacturing process and the dynamic,
metadynamic recrystallizations and grain growth as different
material microstructure phases to realize the rod (product). To
frame the design problem, we assume that dynamic
recrystallization occurs first and metadynamic recrystallization
follows complete dynamic recrystallization. Since our interest is
in inverse top-down design, we start with the requirements of the
product and map these requirements to the material
microstructure and material processing during the manufacturing
process. For the hot rod rolling problem, the austenite grain sizes
and recrystallization kinetics after metadynamic recrystallization
and grain growth are considered as the end requirements and will
be considered in design level 1 to facilitate inverse co-design.
These requirements depend on the microstructure factors after
dynamic recrystallization and material processing variables
during rolling. The dynamic recrystallized grain size and
recrystallization kinetics requirements are considered in design
level 2 in an inverse manner. These requirements depend on the
coupled information from design level 1, the microstructure
information before rolling, and the material processing variables
during rolling. More details on the problem are discussed in
Section 4. To address the co-design problem, decisions need to
be made by coordinating and investigating the interactions
among the product designer (for the rod), materials designer (for
the microstructure), and manufacturing process designer (for
material processing), using computational process-structure-
property-performance models for hot rod rolling.
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2.2 Multilevel co-design exploration approach in the
context of the problem

In Figure 2, we show a generic schematic of the co-design
exploration approach for problems involving product, material,
and manufacturing processes and their interactions. The
approach involves establishing a forward processing-structure-
property-performance (PSPP) workflow for the problem. For the
hot rod rolling problem, we focus on the hot deformation of the
material during rolling, the recrystallization of austenite grains
during dynamic recrystallization, and the recrystallization of
austenite grains during metadynamic recrystallization and grain
growth. The forward PSPP workflow is established using well-
established integrated mathematical models from the literature
for the hot rolling process and microstructure evolution; see
details in Appendix A. Once the PSPP linkages are established,
a model-based information workflow is developed to capture the
interrelation and couplings between the manufacturing process,
material, and product; see Figure 2. We discuss this in detail in
Section 3. We begin the multilevel co-design process once the
forward information workflow is generated. The decision-based
co-design exploration of the manufacturing process chain is

FORWARD INFORMATION WORKFLOW

Output of manufacturing processes
as input to microstructure phases

Output of microstructures as
input to product properties
and performance

carried out starting from the end product requirements. Co-
design between distributed designers is facilitated through
shared solution spaces of a coupled multilevel decision support
problem with the capability to explore, evaluate, and modify
ranged sets of design specifications across multilevel.
Specifically, a coupled compromise Decision Support Problem
is used to formulate the multilevel goals and requirements. Using
the c-cDSP, the interactions between the different disciplines are
captured, and satisficing solutions regions across the coupled
design spaces are sought through co-design exploration. Design
Level ‘1’ is defined by formulating a multi-objective product-
level design problem to achieve the mechanical property goals
of the product. The microstructure variables from the materials
discipline serve as the input variables for the product decision
support problem. Design Level ‘2’ is defined at the material level
by considering the multiple microstructure requirements. The
processing variables from the manufacturing discipline serve as
input for the materials problem. Design Level ‘3’ considers the
requirements from the manufacturing process level given the
coupled information from the material microstructure and
product.
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As discussed in Section 1, sequential decision-making of the
levels in an isolated manner will result in design conflicts.
Design conflicts will result in reduced overall system
performance. Therefore, it is essential to co-design the multiple
levels considering their interactions and couplings. In this paper,
we present a co-design exploration framework for multilevel
decision support. Using the framework, we model the
interactions and couplings between the levels and facilitate
simultaneous decision-based design exploration. The framework
integrates the coupled compromise Decision Support Problem
(c-cDSP) construct with interpretable Self-Organizing Maps
(iISOM) to facilitate (i) the formulation of the multilevel decision
support problems taking into account the interactions and
couplings between levels, (ii) the simultaneous visualization and
exploration of the multilevel design spaces, and (iii) decision-
making across levels for multilevel designers. We discuss the
multilevel decision support framework in the next section.

3. MULTILEVEL DECISION SUPPORT FRAMEWORK
FOR THE SIMULTANEOUS DESIGN
EXPLORATION OF MATERIAL STRUCTURES AND
PROCESSES
In this section, we present a multilevel decision support

framework for the simultaneous design exploration of material

structures and processes. The framework facilitates the decision-
based simultaneous design exploration of multilevel. The
framework is modified from the Co-Design Exploration of

Multilevel systems under Uncertainty (CoDE-MU) framework

presented by Baby and Co-authors [36]. We discuss the design

constructs used in the framework below.

3.1 Construct and tools used in the framework

The primary constructs used in the framework are: (i) the
coupled cDSP (c-cDSP) construct and (ii)) the iSOM
visualization tool.

3.1.1  The coupled cDSP (c-cDSP) construct

The coupled cDSP [34] is a decision support problem (DSP)
construct that supports designers in modeling multiple goals
within and between multiple levels. The coupled cDSP construct
is used to model the relationships and consider the decisions
across various design levels/disciplines. The decisions made at
individual levels are focused on achieving the multiple goals
within the levels through trade-offs. We capture the level-
specific information in a c-cDSP using the keywords - Given,
Find, and Satisfy of a c-cDSP formulation. The information
pertains to the design variables, goals, and constraints specific to
the level. The primary focus of using the c-cDSP is to identify
solutions that minimize the total deviation of all the design goals
in the system from their target values, referred to as the 'deviation
function.' The deviation function in c-cDSP is modeled using a
combination of preemptive and Archimedean formulations. A
preemptive formulation is used to capture the relations among
the multiple levels of a decision hierarchy. Design goals at
multiple design levels are categorized into different ordered sets
in the preemptive formulation. The order of the sets defines their
priority. The design level 1 is given higher priority and defined

first in the set, followed by the rest of the levels in their order of
priority. In c-cDSP, design goals at the higher priority set are
realized first before goals at subsequently lower levels [17]. The
Archimedean formulation allows the consideration of multiple
goals at the design level. The multiple goals at a level are
considered by assigning different weight preferences. The
weights are values between 0 and 1 (summing up to 1) and
signify differences in preferences amongst the goals at a level.
By combining the Preemptive and Archimedean formulations,
designers are able to formulate the multilevel problem with
multiple goals at each level. Designers use the Archimedean
formulation at the individual levels to address the many design
goals that require trade-offs. The Archimedean formulation
works by assigning weight to goals in a priority set to account
for the goal's relative priority at the level. A higher weight value
to a goal indicates more importance for that goal at a specific
level compared to others. The Decision Support in the Design of
Engineering Systems (DSIDES) platform is used to formulate
and execute the coupled-cDSP.

