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ABSTRACT: In this work, we present a lattice QCD calculation of the Mellin moments of the
twist-2 axial-vector generalized parton distribution (GPD), H (z,€,t), at zero skewness, &,
with multiple values of the momentum transfer, t. Our analysis employs the short-distance
factorization framework on ratio-scheme renormalized quasi-GPD matrix elements. The
calculations are based on an Ny = 2+ 1 + 1 twisted mass fermions ensemble with clover
improvement, a lattice spacing of a = 0.093 fm, and a pion mass of m, = 260 MeV. We
consider both the iso-vector and iso-scalar cases, utilizing next-to-leading-order perturbative
matching while omitting the disconnected contributions and gluon mixing in the iso-scalar
case. For the first time, we determine the Mellin moments of H up to the fifth order. From
these moments, we discuss the quark helicity and orbital angular momentum contributions
to the nucleon spin, as well as the spin-orbit correlations of the quarks. Additionally, we
perform a Fourier transform over the momentum transfer, which allows us to explore the
spin structure in the impact-parameter space.
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1 Introduction

Understanding the internal structure of hadrons, such as protons and neutrons, is a fun-
damental goal in modern particle and nuclear physics. Generalized parton distributions
(GPDs) [1-3] have emerged as a powerful tool for probing the three-dimensional structure of
hadrons. Unlike traditional parton distribution functions (PDFs), which provide information
about the longitudinal momentum distribution of partons, GPDs offer a more comprehensive
picture by incorporating both longitudinal momentum and transverse spatial distributions [4—
7]. Therefore, GPDs bridge the gap between the spatial and momentum distributions of
quarks and gluons within the nucleon.

The GPDs can be classified into different types based on their symmetry properties
twist, and the polarization state of the parton/hadron [8-13]. Among these, the twist-2
axial vector GPD H (z,&,t) is crucial for the understanding of the nucleon spin structure,
a major challenge in hadronic physics [14, 15]. The first Mellin moment of this GPD is
directly related to the quark helicity contribution to the nucleon spin and, through Ji’s spin
decomposition scheme [2], provides insights into the orbital angular momentum (OAM).
Additionally, it sheds light on spin-orbit correlations of quarks [16-18], offering valuable
perspectives on the spin structure of the nucleon.

In principle, information on the GPDs can be obtained from experimental data for hard
exclusive scattering processes such as the deeply virtual Compton scattering [1-3, 19, 20],



deeply virtual meson production [21-23] and processes where additional particles are detected
in the final state [24-29]. However, extracting GPDs from such data are highly non-trivial
as it requires solving an inverse problem and disentangling multi-dimensional distributions
from limited experimental observables [30, 31]. While much progress has been made in
recent years [32-39], the field is still in its infancy. Consequently, computing GPDs from
first principles using lattice QCD is well motivated, as it provides essential complementary
information for constraining the GPDs.

Unfortunately, the direct simulation of GPDs is forbidden on a Euclidean lattice as they
are defined through non-local light-cone correlators. Therefore, for a long time the focus has
been on the Mellin moments of GPDs which can be computed through the matrix elements
of local operators [40-59]. However, this method encounters difficulties in accessing higher
moments due to signal decay and operator mixing under renormalization, which may be
mitigated through the application of gradient flow [60, 61] or smearing [62]. Over the past few
years, significant progress has been made in computing parton distributions using alternative
methods [63-74], especially those motivated by the proposal of quasi-PDFs [67, 68]. Starting
from boosted non-local equal-time correlators, the z-dependent parton distributions and
their moments can be extracted using the framework of large momentum effective theory
(LaMET) [75] or short distance factorization (SDF) [66, 70-72]. For reviews, see refs. [75-80].

There has been a lot of progress in computing GPDs through LaMET and SDF in the
past few years [81-98]. However, establishing these three-dimensional distributions with
comprehensive x, £, and ¢ dependence remains challenging due to the computational cost.
Significant progress was made recently in reducing these costs, as originally proposed in
ref. [89]. By employing the Lorentz-covariant parametrization of matrix elements, quasi-GPDs
can be constructed from Lorentz-invariant amplitudes determined from any reference frame.
In particular, this innovative approach allows calculations in an asymmetric frame, applying
all momentum transfer to the initial-state or final-state nucleon, rather than the commonly
used symmetric frame. Consequently, multiple momentum transfers can be achieved through
contractions without the need for additional inversions, leading to a faster and more efficient
computation of GPDs using lattice QCD. In refs. [92, 93], we presented the z-dependent
twist-2 GPDs for unpolarized quarks, specifically H and F, across multiple values of the
momentum transfer ¢, along with their moments up to the fifth order. In ref. [99], we extend
the theoretical framework to the case of axial-vector GPDs. Building on this progress, in the
present work, we extract the Mellin moments of the zero-skewness axial-vector GPD H (x,0,t)
over a wide range of ¢, and we discuss the physical insights that these moments provide.

This work is organized as follows. In section 2, we review the theoretical framework of
computing the quasi axial-vector GPD on the lattice. In section 3, we show the bare matrix
elements of the axial-vector iso-vector and iso-scalar GPDs and discuss the renormalization.
In section 4, we extract the first few moments from the ratio-scheme renormalized matrix
elements using the next-to-leading order (NLO) SDF formula. For the first time, we get
access up to the fifth moment of the axial-vector GPD H (x,&,t) with reasonable signal and ¢
dependence. In section 5, we discuss the relation between the moments and the spin structure
of the nucleon, including the quark helicity and OAM contributions to the nucleon spin as
well as the quark spin-orbit correlations. We also explore the distribution of these quantities
in the impact parameter plane. Finally, section 6 contains our conclusions.



