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In the Standard Model of particle physics, the axial current is not conserved, due both to fermion masses and 
to the axial anomaly. Using perturbative quantum chromodynamics, we calculate matrix elements of the local 
and non-local axial current for a gluon target, clarifying their connection with the axial anomaly. In so doing, 
we also reconsider classic results obtained in the context of the nucleon spin sum rule as well as recent results 
for off-forward kinematics. An important role is played by the infrared regulator, for which we put a special 
emphasis on the nonzero quark mass. We highlight cancellations that take place between contributions from the 
axial anomaly and the quark mass, and we elaborate on the relation of those cancellations with the conservation 
of angular momentum.
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 Introduction

Unlike the vector current, the axial current of spin-half fermions is 
t conserved. In quantum chromodynamics (QCD), the non-conserva-
n of the flavor-singlet axial current, 𝐽𝜇

5 (𝑥) =
∑

𝑞 𝑞(𝑥) 𝛾𝜇𝛾5 𝑞(𝑥), is ex-
essed via

𝐽
𝜇

5 (𝑥) =
∑
𝑞

2𝑖𝑚𝑞 𝑞(𝑥) 𝛾5 𝑞(𝑥) −
𝛼𝑠 𝑁𝑓

4𝜋
Tr

(
𝐹𝜇𝜈(𝑥)𝐹𝜇𝜈(𝑥)

)
, (1)

here 𝑚𝑞 is the quark mass, 𝛼s the strong coupling, 𝑁𝑓 the number 
 quark flavors, and 𝐹𝜇𝜈 the dual field strength tensor defined through 

𝜈(𝑥) =
1
2𝜀𝜇𝜈𝜌𝜎𝐹

𝜌𝜎(𝑥) (with 𝜀0123 = 1). The second term on the r.h.s. of 
. (1) represents the axial anomaly, which is generated through radia-
e corrections in quantum field theory [1–4]. When considering the 
vergence of the axial current, the focus is mostly concentrated on the 
ial anomaly while the fermion-mass term is often neglected. One mo-
ation of the present work is to take the quark-mass term in Eq. (1)
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into account, which can qualitatively change results as we discuss in 
more detail below.

It was noted early on that the axial anomaly could play an impor-
tant role when trying to understand the spin structure of the nucleon 
in QCD [5,6]; see Refs. [7–11] for reviews. Research in this area in-
tensified after the discovery of the proton ‘spin crisis’ by the Euro-
pean Muon Collaboration [12], after which works by Altarelli and Ross 
(AR) [13] and by Carlitz, Collins and Mueller (CCM) [14] received 
considerable attention. These papers studied the photon-gluon fusion 
process, 𝛾∗𝑔 → 𝑞𝑞, in polarized inclusive deep-inelastic lepton-proton 
scattering (DIS), 𝓁𝑝→ 𝓁𝑋. The cross section of the 𝛾∗𝑔 → 𝑞𝑞 process 
is represented at leading order by the imaginary part of the box dia-
gram in Fig. 1(a). In the Bjorken limit 𝑄2 → ∞ and 𝑥B = 𝑄2∕2𝑃𝑁 ⋅ 𝑞
fixed, where 𝑃𝑁 (𝑞) is the four-momentum of the nucleon (virtual pho-
ton) and 𝑄2 = −𝑞2 > 0, the relevant contribution of the box diagram is 
fully captured by the triangle diagram in Fig. 1(b) [14]. It is this triangle 
diagram from which the axial anomaly in QCD can be computed [1–3]. 
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g. 1. Left panel: Box diagram for the process 𝛾∗𝑔 → 𝛾∗𝑔. (Permutations are 
t shown). The imaginary part of the box diagram contributes to the DIS cross 
ction at (𝛼s). Right panel: Diagram representing the local axial current. (A 
cond diagram, with reversed arrows on the quark lines, is not shown.)

nsidering the full DIS process through (𝛼s), AR [13] and CCM [14]

tained

= 𝛥𝛴 −
𝛼s𝑁𝑓

2𝜋
𝛥𝐺 , (2)

 terms of the measured quark-spin contribution 𝛥𝛴, the ‘intrinsic’ 
ark-spin contribution 𝛥𝛴, and the amount of the proton spin due to 
e gluon spin 𝛥𝐺. Equation (2) was considered a potential explana-
n of the discrepancy between the small experimental result for 𝛥𝛴
d the (much) larger 𝛥𝛴 obtained in quark models. This development 
used some excitement, especially since the 𝛥𝐺 term in Eq. (2) could 
 attributed to the axial anomaly.
For several reasons, however, concerns came up early. First, the pre-
ctor of 𝛥𝐺 in Eq. (2) depends on the infrared (IR) regulator used for the 
lculation of the box/triangle diagram [14–17]. Second, the connection 
 the 𝛼s term in Eq. (2) with the anomaly in Eq. (1) was questioned [15]. 
ird, the way how one factorizes the box diagram into a perturbative 
d a non-perturbative part can modify Eq. (2) [15,17,18]. (This is re-
ted to the first point about the IR regulator.) In this paper, we mainly 
ncentrate on the first two points.
Recently, Tarasov and Venugopalan [19,20], as well as Bhat-
charya, Hatta and Vogelsang [21,22] took a fresh look at this topic. 
mong other things, they pursued the idea of using a nonzero mo-
entum transfer as an IR regulator of the box diagram with massless 
arks [15]. They argued that, in contrast to the forward kinematics of 
e DIS process, off-forward kinematics would allow one to (fully) cap-
re the physics of the anomaly. They furthermore argued that, in the 
rward limit, the anomaly would give rise to a pole term in perturba-
n theory, potentially endangering QCD factorization. (Note, however, 
at in the latest of these papers it was shown that the anomaly contri-
tion can very well be compatible with factorization [22].) The use of 
-forward kinematics suggests that deeply virtual Compton scattering 
VCS) off the proton [23–25], 𝓁𝑝 → 𝓁𝑝𝛾 , is well suited for studying the 
ial anomaly. This result was implied by Refs. [19,20] and elaborated 
 in great detail in Refs. [21,22]. Both the real and imaginary part of 
e box diagram for the process 𝛾∗𝑔→ 𝛾𝑔 contribute to the DVCS scatter-
g amplitude at (𝛼s) [26,27]. Here, we revisit pertinent perturbative 
lculations, and we confirm that for off-forward kinematics there is 
lso) a clear connection with the axial anomaly. On the other hand, we 
ow by exploiting physical polarization vectors for the gluons that the 
ial anomaly does not generate a pole in such calculations when tak-
g the forward limit. In fact, for a nonzero quark mass there is even an 
act cancellation between the anomaly and quark-mass contributions 
 that limit, a result which is actually required by the conservation of 
gular momentum.
In Sec. 2, we calculate, to the lowest non-trivial order in perturbative 