3.1.2  iSOM tool for visualization and co-design exploration

interpretable Self Organizing Map (iISOM) [40] is a
machine-learning-based visualization tool that helps to
efficiently visualize high-dimensional data using two-
dimensional (2D) plots. Specifically, it is a modified form of the
artificial neural network algorithm developed by Kohonen [41] -
conventional ~ Self-Organizing Map (SOM) [42]. The
modifications to SOM help avoid self-intersection, making the
iSOM plot interpretable. iSOM is a scalable visualization tool
that can be used to visualize any number of dimensions as
presented by Sushil and co-authors [37]. The advantages of
iSOM in terms of being easily scalable and interpretable make it
an ideal choice to facilitate design space exploration in real-
world problems. In the framework, we used iSOM to visualize
the solution space of our decision support problem across
multiple levels to support co-design. The iSOM tool is available
in the form of a MATLAB code [40].

3.2 Decision support using the framework

The structure of the framework is described in detail in this
section. The framework is comprised of four blocks - Blocks A,
B, C, and D. The framework and its blocks are depicted in Figure
3. A detailed description of each block follows.

Block A: Design problem and level-specific information
collection.

In Block A, the designer gathers information regarding the
multilevel design problem, its levels, and their relations using the
following steps — Steps Al to A3.

Step Al: The designer begins by identifying the different
levels of the decision hierarchy in the problem.

Step A2: The designer then proceeds to collect information
specific to the decisions at each level identified in Step Al. The
level-specific information collected includes (i) design variables
and bounds, (ii) design goals and targets, (iii) models relating the
variables and goals, and (iv) level constraints.

Step A3: Based on the level-specific information gathered in
Step A2, the designer established the relations between the levels

6 © 2024 by ASME



in terms of the flow of information. The flow of information
between levels includes i) shared design variables and ii)
propagated values of design variables and other parameters. At
the lower level of the decision hierarchy, copies of shared design
variables are used as level-specific design variables. A
consistency constraint ensures that the shared design variable at
the lower level stays consistent with the upper level.

Block B: Modeling decision support problems across
multiple levels and their interactions.

Using the information from Block A, in Block B, the
decision problems across multiple levels and their interactions
are modeled as a c-cDSP by the designer. This step, Step B1, is
detailed below.

Step B1: The multilevel decision problems and interactions
across levels are modeled using the c-cDSP construct. In the c-
cDSP, separate instances of the c-DSP construct are used to
model decision problems at the individual levels. The Given,
Find, and Satisfy keywords of the cDSP constructs help capture
level-specific information. The interactions among the cDSPs
for each level are modeled using the shared design variables and
other propagated information connecting the levels, as
determined in Step A3. The deviation function of the c-cDSP is
modeled using a combination of Preemptive and Archimedean
formulations. Decisions in manufacturing process systems are
made hierarchically across multiple levels. For a design problem
with two design levels, decisions at Design Level 1, which are
made first, take higher priority. This is followed by decisions at
Design Level 2 being given lower priority. We use the
preemptive formulation to assign different priority levels to the
design goals at Levels 1 and 2. At a level, the difference in
preferences among the many conflicting design goals is modeled
using the Archimedean formulation. In the Archimedean
formulation, different weights are assigned to the various goals.
The weights assigned are values between 0 and 1 (summing up
to 1), with higher values indicating higher preference. By
combining the Preemptive and Archimedean formulations in the
c-cDSP, designers can consider many design goals requiring
trade-offs at each level and relations across levels of a multilevel
decision problem. A detailed explanation of the c-cDSP is
provided in the following section, Section 4. DSIDES platform
is used to formulate the c-cDSP.

Block C: Generation of multilevel design solutions

In Block C, the c-cDSP formulation created in Block B is
executed for different multilevel design scenarios to generate
different multilevel design solutions. Block C is implemented in
two steps.

Step C1: We create different multilevel design scenarios to
execute the c-cDSP in this step. Sample multilevel design
scenarios are depicted in Step Cl1 of Block C, Figure 3. A
multilevel design scenario is created by combining individual-
level design scenarios for Design Levels 1 and 2, which are
created using Latin hypercube sampling in all possible
combinations. In each individual-level design scenario, different
weights (values between 0 and 1 that add up to 1) are assigned
to the design goals at the level. The weights indicate the

difference in preferences amongst the goals, with higher values

indicating higher preference. If there are ‘n’ unique design

scenarios at an individual level and ‘m’ levels, there exist n™
distinct multilevel design scenarios. In this paper, n?> multilevel
design scenarios are considered for the two-level problem.

Step C2: We execute the formulated c-cDSP in the DSIDES
platform for each of the n™ multilevel design scenarios to
generate design solutions across the levels.

Block D: Visualization and co-design exploration.

In this block, we use the iISOM plots to visualize the solution
spaces at individual levels. We then perform a co-design
exploration of the solution spaces to find a common satisficing
solution for the goals across the levels. Block D is executed in
two steps, as detailed below.