2 Axial-vector GPD on the lattice

2.1 The definition of axial-vector GPDs

The quark GPDs of nucleon are defined as the Fourier transform of the off-forward matrix
elements

FIN (=7, A, P) = (ps; X|Orlpi; N), (2.1)

where p; and py represent the momenta of the initial-state and final-state nucleon, respectively,
while X and ) denote the helicities of the nucleons. After performing the Fourier transform
over 2z~ , the GPDs become functions of the average longitudinal momentum fraction x of the
quarks and two additional kinematic variables, typically chosen as the skewness £ and the
momentum transfer squared t. Using P = (p; + py)/2 and A = py — p;, they are defined as

A-‘r

P — — 2
e t=A% (2.2)

&=
The quark bilinear operator involved is defined as,
Or = (=5 ) TW(=55, )0 (), (2.3)

where the quark fields are separated along the light-cone and connected by a Wilson line

to ensure gauge invariance,

4
W(-%, %) :Pexp<—ig/22_ dy_A+(0+,y_,6i)> . (2.4)

2
In the light-cone gauge A* = 0, the Wilson line vanishes, allowing the operator Or to
be interpreted as a particle density operator. For example, setting I' = 4+ (1 + v5)/2 and
v+ (1 — v5)/2 corresponds to the density of right-handed and left-handed quarks inside the
hadron, respectively. When summed, they give I' = 4*, providing the total quark number
density. Their difference (I' = y"5) yields the quark helicity density, a crucial quantity for

understanding the spin structure of the hadron.
In this work, we study the axial-vector GPDs defined through I' = v v5. At the twist-2

level, there are two distinct axial-vector GPDs, H and E, defined through 8]

A+’Ys =~

FOMel(m AL P) = alpy, X) [y s B (2760 + 5 2B 60 |ulei N) - (25)

Since we are focusing on & = 0 case, the kinematic factor associated with E vanishes, implying
that this GPD cannot be extracted from our lattice data. Here, we therefore concentrate
on the GPD H. We note that F also enters at the twist-3 level, where it can be addressed
even for & = 0 [94, 100].

2.2 The axial-vector quasi GPD H

The light-cone GPDs can be accessed from lattice QCD through the quasi-GPD approach in
the large momentum limit. However, unlike light-cone GPDs, which are frame-independent,



quasi-GPDs are frame-dependent at finite momentum. Traditionally, a specific symmetric
frame was chosen. However, this choice is computationally very expensive, requiring separate,
full computations — including inversions and contractions on the lattice — for each value of
t. To address this problem, we proposed constructing quasi-GPDs using Lorentz-invariant
amplitudes derived from the decomposition of the matrix elements [89]. This method
eliminates the frame dependence, allowing any computationally preferred frame to be used.
It is important to note that this decomposition is not unique and depends on the choice of
basis. However, any basis will result in the same number of independent amplitudes. For
the axial current we adopted the following decomposition [99],

FO 91z, P A) = (ps N (=) 195 W(=5, 3)(3)Ipis V)

jerPzA . P - AH
A+ Hy5As + 5 (mAg +mzt Ay + mA5>

= ﬂ(pfa )‘/) [
J2 — AR
+ m7f75 <mA6 +mzt A + mA8> u(p,', )\), (2.6)

where etF?8 = e’“fB'VPaz/gA7 and 4; = /L(z P, z-A, A% 2?%) are Lorentz invariant amplitudes
that depend on Lorentz scalars. The case of the light-cone axial-vector GPDs defined in
eq. (2.5) corresponds to p = + and z = (27,27,2z1) = (0,27,0,). Thus, the GPD H
can be expressed as

H(z-Pz-AA?) = Ay + (Pt27)Ag + (AT27) Ag
= Ay + (P-2)Ag + (A - 2)As. (2.7)

As mentioned earlier, light-cone GPDs cannot be directly simulated in Euclidean lattice
QCD. In this work, we consider quasi-GPDs, which maintain the same form as eq. (2.5) but
are defined at equal time (z° = 0). In this approach, quarks are separated along the spatial
direction z = (0,0, %) with a large momentum P = (0,0, P3). Typically, v*v5 = 7375 is
chosen to approach the light-cone limit, as it avoids operator mixing caused by explicit chiral
symmetry breaking which affects 75 [101, 102]. This means, we consider

3 ~
S| up ). (28)

m

F[’Y3'Y5}(Z’P7 A) = a(pf7)‘l) 7375ﬁ3(27€7t) +

According to eq. (2.6), the axial-vector quasi GPDs can be expressed as

7—~[3(z, P,A) = Ay — 2P A — m2(z3)2g7 — A3 Ag
= Ay + (P - 2)Ag + m?22 A7 + (A - 2) Ag. (2.9)

Compared to eq. (2.7), the Lorentz invariant amplitudes A;(z- P, z- A, A2, 22) in Hs implicitly
depend on the finite 22 = —|z[2, which is zero in the light-cone case. In addition, Hs
explicitly includes an additional contamination term m2z2g7 due to the non-vanishing z2. In
refs. [89, 99], it was proposed to remove these explicit power corrections and construct Lorentz-

invariant (LI) matrix elements, as in eq. (2.7), through the Lorentz-invariant amplitudes



ﬁi, which can be extracted from the linear combination of quasi-GPDs with different spin
structures. As discussed in detail in ref. [99], the LI axial-vector GPDs in eq. (2.7) can be
derived from the linear combination of FI"*7%! with = 0, 1,2, referred to as H. We note
that the only difference between the quasi GPD H and light-cone GPD H is the non-zero
22 in A;. Interestlngly, it was found in ref. [99] that the term m 222 A7 is mostly consistent
with zero, so that Hs and H are largely consistent within statistical errors. Therefore, we
can focus on Hs in the following analysis without concerns about the contamination term

2245 Additionally, we repeat that Hs has the advantage of avoiding operator mixing due
to explicit chiral symmetry breaking from lattice discretization [101, 102].

