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In the Standard Model of particle physics, the axial current is not conserved, due both to fermion masses and
to the axial anomaly. Using perturbative quantum chromodynamics, we calculate matrix elements of the local
and non-local axial current for a gluon target, clarifying their connection with the axial anomaly. In so doing,
we also reconsider classic results obtained in the context of the nucleon spin sum rule as well as recent results
for off-forward kinematics. An important role is played by the infrared regulator, for which we put a special

emphasis on the nonzero quark mass. We highlight cancellations that take place between contributions from the
axial anomaly and the quark mass, and we elaborate on the relation of those cancellations with the conservation

of angular momentum.

1. Introduction

Unlike the vector current, the axial current of spin-half fermions is
not conserved. In quantum chromodynamics (QCD), the non-conserva-
tion of the flavor-singlet axial current, J. 5" x)=Y q a(x)y*ys q(x), is ex-
pressed via

a; Ny
4

9,92 ()= 2im, G(x)7s q(x) - Tr (F*(x)F,, (x)), e8]
q
where m, is the quark mass, « the strong coupling, N, the number
of quark flavors, and F v the dual field strength tensor defined through
I?W(x) = %gﬂm F?(x) (with £€9123 = 1). The second term on the r.h.s. of
Eq. (1) represents the axial anomaly, which is generated through radia-
tive corrections in quantum field theory [1-4]. When considering the
divergence of the axial current, the focus is mostly concentrated on the
axial anomaly while the fermion-mass term is often neglected. One mo-
tivation of the present work is to take the quark-mass term in Eq. (1)
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into account, which can qualitatively change results as we discuss in
more detail below.

It was noted early on that the axial anomaly could play an impor-
tant role when trying to understand the spin structure of the nucleon
in QCD [5,6]; see Refs. [7-11] for reviews. Research in this area in-
tensified after the discovery of the proton ‘spin crisis’ by the Euro-
pean Muon Collaboration [12], after which works by Altarelli and Ross
(AR) [13] and by Carlitz, Collins and Mueller (CCM) [14] received
considerable attention. These papers studied the photon-gluon fusion
process, y*g — qq, in polarized inclusive deep-inelastic lepton-proton
scattering (DIS), Z P — ¢ X. The cross section of the y*g — qg process
is represented at leading order by the imaginary part of the box dia-
gram in Fig. 1(a). In the Bjorken limit Q> — oo and xg = Q?/2Py - ¢q
fixed, where Py (g) is the four-momentum of the nucleon (virtual pho-
ton) and Q% = —¢2 > 0, the relevant contribution of the box diagram is
fully captured by the triangle diagram in Fig. 1(b) [14]. It is this triangle
diagram from which the axial anomaly in QCD can be computed [1-3].
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Fig. 1. Left panel: Box diagram for the process y*g — y*g. (Permutations are
not shown). The imaginary part of the box diagram contributes to the DIS cross
section at (a,). Right panel: Diagram representing the local axial current. (A
second diagram, with reversed arrows on the quark lines, is not shown.)

Considering the full DIS process through O(«,), AR [13] and CCM [14]
obtained

ag Ny

AZ = A5 - AG, )
in terms of the measured quark-spin contribution AX, the ‘intrinsic’
quark-spin contribution AX, and the amount of the proton spin due to
the gluon spin AG. Equation (2) was considered a potential explana-
tion of the discrepancy between the small experimental result for AX
and the (much) larger A obtained in quark models. This development
caused some excitement, especially since the AG term in Eq. (2) could
be attributed to the axial anomaly.

For several reasons, however, concerns came up early. First, the pre-
factor of AG in Eq. (2) depends on the infrared (IR) regulator used for the
calculation of the box/triangle diagram [14-17]. Second, the connection
of the a, term in Eq. (2) with the anomaly in Eq. (1) was questioned [15].
Third, the way how one factorizes the box diagram into a perturbative
and a non-perturbative part can modify Eq. (2) [15,17,18]. (This is re-
lated to the first point about the IR regulator.) In this paper, we mainly
concentrate on the first two points.