Step DI: In this step, we train the iSOM algorithm with the
weights assigned to the goals in each design scenario and the
corresponding values for the goals at multiple levels. The trained
iSOM generates 2D plots for each input weight and output goal
across multiple levels. Designers use the iISOM plots of the
output goals to carry out co-design exploration in Step D2.

Step D2: The iSOM plots for the goals are explored in this
step to determine common satisficing solution regions for the
goals across multiple levels. The designer begins by setting
satisficing limits for the individual goals to identify satisficing
design regions for each goal. The dots on the grid represent the
design scenarios associated with those specific grid points. The
dot's size corresponds to the number of design scenarios mapped
to the specific iISOM grid point. Hexagonal grid points with red
borders in the individual output iSOM plots indicate the
satisficing solutions regions for each goal; see Step D2 of Block
D in Figure 3. Using the initial satisficing solution regions of the
individual goals, the designer carries out co-design exploration
to identify common satisficing solutions for all the goals across
the levels.

A systematic approach is used to carry out the co-design
exploration. Systematic co-design exploration requires three
steps.

Step 1. Determination of whether relaxation of the
satisficing goal limit is required.

To determine this, the designer needs to ask, "Is there a
common region in the satisficing solution for all the goals across
the levels?"

e Ifthe answer is "No," the designer proceeds to Step 2.

e If the answer is "Yes," the co-design exploration is
complete. The designer has identified a common satisficing
solution for all the goals across the levels.

Step 2: 1dentify the goal to be excluded from the satisficing
limit relaxation.

The designer identifies a goal across the different levels
whose satisficing goals cannot be relaxed due to the formulation
of the problem. This goal is a critical goal that the designer
identifies. All the remaining goals are collectively called the
non-excluded goals.
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BLOCKA:
DESIGN PROBLEM AND LEVEL-SPECIFIC INFORMATION
COLLECTION

BLOCK D:
VISUALIZATION AND CO-DESIGN EXPLORATION

STEP A1: Identification of levels of the different decisions in the
system

L 2

STEP A2: Collection of level-specific information — design
variables and variable bounds, constraints, goals, goal targets and
models.

¥

STEP A3: Establishing flow of information between the levels.

STEP D2: Co-design Exploration of the multiple levels to identify
common satisficing solution regions

Goal 1 (Level 2)

'i

Goal n (Level 2)

Goal 1 (Level 1) Goal n (Level 1)

OUTPUT PLOTS

[Satisficing design regions for individual goals at different }
levels

t

BLOCK B:
MODELING DECISION SUPPORT PROBLEMS ACROSS
MULTIPLE LEVELS AND THEIR INTERACTIONS

STEP B1: Modeling the decision problem at the levels and their
interactions using the coupled-cDSP construct.

Coupled-cDSP (c-cDSP) with a combination of:
1. Preemptive formulation for modeling multilevel interactions
2. Archimedean formulation at a level for many conflicting goals.

v

Coupled-cDSP (c-cDSP) formulation for the system design

problem.
c-cDSP formulation + Design goals

STEP D1: Visualization of input and output design across multiple
levels using iISOM

e & 3

Weight on Goal 1 Weight on Goal n| | Weight on Goal 1 Weight on Goal n
LEVEL 1 LEVEL 2

Goal n

Goal 1

LEVEL 1

loutPuT PLOTS|(INPUT PLOTS |

+

‘ BLOCK C:
GENERATION OF MULTILEVEL DESIGN SOLUTIONS

STEP C1: Creating multilevel design scenarios

Scenario Design Level 1 Weights Design Level 2 Weights
XWx XWg
number W, W, W2 Wy Ws
1 0.33 0.13 0.54 1 0.61 0.39 1
n 0.74 0.1 0.16 1 0.6 0.4 1

STEP C2: Executing c-cDSP for multilevel design scenarios to
generate design solutions across multiple levels in the system

FIGURE 3: Multilevel decision support framework [36]

Step 3: Relaxation of satisficing limit for the non-excluded
goals.

e Based on the designer's judgment, a goal from the non-
excluded region is selected.

e  The designer then looks for any common iSOM grid points
in the satisficing solution region between the chosen and
excluded goals.

After the end of Step 3, the designer identifies common
satisficing solution regions for all goals across the multiple
levels. The designer determines the design scenarios mapped to
those regions using the identified common regions. From the
design scenarios, the designer then identifies the corresponding
design variables and goal values for the satisficing design
solutions. The designer can also understand the effect of weight
on different goals and the change of variable values on the goals
across multiple levels by analyzing the iSOM input and output
plots.

This framework is generic in nature. Designers are able to
use the framework to formulate design problems that include
interactions between multiple levels and many conflicting goals
at individual levels and carry out co-design exploration. In the
next section, we demonstrate the efficacy of the framework in
supporting the co-design of multilevel systems using a hot rod
rolling problem.

4. EXAMPLE PROBLEM: MULTILEVEL CO-DESIGN
EXPLORATION OF HOT ROD ROLLING PROCESS
CHAIN AND MICROSTRUCTURE
The efficacy of the proposed multilevel decision support

framework is tested using the hot rod rolling problem, focusing

on the co-design of the material microstructure and the hot
rolling process chain. In Figure 4, we show the hot rolling
process and the microstructural information at different time and
space points of the manufacturing process and material/product,
respectively. The steel manufacturing process chain involves the
hot rod rolling process and cooling of the rod. In hot rod rolling,
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a preheated billet from a casting unit is passed through a set of
rollers. The steel billet is thermo-mechanically deformed as it
passes through the rollers. The high strain rate and high-
temperature process results in the evolution of the microstructure
of steel. Two major microstructure evolution phenomena,
namely, dynamic recrystallization and metadynamic
recrystallization, occur during the rolling process.