3 Bare matrix elements and renormalization

3.1 Lattice setup

The data used in this work has been analyzed in ref. [99], to derive the z-dependent GPD
in the LaMET framework. In this study, however, we focus on extracting the first few
moments of GPDs using the SDF approach. The data were obtained from a gauge ensemble
of Ny =2+1+1 twisted-mass fermions with a clover term and Iwasaki-improved gluons [103].
The lattice size and spacing of the ensemble are Ny x N; = 323 x 64 and a = 0.0934 fm,
respectively, with quark masses corresponding to a pion mass of 260 MeV.

The quasi-GPD matrix elements are extracted from the three-point functions,

COPU T,y pists, 7) = Y e P T De @ @=)TE (N(7,1,)0, (% + 22, T>N<;> (Z,0)),
4,20

(3.1)
where 7 is the source position, N is the standard nucleon source under momentum
smearing [104] to improve the overlap with the proton ground state and suppress gauge noise.
The quasi-GPD operator O,, = v (2) Y*y5W(2,0)1 (0) has quark fields separated along the
zg direction. Both the iso-vector (u — d) and iso-scalar (u + d) flavor combinations were
computed with the disconnected diagrams ignored for the iso-scalar case. In ref. [105], it
was found that, on the same ensemble as this work, the disconnected contributions for the
forward limit are tiny; they would be further suppressed in off-forward kinematics. The
unpolarized and polarized parity projectors I'p and I';, are defined as,

INES (1 +70) 5 (3.2)

4
1

Iy=-(1+%)iv7, ~=1,2,3. (3.3)

4
To derive the ground-state matrix elements, we also computed the two-point functions for
the energy spectrum and overlap amplitudes (Q|N()|N), which are given by,

C2 (T, pit,) ze GO (NP (7,40 (.0)). (3.4)

Since the two- and three-point functlons are highly correlated, we construct the ratio,
C/:j,pt(r%?pf7pi;t57 T) Cth(FOapiyts - T)CQPt(F()apfaT)C2pt(F07pf7ts)
C?P4 (Lo, pysts) C2PY(Tg,py,ts —1)C%Y (T, pi, 7)C?PY (Lo, piy ts)
(3.5)

Rz(rli7pf7pi;t577—) =



frame  P3 [GeV] A [2%] —t [GeV?] £ Nue  Neonfs  Nere  Niot
N/A +1.25 (0,0,0) 0 0 2 329 16 10528
symm  +0.83  (£2,0,0), (0,£2,0) 0.69 0 8 67 8 4288
symm  £1.25  (£2,0,0), (0,42,0) 0.69 0 8 249 8 15936
symm  £1.67  (£2,0,0), (0,£2,0) 0.69 0 8 294 32 75264
symm ~ £1.25 (£2,£2,0) 1.38 0 | 16 224 8 28672
symm  +1.25 (£4,0,0), (0,£4,0) 92.77 0 8 329 32 84224
asymm  +1.25 (+1,0,0), (0,£1,0) 0.17 0 8 29 8 17216
asymm  +1.25 (1, +1,0) 0.34 0 16 195 8 24960
asymm +1.25 (£2,0,0), (0,£2,0) 0.65 0 8 269 8 17216
asymm  +1.25  (£1,£2,0), (£2,£1,0)  0.81 0 16 195 8 24960
asymm  £1.25 (£2,£2,0) 1.24 0 16 195 8 24960
asymm  £1.25  (£3,0,0), (0,£3,0) 1.38 0 8 269 8 17216
asymm  +1.25  (£1,£3,0), (£3,£1,0)  1.52 0 16 195 8 24960
asymm  +1.25 (£4,0,0), (0,£4,0) 2.29 0 8 29 8 17216

Table 1. Statistics for the symmetric and asymmetric frame matrix elements are shown. The
momentum unit 27 /L is 0.417 GeV. NumE, Neonfs, Nsre and Niotal are the number of matrix elements,
configurations, source positions per configuration and total statistics, respectively.

which, in the t; — oo limit, corresponds to the bare matrix elements of proton ground
state 1tlim R =11,(T;). To keep the statistical noise under control, we use a source-sink
s—>00

separation of ts = 10a = 0.93 fm and perform a plateau fit with respect to the time insertion
7 in a region of convergence. More details can be found in ref. [99]. A more thorough study
of excited state contamination will be left for future work that targets precision control.

In table 1, we show the momenta P= (0,0, P3) and A as well as the statistics used in
this work. For the symmetric frame, the momentum components are defined as,

. A AL Ay . A Ay Ay )
=S — P — — = P S e P— _— = _— —— P . 36
Py +5 (+2,+2,3), P; 5 (2, 5 s (3.6)

In contrast, for the asymmetric frame, where all momentum transfer is assigned to the
initial state, we have,

—

FE=P=(0,0,P), pf=P-A=(-A,~0sP5). (3.7)
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Figure 1. Bare matrix elements are shown as a function of z3/a for different values of ¢t. The

iso-vector

(u — d) and iso-scalar (u + d) case are shown in the upper and lower panels, respectively.
The left panels show the real part while the right panels show the imaginary part.
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Figure 2. Zero momentum iso-vector axial-vector quasi-PDF matrix elements.

While P and A are the same for both frames, they lead to slightly different values of —t due
to the different distribution of the momentum transfer, that is

_s:A27

_(E

) —E@p)*.

(3.8)

This work focuses on zero skewness, namely Az = 0. As already mentioned above, this does not
give us access to the GPD E. Most of the hadron momentum P is fixed at 1.25 GeV throughout
the calculation. We combine all data contributing to the same value of momentum transfer
t = —A? with definite symmetry with respect to P3 — —P3, 23 — —z3, and A —A [99].