Recently, Tarasov and Venugopalan [19,20], as well as Bhat-
tacharya, Hatta and Vogelsang [21,22] took a fresh look at this topic.
Among other things, they pursued the idea of using a nonzero mo-
mentum transfer as an IR regulator of the box diagram with massless
quarks [15]. They argued that, in contrast to the forward kinematics of
the DIS process, off-forward kinematics would allow one to (fully) cap-
ture the physics of the anomaly. They furthermore argued that, in the
forward limit, the anomaly would give rise to a pole term in perturba-
tion theory, potentially endangering QCD factorization. (Note, however,
that in the latest of these papers it was shown that the anomaly contri-
bution can very well be compatible with factorization [22].) The use of
off-forward kinematics suggests that deeply virtual Compton scattering
(DVCS) off the proton [23-25], £p — £ py, is well suited for studying the
axial anomaly. This result was implied by Refs. [19,20] and elaborated
on in great detail in Refs. [21,22]. Both the real and imaginary part of
the box diagram for the process y*g — y g contribute to the DVCS scatter-
ing amplitude at O(a,) [26,27]. Here, we revisit pertinent perturbative
calculations, and we confirm that for off-forward kinematics there is
(also) a clear connection with the axial anomaly. On the other hand, we
show by exploiting physical polarization vectors for the gluons that the
axial anomaly does not generate a pole in such calculations when tak-
ing the forward limit. In fact, for a nonzero quark mass there is even an
exact cancellation between the anomaly and quark-mass contributions
in that limit, a result which is actually required by the conservation of
angular momentum.

In Sec. 2, we calculate, to the lowest non-trivial order in perturbative
QCD, the helicity-dependent parton distribution function (PDF) defined
through the non-local axial current using a gluon target. Integrating this
PDF over the momentum fraction x of the quark provides the matrix el-
ement of the local axial current in the forward limit, which gives the
pre-factor of AG in Eq. (2) [14]. We discuss the dependence of the result
on the IR regulator and, in particular, confirm the nonzero CCM result
for off-shell gluons [14]. In Sec. 3, we consider the matrix element of
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Fig. 2. Lowest-order diagram contributing to the PDF g,(x) defined in Eq. (3).
A second diagram, with reversed arrows on the quark lines, is not shown. The
displayed diagram provides the PDF in the region 0 < x < 1, while the second
graph gives the result for —1 <x <0.

the local axial current for arbitrary momentum transfer, and we discuss
its relation with the matrix element of the anomaly and the quark-mass
term in Eq. (1). We show that for on-shell gluons, the axial current van-
ishes for forward kinematics. (If the calculation is not gauge invariant
the result can be nonzero, which applies to the classic AR work [13].)
This result can be understood as a consequence of the cancellation be-
tween the anomaly and quark-mass terms. In Sec. 4, we consider the
helicity-dependent generalized parton distributions (GPDs) [23-25] that
parameterize the matrix element of the non-local axial current for off-
forward kinematics. One of the GPDs is unambiguously related to the
axial anomaly, as already emphasized in Refs. [21,22]. However, we ar-
gue that the contribution of that GPD vanishes in the forward limit when
using the finite quark mass as IR regulator. We conclude in Sec. 5.

2. Parton distribution function
We consider the light-cone operator of the axial quark current, eval-

uated between gluon states, and we define the corresponding PDF (de-
noted by g, (x)) according to’

.
@ )
= [ L5 5 g 1A=ty W5, D a8 )

4z 8D, A=3)7 Vs 22049518, 7+=0Z, =0,
:_#g“e’*”gl(x), ®

with x = k™ /p*. Here A (4) indicates the polarization state of the incom-
ing (outgoing) gluon, W(— %, %) represents the Wilson line rendering the

bilocal quark operator gauge invariant, and gtee p = gtuve €, ec*: pp.2
It is worth emphasizing that, due to the forward kinematics, e7€€ ? is
the only structure that appears when parameterizing the light-cone cor-

+
relator CD[L,“](X). Evaluating that structure for different polarization
states of the gluons provides

g00=3 (@10 - ol 5w @

where +(—) means positive (negative) helicity. This implies, in partic-
ular, that the matrix element in Eq. (3) is nonzero only if the helicity of
the incoming and outgoing gluon is the same. A gluon helicity flip is for-
bidden due to conservation of angular momentum. (Note that the two
quark fields of the light-cone operator in Eq. (3) have the same helicity.
Even if their helicity was different, a gluon helicity-flip is not allowed
for forward kinematics since it requires a change of two units of angular
momentum.) We will come back to this point below.

We compute g, to lowest non-trivial order in perturbative QCD (see
Fig. 2) by keeping a finite quark mass and space-like off-shellness p? <
0 for the gluon. We use dimensional regularization (DR) to deal with
ultraviolet (UV) divergences. To define the matrix y5 in DR, we employ

1 For a generic four-vector a = (a°, a', a%, a*), we define the light-cone compo-

nents via a* = %(ao +dd),a = é(a0 —-a),and @, = (a',d?).