Grain Size after Dynamic
Recrystallization

Grain Size after Meta-dynamic
Recrystallization

Grain Size after
Cooling

I I l
i 1 I
' Dynamic ,_ MetaDy | — |
i i ation | RECTystallization and, | Grain Size after '
Recrystallization' 1 .
Initial — I__ Grain Growth _ || SrainGrowth |
Austenit o .
Grain Size Rolling Cooling
Process Process

FIGURE 4: Schematic showing the hot rod rolling process chain
and the microstructure at different stages

Recrystallization involves the formation of new grains from
old grains. The dynamic recrystallization is initiated during the
deformation process as the steel billet is in contact with the roller.
Metadynamic recrystallization typically follows dynamic
recrystallization and replaces the dynamically recrystallized
grains. To formulate the design problem, we assume that

dynamic and metadynamic recrystallization occur sequentially,
with dynamic recrystallization occurring first and metadynamic
recrystallization following it. This assumption allows us to
model the information workflow of the material microstructure
and helps define the decisions that need to be made, given the
information flow. Grain growth occurs after recrystallization,
defining the final austenite grain size after rolling. The hot rolled
rod is further passed to the cooling process, where the material
is cooled, and different phases of steel are obtained. Each of
these sequential processes influences the microstructure of the
end product. We focus on the hot rolling process problem and
define the metadynamic recrystallization and grain growth stage
as “Design Level 1” and the dynamic recrystallization stage as
“Design Level 2.”

In Figure 5, we depict the forward information workflow for the
problem connecting the manufacturing process and the material
structure. The multilevel inverse co-design is shown using the
two design levels defined. In the forward flow of information,
we see that the information from the manufacturing process
chain defines the material microstructure. Dynamic and
metadynamic recrystallization are considered sequentially as
microstructure phases 1 and 2, respectively. Manufacturing
process variables, namely strain rate (€ 4), temperature (T,), and
strain (€), and material microstructure variable, namely initial
austenite grain (AGS), determine the dynamic grain size (Dgync)
and grain fraction (X4, ) during dynamic recrystallization.

FORWARD INFORMATION WORKFLOW
1_—
MANUFACTURING MATERIAL
y
Rolling Process
Parameters
— Dynamic Meta-dynamic
Initial AGS I' Recrystallization Recrystallization
- Grain fraction Grain fraction after
|| s St.raln »|| after dynamic meta-dynamic 1 —> I?nd product
train rate 1 recrystallization recrystallization microstructure
Temperature Grain )
Grain size after @i S e grox:vth
—-| Time dynamic ‘ meta-dynamic
recrystallization recrystallization
|
L— : —

Grain size and grain
fraction requirement
after dynamic
recrystallization

Grain size and grain
fraction and grain
growth for end
microstructure goals

End product
microstructure
requirements

Satisficing process

Design Level ‘1’
Considering interactions
between the end product

parameters for the Design Level ‘2’

.multilevel Considering interactions
microstructure between microstructure
problem

after phase 1 and
manufacturing processes

N
N
\
\
1
1
1
1
1
|
+7 Start of "
[ design
~o level _’

-

microstructure and
microstructure after phase 2

)}

1

| Coupled E

ol v cDSP |

. Catm Coupling between S
levels e

Coupled inverse multilevel codesign

FIGURE 5: Multilevel co-design problem for hot rod rolling considering the couplings between the material microstructure and manufacturing
processes
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In metadynamic recrystallization, the strain rate (€ ,,,4) and
temperature (T,,4), during the metadynamic phase along with
time (t) after the billet comes out of the roller, define the
metadynamic grain size (D,,4) and grain fraction (X,,4). This
phase is followed by grain growth. Information on dynamic grain
size (Dgyn) from the dynamic phase and metadynamic grain size
(Dyq) and the grain fraction (X,,,4) from the metadynamic phase
is used to calculate the grain size after grain growth (Dyg). The
empirical models used to define these relations and their sources
are included in the Appendix. We notice in the problem that there
exist interrelations between the microstructure phases when
viewed as an inverse design problem. The manufacturing process
variables influence the microstructure formed at each of the
phases, and the final austenite microstructure is determined by
the microstructures formed in the preceding phases. Therefore,
realizing hot rolled rods with a targeted microstructure requires
the collective consideration of the (i) manufacturing processing
history, (ii) material microstructure, and (iii) the interactions
between them. The co-design exploration of the problem is
carried out by formulating a coupled cDSP formulation
considering the manufacturing process-material microstructure-
product interactions, as shown in Figure 5 (see the coupled cDSP
in Figure). Next, we explain the usage of the multilevel decision
support framework presented in Section 3 to formulate and
explore the co-design problem.

Block A: Formulating the design problem by collecting level-
specific information.

The design of the two phases of the rolling process starts at
Step A1 of the given framework.

Step A1l: The two microstructural phases of the rolling
process are considered as two design levels in this problem.
Level 1 involves decisions regarding the formulation of grain
size after grain growth and grain size and grain fraction after
metadynamic recrystallization. Level 2 involves decisions
regarding the dynamic phase of the rolling process, which affects
the design of the end microstructure.

Step A2: Information specific to design levels 1 and 2 is
collected in this step. At design level 1, decisions are made for
the design variables identified by strain rate (€,4) and
temperature (T;,4) for the metadynamic phase and time passed
(t) after the billet comes out of the roller. The strain rate (€ ),
and temperature (T;) for the dynamic phase are considered as
coupling variables from design level 1. These variables define
the microstructure goals after metadynamic recrystallization and
grain growth. The microstructure requirements for metadynamic
grain size (D,,4), grain fraction (X,,4) and recrystallized grain
size after grain growth (Dy,) defined at design level 1 are to
achieve the target values of 14 um, 0.996, and 20um,
respectively. The empirical models used to establish the relations
are provided in Appendix Al.

At design level 2, decisions are made for strain rate (€ 4.),
temperature (Ty,.), strain (€) during the dynamic recrystallization
process, and initial austenite grain size (IAGS) before rolling to
achieve the required microstructure at the end of the dynamic
recrystallization phase. The microstructure requirements for

dynamic grain size (Dgyn.) and grain fraction (X4, ) defined at
design level 2 are to achieve the target values of 11 um and 0.9,
respectively. The empirical models used to establish the relations
are provided in Appendix A2.