L5l ® ~=017Gev? B —r=081Gev? W ~1=152Gev? 0.00[m u—d, M(z3,P3,4)
. —1=0.34GeV? W -r=124GeV? W -1=229GeV? .
B —1=065GeV2 @ —1=138GeV2 W —1=2.77 GeV? -0.25¢ ’ ; ;
W —1=069GeV> W —r=138GeV? = ' i i ;
1.0 i g = = . |
[ -0.50 E X 5 i i
B E g g f g dMaPY figa
H N
0.5 = ; u ; i =0.75F & —1=0.17GeV? W —1=081GeV? W —r=1.52GeV?
§ i i = [} " —1=034GeV? W —r=124GeV? W —1=229 GeV?
i i l ‘ —1.00F ® -r=0.65Gev? W -r=138GeV? W -1=277GeV’
0.0 I i i B -r=069Gev? W —r=138GeV?
0 2 4 6 8 10 0 2 4 6 8 10
zla zla
1.00 - - - =
W —=017GeV> W —r=081GeV? W —1=152GeV 0.0 u+d, M(z3,P3, A)
—1=034GeV? W —1=124GeV2 W —1=2.29 GeV? . =
0.75F ® -1=065Gev?> @ —r=138GeV? W —r=2.77 GeV? ' E um x i :
W 1=069GeV? W —r=138GeV? 0.2 i i i
- -] X
050 = 5 ; !
¥y ! T utd MG P 04r
0.25 ; ; ¥ ] B —1=0.17GeV? B —r=081GeV> W —r=1.52GeV?
i ; ] —0.6F —1=0.34GeV? W -1=124GeV? i —1=2.29 GeV?
l B -r=065GeV? B —r=138GeV? W -r=2.77 GeV?
0.00 B —r=069GeV> W —r=138GeV?
0 2 4 6 8 10 08 0 2 4 6 8 10
zla zala

Figure 3. Ratio scheme renormalized matrix elements are shown as a function of z3/a. The iso-vector
(u — d) and iso-scalar (u + d) case are shown in the upper and lower panels, respectively. The left
panels show the real part while the right panels show the imaginary part.

3.2 Bare matrix elements and renormalization

The bare matrix elements for the quasi axial-vector GPD Hs are shown in figure 1, where
a clear signal is observed across a wide range of momentum transfers —¢. The bare matrix
elements need to be renormalized. At z =0 and A = 0, the iso-vector matrix element H%
gives the bare iso-vector axial charge of the nucleon, g%, which needs to be renormalized
by the constant Z4. The Z4 for this ensemble has been determined as 0.7442 [99], leading
to a derived g4 = 1.164(13) using HB T d(O, 0,0). This value is consistent with results in
ref. [106] with similar quark masses. For the case of non-zero z3, it has been shown that the
non-local operator Op can be multiplicatively renormalized [107-109],

Or(z2) = Zoe ""FlOE(2), (3.9)

where Zp accounts for logarithmic divergences, and the exponential factor e=9"/?l removes
the linear divergence stemming from the self-energy of the spatial Wilson link. Since this
renormalization is independent of the hadron state and quark flavor, one can construct an
appropriate ratio to eliminate UV divergences and obtain renormalization group invariant
quantities [70, 71, 110, 111],

HE (23, P3, As a) HE (23, Py, As 1)

Mz, P, A) = 123 ga = 153 . ga. 3.10
( o ) HSB(Zi’n 07 O’ CL) 94 Hil’,{(zi'n 07 05 :u) 94 ( )

We multiply g4 = ZA’HB e d((), 0,0;a) to normalize the iso-vector M(0,0,0) to ga. This
choice of convention will be explained in the next section. In this ratio, the matrix elements in



the denominator correspond to axial-vector quasi-PDF matrix elements with zero momentum
P =0 and zero momentum transfer A = 0. Since UV divergences are independent of the
light quark flavors, we consistently use the iso-vector ﬁf’u_d(z;g, 0,0) as the denominator
in this work, which are shown in figure 2. Both the iso-vector and iso-scalar 7?[3];3(2, P A)
are used in the numerator. It should be noted again that the disconnected diagrams were
omitted for the iso-scalar case in this study.

In figure 3, the real and imaginary parts of the ratio scheme renormalized matrix elements
are presented as a function of z3 for both the iso-vector and iso-scalar cases. As one can see,
the expected —t dependence is clearly visible, with the magnitude of the matrix elements
decreasing monotonically as —t increases.

4 Mellin moments from short distance factorization

4.1 Short distance factorization

In the short-distance limit, the renormalized matrix elements can be expanded in terms of
the Mellin moments using the operator product expansion (OPE). For the zero-skewness
quasi-GPD under consideration, the OPE structure mirrors that of the quasi-PDF case,
without any mixing between moments. In the MS scheme, the short-distance factorization
(SDF) of the iso-vector quasi-GPD matrix elements can be expressed as,

- (—izgP3)"

Hyl (23, Ps, Asp) = CT@(M2Z2)TATL+1,0@;M) +O(Agep??), (4.1)
n=0 :
where the
- 1 ~
Avroltin) = [ doaH(z,6 = 0,t:p) (4.2)

represent the Mellin moments of the axial-vector GPD at zero skewness. It’s worth to mention
that the first moment flm (t; p) is the nucleon axial form factor corresponding to the local
matrix elements HE(0, Py, A; ). C,(u222) are the Wilson coefficients. At leading order
(LO), Cy(1422?%) = 1, making eq. (4.1) a simple polynomial function of the so-called Toffe time
( = z3P3. Beyond LO, the perturbative corrections account for the scale evolution from the
physical scale ~ 1/z3 to the factorization scale u, which at NLO are given by [112],

( 3+2n
2+ 3n +n?

7+ 2n
2+ 3n + n?