2 To keep the notation simple, we do not show the dependence of the PDF on
the renormalization scale, and we write €/ instead of ¢#(4) (and likewise for the
outgoing gluon). Furthermore, in what follows we mostly consider one quark
flavor only, and we denote the quark mass by m.
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the Larin scheme [28,29], along with the replacement y#y5; — %(y" Vs —
ys7"); see, for instance, Ref. [30]. For the positive-x region, we find

a 1 m* — p?x(1 — x
gl(x;m’pz): 4—S |:<— —1In 717_2( )>(2x— 1)
v £ ji

2
_pl-x) ]+(‘)(s) 0<x<1, )
m? — p2x(1 — x)
where ji2 = 4ze "E 42, with u being the DR scale and y r the Euler con-
stant. (The corresponding result in quantum electrodynamics is obtained
by a,/2 — a.,, where 1/2 is the color factor of the QCD diagram.) The
result for the negative-x region can be found by substituting x - —x in
Eq. (5). The UV divergence of g, is reflected by the 1/¢ pole. Both m
and p? serve as IR regulators. Notice that in order to obtain a IR-finite
result just one of these two regulators is needed. (However, when using
nonzero p? only, a logarithmic endpoint singularity emerges.)

The lowest moment of g, which provides the local axial current for
forward kinematics, is UV-finite and given by

1 1
) 2 O 2m*(1 - x)
/dxgl(x,m,p )_Z [_1+/dx—m2—p2x(l—x)

—1 0
:&[-H 2 _ 'r’+4+\/ﬁ] (6)
27 Vin+4  Vn+d—/n

The expression after the first equal sign in Eq. (6) matches Eq. (12) of the
CCM paper [14]. The moment of g, depends on m and p* only through
the ratio n = —p?/m? > 0. It is IR-finite but does depend on the numerical
values of the IR regulators. For the limits # — 0 (corresponding to p*> — 0
and finite m, or finite p? and m — o) and 5 —» o (corresponding to finite
p? and m — 0, or p?> - oo and finite m), we find

1

a, n n—0
d : 2 =3 |-= O 2 0 7
/ x g (x;m,p*) = >~ [ et (n )] - 0, )
21

1

a 2 1 n— 00 a
/dxgl(x;m,pz):ﬁ |:—1+;1117’]+(9<?>:| - —ﬁ, (8)

-1

respectively. Multiplying the result in Eq. (8) by the number of quark fla-
vors N provides the pre-factor of AG in Eq. (2); see also Ref. [14]. We
repeat that the dependence of the lowest moment of g; on the IR regu-
lator gave rise to extensive discussions [8,14-17], putting into question
Eq. (2) as a viable explanation of the proton spin crisis. Here we do not
elaborate further on this point. In the next section, however, we make
explicit the connection between the result in Eq. (6) and the operators
on the r.h.s. of Eq. (1).

3. Local axial current

We proceed to the discussion of the matrix element of the local axial
current JS" (x) for nonzero momentum transfer. We first consider the
matrix element of the divergence of the current,

(. 410,01 0) | g(p. )y = =26 P4 D(4?)
=—ZESSI*PA(DH(AZ)+Dm(42))’ 9

with P =(p+ p’)/2 and A =p’ — p. The quantity D, (D,,) is the con-
tribution of the anomaly (mass) term in Eq. (1). (The factor —2 on the
r.h.s. of Eq. (9) has been introduced for later convenience.) Because of
the structure €€ P4 in Eq. (9), off-forward kinematics is required to
obtain a nonzero result. However, this does not imply that the moment
of g, in Eq. (6) is unrelated to the anomaly (nor to the quark mass term),

as we will discuss below in this section.
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Fig. 3. (Zn/as)D(Az,m,O) as a function of 7, based on the results in Eq. (10).

We evaluate the matrix element in Eq. (9) for two cases: (i) arbi-
trary A%, nonzero quark mass, on-shell gluons; (ii) zero A2, nonzero
quark mass, off-shell gluons (p> = p’? < 0). The anomaly contribution
follows from a tree-level calculation, while the quark-mass term is ob-
tained by evaluating the triangle diagram for the pseudo-scalar current.
(This triangle diagram is UV finite. Its evaluation is simpler than the di-
rect calculation of the axial current where a UV regulator is needed at
intermediate steps.)