Step A3: Dynamic grain size is a parameter that is used to
define the goals in both design levels and hence acts as a
coupling variable. The strain rate and temperature design
variables during the dynamic recrystallization phase define
dynamic grain size and are therefore used as the coupling
variables between the levels in our formulation. To maintain
consistent dynamic grain size values throughout both design
levels, the design variables, strain rate, and temperature must be
the same for the dynamic phase in both design levels 1 and 2.
Therefore, a consistency constraint is defined for these variables.
The consistency constraints ensure that the dynamic phase's
temperature and strain rate values are the same in design levels
1 and 2.

Block B: Modeling decision support problems across
multiple levels and their interactions.

Step BI: In this step, a decision support problem is
formulated using the information from block A. The decisions of
the design level 1 and 2 and their interactions are modeled using
the c-cDSP construct. In design level 2, a copy of design
variables is used for the two coupling variables - strain rate and
temperature. To maintain consistency, two consistency
constraints are defined in design level 2 for these design
variables. This is used to analyze the interactions between the
two levels and is mentioned in the Satisfy section of the c-cDSP
construct. The target values of the goals for the c-cDSP are
defined in Step A2. Constraints are defined in the Satisfy section
of the c-cDSP construct to account for the manufacturing
processing conditions.

The deviation function used in the c-cDSP formulation
combines the preemptive and Archimedean formulations. The
decisions in the rolling process of the manufacturing systems are
made hierarchically, with decisions at level 1 being made before
decisions at level 2. This hierarchical relation between the two
levels is captured using the preemptive formulation. The priority
of the multiple goals at the individual level is modeled using the
Archimedean formulation. The preemptive and Archimedean
formulation is defined in the Minimize section of the c-cDSP
construct. Designers use the combination of preemptive and
Archimedean formulations to consider many goals at design
levels and the relation between design levels 1 and 2 in a coupled
decision problem formulation.

The formulated coupled-cDSP (c-cDSP) for the hot rod
rolling process considering interactions between design levels 1
and 2 is given below:

Given
(a) Constants
(i) Gas Constant, R = 8.314 ] /moleK
(ii) Activation Energy, Q4 = 312000 J/mole

(b) Design variables (x;) and their bound at design level 1
(i) 1250 K < %1 (Tg ) <1600 K
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(ii) 9.000 s71 < x,(&,,4) < 18.000s71

(iii) 0.05 s < x5(t) < 0.100 s

(iii) 1250 K < x,(T; ) < 1600 K

(iv) 9.000 s71 < x-(é;) < 18.000s7?

Design variables (x;) and their bound at design level 2
(i) 40 um < xc(IAGS ) < 100 um

(ii) 0.65 < x,(¢) < 1.000

(iii) 1250 K < x4(T4.) < 1600 K

(iv) 9.000 s7! < x9(€4.) < 18.000 571

(c) End requirements at design level |
(i) Achieve target metadynamic recrystallized grain
Sfraction (Xpq) = 0.996
(ii) Achieve target metadynamic grain size (Dp4) =
14 uym
(iii) Achieve target value for austenite grain size after
grain growth, Dgg = 20 pm

End requirements at design level 2
(i) Achieve target dynamic recrystallized grain fraction
(Xayn) = 0.9
(ii) Achieve target dynamic grain size (Dgync) = 11 um

The models used to find the end requirements at design levels
1 and 2 are provided in the appendix.

Find

(a) Design Variables: x;, where i = 1,2,3,4,5,6,7,8,9

(b) Deviation Variables: dk+and dy,~, where k = 1,2,3,4,5

Satisfy
(a) Level 1 Design Constraints:
()1— Xpg =0

(ii) Dgg — Dyng = 0
(lll) ADRX - Ddyn 2 0

Level 2 Design Constraints:

() Ty =Ty

(ii) €4 = €4c

(iii) e — e, 20
iv)1l—X; =20
v)X;—07 =20

(vi) IAGS — Dgync = 0
(vii) Dgyne —7 = 0
(b) Level 1 Goals
(i) Maximize metadynamic recrystallized grain fraction
(G1),
Xma(Xi) +d, - d1+ -1
de,Target
(ii) Minimize metadynamic recrystallized grain size (G2),
Dmd,,Target - +
————d d,” =1
Dma(Xi) 2 + 2
(iii) Maximize value for austenite grain size after grain
growth (G3),
_Dgg*D) +dy"—dy" =1
Dgg,Target

Level 2 Goals

(i) Maximize dynamic recrystallized grain fraction (G4),
Xdyn(Xi) + d4_ _ d5+ =1

Xdyn,Target

(ii) Minimize metadynamic recrystallized grain size (G5),

Dg nc,Target - +
—dymelarget _ g .~ +dgt =1
Ddync,(Xz)

(b) Variable bounds at Design Level 1
(1) 1250 K < Tppy <1600 K
(ii) 9.000 s7! < £,,4 < 18.000s7*
(iii) 0.05s < t < 0.100 s
(iii) 1250 K < T; < 1600 K
(iv) 9.000 s71 < ¢, < 18.000s71
Variable bounds at Design Level 2
(i) 40 pum < JAGS < 100 um
(ii) 0.65 < ¢ < 1.000
(1)) 1250 K < Ty < 1600 K
(iv) 9.000 s7! < €4, < 18.000 571

Deviation variable bounds
di*.d,” >=0andd,* *d,~ =0
Minimize
Preemptive formulation at two levels
The deviation function Z needs to be minimized.

