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Abstract
The increasing reliance on drone swarms for various applications
necessitates robust real time anomaly detection mechanisms to
ensure operational security and efficiency. Federated learning is
particularly well-suited in the drone context as it enables decentral-
ized data processing, preserving data privacy and security while en-
hancing detection accuracy. In this paper, we explore optimization
methods for federated learning-enabled network incident anomaly
detection in drone swarms using the NSF AERPAW platform. To
achieve this, we demonstrate a defense mechanisms such as differ-
ential privacy and adversarial training, to strengthen the robustness
of federated learning models against data poisoning attacks. We are
collecting three sets of metrics for accuracy, system and network us-
age under a variety of test cases reflecting benign, mildly poisoned,
highly malicious, safe situations. The experimental results reveal
that adversarial training is particularly effective, achieving up to
91.1% accuracy with a 33% data poisoning volume. Additionally,
we evaluate the computational overhead introduced by these de-
fenses, finding that while they enhance security, they also increase
CPU usage by up to 233% in active drone scenarios. These findings
highlight the trade-offs between security and operational efficiency
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in FL-enabled drone swarms, offering critical insights for deploy-
ing robust, real-time anomaly detection systems in decentralized
environments.
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1 Introduction
Drone swarm topology is highly dynamic, with frequent changes
due to adhoc network connections and flight path adjustments [16,
27]. Drones combine mobility with operational flexibility for meet-
ing highly critical mission goals such as disaster response, environ-
mental monitoring, precision agriculture, surveillance, supply chain
management [1, 16]. These applications require drones to produce
and process massive volumes of real-time, multi-modal sensitive
data on-site. The resource-constrained drones must continuously
process data to make immediate informed decisions for a variety
of mission-critical tasks such as avoiding obstacles, adjusting flight
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paths, or responding to environmental changes. This real-time re-
quirement necessitates low-latency communication and reliable
on-board processing capabilities [7, 16]. Federated Learning (FL)
can play a crucial role in this context by enabling decentralized
data processing across drone swarms, allowing for the develop-
ment of models that improve decision-making while preserving
data privacy in these resource-constrained environments.

Another critical aspect for drone operations is ensuring the secu-
rity and privacy, which has led to many recent works [14, 20, 21, 26].
Addressing these challenges is essential to maintain the reliability,
integrity, and effectiveness of drone-based operations. However,
there is a lack of high quality state-of-art on drone testbed inte-
gration with federated learning threat models and defense solutions.
Developing robust security measures and integrating advanced
computational models are vital to overcoming these challenges and
ensuring the successful deployment of drones in various critical
applications. Prior works have often focused on isolated aspects
of swarm architecture, such as ad-hoc networks, AI, or security
along with flight path management, without comprehensive testbed
experimentation in realistic scenarios [7].

In this paper, we design and implement secure solutions for
drones during full flight, ensuring they can performmission-critical
tasks effectively while managing computational efficiently. We have
developed a comprehensive framework that integrates FL tech-
niques for malicious client defense by performing network anomaly
detection and adversarial training defense in a real-world drone
testbed. The complete FL pipeline, including baseline and defense
mechanisms, is integrated into the Aerial Experimentation and Re-
search Platform for Advanced Wireless (AERPAW) setup [13], with
flight durations ranging from 25 to 60 minutes. To assess our solu-
tion, we evaluate it using three sets of metrics in terms of: machine
learning performance, network stability, and hardware usage.

Our primary contributions include developing a custom FLmodel
trained on two different IoT attack datasets. We set up a basic FL
system for drones, utilizing fixed and edge nodes to address com-
putational limitations and privacy concerns. We present two attack
scenarios for drone data poisoning: label flipping and feature noise.
Our threat model involves a utility-centric attack, where client
data is poisoned to compromise model accuracy. The defense tech-
nique leverages inbuilt TensorFlow library features such as robust
aggregation and differential privacy. Additionally, we incorporate
computationally-intensive adversarial training for severe poisoning
cases. We demonstrate the effectiveness of the proposed strategies
in emulated scenarios using the AERPAW infrastructure [2]. We
propose a series of experiments to evaluate the performance of
the system and defense strategies, considering scenarios involving
simulated flight paths and simultaneous computationally intensive
tasks involving image detection.