For the case (i), we find

1,5 \/T+4+\/;

D, (4% m,0)= ;—S L

n —,
T T \/T+4—\/;

with 7 = —A%/m?. Note that the result for D, does not depend on the
momentum transfer or the IR regulator. In the limits 7 — 0 and 7 - oo,
we have

Q,
D,(4%m,0) = —ﬁ, (10)

Q. T -0
DA% m,0)= = | - = +O(7? 0, 11
(4%;m,0) 27[[ 5+ ()| - an
pAm0y=5 | 1+ irpof L) | 2% 12)
2z T 72 2z

respectively. It is very interesting that for r — 0, there is an exact can-
cellation between D, and D, a result that has been known for quite
some time; see, e.g., Ref. [31]. (Generally, if the quark mass is much
larger than any other scale, the matrix element in Eq. (9) vanishes.) We
emphasize that this cancellation exists here for any finite value of the
quark mass. On the other hand, for 7 — oo (corresponding to A? finite
and m — 0) the divergence of the axial current is exclusively determined
by the anomaly, as expected. Given the qualitative difference between
Eq. (11) and Eq. (12), and the fact that in nature quarks have a finite
mass, it is prudent to keep the quark-mass term in Eq. (1). In the next
section on GPDs, we will add further discussion related to this point.
The function 2z /a) D(4%;m,0) is displayed in Fig. 3. It deviates from
the value —1 due to the contribution of the mass term, which is non-
negligible over a significant range of 7.
For the case (ii), we obtain (see also Ref. [7])

a 2 ln\/n+4+\/ﬁ
% \aa+®  ira- i

13)

(1%
D,(0;m, p*) = —5 D,,(0;m, p?) =

These expressions for D, and D,, agree exactly with the two terms
of the result in Eq. (6), strongly suggesting that—despite the forward
kinematics—the nonzero result of CCM for the lowest moment of g; [14]
indeed has a robust connection with the anomaly and with the quark-
mass term in Eq. (1). Below, we will make this connection explicit by
considering the local axial current (rather than its divergence). Before
that, the 7 — 0 and # — oo limits of D(0;m, p®) are given by the corre-
sponding expressions for f dx g in Egs. (7), (8). In particular, according
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to Eq. (7), for n — O there is again an exact cancellation between the
anomaly and the quark-mass terms in Eq. (13).

Moving on to the matrix element of the local axial current itself, we
first elaborate on its general structure (see also, e.g., Refs [32,33] and
references therein),

3
I = (g, 7)1 JLO) | gp. ) =Y, G,(4%) AL, a4

i=1

where the vectors A;‘ , which are multiplied by the form factors G;, are
defined as

AM _ _2i5;tee’*P All _ & AH Eee'*PA
1 ’ 27 2 >
4i *
Ang—;(e-Pe"e, PA+€'*-P£"€PA). (15)

(For simplicity, we do not display the dependence of I 5” and the A;‘ on
Aand A'.) The A/ are symmetric under the exchange ¢ < ¢'*, p < —p/.
In principle, in Eq. (14) one could also include the vector

AM = 2L 2i (e Aghe’* P4 _
A2

: ¢ aenePay, ae)

but Af: is not independent due to the relation

Al =-Al + AL, 17
which follows from the Schouten identity

gaﬁ gHvro — guﬂ £aVPo gvﬁ gHaro 4 gpﬁ ghvao gaﬂ eHvra (18)

In order to proceed, we consider the Ward identity (gauge 1nvar1ance)

for the vector current to which the two gluons couple. Defining F
Iy #(e — p), the Ward identity related to the initial-state gluon reads

75” = 0. This implies

2
G,(4%) = <1 —4%)@(;\2), (19)
allowing us to write the general form of the axial current as
u N A2 u 2y 4H
Iy =G4 A1+AZ——4ﬂA3 +G,(47) A . (20)
(The Ward identity related to the final-state gluon does not provide any
additional constraint.) At this point we use the Lorenz condition € - p =

¢'* - p' =0, for which A” A” We can therefore eliminate A“ utilizing
Eq. (17), leading to

12| = (Gi&m0) + Gy &m 0) A% = Gasm,0) AL, (21)
4p?
! = 2. 2\ A H
F5 virtual | A2 —4p? G(4%m,p )Al
A2
+ <Gz(A2;m,p2)+ A2——4ﬂ Gl(Az;m,p2)> A‘zl . 22)

This means that for on-shell (real) gluons, there is just one independent
form factor, which multiplies the vector A’Z’ and which we denote by
G = G| + G,. On the other hand, for off-shell (virtual) gluons the pa-
rameterization of the matrix element of the local axial current contains
two form factors.