MinZ = (f1, f2)
Priority 1: Design Level 1 (Archimedean Formulation)

fi= D Wild* + d)
where W, = weight assigned to the deviations of the
individual goals from the target values, Y Wy, = 1 and k =
1,2,3
Priority 2: Design Level 2 (Archimedean Formulation)
fo= ) Wild* +d)

where W, = weight assigned to the deviations of the
individual goals from the target values, Y Wy, =1 and k =

4,5.
Block C: Generation of design scenarios across levels 1 and

2.

The c-cDSP construct is executed using the DSIDES
platform for different design scenarios created considering
design levels 1 and 2.

Step C1: We formulate different design scenarios for the
multilevel problem in this step. All possible combinations of
design scenarios at level 1 and level 2 are considered to create a
multilevel design scenario. Latin hypercube sampling (LHS)
design is used to create weight scenarios for individual levels by
assigning different weight combinations for goals at each level.
LHS design is used to effectively cover the multilevel design
space. We considered 13 LHS design scenarios at each level,
creating 169 multilevel design scenarios. Six more scenarios
with full weight to one goal and zero to the others for individual
level are also considered to capture the extreme ends of the
design scenarios. We have 175 design scenarios with different
weight preferences assigned to the individual goals within and
between the levels. We list selected design scenarios in Table 1.
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TABLE 1. Sample multilevel design scenario

Design Design Level 1 I]?:\fé%g
Sce:;arlo Weights >W; Weichts 1w
W, | W, | Ws Wy | Ws
1 0.33 0.13 | 0.54 1 0.61 | 0.39 1
2 0.33 0.13 | 0.54 1 05 | 05 1
71 0.26 0.68 | 0.06 1 0.17 | 0.83 1
72 0.26 0.68 | 0.06 1 0.26 | 0.74 1
174 0 0 1 1 1 0 1
175 0 0 1 1 0 1 1

relations between the output plots. This helps carry out
simultaneous co-design exploration of the solution space and
find common satisficing solution regions that satisfy and suffice
the requirements of the designers at both levels. The co-design
exploration begins with assigning a satisficing limit for all the
goals to identify a common satisficing solution. The designer/s
needs to use their domain expertise to define satisficing limits
for the goals.

The initial satisficing limit for the goals for design levels 1
and 2 are identified as shown in Table 2 below.

TABLE 2. Initial satisficing limits for the multilevel goals
Level 1 Level 2

Step C2: We execute the c-cDSP using the DSIDES
platform for each of the 175 multilevel design scenarios to
generate solutions for the goals across design levels 1 and 2.

Block D: Visualization and simultaneous co-design
exploration of the multilevel solution space.

The solution space generated in block C is further visualized
and explored in this block using the following steps.

Step D1: We begin this step by training the iSOM algorithm.
iSOM supports the simultaneous visualization of multilevel
design spaces. We train the algorithm using the different weight
scenarios across the two levels as input and the corresponding
goal values as output. The trained iSOM provides a 2-
dimensional visualization of the design and solution spaces,
namely the five input plots of the input goal weights and five
output plots of the achieved goal values in design levels 1 and 2.
The iSOM plots are shown in Figure 6. On the top are the input
weights, followed by the corresponding goals. The red dots in
the hexagonal grid of the goal plots indicate the design scenarios
mapped to the specific grid.

Step D2: The co-design exploration is carried out using the
iSOM plots. The iSOM plots allow the designer to study the
interrelations between the input and output plots and also the

Goal 1, Gl (de) = 0.996 Goal 4, G4 (Xdyn) =09

<
Goal 2, G2 (Dna) < T4 pm =2 0555 (Dayne) < 11

Goal 3, G3 (Dgg) > 20 pm um

The red-bordered hexagonal grids in Figure 6 are the
satisficing solution region for individual goals for the assigned
initial limit. Next, we discuss the steps involved in the systematic
co-design exploration of the solution spaces to identify
satisficing solutions.

Step 1: Designers explore the iSOM plots and checks if there
are grids that are common for all the goals in design levels 1 and
2. On analyzing Figure 6, we see that there are no common grids
that satisfy the requirements for all five goals across design
levels 1 and 2. In such a scenario, the designer moves to Step 2
to identify satisficing solutions.

Step 2: In this step, we propose one strategy that designers
can use to systematically identify satisficing solutions. Since
there is no common satisficing solution region, the designer
needs to first identify critical goal/s that cannot be relaxed as per
design requirements. The designer needs to use their judgment
and domain knowledge to carry out this process.

Design Level 1 Design Level 2

0.5 - 0.8

0.4 - 0.6

0.3 0'2 ‘ 0.4

0.2 0.2

0
W W4
® 20 18
© 18 16
@ 14
® 16 5
= C) 19
G1 > 0.996 G2 <14 pm G3 > 20 pm G4 >0.9 G5 <11 pm

FIGURE 6: iSOM plots showing the design space of the input weights assigned to c-cDSP goals for design levels 1 and 2 (Row 1). iSOM plots
showing the achieved values of goals in design levels 1 and 2 (Row 2). The hexagonal iSOM grid points highlighted in red indicate satisficing
solution regions for the individual goals. The red dots indicate design scenarios mapped to the iSOM grid points. The yellow region indicates a

higher value, and the blue region indicates a lower value in the plots.
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Design Level 1

G1 > 0.996

Design Level 2
{0.95 18
e 16
) 0.9
14
0.85 12
10

G4 > 0.9 G5 <13 pm

FIGURE 7: iSOM plots for all goals across design levels 1 and 2 with the updated satisficing goal limits. The hexagonal iISOM grid points
highlighted in red indicate satisficing solution regions for the individual goals with new satisficing limits. The red dots indicate design scenarios
mapped to the iSOM grid points. The common satisficing solutions across design levels 1 and 2 are highlighted using a black dashed border.

TABLE 3. Achieved goal values in the common iSOM grid points for design levels 1 and 2.

