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In the Standard Model, the axial current is not conserved due to fermion
masses and the axial anomaly. In this work, we employ perturbative quan-
tum chromodynamics to evaluate the matrix elements of the local and
non-local axial currents for a gluon target, providing insights into their re-
lation with the axial anomaly. Our analysis revisits well-established results
related to the nucleon spin sum rule, along with recent developments in off-
forward kinematics. A significant aspect of our approach is the use of an
infrared regulator, with a particular focus on the non-zero quark mass. We
observe important cancellations between the contributions from the axial
anomaly and the quark mass term, and we discuss how these cancellations
are linked to the conservation of angular momentum.
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1. Introduction

The axial anomaly shows up in the divergence of the flavor-singlet axial
current, J(z) = 32, q(x) v"y5 q(2),

sy 3y (FW(:C)EL,,(;C)) .
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Ou Tt (@) = 2img q(x) v5 q(x)

which contains the quark mass term and the anomaly contribution. Soon
after the discovery of the nucleon spin crisis, it was suggested that the axial
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anomaly could play an important role in understanding the nucleon’s spin
structure. Specifically, it was argued [1, 2| that the measured (very small)
quark-spin contribution AX differs from the ‘intrinsic’ quark-spin contribu-
tion AX' according to

IS -\ N (2)
27

where AG represents the gluon-spin contribution. The term proportional
to AG was attributed to the axial anomaly. This proposal, however, faced
several criticisms. For instance, it was argued [3] that the anomaly would
give rise to a non-local contribution. In that regard, the concern was that
matrix elements of the anomaly operator between gluon states would diverge
in the collinear limit in which the two gluons have the same momentum. It
was also suggested that this ‘pole’ behavior would provide an explanation
for the generation of the large mass of the 7’ meson [4, 5].

Recent studies [6-9] have revisited this idea, discussing also deep-virtual
Compton scattering (DVCS) off the proton in perturbative QCD. In this
work, we adopt a similar approach but use the quark mass as an infrared
(IR) regulator and perform explicit contractions with physical polarization
vectors of the gluons. Contrary to earlier expectations, we do not observe
problematic behavior in the forward limit. Furthermore, we find that the
‘pole’ term arising from the anomaly cancels with the contribution from the
quark mass term. Interestingly, this cancellation in the collinear limit is
actually required by the conservation of angular momentum. More details
about our work can be found elsewhere [10].

2. Parton distribution function

We define the parton distribution function (PDF) g¢i(z) by evaluating
the light-cone operator of the axial quark current between gluon states

ob % (@) = / %ei’” (9 (P XN)|a(=3) 7 W (=5.5) 2 (5) l9(p, M),
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with A (\') denoting the polarization state of the incoming (outgoing) gluon,
eted™ = etnvee & p, and x = kt/pt. The PDF is given by

1 + s Fos
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which also indicates that, as a consequence of angular momentum conserva-
tion, the matrix element in Eq. (3) is non-zero only for A = \.

g1(z)
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We compute g1 (x) at O(as) in perturbative QCD for a finite quark mass
and space-like off-shellness p? of the gluons, finding for the positive a-region

1 2 _ 2 1—
g1 (z;m, p?) :Z‘;[(g_lnm p/‘;( $)>(2x—1)

p’x(l — ) }
m?2 —p?z(1—x)]’

(®)

where fi2 = 4me™ 722 and p is the regularization scale. The result for the
negative z-region follows by substituting x — —z. The UV divergence of g1
is reflected by the 1/¢ pole, while both m and p? act as IR regulators.

The lowest moment of g1 (z), which gives the local axial current for for-
ward kinematics, is UV-finite, but it depends on the n = —p?/m? ratio [2].
Here, we just report results in two limits

1 1
/dm g1 (a:;m,pQ) 30 0, /dajgl (x;m,p2) e —gé—s. (6)
T
21 21

Multiplying the expression in Eq. (6) for n — oo by the number of quark
flavors Ny gives the prefactor of AG in Eq. (2) [2]. In the next section, we
connect the results in Eq. (6) to the operators on the r.h.s. of Eq. (1).

3. Local axial current

We move on to discuss the matrix element of the local axial current
JE'(x) for non-zero momentum transfer. To this end, we first consider the
matrix element of the divergence of the current

(9 (P, N)] 0,5 (0) | g(p, ) = =262 (Dy (4%) + D (4%)) . (T)

with P = (p+p')/2 and A = p/ — p. The quantity D, (D) is the contribu-
tion of the anomaly (mass) term in Eq. (1). We evaluate the matrix element
in Eq. (7) for two cases: (i) arbitrary A%, m # 0, on-shell gluons; (i) zero
A2, m # 0, off-shell gluons (p? = p'? < 0). We obtain

o Qg VTHA+ T
D, (A% m,0) = o Dm(AQ;m,O):27T7_12W Nh
Dm (O,m,pz) = _%7
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with 7 = —A2/m?2. For both 7 — 0 and  — 0, there is an exact cancella-
tion between D, and D,, [10]. We also find that indeed the axial anomaly
contributes to both results in Eq. (6), where in the case of n — oo the
quark mass term is absent and the non-zero result first reported in Ref. [2]
is entirely due to the axial anomaly.