Finally, we consider the (anomalous) axial Ward identity, which pro-
vides the connection with the matrix element of the divergence of the
axial current in Eq. (9),

i, T = (g(p'. ') 10, T2(0) | g(p. 1)) 23)

For on-shell gluons, Eq. (23) readily implies

G(4%;m,0) = D(4%;m,0), (24)
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with D(4%;m,0) given by the sum of the anomaly term and quark-mass
term in Eq. (10). Therefore, the local axial current for on-shell gluons
is completely fixed by the divergence of the current. We repeat that
computing D(4%;m,0) is simpler than G(4%;m,0) as defined through
Eq. (21). However, we have performed both calculations and verified
that our results satisfy Eq. (24). Using Eq. (23) for off-shell gluons and
focusing on the limit 4% — 0 leads to

G(0;m, p*) + Gy (0;m, p*) = G (0;m, p*) = D(0; m, p*)., (25)

with D(0; m, pz) given by the sum of the two terms in Eq. (13). We note
that by explicit calculation we find G,(0;m, p*) = 0, giving rise to the
first equal sign in Eq. (25). Although for off-shell gluons and arbitrary
A? only one linear combination of the two form factors is related to the
divergence of the current, the axial Ward identity fully fixes the matrix
element of the current in the forward limit. Equation (25) allows us to
write

lim FS“
A2 =0

 =Gy(0;m,p?) A (26)
virtual 1

Comparing Eq. (26) for u = + with Eq. (3) integrated over x provides
the relation

1

/ dx g (x;m, p*) = G{(0;m, p?). 27)
-1

We have now achieved three things in connection with the classic result
of the CCM paper [14] (see Eq. (6)). First, we showed that this result
is unambiguously related to the matrix element of the operators on the
r.h.s. of Eq. (1). Second, by using Egs. (25) and (13), we decomposed
the result into the contributions from the anomaly and from the classi-
cal quark-mass source term, finding that the vanishing result in Eq. (7)
is caused by an exact cancellation of these two contributions. Third,
with the help of Ward identities we derived Egs. (27) and (25), allow-
ing Eq. (6) to be found through a simpler, UV-finite calculation (thus
also avoiding the need to choose a y5 scheme).

We have derived and explained the result in Eq. (7) by starting from
the general form of the axial current for off-shell gluons in Eq. (22),
then taking the limit 42 — 0, followed by the limit p?> — 0. However, it
is instructive to repeat the analysis by first taking p?> — 0 and afterwards
A% = 0. This means we will start from Eq. (21). We will also evaluate
A’l’ and A’Z’ using physical polarization vectors of the gluons. For this
analysis, we choose the symmetric reference frame in which

pe(p 25 as( e P
U sa-ap ) T Laa-epe )

(28)

but we emphasize that our general conclusions do not depend on this
choice. The so-called skewness variable & defines the longitudinal mo-
mentum transfer to the gluons. In addition to the frame-independent
relations P - A =0 and P> = —A%/4, we have A% = —Zi/(l — £2). We
employ the polarization vectors specified in Ref. [34] using the light-
cone gauge. In our notation, for the (on-shell) initial-state gluon they
are given by

1 6;4nPA

1 nH
M= —— [ 26PH + A" + A* , e =
) ﬁ(f 2P -n ‘@7 YN Pon
29)

where N = Zf, and n is the light-cone four-vector for which n-a=at

given a generic four-vector a. The polarization vectors in Eq. (29) satisfy
€ - €5y = —6;; for i,j € {1,2}, and ¢;) - p= 0. The linear combina-
tions €,y = F (e( pti 6(2)) / \/E describe states of definite (light-cone)
helicity. The polarization vectors for the final-state gluon are obtained
from Eq. (29) through the replacement 4 — —A (which implies & - —¢&)
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and an overall sign change for eé‘l) and e(”2> [34]. With the notation
/%
A = =2i 00" ete. we find
@j)
2i
H — unPA
M= aTap A
i p
A =L (opr_ a2 1),
1a2) 1+§( 2P
M — i i U 2 nt H —
Al = —1_§<2P +Ah 44 _2P.n>’ Ay =0, (30)
H — " i AM
Aan =0 Arapy =145
M i AM H —
Ay oy =48, A 00 =0- (31)

For the specific case u =+, the only nonzero expressions are

AT —At =2ipPt, AY = At

— — 9 +
1(12) — 1@2n 2(12) 2(21)_216P : (32)

Using helicity states, we can write

+ + 4+ o+
A1(12)_A1(21)_1(A1(++) Al(——))’

A;r(lz) + A;r(zl) =i (A;(+7) - A;r(ar)) : (33)
Since the structure in front of g; on the r.h.s. of Eq. (3) is nothing but
AT /2p*, the result in Eq. (4) is equivalent to the first relation in (33).
While Eq. (4) means that, for forward kinematics, the axial current can
only generate a helicity-conserving transition, in Eq. (21) A’z‘ appears
which, according to the second relation in (33), implies a helicity flip.
Upon a closer inspection, we see that there is no contradiction though.
Since the PDF g, is defined for 4 = 0 we first consider I'." for this specific