We study the various trade-offs, balancing the computational
efficiency of offloading tasks to edge nodes with the need to ensure
data privacy through FL. By integrating FL with advanced defense
mechanisms, we provide evidence for effective anomaly detection
and response strategies. Our approach mitigates the impact of ad-
versarial attacks and data poisoning, ensuring that the FL models
maintain high performance and reliability in dynamic and resource-
constrained environments. This not only strengthens the security
posture of drone swarms but also optimizes their computational

resources, enabling more effective real-time decision-making and
mission success in critical applications.

The rest of the paper is organized as follows: Section 2 presents
our review of the related work. Section 3 outlines the methodology
for distributed anomaly detection, featuring FL attack and defense
scenarios. Section 4 details the results of our experiments in the
AERPAW testbed. Finally, Section 5 concludes the paper.

2 Related Work
2.1 AERPAW Testbed
The AERPAW is a cutting-edge infrastructure [13] that is designed
for advanced research in wireless communication and networked
aerial systems [18]. AERPAW offers a comprehensive infrastructure
for conducting experiments with drones, ground nodes, and edge
computing resources. This platform is instrumental in facilitating
innovative research and development in diverse critical areas, such
as disaster response management, smart agriculture, and smart
city [15].

The infrastructure includes a diverse array of drones equipped
with state-of-the-art communication and sensing technologies. These
drones can operate autonomously or in coordination with ground
nodes, enabling complex experimental setups. These edge nodes
can perform computationally intensive tasks on-site, reducing la-
tency and improving response times. AERPAW supports robust
wireless communication infrastructure, including Wi-Fi, 4G/5G,
and specialized drone communication protocols, ensuring seamless
data transfer between fixed and portable nodes [13]. The platform
offers both virtual real-time emulations and approved real portable
node missions. It enables researchers to test and validate new tech-
nologies in a controlled, repeatable, and cost-effective environment.
We utilize AERPAW physical platform for our drone swarm exper-
imental testbed. We also leverage the FLYPAW [8] application in
AERPAW to enhance the performance monitoring capabilities in
terms of the network and system metrics. This makes AERPAW an
ideal platform for our efforts to develop optimized and secure threat
intelligence frameworks for dynamic drone environments.

2.2 Federated Learning & Anomaly Detection
FL is an advanced machine learning paradigm introduced by Google
in 2016 [9] that facilitates decentralized data processing [5]. Un-
like traditional approaches that require transferring data to a cen-
tral server, FL trains models locally on edge devices or clients.
Each client computes model updates using its local data, which
are then aggregated on a central server to create a global model.
This approach enhances data privacy and security by ensuring that
raw data remains on the clients, thereby reducing the risk of data
breaches. Additionally, it minimizes communication overhead and
latency associated with data transfer to central servers. By lever-
aging the computational power of edge devices, FL is scalable and
efficient for large-scale applications.

Anomaly detection, which involves identifying patterns in data
that deviate from expected behavior, is crucial for detecting critical
issues such as security breaches, fraud, or system failures. Tradi-
tional methods rely on centralized data processing, aggregating
data frommultiple sources to identify these anomalies. However, FL
offers significant advantages over centralized learning for real-time
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detection of rare or distributed anomalies that may remain unde-
tected in aggregated datasets [24]. Consequently, FL has become a
well-explored approach for threat intelligence applications in IoT
and edge computing environments. Due to the dynamic nature of
network connections and the limited computational resources of
individual drones, implementing anomaly detection using FL on a
drone swarm is a challenging endeavor [19]. Our novelty is that we
explore the benefits of FL for optimizing network incident anomaly
detection and enabling decentralized data processing.