CD, the helicity-dependent parton distribution function (PDF) defined 
rough the non-local axial current using a gluon target. Integrating this 
F over the momentum fraction 𝑥 of the quark provides the matrix el-
ent of the local axial current in the forward limit, which gives the 
e-factor of 𝛥𝐺 in Eq. (2) [14]. We discuss the dependence of the result 
 the IR regulator and, in particular, confirm the nonzero CCM result 
2

r off-shell gluons [14]. In Sec. 3, we consider the matrix element of fla
Physics Letters B 857 (2024) 138999

g. 2. Lowest-order diagram contributing to the PDF 𝑔1(𝑥) defined in Eq. (3). 
second diagram, with reversed arrows on the quark lines, is not shown. The 
splayed diagram provides the PDF in the region 0 ≤ 𝑥 ≤ 1, while the second 
aph gives the result for −1 ≤ 𝑥 ≤ 0.

e local axial current for arbitrary momentum transfer, and we discuss 
 relation with the matrix element of the anomaly and the quark-mass 
rm in Eq. (1). We show that for on-shell gluons, the axial current van-
hes for forward kinematics. (If the calculation is not gauge invariant 
e result can be nonzero, which applies to the classic AR work [13].) 
is result can be understood as a consequence of the cancellation be-
een the anomaly and quark-mass terms. In Sec. 4, we consider the 
licity-dependent generalized parton distributions (GPDs) [23–25] that 
rameterize the matrix element of the non-local axial current for off-
rward kinematics. One of the GPDs is unambiguously related to the 
ial anomaly, as already emphasized in Refs. [21,22]. However, we ar-
e that the contribution of that GPD vanishes in the forward limit when 
ing the finite quark mass as IR regulator. We conclude in Sec. 5.

 Parton distribution function

We consider the light-cone operator of the axial quark current, eval-
ted between gluon states, and we define the corresponding PDF (de-
ted by 𝑔1(𝑥)) according to1

[𝛾+𝛾5]
𝜆𝜆′

(𝑥)

∫
𝑑𝑧−

4𝜋
𝑒𝑖𝑘⋅𝑧 ⟨𝑔(𝑝, 𝜆′) | 𝑞(− 𝑧

2 ) 𝛾
+𝛾5(− 𝑧

2 ,
𝑧

2 ) 𝑞(
𝑧

2 ) |𝑔(𝑝, 𝜆)⟩|||𝑧+=0,𝑧⟂=0⃗⟂
− 𝑖

𝑝+
𝜀+ 𝜖 𝜖′ ∗𝑝 𝑔1(𝑥) , (3)

ith 𝑥 = 𝑘+∕𝑝+. Here 𝜆 (𝜆′) indicates the polarization state of the incom-
g (outgoing) gluon, (− 𝑧

2 , 
𝑧

2 ) represents the Wilson line rendering the 
local quark operator gauge invariant, and 𝜀+ 𝜖 𝜖′ ∗𝑝 = 𝜀+𝜇 𝜈 𝜌 𝜖𝜇 𝜖

′ ∗
𝜈 𝑝𝜌.

2

is worth emphasizing that, due to the forward kinematics, 𝜀+ 𝜖 𝜖′ ∗𝑝 is 
e only structure that appears when parameterizing the light-cone cor-
lator 𝛷[𝛾+𝛾5]

𝜆𝜆′
(𝑥). Evaluating that structure for different polarization 

ates of the gluons provides

(𝑥) = 1
2

(
𝛷

[𝛾+𝛾5]
++ (𝑥) −𝛷[𝛾+𝛾5]

−− (𝑥)
)
, (4)

here + (−) means positive (negative) helicity. This implies, in partic-
ar, that the matrix element in Eq. (3) is nonzero only if the helicity of 
e incoming and outgoing gluon is the same. A gluon helicity flip is for-
dden due to conservation of angular momentum. (Note that the two 
ark fields of the light-cone operator in Eq. (3) have the same helicity. 
en if their helicity was different, a gluon helicity-flip is not allowed 
r forward kinematics since it requires a change of two units of angular 
omentum.) We will come back to this point below.
We compute 𝑔1 to lowest non-trivial order in perturbative QCD (see 
g. 2) by keeping a finite quark mass and space-like off-shellness 𝑝2 <
for the gluon. We use dimensional regularization (DR) to deal with 
traviolet (UV) divergences. To define the matrix 𝛾5 in DR, we employ 

For a generic four-vector 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3), we define the light-cone compo-
nts via 𝑎+ = 1√

2
(𝑎0 + 𝑎3), 𝑎− = 1√

2
(𝑎0 − 𝑎3), and 𝑎⟂ = (𝑎1, 𝑎2).

To keep the notation simple, we do not show the dependence of the PDF on 
e renormalization scale, and we write 𝜖𝜇 instead of 𝜖𝜇(𝜆) (and likewise for the 
tgoing gluon). Furthermore, in what follows we mostly consider one quark 

vor only, and we denote the quark mass by 𝑚.
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e Larin scheme [28,29], along with the replacement 𝛾𝜇𝛾5 →
1
2 (𝛾

𝜇𝛾5 −
𝛾𝜇); see, for instance, Ref. [30]. For the positive-𝑥 region, we find

(𝑥;𝑚,𝑝2) =
𝛼s
4𝜋

[(
1
𝜀
− ln 𝑚

2 − 𝑝2𝑥(1 − 𝑥)
𝜇̄2

)
(2𝑥− 1)

+ 𝑝2𝑥(1 − 𝑥)
𝑚2 − 𝑝2𝑥(1 − 𝑥)

]
+(𝜀) 0 ≤ 𝑥 ≤ 1 , (5)

here 𝜇̄2 = 4𝜋𝑒−𝛾𝐸 𝜇2, with 𝜇 being the DR scale and 𝛾𝐸 the Euler con-
ant. (The corresponding result in quantum electrodynamics is obtained 
 𝛼s∕2 → 𝛼em, where 1∕2 is the color factor of the QCD diagram.) The 
sult for the negative-𝑥 region can be found by substituting 𝑥 → −𝑥 in 
. (5). The UV divergence of 𝑔1 is reflected by the 1∕𝜀 pole. Both 𝑚
d 𝑝2 serve as IR regulators. Notice that in order to obtain a IR-finite 
sult just one of these two regulators is needed. (However, when using 
nzero 𝑝2 only, a logarithmic endpoint singularity emerges.)
The lowest moment of 𝑔1, which provides the local axial current for 
rward kinematics, is UV-finite and given by