5
kinematical point. The second relation in (32) then leads to

rFE=0.4) =rf¢=04,=0,) =o. (34)
real real

1 al

(See also Ref. [17] for a related discussion.) We emphasize that this re-
sult, which is fully compatible with the conservation of angular momen-
tum, is not based on the calculation of Feynman diagrams. Equation (3)

can be compatible with Eq. (34) only if

1

/dxgl(x)‘ =0, (35)
real
-1
which must hold for any IR regulator. Taking as an example a nonzero
quark mass as IR regulator and the result in Eq. (7), we see agreement
with Eq. (35). Put differently, the steps leading to Eq. (35) can be con-
sidered an alternative derivation of the result in Eq. (7), which was first
obtained by CCM [14].

Overall, we find consistent results regardless of the order that the
A? - 0 and p? — 0 limits are taken. However, both ways of taking these
limits for the local axial current provide unique insights. We also empha-
size that Eq. (35) does not imply that there is no contribution from the
anomaly; based on the discussion above, it rather means that for on-shell
gluons and forward kinematics, the anomaly contribution is cancelled
by the quark-mass term. Alternatively, one could say that the anomaly
exactly cancels the (classical) quark-mass term—and that this cancella-
tion is needed for consistency with Eq. (34), which is a consequence of
angular momentum conservation.

Before moving on, we point out that the conservation of angular mo-
mentum implies the (stronger) constraint I’ 5+ (&, A L= 6 1) el = 0. Since

A can be nonzero for £ # 0, this constraint requires that the form factor
G(0) vanishes, which it does for m # 0; see Egs. (24) and (11). Keeping
the quark mass is therefore necessary to ensure the conservation of an-
gular momentum. In the next section, we will see the same result in the
context of the GPDs.

Now we briefly comment on the work by AR [13], in which the
box diagram for polarized DIS was analyzed. The authors considered
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exact forward kinematics and on-shell gluons. However, they neglected
certain quark-mass terms in the numerator, implying that their result is
not gauge invariant, as was already pointed out in Ref. [17]. Deriving
the general structure of the axial current for on-shell gluons without
using the gauge-invariance constraint leads to

ri| =G Al + 6y Ay, (36)
that is, there are two independent form factors instead of just one as in
Eq. (21). When taking the forward hmit of Eq. (36) we can get a nonzero
result related to G(l"gl), while G;"g') drops out since A” vanishes. This
finding is consistent with the nonzero result obtained by AR [13]. (In a
closely related study we computed [ dx g, by neglecting all quark-mass
terms in the numerator, finding a nonzero result as well.) Since Eq. (36)
is in conflict with Eq. (34), we consider the lack of gauge invariance a
deficiency of the AR paper [13], although this does not put into question
the importance of this pioneering work.

The last point we want to address in this section is the behavior of
the vector A;’ when taking the forward limit. (Our discussion here also
applies to A’; and AZ .) Because of Egs. (21) and (24), this vector is
associated with the axial anomaly (and the quark-mass term) appearing
in the divergence of the axial current. The factor 1/4? in the definition
of Ag gave rise to extensive discussions about an ‘anomaly pole’ that
would emerge for A% — 0; see, in particular, Refs. [19-22]. However,
when evaluated for physical polarization vectors, according to (31) one
finds either zero or a finite result, depending on the polarization state
of the gluons.

4. Generalized parton distributions

In this section we return to the light-cone operator of the non-local
axial current, now evaluated between gluon states with different mo-
menta. Here we exclusively consider the case of on-shell gluons. Using
the Schouten identity in Eq. (18), the Ward identity for both gluons, as
wellase-p=¢'*-p' =0, we find

"
F[V J’s](x, 4

vy

dz= . _, z zZ z z
= [ 4 et e D= D WS D s,
= (B = By +£B3 + By) H (x.&,4°) + By Hy(x,&, 4, (37)

with the two GPDs H; and H,. Furthermore, we have B; = AT /(2P*)
fori=1,2, and

2i

1 * A
B3=_A2P+ (E‘-P£+€ PA_el _P£+6P )7
342_2(1j+)2 (€+g+e’*PA +€/*+g+ePA). (38)

To arrive at the decomposition in Eq. (37) we followed to some extent
the classification of deuteron GPDs presented in Ref. [34]. We agree
with Refs. [21,22] that the matrix element in Eq. (37) defines (just) two
GPDs. The only difference compared to those papers is that the structure
in front of H| in Eq. (37) is gauge invariant. In analogy with Eq. (4), we
can address the GPDs through specific helicity combinations,