2.3 Adversarial Attacks on Federated Learning
Despite their privacy-preserving capabilities such as secured aggre-
gation and differential privacy, FL is vulnerable to data poisoning
attacks. The decentralized FL becomes susceptible, as the central
server relies on aggregated updates from numerous clients. By cor-
rupting the training data on even a few clients, adversaries can
significantly distort the performance of the global model, leading
to inaccurate, biased, or harmful outputs [10]. FL threats are catego-
rized into utility-centric and privacy-centric threats. Utility-centric
threats involve poisoning data or models, compromising model
accuracy. Privacy-centric threats focus on extracting sensitive infor-
mation from the training data, jeopardizing data confidentiality.

Depending on the knowledge and capabilities of the adversary,
data poisoning attacks can be classified into white, grey, and black
box settings [10, 25]. White-box attacks provide the attacker full
access to model parameters and predictions, making these attacks
highly sophisticated and difficult to defend against, as the adversary
can precisely manipulate the model. Grey-box attacks offer partial
knowledge of the system, which is a more realistic scenario as
attackers can exploit specific vulnerabilities with moderate effort
and information, making them practical and challenging. Black-box
attacks provide the least information, requiring the attacker to infer
the system design and behavior based solely on observed outputs,
making these attacks less precise but potentially damaging [11].

Feature noise [4] is an adversarial technique where the attacker
introduces random or maliciously crafted noise directly into the
features of the training data, causing the model to learn incorrect
patterns thereby degrading the performance. Techniques such as
data obfuscation, where data is intentionally scrambled or distorted,
and feature tampering, where specific features are corrupted. In La-
bel flipping attack [12] the adversary intentionally alters the labels
of the training data, causing the model to learn incorrect associa-
tions between features and labels. This manipulation degrades the
model’s performance by introducing systematic errors during the
training process. In a typical label-flipping attack, benign labels
are changed to incorrect or misleading labels, leading to biased or
inaccurate predictions.

The impact of a label-flipping attack can be more severe in com-
parison with the feature noise attack because the model is directly
misled about the correct relationship between the inputs and the
outputs. However, both these attacks pose a significant threat in
FL due to the decentralized nature of the training process. Each
client trains on its local data and sends model updates to a cen-
tral server. An attacker controlling one or more clients can inject
noise into the local training data, compromising the global model
performance [17]. Detection becomes difficult because the central
server does not have direct access to the raw data and relies on the

integrity of the client updates. In our work, we uniquely focus on
black-box utility-centric attacks as they degrade the accuracy and
effectiveness of the model. We present sophisticated attack pipelines
to emulate the behavior of label flipping and feature noise attacks.

3 Framework for Experimental Configuration
and Computational Analysis

3.1 AERPAW Experiment Configuration
Scope of Experimentation. Our primary experimentation objective
is to evaluate distributed anomaly detection modeling of network
events for drone swarms, featuring FL attack and defense scenar-
ios. Utilizing the AERPAW platform, we conduct stress testing to
discover the limits of both the drones and the platform itself. By
pushing the system to its boundaries, we can identify potential
vulnerabilities in communication channels and ensure that data in-
tegrity is maintained. This aspect of the testbed’s utility is crucial
for real-world applications, as it helps address unforeseen security
and system utilization challenges. The ability to simulate and test
these scenarios in a controlled setting allows for a more thorough
understanding of potential issues, leading to the development of
more resilient systems. The significance of these experiments ex-
tends beyond theoretical research; they provide practical insights
that can be directly applied to enhance the safety and reliability of
drone operations using industry standard hardware, and realistic
field conditions.

The introduction of several complex scenarios in the AERPAW
testbed, such as combining FL with anomaly detection networks,
highlights the timeliness and significance of our approach. FL al-
lows for the development of machine learning models using de-
centralized data, which is particularly useful in scenarios where
data privacy is a concern. Anomaly detection at the network-level,
on the other hand, helps in identifying unusual patterns or behav-
iors that could indicate security threats or system malfunctions.
Integrating these technologies within AERPAW experiments in
our work not only demonstrates the platform’s versatility but also
highlights its potential for advancing the state-of-the art in drone
technology experimentation in advanced wireless environments,
and network security related studies.