. C
CMS(122%) = 1+ O‘SQWF +2(1 — Hy)H, — 2H®|,

n

+ 2Hn> L.+
(4.3)
with L, = In(u?22€?77 /4) and the Harmonic numbers H, = Y-, 1/i and a? = n 1/

This SDF formula can be inserted into eq. (3.10), establishing a relationship between the
renormalized matrix elements and the moments of the GPDs,

o0 ONS(u222) S Aot 1) + O(MRep )
OO (1222) A 34(0; 1) + O(A3 oy 22)
X CNS(p22?) (—izgPy)" -

_ o
OS2y ! Ant10(t) + O(Aqep2”)-

M(Zg, P3, A) =

(4.4)




0.8
% 5oy i om=2 oole i om=2
. i n3=3 Or =3
5 06} | . 3 m=4 5 = 3 med
& - s o .
%04t - 02 L u=d,—1=069GeV
N ¥
3 3 '
= 02r § = i
& & 041 3
| u—d, —t=0.69 GeV? 3
ooprtT— L S
0 1 2 3 4 5 ®70 1 2 3 4 5
Z3P3 Z3P3

Figure 4. The ratio scheme renormalized iso-vector matrix elements for —t = 0.69 GeV? are shown
as a function of z3P; for three different values of P3. The real part (left panel) and imaginary part
(right panel) are both shown.
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Figure 5. The iso-vector moments at momentum transfer —t = 0.69 GeV?2, derived from fits of P3
dependence, are shown as a function of zs3.

We note again, the denominator in eq. (3.10) is solely the iso-vector matrix element while
the numerator can be either iso-vector and iso-scalar. As a result, fl’lﬁad((); i) = ga cancels
out in the first line of the formula. This explains our choice of ratio defined in eq. (3.10).
From this expression, the even and odd moments of the axial-vector GPD can be extracted
from the real and imaginary parts of M(z3, P3, A), respectively. Notably, it is crucial to
keep 22 small to avoid large power corrections. At present, lattice calculations are limited
to finite values of P3, which in our case are listed in table 1, allowing the extraction of only
the first few moments within a limited kinematic range of z3Ps.

4.2 Moments from fixed 22

For —t = 0.69GeV?, we have three different momenta with ng = 2, 3, 4 corresponding to
0.83, 1.25, 1.67 GeV, respectively. This allows us to extract moments from each single z3 by
fitting the P3 dependence. In this section, we consider the matching formula at LO, NLO,
as well as renormalization group improved NLO (NLO+RG) [96, 113-115] accuracy. If the
perturbative matching can describe the evolution well, the moments for a given factorization
scale p should be independent for different values of zs.

In figure 4, we present the ratio scheme renormalized matrix elements for the iso-vector
case as a function of z3P3. One can see from the plots that the dependence of the results
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Figure 6. The ratio scheme renormalized iso-vector matrix elements for the case with momentum
transfer —t = 0.69GeV? are shown as a function of z3 for three different values of P;. The real part
(left panel) and imaginary part (right panel) are both shown. The bands are reconstructed from the
fit with z5 € [2a, 6a] including the NLO matching kernels.

on Pj is very weak. This is expected because, when the perturbative evolution encoded in
Cﬁ (122%) and the power corrections are both small within the short 23 range (23 < 3a) and
cancel to a good degree in the ratio, the renormalized matrix element should depend solely
on zgPs within the current statistical error [93, 111]. To extract the moments according
to eq. (4.4), we minimize,

X5 =

Ps

( (Re[Mdata(Zg, Pg7 A)} - RG[MSDF(Zg, P3, A)])Q
Ofe
N (Im[M32%2 (23 P3, A)] — Im[M5PF (23, P, A)])Q)

2
Om

(4.5)

where og. and oy, represent the errors in the real and imaginary parts of M8 (z3 Py A),
respectively.

The moments obtained from the fits are shown in figure 5 as a function of z3. The
results are evaluated at u = 2 GeV. We omit the discussion of the axial form factor flLo here,
as it is determined from local matrix elements, requiring neither the SDF nor dependence
on z3. For the first two non-trivial moments, /1270 and [13,0, a reasonable signal emerges
starting from z3 = a. However, for the higher moments a clear signal can only be obtained
for larger values of z3. As one can see, /le’g exhibits a mild z3 dependence for z3 < 4a when
LO and NLO Wilson coefficients are used. This mild dependence is due to a combination of
discretization effects, which could be especially large for z3 = a, and missing higher-order
terms in the Wilson coefficients. The results that use NLO Wilson coefficients with RG
improved coefficients are only shown for z3 up to 3a, as for larger z3 values the scale is too
low to evaluate the strong coupling constant «;. In that range, the NLO results and NLO
results with RG resummation are consistent.

4.3 Moments from combined fits

Since the factorization formula with NLO coefficient can describe the lattice data reasonably
well, in this section we perform combined fits of matrix elements with different ng in a range
of 23 € [2min, Zmax)- Specifically, we minimize the y? = > s ng. The combined fits are more

— 11 -
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Figure 7. The moments obtained from combined fit using matrix element with z3 € [2min, Zmax] and
n3g = 2, 3,4 are shown as a function of z,,x. The squared symbols are results from z,;, = 2a while
the circled symbols are from zni, = 3a.

stable than the fits for fixed z3 values. To avoid the most serious discretization effects, we
skip the point z3 = a. We vary zmin € [2a,3a] to estimate the discretization effects and
Zmax € [Zmin + 2a, 6a] to estimate the higher-twist effects. The resulting fit yields a reasonable
x%/d.o.f., and the bands reconstructed from the fit accurately describe the renormalized
matrix elements, as shown in figure 6.