2\ _ 1 [r*rs] _ plrtys
H(x.6.4%) = —2(1_52)(%“++ (. 4) = F 50, 0)),
L ( Llrts] [r*s]
Hofx, .47 = =52 (F7 - FI75 ). 39)

While H; (like g) is associated with helicity-conserving transitions, a
helicity flip is needed in the case of H,. However, for i L= 0 1> a gluon
helicity flip is forbidden due to the conservation of angular momentum
(see also the discussion after Eq. (4)), and therefore the B, H, term in
Eq. (37) must drop out for that kinematics. Since B, (£ # 0, A L= 0 1) #0,
the GPD H, should vanish for a vanishing transverse momentum trans-
fer.
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Before discussing our results for the GPDs, we list a few additional
constraints the GPDs must satisfy. By definition, in the forward limit
the GPD correlator in Eq. (37) reduces to the one for the PDF in Eq. (3),
leading to

H,(x,0,0)=g;(x). (40)

Equation (40) assumes that the forward limit of the GPD correlator ex-
ists, which actually is not the case if a nonzero momentum transfer is
taken as the sole IR regulator. For our calculation, this situation arises
if one uses m = 0, as we discuss in a bit more detail below. Further con-
straints follow when integrating the GPD correlator in Eq. (37) over x,
which provides the local current. Comparing the result with Eq. (21) we
find
1 1

/dle(x,.f,Az)=0, /dtz(x,f,A2)=G(Az). (41)
-1 -1

The relation for H,; can be considered a generalization of Eq. (35).
Furthermore, using Eq. (24) we see that the GPD H, is clearly re-
lated with the axial anomaly, confirming the corresponding statement
in Refs. [21,22].

To find the two GPDs to lowest non-trivial order in perturbative QCD,
we evaluate the same two Feynman diagrams that contribute to the PDF
g1, but now for off-forward kinematics. The diagram in Fig. 2 contributes
to the positive DGLAP region (¢ < x < 1) and the ERBL region (—¢ <
x < &), whereas the second diagram contributes to the negative DGLAP
region and the ERBL region. For convenience, we introduce the variable
k=7 (1 —x)%/(1 — £2). Our calculation provides

H,(x, & A% m)
2x—1-¢2
1,52 [_ —In=|-1
+4+(1+§2)K—2x(1<+2) 1 \/K+ +\/— f<x<l
) <x<l1,
=4 Ve N Veri—y
= £< _a=96H0 |1y m2 [ ex
dr | T Tzawn | TR T 2
_&@-0-x (1=E)(E+0)(E (=)= x)K
26(1-£2) In [1 + 4E2(1—x)2 ]
A4+(1+E2)k=2x(k+2) 1 hy ~ e
T N Inz= 4+ (x—-x) -£<x<¢,
(42)
Hy(x,&, 4% m)
A 14 2 n”K++‘/— E<x<1
o 1-£2 Vee+d) =i sx=s 1,
= 4 2 E4x l—x 1 hy
e |~ 22 T Vead M ho -x) —€<x<
1+¢ [ 2 1=¢ \/x(k+4) In h_ +(X—) X) é—x—éa
(43)

with the auxiliary functions

hy =450 -x) (1= OE+0) Vi (Ve +4= ). (49

Results for —1 < x < —¢ can be obtained from the formulas for the pos-
itive DGLAP region by substituting x — —x. The results for H, and H,
are continuous at x = +£ (as they should be) and satisfy the constraints
in Egs. (40) and (41). (We verified H,(x,0,0;m) = g,(x;m,0), since for
our perturbative calculation Eq. (40) is meaningful only for m # 0.) Also
note that only H, is UV-divergent.

As a next step, we expand the results in Egs. (42) and (43) for 7 — 0
(corresponding to A L= 0 | and m finite) and for 7 — oo (corresponding
to 4 | finite and m — 0). In both cases we keep the full dependence on
. For 7 — 0, the Taylor expansions of the GPDs read

H\(x,& 4% m)
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&) E e “5)
An —i%[&l—l ’?—2—1]+(9(r) —£<x<E,
Hy(x,&,4%m)
a-x° T+(9< )T:OO E<x<1,