1

𝑑𝑥𝑔1(𝑥;𝑚,𝑝2) =
𝛼s
2𝜋

[
− 1 +

1

∫
0

𝑑𝑥
2𝑚2(1 − 𝑥)

𝑚2 − 𝑝2𝑥(1 − 𝑥)

]

=
𝛼s
2𝜋

[
− 1 + 2√

𝜂 (𝜂 + 4)
ln

√
𝜂 + 4 +

√
𝜂√

𝜂 + 4 −
√
𝜂

]
. (6)

e expression after the first equal sign in Eq. (6) matches Eq. (12) of the 
M paper [14]. The moment of 𝑔1 depends on 𝑚 and 𝑝2 only through 
e ratio 𝜂 = −𝑝2∕𝑚2 > 0. It is IR-finite but does depend on the numerical 
lues of the IR regulators. For the limits 𝜂→ 0 (corresponding to 𝑝2 → 0
d finite 𝑚, or finite 𝑝2 and 𝑚 →∞) and 𝜂→∞ (corresponding to finite 
and 𝑚 → 0, or 𝑝2 →∞ and finite 𝑚), we find

1

𝑑𝑥𝑔1(𝑥;𝑚,𝑝2) =
𝛼s
2𝜋

[
− 𝜂

6
+(𝜂2)] 𝜂→0

→ 0 , (7)

1

𝑑𝑥𝑔1(𝑥;𝑚,𝑝2) =
𝛼s
2𝜋

[
− 1 + 2

𝜂
ln 𝜂 +

(
1
𝜂2

)]
𝜂→∞
→ −

𝛼s
2𝜋

, (8)

spectively. Multiplying the result in Eq. (8) by the number of quark fla-
rs 𝑁𝑓 provides the pre-factor of 𝛥𝐺 in Eq. (2); see also Ref. [14]. We 
peat that the dependence of the lowest moment of 𝑔1 on the IR regu-
tor gave rise to extensive discussions [8,14–17], putting into question 
. (2) as a viable explanation of the proton spin crisis. Here we do not 
aborate further on this point. In the next section, however, we make 
plicit the connection between the result in Eq. (6) and the operators 
 the r.h.s. of Eq. (1).

 Local axial current

We proceed to the discussion of the matrix element of the local axial 
rrent 𝐽𝜇

5 (𝑥) for nonzero momentum transfer. We first consider the 
atrix element of the divergence of the current,

(𝑝′, 𝜆′) |𝜕𝜇𝐽𝜇

5 (0) |𝑔(𝑝, 𝜆)⟩ = −2𝜀𝜖 𝜖′ ∗𝑃 𝛥𝐷(𝛥2)

= −2𝜀𝜖 𝜖′ ∗𝑃 𝛥
(
𝐷𝑎(𝛥2) +𝐷𝑚(𝛥2)

)
, (9)

ith 𝑃 = (𝑝 + 𝑝′)∕2 and 𝛥 = 𝑝′ − 𝑝. The quantity 𝐷𝑎 (𝐷𝑚) is the con-
ibution of the anomaly (mass) term in Eq. (1). (The factor −2 on the 
.s. of Eq. (9) has been introduced for later convenience.) Because of 
e structure 𝜀𝜖 𝜖′ ∗𝑃 𝛥 in Eq. (9), off-forward kinematics is required to 
tain a nonzero result. However, this does not imply that the moment 
 𝑔1 in Eq. (6) is unrelated to the anomaly (nor to the quark mass term), 
3

 we will discuss below in this section. sp
Physics Letters B 857 (2024) 138999

ig. 3. (2𝜋∕𝛼s)𝐷(𝛥2,𝑚,0) as a function of 𝜏 , based on the results in Eq. (10).

We evaluate the matrix element in Eq. (9) for two cases: (i) arbi-
ary 𝛥2, nonzero quark mass, on-shell gluons; (ii) zero 𝛥2, nonzero 
ark mass, off-shell gluons (𝑝2 = 𝑝′ 2 < 0). The anomaly contribution 
llows from a tree-level calculation, while the quark-mass term is ob-
ined by evaluating the triangle diagram for the pseudo-scalar current. 
his triangle diagram is UV finite. Its evaluation is simpler than the di-
ct calculation of the axial current where a UV regulator is needed at 
termediate steps.)
For the case (i), we find

𝑎(𝛥2;𝑚,0) = −
𝛼s
2𝜋

, 𝐷𝑚(𝛥2;𝑚,0) =
𝛼s
2𝜋

1
𝜏
ln2

√
𝜏 + 4 +

√
𝜏√

𝜏 + 4 −
√
𝜏
, (10)

ith 𝜏 = −𝛥2∕𝑚2. Note that the result for 𝐷𝑎 does not depend on the 
omentum transfer or the IR regulator. In the limits 𝜏 → 0 and 𝜏 →∞, 
e have

(𝛥2;𝑚,0) =
𝛼s
2𝜋

[
− 𝜏

12
+(𝜏2)] 𝜏→0

→ 0 , (11)

(𝛥2;𝑚,0) =
𝛼s
2𝜋

[
− 1 + 1

𝜏
ln2 𝜏 +

(
1
𝜏2

)]
𝜏→∞
→ −

𝛼s
2𝜋

, (12)

spectively. It is very interesting that for 𝜏 → 0, there is an exact can-
llation between 𝐷𝑎 and 𝐷𝑚, a result that has been known for quite 
me time; see, e.g., Ref. [31]. (Generally, if the quark mass is much 
rger than any other scale, the matrix element in Eq. (9) vanishes.) We 
phasize that this cancellation exists here for any finite value of the 
ark mass. On the other hand, for 𝜏 →∞ (corresponding to 𝛥2 finite 
d 𝑚 → 0) the divergence of the axial current is exclusively determined 
 the anomaly, as expected. Given the qualitative difference between 
. (11) and Eq. (12), and the fact that in nature quarks have a finite 
ass, it is prudent to keep the quark-mass term in Eq. (1). In the next 
ction on GPDs, we will add further discussion related to this point. 
e function (2𝜋∕𝛼s) 𝐷(𝛥2; 𝑚, 0) is displayed in Fig. 3. It deviates from 
e value −1 due to the contribution of the mass term, which is non-
gligible over a significant range of 𝜏 .
For the case (ii), we obtain (see also Ref. [7])

𝑎(0;𝑚,𝑝2) = −
𝛼s
2𝜋

, 𝐷𝑚(0;𝑚,𝑝2) =
𝛼s
2𝜋

2√
𝜂 (𝜂 + 4)

ln

√
𝜂 + 4 +

√
𝜂√

𝜂 + 4 −
√
𝜂
.