The local axial current for on-shell (real) and off-shell (virtual) gluons
takes the general form (see Ref. [10] and references therein)

I = (G (A%m,0) + G2 (A% m,0)) Ay = G (A%m,0) A5, (9)
4p*G1 (A% m, p?)
Féu‘virtual = - AQ _ 4p2 A/iL
A2Gy (A%, p?
+ (Gz (A% m,p?) + 22( — 4;,; r) ) A, (10)
where A} = —2ie#¢<"F and A5 = 25 Arec<"P A, Considering the (anoma-

lous) axial Ward identity, it provides the connection with the matrix element
of the divergence of the axial current in Eq. (7) mentioned in the previous
paragraph. To be specific, for on-shell gluons, one obtains G(A2?;m,0) =
Do (A%;,m,0) + Dy (A% m, 0).

We now evaluate A} and A% using physical polarization vectors of the
gluons. For this analysis, we choose the symmetric reference frame in which

_ At - _ ¢4t %
P = <P+7 Wv OJ_> ) A= <_2€P+7 Wa AL) 9
(11)

but our general conclusions do not depend on this choice. We use the polar-
ization vectors e’(‘l) and e’é) specified in Ref. [11]. The linear combinations
€+) = F (6(1) + i6(2))/ v/2 describe states of definite (light-cone) helicity.
With the notation Alf(ij) — _9i M GT etc., we find that, for the specific
case of u = +, the non-zero expressions are

_ At

+
A 5 (—t) "

Ay - AT fe (12)

(+4) (=)

Due to angular momentum conservation, a gluon helicity flip is forbidden for
forward kinematics, implying for on-shell gluons the constraint I 5+ (&, A =
6J-)‘real = 0. Since, according to Eq. (12), A can be non-zero (for ¢ #
0), this constraint means that the form factor G(0) must vanish, which it
actually does for m # 0. Keeping the quark mass is therefore necessary to
ensure the conservation of angular momentum. In the following, we will see
the same result in the context of the non-local current.
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4. Generalized parton distributions

In this section, we revisit the light-cone operator for the non-local axial
current, now evaluated between gluon states with different momenta and for
on-shell gluons. This means that we consider the correlator

+ dz™ -z — z zZ z z
F{, N, A)Z/Ze”“ (g (@ \)a (=3) v s W(=3,3) a(3) lalp, V)|,

4
(13)
which defines two independent generalized parton distributions (GPDs), H;
and Hy. These GPDs can be calculated according to

Hy (2,6, 4?) = 2(1162)(FﬁfwﬂggA)—-Fh+“%x,A{), (14)
Hﬂagm):;<ﬂfﬂm¢nﬂfﬂmﬁﬁ. (15)

Therefore, H; is associated with helicity-conserving transitions, while Hs re-
quires a helicity flip. However, for AL =0 1, a gluon helicity flip is forbidden
by angular momentum conservation, so Hs must vanish in this limit [10].

Integrating the GPD correlator over z yields the local current. Compar-
ing with Eq. (9), we find fil dx Ha(x, &, A%) = G(A?). Thus, Hs is related
to the axial anomaly as already pointed out previously [8, 9].

To compute the GPDs in perturbative QCD, we evaluate the same Feyn-
man diagrams that contribute to the PDF g¢;, now for off-forward kinematics.
The full results for H; and Hy are lengthy and can be found in Ref. [10].
We emphasize that for 7 — 0 (finite quark mass), Hy indeed vanishes as
discussed above. We repeat that this result is required by the conservation
of angular momentum. On the other hand, for 7 — oo, we find

2(1 —
o —5326) foréE <z <1,
Hy (.6, A%m) = 220 176 (16)
Tl for —¢<z<g,
1+¢

which agrees with Ref. [9], where the quark mass was neglected right from
the start of the calculation. Since the result in Eq. (16) does not depend
on A2 it is tempting to conclude that Hs is finite in the forward limit.
However, 7 — oo means that A? must be finite. Put differently, the result
in Eq. (16) (for massless quarks) holds for non-zero momentum transfer only.
As emphasized in the previous section, the combination of the anomaly and
the quark mass is necessary for consistent results in the forward limit of
the local current. Likewise, for the non-local axial current, one only finds
a meaningful result in the forward limit for a non-zero quark mass.
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5. Conclusions

We studied the matrix elements of the local and non-local axial current
evaluated between gluon states at O(ags) in perturbative QCD, including
quark mass effects. We confirmed the connection of the results with the
axial anomaly for on-shell and off-shell gluons. In the former case, the quark
mass not only regulates the collinear limit, but even leads to a cancellation
of terms that would otherwise violate angular momentum conservation. Our
results also imply a corresponding cancellation for the box diagram in DVCS,
in contrast to a recently reported ‘pole’ in the forward limit.
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