47 | (02 (4260-0)-x)
128 (1+87

a |7 30-822

70
T+(x—>—x)+(9(12) - 0 —€£<x<¢.
(46)

We highlight that H, does vanish for = — 0, and we repeat that this
result must hold, for any x and &, due to the conservation of angular
momentum; see the discussion after Eq. (39). (Based on the relation for
H, in Eq. (41) and our result for the form factor G(42;m,0), it was
clear before explicitly computing H, that the integral of this GPD must
vanish for 7 — 0. However, this does not imply that H, has to vanish
for arbitrary x and £.) We proceed to the limit 7 — oo for which we find

H,(x,&, 4% m)
2x—1-¢2 A (1—x) 1
=L [;—1 (——2)—1 152]—1+o(;) f<x<l,
_a - i;g[ ] [2§ln(£§2—x
i +(1+.§2)1n“+f> +2x1n =064 e 1n(2g)
2 (06—
—1+(9<;) —E<x<E,
(47)
Hy(x,&, A% m)
_2(1-x) Inz) T7®  2(1-x) <x<
4 Inz\ 72 ® 2
_E-"@(r) = -Te —$<x<¢

These expanded results fully agree with those presented in Ref. [22],
where the quark mass was neglected right form the start of the calcu-
lation. Since m = 0 for the leading terms in Eq. (47), a (logarithmic)
singularity arises in H, for i L= 0 . This is just a manifestation of the
fact that a nonzero transverse momentum transfer acts as the IR regu-
lator. The expressions for H, in Eq. (48) for both the DGLAP and ERBL
regions do not diverge for A - 0 . However, as we already pointed
out above, using those results for A = 0 , would contradict the conser-
vation of angular momentum. Using m = 0 means that H, is just given
by the anomaly. (The x-integral of H, in Eq. (48) is nothing but D, in
Eq. (10).) But we have already seen above that the combination of the
anomaly and the quark-mass term is needed to get consistent results for
the forward limit of the local current. It is therefore not too surprising
that an issue arises for the non-local axial current when neglecting the
quark mass.

Overall, we believe the most important result of this section was
that—in perturbation theory—the (anomaly-related) helicity-flip contri-
bution to the off-forward matrix element of the non-local axial current
vanishes in the limit A L= 0 , when taking the quark mass into account.
We repeat that this result is required by the conservation of angular
momentum. This result is at odds with statements in the literature sug-
gesting an anomaly-related pole in perturbation theory [19-22]. Finally,
we argue that Eq. (46) may be considered the non-local generalization
of Eq. (11), showing that the contribution due to the quark-mass term
cancels the contribution from the axial anomaly (or vice versa).

5. Conclusions

In this work, we presented several perturbative-QCD results related
to the local and non-local axial current evaluated for gluon states. We
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confirmed the classic CCM result for the local current for forward kine-
matics for both on-shell and off-shell gluons [14], found a simpler way
of obtaining this result, and made clear the connection of this result with
the matrix elements of the axial anomaly and the quark-mass term that
appear in the divergence of the axial current. We emphasize that the ax-
ial anomaly does contribute to the axial current for forward kinematics
for on-shell and off-shell gluons.

We agree with Refs. [15,19-22] that the anomaly does play an im-
portant role in off-forward kinematics as well. However, in the case of
on-shell gluons, the anomaly contribution is associated with a gluon he-
licity flip which, for a vanishing transverse momentum transfer to the
gluons, is forbidden by the conservation of angular momentum. Using
physical polarization vectors for the gluons and a nonzero quark mass as
the IR regulator, we found an exact cancellation between the anomaly
term and the quark-mass term in this kinematic limit. We conclude that
perturbative calculations related the axial current are guaranteed to be
physically meaningful only if the quark mass is not neglected; see also,
e.g., Ref. [35]. In this context, one should keep in mind that in nature
quarks have finite masses.

Recent works had argued that—in perturbative calculations—the ax-
ial anomaly would give rise to a pole when approaching the forward
limit [19-22]. It was also suggested that for a full physical process in-
volving the proton, a non-perturbative mechanism related to the genera-
tion of the mass of the #” meson [36-40] could cancel that pole [19,20].
While we did not address a full physical process, we repeat that in per-
turbation theory the axial anomaly does not generate a pole. Regarding
that discussion, we point out that the argument about the conservation
of angular momentum can also directly be applied to the full box dia-
gram in Fig. 1(a) for both the DIS and the DVCS processes. It is known
that in DVCS there can be a gluon helicity flip for forward kinematics,
but only if there is a corresponding helicity flip for the photons [41-43].
If the photon helicity is conserved, a gluon helicity flip for the box
is forbidden for forward kinematics. We therefore expect that a full
calculation of the box diagram for this case—using a nonzero quark
mass—will lead to the same vanishing result in the forward limit that
we found in our GPD analysis. (In this context, see also Ref. [44] and
references therein.)
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