Design Scenario Wi w2 W3 W4 W5 Gl G2 (um) | G3 (um) G4 G5 (um)
22 0.34 0.42 0.24 0.95 0.05 0.99911 13.4111 13.8728 0.92753 13.44868
48 0.52 0.24 0.24 0.95 0.05 0.99761 19.4925 20.0061 0.98319 19.48021
87 0.21 0.58 0.21 0.95 0.05 0.99911 13.4111 13.8728 0.92753 13.44868
100 0.44 0.44 0.12 0.95 0.05 0.99905 13.4122 13.8645 0.82838 | 9.894979
113 0.74 0.1 0.16 0.95 0.05 0.99761 19.4922 20.0061 0.98320 19.46283
152 0.49 0.29 0.22 0.95 0.05 0.99910 13.4146 13.8762 0.92608 13.43289
TABLE 4. Design variable values corresponding to the common satisficing solutions/design scenarios
Design Design Level 1 Design Level 2
Scenario T g (K) Emg (5) t(s) T, (K) g | IAGS (um) € Tae K) | é4c(Y)
22 1250 17.9999 0.099951 1313.95 9.2857 40.0005 0.993005 1313.95 9.2857
87 1250 17.9999 0.099951 1313.95 9.2857 40.0005 0.993005 1313.95 9.2857
100 1250.01 17.9987 0.099213 1254.33 9.07117 40.0073 0.990322 1254.33 9.07117
152 1250 17.9798 0.099994 1313.19 9.18023 40.0005 0.989808 1313.19 9.18023

In this problem, G4, the dynamic recrystallization grain
fraction goal is a critical goal. To obtain a suitable dynamically
recrystallized microstructure, it is essential to maximize the grain
fraction. Therefore, the requirement for G4 has to be always
greater than 0.9. Hence, G4 is kept fixed, and the rest, namely,
G1, G2, G3, and G5, are selected as goals where the designer can
make relaxations or design adjustments.

Step 3. In this step, the designer analyzes the goals identified
individually and relaxes their satisficing limits in order to
identify a common satisficing region. Let us consider the
scenario where the designer picks goal G5. There is no common
satisficing grid between G4 and G5. The designer must relax the
goal to find at least one common grid point for both goals.
However, the designer must also focus on not relaxing the goal
beyond an allowable limit to find the common grid points. In this
case, we relax the goal G5 target from 11 um to 13 pm. This
results in a few common gird points for both G4 and GS5. Now,
let us say the designer looks into G1. G1 has common grid points
with G4. Therefore, there is no need to relax the goal G1 as
satisficing grids are found. Let us consider goals G2 and G3 next.
We notice from Figure 6 that the values for both these goals are
very similar. However, the target regions of interest in these two
goals are conflicting. The conflicting behavior for both these
goals leads the satisficing solution region to be in opposite
directions. The red-bordered hexagon in the iSOM plots of
Figure 6 for G2 and G3 marks the satisficing limit for both goals.

Therefore, to find a common region, there is a need to relax both
goals G2 and G3 so that the relaxation does not adversely impact
both goals and simultaneously identifies a common region for
goals G4, relaxed G5, and G1. We notice that when the target
values of G2 and G3 are relaxed to 15 pm, we are able to identify
two common satisficing grid points for all five design goals
across design levels 1 and 2.

With the updated satisficing limits, we see in Figure 7 that
all five goals have two common satisficing grids, marked with a
black dotted line. These two grid points are the common
satisficing solutions for all five goals across design levels 1 and
2. Six design scenarios are mapped to these common iISOM grid
points. The goal values associated with the identified common
grid points are presented in Table 3.

After analyzing the results presented in Table 3, we identify
four design scenarios (22, 87, 100, 152; grey shaded in Table 3)
as common satisficing solutions. Design scenarios 48 and 113,
from Table 3, have a G2 (Dy,q) value of 19.49 um, G5 (Dgyn)
value of 19.46 um. These values exceed the updated satisficing
limits. Hence, we are excluding these two design scenarios from
the list of common satisficing solutions.

On analyzing the goal values for design level 1, we see that
the four common satisficing design scenarios (22, 87, 100, 152:
grey shaded in Table 3) achieve very similar values. The goals
of design level 1, metadynamic grain fraction, X,z (Gl),
metadynamic grain size, D,,; (G2), and grain size after grain
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growth, Dy, (G3) achieves the goal values of 0.999, 13.41 um
and 13.87 pum, respectively. At design level 2, for three of these
four design scenarios (22, 87, and 152), the dynamic grain
fraction, X4, (G4) has a value of 0.92, and the corresponding
dynamic grain size, Dgyn. (G5) has a value of 13.44 um. The
remaining common design scenario (100) has a G4 value of 0.82
and a G5 value of 9.89 um. The design variable values
corresponding to these four common satisficing solutions are
provided in Table 4.

The design variables required to achieve the goals in design
level 1, namely temperature (T,,4), strain rate (&,4) and the
time interval (t), for metadynamic and grain growth goals
remain similar for all design scenarios with values around 1250
K, 17.99 s, and 0.0999 s, respectively. At design level 2, two of
the design variables, namely, initial austenite grain size (IAGS)
and strain (&), achieve similar values across all four design
scenarios with values of 40 pm and 0.99, respectively. Design
scenarios 22, 87, and 152 achieve temperature (T,;.) and strain
rate (€4.) values of 1313.95 K and 9.2 57!, respectively. These
values result in achieving goal targets for goals G4 and G5
(values 0f 0.92 and 13.44 um, respectively). Design scenario 100
achieves temperature (T;.) and strain rate (€4.) values of
1254.33 K and 9.07 s’!, respectively. These values result in
achieving an improved value for goal G5 (value of 9.89 um) in
design scenario 100. At the same time, we see that the achieved
value for goal G4 drops down to 0.82 for this design scenario
compared to the other three scenarios. Due to the consistency
constraint between design level 1 and design level 2 regarding
the temperature and strain rate for dynamic recrystallization, the
values for these two variables remain unchanged and consistent
across both design levels. Based on the analysis of Table 4,
designers are able to understand the effect of design variables on
the design goals. After analyzing the results for design levels 1
and 2, we see that choosing any design scenario from the four
satisficing design scenarios will meet the goal requirements for
level 1. However, for design level 2, we can choose either design
scenario 100 for an improved dynamic recrystallized grain size
goal (G5) or choose any of the other three design scenarios (22,
87, or 152) for improved dynamic recrystallized grain fraction
goal (G4). The selection of these design scenarios will be based
on the designers' preference for the problem.