(13)

ese expressions for 𝐷𝑎 and 𝐷𝑚 agree exactly with the two terms 
 the result in Eq. (6), strongly suggesting that—despite the forward 
nematics—the nonzero result of CCM for the lowest moment of 𝑔1 [14]
deed has a robust connection with the anomaly and with the quark-
ass term in Eq. (1). Below, we will make this connection explicit by 
nsidering the local axial current (rather than its divergence). Before 
at, the 𝜂 → 0 and 𝜂 →∞ limits of 𝐷(0; 𝑚, 𝑝2) are given by the corre-

onding expressions for ∫ 𝑑𝑥 𝑔1 in Eqs. (7), (8). In particular, according 
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 Eq. (7), for 𝜂 → 0 there is again an exact cancellation between the 
omaly and the quark-mass terms in Eq. (13).
Moving on to the matrix element of the local axial current itself, we 
st elaborate on its general structure (see also, e.g., Refs [32,33] and 
ferences therein),

𝜇 = ⟨𝑔(𝑝′, 𝜆′) |𝐽𝜇

5 (0) |𝑔(𝑝, 𝜆)⟩ = 3∑
𝑖=1

𝐺𝑖(𝛥2)𝐴
𝜇
𝑖
, (14)

here the vectors 𝐴𝜇
𝑖
, which are multiplied by the form factors 𝐺𝑖 , are 

fined as

𝜇

1 = −2𝑖 𝜀𝜇 𝜖 𝜖′ ∗𝑃 , 𝐴
𝜇

2 = 2𝑖
𝛥2

𝛥𝜇 𝜀𝜖 𝜖
′ ∗𝑃 𝛥 ,

𝜇

3 = 4𝑖
𝛥2

(
𝜖 ⋅ 𝑃 𝜀𝜇 𝜖

′ ∗𝑃 𝛥 + 𝜖′ ∗ ⋅ 𝑃 𝜀𝜇 𝜖 𝑃 𝛥
)
. (15)

or simplicity, we do not display the dependence of 𝛤𝜇

5 and the 𝐴𝜇
𝑖
on 

and 𝜆′.) The 𝐴𝜇
𝑖
are symmetric under the exchange 𝜖↔ 𝜖′ ∗, 𝑝 ↔ −𝑝′. 

 principle, in Eq. (14) one could also include the vector

𝜇

4 = 2𝑖
𝛥2

(
𝜖 ⋅ 𝛥𝜀𝜇 𝜖

′ ∗𝑃 𝛥 − 𝜖′ ∗ ⋅ 𝛥𝜀𝜇 𝜖 𝑃 𝛥
)
, (16)

t 𝐴𝜇

4 is not independent due to the relation

𝜇

4 = −𝐴𝜇

1 +𝐴
𝜇

2 , (17)

hich follows from the Schouten identity

𝛽 𝜀𝜇𝜈𝜌𝜎 = 𝑔𝜇𝛽 𝜀𝛼𝜈𝜌𝜎 + 𝑔𝜈𝛽 𝜀𝜇𝛼𝜌𝜎 + 𝑔𝜌𝛽 𝜀𝜇𝜈𝛼𝜎 + 𝑔𝜎𝛽 𝜀𝜇𝜈𝜌𝛼 . (18)

 order to proceed, we consider the Ward identity (gauge invariance) 
r the vector current to which the two gluons couple. Defining 𝛤

𝜇

5 =
𝜇(𝜖 → 𝑝), the Ward identity related to the initial-state gluon reads 
𝜇

5 = 0. This implies

1(𝛥2) =

(
1 − 4 𝑝

2

𝛥2

)
𝐺3(𝛥2) , (19)

lowing us to write the general form of the axial current as

𝜇 =𝐺1(𝛥2)

(
𝐴
𝜇

1 +
𝛥2

𝛥2 − 4𝑝2
𝐴
𝜇

3

)
+𝐺2(𝛥2)𝐴

𝜇

2 . (20)

he Ward identity related to the final-state gluon does not provide any 
ditional constraint.) At this point we use the Lorenz condition 𝜖 ⋅ 𝑝 =
∗ ⋅ 𝑝′ = 0, for which 𝐴𝜇

3 =𝐴
𝜇

4 . We can therefore eliminate 𝐴
𝜇

3 utilizing 
. (17), leading to

𝛤
𝜇

5
|||real = (

𝐺1(𝛥2;𝑚,0) +𝐺2(𝛥2;𝑚,0)
)
𝐴
𝜇

2 =𝐺(𝛥2;𝑚,0)𝐴𝜇

2 , (21)

𝜇|||virtual = − 4𝑝2

𝛥2 − 4𝑝2
𝐺1(𝛥2;𝑚,𝑝2)𝐴

𝜇

1

+

(
𝐺2(𝛥2;𝑚,𝑝2) +

𝛥2

𝛥2 − 4𝑝2
𝐺1(𝛥2;𝑚,𝑝2)

)
𝐴
𝜇

2 . (22)

is means that for on-shell (real) gluons, there is just one independent 
rm factor, which multiplies the vector 𝐴𝜇

2 and which we denote by 
= 𝐺1 + 𝐺2. On the other hand, for off-shell (virtual) gluons the pa-
meterization of the matrix element of the local axial current contains 
o form factors.
Finally, we consider the (anomalous) axial Ward identity, which pro-
des the connection with the matrix element of the divergence of the 
ial current in Eq. (9),

𝜇 𝛤
𝜇

5 = ⟨𝑔(𝑝′, 𝜆′) |𝜕𝜇𝐽𝜇

5 (0) |𝑔(𝑝, 𝜆)⟩ . (23)

r on-shell gluons, Eq. (23) readily implies

2 2
4

(𝛥 ;𝑚,0) =𝐷(𝛥 ;𝑚,0) , (24) fr
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ith 𝐷(𝛥2; 𝑚, 0) given by the sum of the anomaly term and quark-mass 
rm in Eq. (10). Therefore, the local axial current for on-shell gluons 
 completely fixed by the divergence of the current. We repeat that 
mputing 𝐷(𝛥2; 𝑚, 0) is simpler than 𝐺(𝛥2; 𝑚, 0) as defined through 
. (21). However, we have performed both calculations and verified 
at our results satisfy Eq. (24). Using Eq. (23) for off-shell gluons and 
cusing on the limit 𝛥2 → 0 leads to