The extracted moments are shown in figure 7. The squared symbols represent results
from zpmin = 2a, while the circled symbols correspond to zpmin = 3a. As illustrated, the
results from the two znin values overlap, indicating that discretization effects are minimal
compared to the statistical errors. Regarding the z,.x dependence, it appears negligible
within the errors, particularly for the lower moments. However, higher moments require
larger zmax values to stabilize the fit.

For the final estimates, we average the results obtained from different choices of zy,;, and
Zmax, With their deviations treated as systematic errors, as we did in refs. [93, 111]. These
results are depicted as bands in figure 7, with the darker and lighter bands representing
statistical and systematic errors, respectively, covering the relevant data points.

We extended this analysis to all other values of the momentum transfer listed in table 1,
covering both iso-vector and iso-scalar cases. For the latter, we neglected the mixing with the
gluon distribution starting from O(ay) [116]. In figure 8, we summarize our determination
of first two moments, 1‘1170 and 121270, as functions of —¢. For comparison, we show results
obtained from traditional local operator methods with a similar lattice setup and pion mass
for the iso-vector case (ETMC) [106, 117]. It is encouraging that our results align with
the previous ETMC findings, suggesting that our extraction of the moments from non-local
operators is effective. Notably, we are also able to extract higher moments up to 1215@ for
the first time, as shown in figure 9. As one can see from the figure, we obtain a reasonable
signal, and the —t dependence of the results follows the general expectations. We note that
we apply the z-expansion and a dipole fit, and for each we compare the parametrization of
the ¢ dependence using data up to 1.0 GeV? and 1.5 GeV?2. In most cases, the dipole fit and
the z-expansion are in agreement. However, a difference is found between —t,,.x = 1.0 GeV?
and —tmax = 1.5 GeV2. More details are given in section 5.1.
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Figure 8. The first and second Mellin moments 1211,0 and 121270 of the axial-vector GPDs are shown.
The left panels are the iso-vector results while the right panels are the iso-scalar results. The bands are
results from z-expansion (zExp) and dipole methods by fitting data in the ranges —t € [0,1.0] GeV?
and —t € [0,1.5] GeV?. For comparison, we also show results derived from traditional local operator
methods with the same pion mass for the iso-vector case (ETMC) [106, 117].

5 Insights into nucleon spin dynamics from axial vector GPD

GPDs offer crucial insights into the spin structure of the nucleon. For instance, in a
longitudinally polarized nucleon, the contributions to the nucleon spin Siv from quark helicity,
orbital angular momentum (OAM), and total spin are represented by (SISY) (LISY) and
(J9SNY | respectively, where (...) denotes the appropriate average. At —t = 0, the first
moment of the axial-vector GPD H is directly connected to the quark helicity contribution,
expressed as,

1/t - 1 -
st=3 /_ daT(2,0,0) = 49,0, (5.1)

According to Ji’s spin sum rule [2], the contribution of the total angular momentum of quarks
JJ to the nucleon spin can be derived from the second moments of unpolarized quark GPDs,

1
T = 5 (43,(0) + Blo(0)), (52)
where A3 ((0) = fil drxH9(z,& = 0,t = 0) and Bj(0) = f}l drxEY(z,§ = 0,t = 0). We
have determined J? using the same lattice setup and framework in ref. [93]. This allows us
to determine the quark OAM contribution through,

1 1 -
L= Jl—81= -(A3,(0)+ B3,(0)) — 514({,0(0) : (5.3)

z z z 2

The quark spin-orbit correlation (SIL?) within the nucleon is another crucial aspect that
can be probed through GPDs. This correlation describes how a quark’s spin orientation is
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Figure 9. The Mellin moments Agyo, A470 and A570 of the axial-vector GPDs are shown. The left
panels are the iso-vector results while the right panels are the iso-scalar results. The bands are results
from z-expansion (zExp) and dipole methods by fitting data in the ranges —t € [0,1.0] GeV? and
—t €[0,1.5] GeV?,

correlated to its orbital motion, offering deeper insights into the internal dynamics of hadrons.
The spin-orbit correlation C¢ can be derived as follows [16-18],*

/de (2,0,0)— [/ dxH?(2,0,0)— E4(x,0,0)+2H%(x,0,0))

z—/ d:c:cf[q(x,0,0)——/ dxH(x,0,0)
2/ 2/

— 5 (A8,(0) ~ 41(0)), 5.4

'The quark spin-orbit correlation was first introduced using Wigner phase space distributions [118]; see
also ref. [119]. It depends on the path chosen for the Wilson line in the definition of the Wigner functions.
The definition we are using here corresponds to a straight Wilson line connecting the quark fields of the
corresponding bi-local operator. Related work can also be found in [120-122] and references therein.
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where we have ignored the term suppressed by the light quark mass. To determine C'?, one
needs additional input from the first moment of the unpolarized quark GPD, A‘fyo(()) =
f_ll dxH(z,§ = 0,t = 0), giving the total quark number inside the nucleon.

In this section, we will discuss the quark helicity S, OAM L and spin-orbit correlation
C? derived from our GPD moments. With the broad range of —t values available, we can

also perform a Fourier transform and explore their distribution in impact parameter space.