Using the iSOM plots shown in Figures 6 and 7, designers
are able to understand the relationships among the goals within
and between the multiple levels. In the plots, the color bar
exhibits a gradual transition from blue to yellow, where blue
indicates low values and yellow indicates high values. For
example, at design level 1 Dy,4 (G2) and Dy (G3) goals exhibit
similar behavior as depicted in both iISOM plots for G2 and G3.
Hence, focusing on achieving a lower G2 value will also result
in a lower G3 value. Similarly, at design level 2, a similar pattern
is seen in the iISOM plots associated with G4 and GS5. Therefore,
focusing on achieving lower G5 values will also result in lower
G4 values. This allows the designer to easily interpret any design
conflicts between the goals and make appropriate design trade-
offs. Moreover, the designer is also able to understand and

analyze the relationships between the input weights assigned to
the goals in the c-cDSP and the corresponding achieved values
of the goals and also the effects of the assigned weights on the
other goals using the iSOM plots. From Figure 6, a higher value
in the weight for goal 2, indicated by the yellow region in W2,
results in a lower value for that goal, as shown by the blue region
for goal G2. This shows that the designer’s requirement to
minimize goal 2 is captured appropriately in the iSOM plots, as
a higher value of the input weight results in a lower value for the
goal.

The proposed framework, thus, supports designers in
modeling the multilevel design problem and performing
simultaneous co-design exploration to identify satisficing design
solutions. The framework supports understanding (i) the
relationships between the goals within and between levels, and
(ii)identifying satisficing regions of interest given the multilevel
interactions, couplings, and multidisciplinary designers.

5. CLOSING REMARKS

In this paper, we present a co-design exploration framework
for multilevel decision support. The framework involves the
integration of two design constructs, namely the coupled
compromise Decision Support Problem (c-cDSP) and a machine
learning-based visualization tool called interpretable Self
Organizing Map (iISOM). Using the framework, designers are
able to (i) model a multilevel design problem with conflicting
goals at individual levels and interactions between levels as a
coupled compromise decision support problem, and (ii)
simultaneously explore the multilevel solution spaces to identify
common sets of satisficing design solutions that support co-
design.

The key functionalities of the framework that we present in
this paper include:

(a) facilitating the formulation of the multilevel design
problems with many conflicting goals at individual levels and
interactions and couplings between the levels. The functionality
is achieved using consistency constraints and combining the
preemptive and Archimedean formulations in the c-cDSP. The
use of consistency constraints between the levels helps to capture
the interactions and couplings between the levels by keeping a
common set of design variables constant for both levels. By
combining the preemptive and Archimedean formulation in the
formulated c-cDSP, the designers are able to connect the
multiple levels and account for the conflicting goals in each level
into a coupled decision support problem.

(b) facilitating the visualization and co-design exploration
of multilevel design spaces. The functionality is achieved with
the help of the interpretable self-organizing map (iSOM)
construct. iISOM offers the capability of simultaneous solution
space visualization of the design scenarios formulated using c-
cDSP by generating two-dimensional plots for all the goals.
Efficient co-design exploration is realized using the iSOM tool
to visualize and explore the multilevel design spaces
simultaneously. Co-design exploration has an advantage over
other multilevel design exploration approaches based on
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sequential design as it supports the management of design
conflict and ensures system performance.

We test the efficacy of the framework using the hot rod
rolling problem, focusing on the interactions between the
dynamic and metadynamic phases of material recrystallization
and the thermo-mechanical processing during the hot rolling
process. The framework is generic and supports the co-design
exploration of systems characterized by multilevel interactions,
couplings, and multidisciplinary designers.
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APPENDIX A: Mathematical models for hot rolling of
steel rods
A1. Models used in Design Level 1.
»  Zenner Holloman Parameter metadynamic [43],

Zma = € ma€xp (R XQ;‘md>
» Time for 50% recrystallization after metadynamic [43],
230000)

RTma
» Volume fraction of meta dynamic recrystallized material

[43], t 1.3
—0.693 (E> ]

» Grain Size after meta dynamic recrystallization [43],
Dpg = (2.6 x 10%)77023
» Zenner Holloman Parameter metadynamic [43],

tos = 1.12 Zmd_o'gexp<

Xma=1—exp

. d
Za = € axp (R x Td)
» Grain Size after dynamic recrystallization [43],

Dgyn = (1.6 x 10)2,7%%

» Average grain size after Dynamic and Metadynamic
Recrystallization [43],
ADpx = Ddyn + (Dppa — Ddyn) Xma
»  Grain Growth [44],
Dyy? = ADpy® + 1.2 x 107 x (¢t —

2.65t,5)exp (_1:?000) ift<1

A2. Models used in Design Level 2.
»  Critical Strain to decide whether dynamic recrystallization
will take place or not [43],
g, = (4 x 1079 (IAGS)*5Z,. 0"
» Zenner Holloman Parameter [43],

Zgc = Eqc €X ( d )
dc — ©dc p R X Tdc
» Volume fraction of recrystallized material [43],

E—¢ 14
Xyv, =1— -0.8 <
nos-eol (|

»  Peak Strain [43],

& = 1.23¢,
» Grain Size after dynamic recrystallization [43],
Dgyne = (1.6 X 10%)Z,.7%%3
We use £q¢, Tac) Zacr Daync as copies of the values calculated in
design level 1 to ensure consistency.
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