1(0;𝑚,𝑝2) +𝐺2(0;𝑚,𝑝2) =𝐺1(0;𝑚,𝑝2) =𝐷(0;𝑚,𝑝2) , (25)

ith 𝐷(0; 𝑚, 𝑝2) given by the sum of the two terms in Eq. (13). We note 
at by explicit calculation we find 𝐺2(0; 𝑚, 𝑝2) = 0, giving rise to the 
st equal sign in Eq. (25). Although for off-shell gluons and arbitrary 
only one linear combination of the two form factors is related to the 
vergence of the current, the axial Ward identity fully fixes the matrix 
ement of the current in the forward limit. Equation (25) allows us to 
rite

im
→0

𝛤
𝜇

5
|||virtual =𝐺1(0;𝑚,𝑝2)𝐴

𝜇

1 . (26)

mparing Eq. (26) for 𝜇 = + with Eq. (3) integrated over 𝑥 provides 
e relation

1

𝑑𝑥𝑔1(𝑥;𝑚,𝑝2) =𝐺1(0;𝑚,𝑝2) . (27)

e have now achieved three things in connection with the classic result 
 the CCM paper [14] (see Eq. (6)). First, we showed that this result 
 unambiguously related to the matrix element of the operators on the 
.s. of Eq. (1). Second, by using Eqs. (25) and (13), we decomposed 
e result into the contributions from the anomaly and from the classi-
l quark-mass source term, finding that the vanishing result in Eq. (7)
 caused by an exact cancellation of these two contributions. Third, 
ith the help of Ward identities we derived Eqs. (27) and (25), allow-
g Eq. (6) to be found through a simpler, UV-finite calculation (thus 
so avoiding the need to choose a 𝛾5 scheme).
We have derived and explained the result in Eq. (7) by starting from 
e general form of the axial current for off-shell gluons in Eq. (22), 
en taking the limit 𝛥2 → 0, followed by the limit 𝑝2 → 0. However, it 
 instructive to repeat the analysis by first taking 𝑝2 → 0 and afterwards 
→ 0. This means we will start from Eq. (21). We will also evaluate 

𝜇

1 and 𝐴
𝜇

2 using physical polarization vectors of the gluons. For this 
alysis, we choose the symmetric reference frame in which

=

(
𝑃+,

𝛥2
⟂

8(1 − 𝜉2)𝑃+ , 0⃗⟂

)
, 𝛥 =

(
− 2𝜉𝑃+,

𝜉𝛥2
⟂

4(1 − 𝜉2)𝑃+ , 𝛥⟂

)
,

(28)

t we emphasize that our general conclusions do not depend on this 
oice. The so-called skewness variable 𝜉 defines the longitudinal mo-
entum transfer to the gluons. In addition to the frame-independent 
lations 𝑃 ⋅ 𝛥 = 0 and 𝑃 2 = −𝛥2∕4, we have 𝛥2 = −𝛥2

⟂∕(1 − 𝜉2). We 
ploy the polarization vectors specified in Ref. [34] using the light-
ne gauge. In our notation, for the (on-shell) initial-state gluon they 
e given by

1) = − 1√
𝑁

(
2𝜉𝑃 𝜇 + 𝛥𝜇 + 𝛥2

𝑛𝜇

2𝑃 ⋅ 𝑛

)
, 𝜖

𝜇

(2) = + 1√
𝑁

𝜀𝜇𝑛𝑃 𝛥

𝑃 ⋅ 𝑛
,

(29)

here 𝑁 = 𝛥2
⟂, and 𝑛 is the light-cone four-vector for which 𝑛 ⋅ 𝑎 = 𝑎+

ven a generic four-vector 𝑎. The polarization vectors in Eq. (29) satisfy 
𝑖) ⋅ 𝜖(𝑗) = −𝛿𝑖𝑗 for 𝑖, 𝑗 ∈ {1, 2}, and 𝜖(𝑖) ⋅ 𝑝 = 0. The linear combina-
ns 𝜖(±) = ∓

(
𝜖(1) ± 𝑖 𝜖(2)

)
∕
√
2 describe states of definite (light-cone) 

licity. The polarization vectors for the final-state gluon are obtained 

om Eq. (29) through the replacement 𝛥 → −𝛥 (which implies 𝜉 → −𝜉) 
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d an overall sign change for 𝜖𝜇(1) and 𝜖
𝜇

(2) [34]. With the notation 
𝜇

1 (𝑖𝑗) = −2𝑖 𝜀𝜇 𝜖(𝑖) 𝜖
′ ∗
(𝑗)𝑃 etc. we find

𝜇

1 (11) = − 2𝑖
(1 − 𝜉2)𝑃 ⋅ 𝑛

𝜀𝜇 𝑛𝑃 𝛥 ,

𝜇

1 (12) =
𝑖

1 + 𝜉

(
2𝑃𝜇 − 𝛥𝜇 + 𝛥2

𝑛𝜇

2𝑃 ⋅ 𝑛

)
,

𝜇

1 (21) = − 𝑖

1 − 𝜉

(
2𝑃𝜇 + 𝛥𝜇 + 𝛥2

𝑛𝜇

2𝑃 ⋅ 𝑛

)
, 𝐴

𝜇

1 (22) = 0 , (30)

𝜇

2 (11) = 0 , 𝐴
𝜇

2 (12) = −𝑖 𝛥𝜇 ,
𝜇

2 (21) = −𝑖 𝛥𝜇 , 𝐴
𝜇

2 (22) = 0 . (31)

r the specific case 𝜇 = +, the only nonzero expressions are

+
1 (12) = −𝐴+

1 (21) = 2𝑖 𝑃+ , 𝐴+
2 (12) =𝐴+

2 (21) = 2𝑖 𝜉𝑃+ . (32)

sing helicity states, we can write

+
1 (12) −𝐴+

1 (21) = 𝑖
(
𝐴+
1 (++) −𝐴+

1 (−−)

)
,

+
2 (12) +𝐴+

2 (21) = 𝑖
(
𝐴+
2 (+−) −𝐴+

2 (−+)

)
. (33)

nce the structure in front of 𝑔1 on the r.h.s. of Eq. (3) is nothing but 
+
1 ∕2𝑝

+, the result in Eq. (4) is equivalent to the first relation in (33). 
hile Eq. (4) means that, for forward kinematics, the axial current can 
ly generate a helicity-conserving transition, in Eq. (21) 𝐴𝜇

2 appears 
hich, according to the second relation in (33), implies a helicity flip. 
pon a closer inspection, we see that there is no contradiction though. 
nce the PDF 𝑔1 is defined for 𝛥 = 0we first consider 𝛤+

5 for this specific 
nematical point. The second relation in (32) then leads to

+(𝜉 = 0, 𝛥⟂)
|||real = 𝛤+

5 (𝜉 = 0, 𝛥⟂ = 0⃗⟂)
|||real = 0 . (34)

ee also Ref. [17] for a related discussion.) We emphasize that this re-
lt, which is fully compatible with the conservation of angular momen-
m, is not based on the calculation of Feynman diagrams. Equation (3)
n be compatible with Eq. (34) only if

1

𝑑𝑥𝑔1(𝑥)
|||real = 0 , (35)

hich must hold for any IR regulator. Taking as an example a nonzero 
ark mass as IR regulator and the result in Eq. (7), we see agreement 
ith Eq. (35). Put differently, the steps leading to Eq. (35) can be con-
dered an alternative derivation of the result in Eq. (7), which was first 
tained by CCM [14].