5.1 Quark helicity, OAM, and spin-orbit correlations in nucleons

In section 4.3, we have extracted the Mellin moments of axial-vector GPD H (z,& =0,—t)
up to the fifth order. With multiple values of —t ranging from 0.17 to 2.77 GeV?, we can
parameterize the —t dependence and extrapolate to —t — 0. One commonly used model in
fitting nucleon form factors and moments is the dipole model,

_ Ano(0)
PR
oy

where fln,o(O) and M are fit parameters. Empirically, this model has been successful in

(5.5)

fitting form factors from experiments and lattice QCD at low —t. However, when the data
span a wide range of —t, a more flexible parameterization is often preferred, such as the
z-expansion series [123],

kn]ax

An’()(—t) = Z akz(t)k, (5.6)
k=0

with,

o \/tcut —t— \/tcut - tO

2(t) =
() \/tcut_t+\/tcut_t0

(5.7)

where ¢ is selected to minimize the span of z(t) over the given range of ¢, thereby optimizing
the convergence of the series expansion. In this work, we apply tg = teut(1 — \/Tax/tcut)
with tey set to be the three-pion kinematic threshold (3m,)2. To maintain a reasonable
X2 /d.o.f. and avoid overfitting, we truncate the series at kpax = 2 in this work. To stabilize
the fit, we imposed a Gaussian prior to the |ax/ap| with a central value of 0 and width
|ak/a0‘max = 5.

To estimate the model bias, we vary the range of —t included in the fit, specifically
—t €[0,1.0] GeV? and —t € [0,1.5] GeV2. Interestingly, the results from the dipole model
not only go through the data point included in the fit but also can describe the data points
at extended region up to 3 GeV2. In contrast, the z-expansion model, although flexible,
sometimes fails to describe data points at higher —t values, as it is a series expansion that can
become unstable when extrapolated too far. For our final estimates, we average the results
from different model choices and —t ranges, taking their deviations as systematic errors, as
done in previous studies [93, 111]. Our estimates of len_i_l,() at —t = 0 are summarized in table 2
for both the iso-vector and iso-scalar cases. The statistical and systematic uncertainties,
shown in the first and second round brackets, respectively, are estimated based on the mean

,15,



A% 1.110(57)(19)  AYTT 0.625(38)(12)
A%, 0.270(12)(05)  AYET 0.191(9)(3
A% 0.102(5)(1)  AYET0.080(5)(1
A4, 0.049(3)(1)  AYET 0.037(3)(1
AT 0.021(3)(1)  AYET 0.019(3)(1

)
)
)
)

Table 2. The Mellin moments of the axial-vector GPDs, H , extrapolated to —t = 0 are presented.
The statistical and systematic uncertainties, shown in the first and second round brackets, respectively,
are estimated based on the mean and deviation of results across various model choices and —t ranges,
following the approach used in previous studies [93, 111].

and deviation of results across various model choices and —t ranges, following the approach
used in previous studies [93, 111]. Our determination of the first two moments for the
iso-vector case agrees with results from traditional local operators with a similar lattice
setup and pion mass from ETMC [106, 117], where Aqf76d:1.156(47) and A72‘76d20.262(21).
We repeat that for the iso-scalar moments we omitted disconnected diagrams, which were
found to be small on this ensemble [105], and the mixing with gluons in the perturbative
matching, which starts at O(as) [116].

The quark helicity can be derived from the first moment according to eq. (5.1), yielding,

Su=d = (0.555(29)(9), St =0.313(19)(6). (5.8)

Our findings indicate that the light quark (u+d) helicity contribute significantly to the nucleon
spin, consistent with results from previous lattice calculations (see, e.g., a recent review in
ref. [124]). In ref. [93], using the same lattice setup and methodology, we determined the total
quark contribution to the nucleon spin as J*~¢ = 0.281(21)(11) and J*T¢ = 0.296(22)(33).
Consequently, we infer the quark orbital angular momentum (OAM) as,

Lv=1 = _0.260(34)(19),  L** = —0.010(37)(8). (5.9)

Interestingly, this result suggests that the light quark (u+d) OAM is very small [124]. However,
this does not imply that the OAM of individual quarks are negligible, as the finite value of
L'~ indicates. Instead, the small total OAM for light quarks are likely due to the opposing
signs of the OAM contributions from different quark flavors, leading to a cancellation effect.

Finally, we estimate the quark spin-orbit correlation using eq. (5.4), combining A270 from
this work with A; o from ref. [93], which gives,

Cu=? = —0.356(20)(5),  Cu*?=_1.325(39)(14). (5.10)

These results are in close agreement with previous findings in refs. [16, 18]. Additionally,
it is observed that the iso-vector spin-orbit correlation is significantly smaller than the iso-
scalar one, consistent with predictions from the large N, limit [125], which suggests that
Ccv=d = O(N?) and CUtd = O(N}).

We note that, although these outcomes are encouraging, it is crucial to address systematic
uncertainties arising from unphysical quark masses, disconnected diagrams, lattice discretiza-
tion errors, and excited state contaminations in future works to achieve higher precision.
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Figure 11. Upper panels: the light quark helicity density in the impact-parameter plane. Lower
panels: the light quark helicity density as a function of b, with b, = 0, including its uncertainties.

5.2 Impact-parameter-space interpretation

In addition to the spin decomposition discussed above, the GPDs also provide crucial insights
into the three-dimensional structure of the nucleon. By performing a Fourier transform (FT)
over the momentum transfer —¢, we can derive parton distributions in the impact-parameter
space. For instance, the quark helicity distribution in this space is given by,

P2A
(2m)?

where —t = A% . Its moments f_ll dza™§(z, b, ), which are the FT of the A, 10(—t), are
averaged distributions with weight ™ in the impact-parameter plane. In figure 8, we have
shown the Ajo(—t) = 28%(—t). Similar to eq. (5.9) and eq. (5.10), the quark OAM L and
spin-orbit correlation C'? can also be defined with respect to momentum transfer —¢. The

dlaby) = [ Gop(e.e=0,AT)emr A, (5.11)

results are presented in figure 10 for both the iso-vector and iso-scalar cases. The bands
are derived using the dipole model fit from section 5.1 by taking the average of the results
obtained from the two aforementioned fit ranges. As shown in the figures, the total light-quark
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Figure 13. Upper panels: the light quark spin-orbit correlation density in the impact-parameter
plane. Lower panels: the light quark spin-orbit correlation density as a function of b, with b, = 0,
including its uncertainties.