Overall, we find consistent results regardless of the order that the 
→ 0 and 𝑝2 → 0 limits are taken. However, both ways of taking these 
its for the local axial current provide unique insights. We also empha-

ze that Eq. (35) does not imply that there is no contribution from the 
omaly; based on the discussion above, it rather means that for on-shell 
uons and forward kinematics, the anomaly contribution is cancelled 
 the quark-mass term. Alternatively, one could say that the anomaly 
actly cancels the (classical) quark-mass term—and that this cancella-
n is needed for consistency with Eq. (34), which is a consequence of 
gular momentum conservation.
Before moving on, we point out that the conservation of angular mo-
entum implies the (stronger) constraint 𝛤+

5 (𝜉, 𝛥⟂ = 0⃗⟂)
|||real = 0. Since 

+
2 can be nonzero for 𝜉 ≠ 0, this constraint requires that the form factor 
(0) vanishes, which it does for 𝑚 ≠ 0; see Eqs. (24) and (11). Keeping 
e quark mass is therefore necessary to ensure the conservation of an-
lar momentum. In the next section, we will see the same result in the 
ntext of the GPDs.
Now we briefly comment on the work by AR [13], in which the 
5

x diagram for polarized DIS was analyzed. The authors considered fe
Physics Letters B 857 (2024) 138999

act forward kinematics and on-shell gluons. However, they neglected 
rtain quark-mass terms in the numerator, implying that their result is 
t gauge invariant, as was already pointed out in Ref. [17]. Deriving 
e general structure of the axial current for on-shell gluons without 
ing the gauge-invariance constraint leads to

𝜇 (ngi)|||real =𝐺
(ngi)
1 𝐴

𝜇

1 +𝐺
(ngi)
2 𝐴

𝜇

2 , (36)

at is, there are two independent form factors instead of just one as in 
. (21). When taking the forward limit of Eq. (36) we can get a nonzero 
sult related to 𝐺(ngi)

1 , while 𝐺(ngi)
2 drops out since 𝐴𝜇

2 vanishes. This 
ding is consistent with the nonzero result obtained by AR [13]. (In a 
osely related study we computed ∫ 𝑑𝑥 𝑔1 by neglecting all quark-mass 
rms in the numerator, finding a nonzero result as well.) Since Eq. (36)
 in conflict with Eq. (34), we consider the lack of gauge invariance a 
ficiency of the AR paper [13], although this does not put into question 
e importance of this pioneering work.
The last point we want to address in this section is the behavior of 
e vector 𝐴𝜇

2 when taking the forward limit. (Our discussion here also 
plies to 𝐴𝜇

3 and 𝐴𝜇

4 .) Because of Eqs. (21) and (24), this vector is 
sociated with the axial anomaly (and the quark-mass term) appearing 
 the divergence of the axial current. The factor 1∕𝛥2 in the definition 
 𝐴𝜇

2 gave rise to extensive discussions about an ‘anomaly pole’ that 
ould emerge for 𝛥2 → 0; see, in particular, Refs. [19–22]. However, 
hen evaluated for physical polarization vectors, according to (31) one 
ds either zero or a finite result, depending on the polarization state 
 the gluons.

 Generalized parton distributions

In this section we return to the light-cone operator of the non-local 
ial current, now evaluated between gluon states with different mo-
enta. Here we exclusively consider the case of on-shell gluons. Using 
e Schouten identity in Eq. (18), the Ward identity for both gluons, as 
ell as 𝜖 ⋅ 𝑝 = 𝜖′ ∗ ⋅ 𝑝′ = 0, we find

[𝛾+𝛾5]
𝜆′

(𝑥,𝛥)

∫
𝑑𝑧−

4𝜋
𝑒𝑖𝑘⋅𝑧 ⟨𝑔(𝑝′, 𝜆′) | 𝑞(− 𝑧

2 ) 𝛾
+𝛾5(− 𝑧

2 ,
𝑧

2 ) 𝑞(
𝑧

2 ) |𝑔(𝑝, 𝜆)⟩|||𝑧+=0,𝑧⟂=0⃗⟂(
𝐵1 −𝐵2 + 𝜉𝐵3 +𝐵4

)
𝐻1(𝑥, 𝜉,𝛥2) +𝐵2𝐻2(𝑥, 𝜉,𝛥2) , (37)

ith the two GPDs 𝐻1 and 𝐻2. Furthermore, we have 𝐵𝑖 = 𝐴+
𝑖
∕(2𝑃+)

r 𝑖 = 1, 2, and

3 = − 2𝑖
𝛥2 𝑃+

(
𝜖 ⋅ 𝑃 𝜀+ 𝜖′ ∗𝑃 𝛥 − 𝜖′ ∗ ⋅ 𝑃 𝜀+ 𝜖 𝑃 𝛥

)
,

4 = − 𝑖

2(𝑃+)2
(
𝜖+ 𝜀+ 𝜖′ ∗𝑃 𝛥 + 𝜖′ ∗+ 𝜀+ 𝜖 𝑃 𝛥

)
. (38)

 arrive at the decomposition in Eq. (37) we followed to some extent 
e classification of deuteron GPDs presented in Ref. [34]. We agree 
ith Refs. [21,22] that the matrix element in Eq. (37) defines (just) two 
PDs. The only difference compared to those papers is that the structure 
 front of 𝐻1 in Eq. (37) is gauge invariant. In analogy with Eq. (4), we 
n address the GPDs through specific helicity combinations,

1(𝑥, 𝜉,𝛥2) =
1

2(1 − 𝜉2)

(
𝐹

[𝛾+𝛾5]
++ (𝑥,𝛥) − 𝐹 [𝛾+𝛾5]

−− (𝑥,𝛥)
)
,

2(𝑥, 𝜉,𝛥2) = − 1
2𝜉

(
𝐹

[𝛾+𝛾5]
+− (𝑥,𝛥) − 𝐹

[𝛾+𝛾5]
−+ (𝑥,𝛥)

)
. (39)

hile 𝐻1 (like 𝑔1) is associated with helicity-conserving transitions, a 
licity flip is needed in the case of 𝐻2 . However, for 𝛥⟂ = 0⃗⟂, a gluon 
licity flip is forbidden due to the conservation of angular momentum 
ee also the discussion after Eq. (4)), and therefore the 𝐵2𝐻2 term in 
. (37) must drop out for that kinematics. Since 𝐵2(𝜉 ≠ 0, 𝛥⟂ = 0⃗⟂) ≠ 0, 
e GPD 𝐻2 should vanish for a vanishing transverse momentum trans-

r.
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Before discussing our results for the GPDs, we list a few additional 
nstraints the GPDs must satisfy. By definition, in the forward limit 
e GPD correlator in Eq. (37) reduces to the one for the PDF in Eq. (3), 
ading to

1(𝑥,0,0) = 𝑔1(𝑥) . (40)

uation (40) assumes that the forward limit of the GPD correlator ex-
ts, which actually is not the case if a nonzero momentum transfer is 
ken as the sole IR regulator. For our calculation, this situation arises 
one uses 𝑚 = 0, as we discuss in a bit more detail below. Further con-
raints follow when integrating the GPD correlator in Eq. (37) over 𝑥, 
hich provides the local current. Comparing the result with Eq. (21) we 
d

1

𝑑𝑥𝐻1(𝑥, 𝜉,𝛥2) = 0 ,

1

∫
−1

𝑑𝑥𝐻2(𝑥, 𝜉,𝛥2) =𝐺(𝛥2) . (41)

e relation for 𝐻1 can be considered a generalization of Eq. (35). 
rthermore, using Eq. (24) we see that the GPD 𝐻2 is clearly re-
ted with the axial anomaly, confirming the corresponding statement 
 Refs. [21,22].
To find the two GPDs to lowest non-trivial order in perturbative QCD, 

e evaluate the same two Feynman diagrams that contribute to the PDF 
, but now for off-forward kinematics. The diagram in Fig. 2 contributes 
 the positive DGLAP region (𝜉 ≤ 𝑥 ≤ 1) and the ERBL region (−𝜉 ≤
≤ 𝜉), whereas the second diagram contributes to the negative DGLAP 
gion and the ERBL region. For convenience, we introduce the variable 
= 𝜏 (1 − 𝑥)2∕(1 − 𝜉2). Our calculation provides

1(𝑥, 𝜉,𝛥2;𝑚)

𝛼s
4𝜋

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2𝑥−1−𝜉2
1−𝜉2

[
1
𝜀
− ln 𝑚2

𝜇̄2

]
− 1

+4+(1+𝜉2)𝜅−2𝑥(𝜅+2)
1−𝜉2

1√
𝜅(𝜅+4)

ln
√
𝜅+4+

√
𝜅√

𝜅+4−
√
𝜅

𝜉 ≤ 𝑥 ≤ 1 ,

− (1−𝜉)(𝜉+𝑥)
2𝜉(1+𝜉)

[
1
𝜀
− ln 𝑚2

𝜇̄2

]
− 𝜉+𝑥

2𝜉

− 𝜉2(2−𝑥)−𝑥
2𝜉(1−𝜉2) ln

[
1 + (1−𝜉)(𝜉+𝑥)(𝜉2+𝜉(1−𝑥)−𝑥)𝜅

4𝜉2(1−𝑥)2

]
+4+(1+𝜉2)𝜅−2𝑥(𝜅+2)

2(1−𝜉2)
1√

𝜅(𝜅+4)
ln ℎ+

ℎ−
+ (𝑥→ −𝑥) −𝜉 ≤ 𝑥 ≤ 𝜉 ,

(42)

2(𝑥, 𝜉,𝛥2;𝑚)

𝛼s
4𝜋

⎧⎪⎨⎪⎩
2(1−𝑥)
1−𝜉2

[
− 1 + 2√

𝜅(𝜅+4)
ln

√
𝜅+4+

√
𝜅√

𝜅+4−
√
𝜅

]
𝜉 ≤ 𝑥 ≤ 1 ,

2
1+𝜉

[
− 𝜉+𝑥

2𝜉 + 1−𝑥
1−𝜉

1√
𝜅(𝜅+4)

ln ℎ+
ℎ−

]
+ (𝑥→ −𝑥) −𝜉 ≤ 𝑥 ≤ 𝜉 ,

(43)

ith the auxiliary functions

= 4𝜉(1 − 𝑥) ± (1 − 𝜉)(𝜉 + 𝑥)
√
𝜅
(√

𝜅 + 4 ±
√
𝜅
)
. (44)

sults for −1 ≤ 𝑥 ≤ −𝜉 can be obtained from the formulas for the pos-
ve DGLAP region by substituting 𝑥 → −𝑥. The results for 𝐻1 and 𝐻2
e continuous at 𝑥 = ±𝜉 (as they should be) and satisfy the constraints 
 Eqs. (40) and (41). (We verified 𝐻1(𝑥, 0, 0; 𝑚) = 𝑔1(𝑥; 𝑚, 0), since for 
r perturbative calculation Eq. (40) is meaningful only for 𝑚 ≠ 0.) Also 
te that only 𝐻1 is UV-divergent.
As a next step, we expand the results in Eqs. (42) and (43) for 𝜏 → 0
orresponding to 𝛥⟂ → 0⃗⟂ and 𝑚 finite) and for 𝜏 →∞ (corresponding 
 𝛥⟂ finite and 𝑚 → 0). In both cases we keep the full dependence on 
 For 𝜏 → 0, the Taylor expansions of the GPDs read

=
𝛼s
4𝜋

𝐻2(𝑥

=
𝛼s
4𝜋

We h
result

mom

𝐻2 in
clear 
vanis

for ar

𝐻1(𝑥

=
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=
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⎧⎪⎨⎪⎩
2𝑥−1−𝜉2
1−𝜉2

[
1
𝜀
− ln 𝑚2

𝜇̄2
− 1

]
+(𝜏) 𝜉 ≤ 𝑥 ≤ 1 ,

−1−𝜉
1+𝜉

[
1
𝜀
− ln 𝑚2

𝜇̄2
− 1

]
+(𝜏) −𝜉 ≤ 𝑥 ≤ 𝜉 ,

(45)

, 𝜉, 𝛥2;𝑚)⎧⎪⎨⎪⎩
− (1−𝑥)3

3(1−𝜉2)2 𝜏 +(𝜏2) 𝜏→0
→ 0 𝜉 ≤ 𝑥 ≤ 1 ,

− (𝜉+𝑥)2 (𝜉2+2𝜉(1−𝑥)−𝑥)
12𝜉3(1+𝜉)2 𝜏 + (𝑥→ −𝑥) +(𝜏2) 𝜏→0

→ 0 −𝜉 ≤ 𝑥 ≤ 𝜉 .