OAM, L¥*+? remains small, and the magnitudes of both L4(—t) and C%(—t) decrease rapidly
as —t increases. For the Fourier transform over —t, we rely on the fit results from the dipole
model, as no data are available beyond 3 GeV2. The results at small by may be affected
by systematic errors due to the model assumptions, though these errors are likely minimal
since the moments decay quickly at large —t.

In figure 11, the quark helicity density in the impact-parameter plane is depicted. As
one can see, the u and d quark densities have opposite signs, but the u quark’s magnitude is
significantly larger, resulting in a positive combined helicity contribution from u + d quarks.

The quark OAM density in the impact-parameter plane, shown in figure 12, also exhibits
opposite signs for u and d quarks. This suggests that u and d quarks orbit the longitudinal
momentum in opposite directions. Notably, since the magnitudes of u and d quarks are
similar, their sum is nearly zero. This observation is very different from the quark number
density distribution we studied in ref. [93], where the d quark shows lower magnitudes in
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the impact-parameter space compared to the u quark. This difference may imply that d
quarks possess a larger kp for a given bp.

Lastly, for the first time, we present results for the quark spin-orbit correlation distribution
in impact-parameter space. We find that these correlations are negative for both light quarks,
with the u quark exhibiting a larger magnitude. Interestingly, the sign of C? = (SYL?)
matches that of S - L = (SISY) . (LISY) for each quark flavor. Additionally, unlike S9
and L7, which approach zero rapidly as by nears the nucleon size, there is still a non-zero
value observed for the spin-orbit correlation.

6 Conclusion

In this work, we present a study of the moments of axial-vector GPD H using lattice QCD. We
compute the quasi-GPD matrix elements in an asymmetric frame with multiple values of the
momentum transfer, allowing us to study the ¢ dependence. The quasi-GPDs matrix elements
are then renormalized using the ratio scheme. We employ the short-distance factorization
framework to extract the first few moments of the GPDs. For the first time, we obtain results
for up to and including the fifth moment of axial-vector GPD H with reasonable signal and
t dependence as summarized in table 3 and table 4. Our determination of the first two
moments is consistent with previous calculations using traditional local operator methods.
From these moments we infer the quark helicity and OAM contributions to the nucleon spin
as well as the quark spin-orbit correlations. In agreement with previous findings, our results
indicate that the light quark helicity contributes significantly to the nucleon spin, while the
OAM of individual quark flavors shows an interesting pattern of cancellation, leading to
a small net OAM for the light quarks. Additionally, the spin-orbit correlations for both
light quarks are found to be negative, aligning with the sign of S7- L. The magnitudes of
the iso-vector and iso-scalar combinations are in agreement with the large- N, predictions.
We emphasize that the use of an asymmetric frame with multiple values of ¢ enables us to
explore impact-parameter space distributions via a Fourier transform over ¢. That provides
us multiple images of the nucleon spin structure, showcasing the spatial distributions of quark
helicity, orbital angular momentum (OAM) and, for the first time, the spin-orbit correlations
in the transverse plane. These distributions exhibit distinct features for different quark flavors,
offering a deeper understanding of the nucleon’s internal structure. However, we acknowledge
several systematic uncertainties that were not addressed in this exploratory work. Future
research will aim to control these uncertainties, including contributions from disconnected
diagrams and gluon mixing in the iso-scalar case. It will also involve a careful analysis of
excited-state contamination with multiple source-sink separations, calculations with quark
masses at the physical point, and the use of multiple lattice spacings to achieve the continuum
limit. These efforts aim to further refine our understanding of nucleon spin dynamics.
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1.38 0.502(20)(01) 0.173(09)(03) 0.061(03)(01) 0.034(02)(04) 0.010(02)(02)
1.52 0.351(32)(02) 0.143(10)(04) 0.051(05)(02) 0.028(03)(05) 0.014(03)(03)
2.29 0.348(63)(04) 0.161(30)(04) 0.041(10)(04) 0.035(07)(05) 0.006(06)(05)
2.77 0.274(21)(02)  0.119(07)(02) 0.043(04)(02) 0.023(02)(03) 0.006(05)(02)
Table 3. The table of iso-vector moments AZ;?,O‘

ST A L L.
0.17 0.554(34)(03)  0.184(07)(05) 0.072(04)(03) 0.036(03)(06) 0.016(02)(03)
0.34 0.531(40)(02) 0.150(13)(04) 0.075(05)(02) 0.032(03)(06) 0.020(03)(03)
0.65 0.427(29)(02) 0.162(07)(04) 0.065(04)(02) 0.032(02)(06) 0.014(02)(02)
0.69 0.424(20)(01) 0.157(07)(05) 0.053(04)(01) 0.033(02)(06) 0.010(02)(01)
0.81 0.407(33)(01) 0.147(10)(04) 0.062(04)(01) 0.030(02)(06) 0.016(03)(02)
1.24 0.296(35)(02) 0.113(11)(03) 0.057(05)(02) 0.025(04)(04) 0.013(03)(03)
1.38 0.313(32)(02) 0.135(10)(03) 0.047(06)(02) 0.028(03)(04) 0.008(03)(02)
1.38 0.290(20)(01) 0.119(07)(03) 0.047(04)(01) 0.026(02)(04) 0.009(02)(02)
1.52 0.217(28)(02) 0.118(09)(03) 0.043(06)(02) 0.022(03)(04) 0.013(03)(02)
2.29 0.231(61)(04) 0.121(24)(05) 0.033(09)(04) 0.030(07)(07) 0.002(07)(05)
277 0.199(16)(02)  0.077(07)(03) 0.036(04)(02) 0.018(02)(03) 0.004(02)(02)

Table 4. The table of iso-scalar moments AZi‘f 0
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