(46)

ighlight that 𝐻2 does vanish for 𝜏 → 0, and we repeat that this 
 must hold, for any 𝑥 and 𝜉, due to the conservation of angular 
entum; see the discussion after Eq. (39). (Based on the relation for 
 Eq. (41) and our result for the form factor 𝐺(𝛥2; 𝑚, 0), it was 
before explicitly computing 𝐻2 that the integral of this GPD must 
h for 𝜏 → 0. However, this does not imply that 𝐻2 has to vanish 
bitrary 𝑥 and 𝜉.) We proceed to the limit 𝜏 →∞ for which we find

, 𝜉, 𝛥2;𝑚)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝑥−1−𝜉2
1−𝜉2

[
1
𝜀
− ln

(
− 𝛥2

𝜇̄2

)
− ln (1−𝑥)2

1−𝜉2

]
− 1 +( 1

𝜏

)
𝜉 ≤ 𝑥 ≤ 1 ,

−1−𝜉
1+𝜉

[
1
𝜀
− ln

(
− 𝛥2

𝜇̄2

)]
− 1

1−𝜉2

[
2𝜉 ln(𝜉2 − 𝑥2)

+(1 + 𝜉2) ln (1+𝜉)2
1−𝑥2 + 2𝑥 ln (1−𝑥)(𝑥+𝜉)

(1+𝑥)(𝜉−𝑥) − 4𝜉 ln(2𝜉)
]

−1 +( 1
𝜏

)
−𝜉 ≤ 𝑥 ≤ 𝜉 ,

(47)

, 𝜉, 𝛥2;𝑚)⎧⎪⎨⎪⎩
−2(1−𝑥)

1−𝜉2 +( ln 𝜏
𝜏

) 𝜏→∞
→ −2(1−𝑥)

1−𝜉2 𝜉 ≤ 𝑥 ≤ 1 ,

− 2
1+𝜉 +( ln 𝜏

𝜏

) 𝜏→∞
→ − 2

1+𝜉 −𝜉 ≤ 𝑥 ≤ 𝜉 .
(48)

 expanded results fully agree with those presented in Ref. [22], 
e the quark mass was neglected right form the start of the calcu-
. Since 𝑚 = 0 for the leading terms in Eq. (47), a (logarithmic) 
larity arises in 𝐻1 for 𝛥⟂ → 0⃗⟂. This is just a manifestation of the 
hat a nonzero transverse momentum transfer acts as the IR regu-
 The expressions for 𝐻2 in Eq. (48) for both the DGLAP and ERBL 
ns do not diverge for 𝛥⟂ → 0⃗⟂. However, as we already pointed 
bove, using those results for 𝛥⟂ = 0⃗⟂ would contradict the conser-
n of angular momentum. Using 𝑚 = 0 means that 𝐻2 is just given 
e anomaly. (The 𝑥-integral of 𝐻2 in Eq. (48) is nothing but 𝐷𝑎 in 
0).) But we have already seen above that the combination of the 
aly and the quark-mass term is needed to get consistent results for 
rward limit of the local current. It is therefore not too surprising 
n issue arises for the non-local axial current when neglecting the 
 mass.
verall, we believe the most important result of this section was 
in perturbation theory—the (anomaly-related) helicity-flip contri-
n to the off-forward matrix element of the non-local axial current 
hes in the limit 𝛥⟂ → 0⃗⟂ when taking the quark mass into account. 
epeat that this result is required by the conservation of angular 
entum. This result is at odds with statements in the literature sug-
g an anomaly-related pole in perturbation theory [19–22]. Finally, 
gue that Eq. (46) may be considered the non-local generalization 
. (11), showing that the contribution due to the quark-mass term 
ls the contribution from the axial anomaly (or vice versa).

nclusions

 this work, we presented several perturbative-QCD results related 

 the local and non-local axial current evaluated for gluon states. We 
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nfirmed the classic CCM result for the local current for forward kine-
atics for both on-shell and off-shell gluons [14], found a simpler way 
 obtaining this result, and made clear the connection of this result with 
e matrix elements of the axial anomaly and the quark-mass term that 
pear in the divergence of the axial current. We emphasize that the ax-
l anomaly does contribute to the axial current for forward kinematics 
r on-shell and off-shell gluons.
We agree with Refs. [15,19–22] that the anomaly does play an im-
rtant role in off-forward kinematics as well. However, in the case of 
-shell gluons, the anomaly contribution is associated with a gluon he-
ity flip which, for a vanishing transverse momentum transfer to the 
uons, is forbidden by the conservation of angular momentum. Using 
ysical polarization vectors for the gluons and a nonzero quark mass as 
e IR regulator, we found an exact cancellation between the anomaly 
rm and the quark-mass term in this kinematic limit. We conclude that 
rturbative calculations related the axial current are guaranteed to be 
ysically meaningful only if the quark mass is not neglected; see also, 
g., Ref. [35]. In this context, one should keep in mind that in nature 
arks have finite masses.
Recent works had argued that—in perturbative calculations—the ax-

l anomaly would give rise to a pole when approaching the forward 
it [19–22]. It was also suggested that for a full physical process in-
lving the proton, a non-perturbative mechanism related to the genera-
n of the mass of the 𝜂′ meson [36–40] could cancel that pole [19,20]. 
hile we did not address a full physical process, we repeat that in per-
rbation theory the axial anomaly does not generate a pole. Regarding 
at discussion, we point out that the argument about the conservation 
 angular momentum can also directly be applied to the full box dia-
am in Fig. 1(a) for both the DIS and the DVCS processes. It is known 
at in DVCS there can be a gluon helicity flip for forward kinematics, 
t only if there is a corresponding helicity flip for the photons [41–43]. 
the photon helicity is conserved, a gluon helicity flip for the box 

 forbidden for forward kinematics. We therefore expect that a full 
lculation of the box diagram for this case—using a nonzero quark 
ass—will lead to the same vanishing result in the forward limit that 
e found in our GPD analysis. (In this context, see also Ref. [44] and 
ferences therein.)
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