Overall Workflow. The experimental setup within the AERPAW
network, as depicted in Figure 1, illustrates a holistic network con-
figuration designed to assess the resilience of FL models against ma-
licious threats. The setup encompasses 2 to 5 portable nodes, each
furnished with identical computational resources, among which
one node is deliberately designated as malicious. This node is tasked
with simulating attacks to evaluate their potential impact on the
performance of the FL model. Essential to this configuration is a
fixed node that manages the crucial FL average aggregation process,
a core component of FL architecture, facilitated by the AERPAW
network infrastructure.

AERPAW provides the essential network backbone, virtual ma-
chines, and SSH access, which supports the exploration of the plat-
form’s capabilities and its constraints for diverse experimentation.
Each portable node is equipped with datasets that may be either
normal or poisoned to simulate data integrity attacks, alongside
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Figure 1: Overall Experimental Setup of Federated Learning Network with Defense Mechanisms in AERPAW

monitoring tools that include both hardware and network moni-
toring, and FL models that incorporate defensive mechanisms to
guard against these attacks.

Additionally, each node operates under a predefined flight plan.
The fixed node is instrumental in aggregating weights from the
portable nodes, thereby orchestrating the overall FL process. The
system is further bolstered by integrated defense mechanisms
within both the portable and fixed nodes to protect against data
poisoning and other forms of cybersecurity threats. The setup also
includes custom monitoring and metric logging capabilities to en-
hance operational oversight. However, limitations exist within the
AERPAW setup such as the inability to log certain metrics directly,
the absence of battery life monitoring during simulations, and net-
work restrictions that impede communication between container-
ized applications across different nodes. These constraints necessi-
tate consideration when deploying and testing models that leverage
constrained resources in this environment.

ExperimentationWorkflow on AERPAW.. The experimentation work-
flow within the AERPAW platform involves several key steps to
ensure a comprehensive experimentation with our approach. Figure
2 details the development process on the AERPAW platform. The
process begins with Initiate Development, which includes submit-
ting paperwork to AERPAW, selecting fixed and portable nodes,
and obtaining necessary files such as manifests and OpenVPN files.
Next, in the Local Computer Setup phase, essential applications such
as OpenVPN, QGroundControl, and a terminal for accessing the
OEO Console are installed, with Mac users utilizing TunnelBlick
instead of OpenVPN for connectivity[2].

Following setup, the Add Experiment Files step (third row) in-
volves incorporating datasets, FL models, and data collection scripts
onto the nodes. The Start Experiment file is modified to include
parameters for traffic, radio, vehicle, and FL client operations, along
with poison and defense files. The Test phase (fourth row) then
verifies the Start Experiment file for correct file paths and ensures
relevant scripts are uncommented. Nodes are restarted through
the OEO Console, and experiments are visualized using QGround-
Control. In the Finding and Collecting Info phase (end row), data
such as QGroundControl files, CPU logs, and iPerf output files are

gathered during the experiment. Finally, in the Post Processing and
Visualizing phase, collected data is processed and visualized for
final analysis to determine the success of the experiments. This
structured workflow ensures that all aspects of the experiment are
thoroughly examined, from setup to post-processing, allowing for
accurate and reliable results.

3.2 Federated Learning pipeline
3.2.1 FL Preliminaries. Our FL pipeline is built using two primary
frameworks: Flower1 and TensorFlow2. Flower orchestrates the dis-
tributed training process by coordinating communication between
a central server and multiple edge devices. The server collects par-
tial model updates from each device, combines them to create a
global model, and then distributes this updated model back to the
devices for further training. Flower seamlessly integrates with Ten-
sorFlow, which we use to develop the deep neural network (DNN)
model. It is a multilayer perceptron (MLP) specifically designed to
achieve high accuracy in detecting drone network events from spe-
cialized datasets. The detailed DNN model architecture is described
in Section 4 of this paper.

Our setup is deployed on the AERPAW platform, with the fixed
node serving as the aggregator server and the portable nodes func-
tioning as edge nodes. Initially, we explored deploying the FL system
using Docker containers to create a portable and modular environ-
ment. However, we encountered limitations related to AERPAW’s
network security, which restricts inter-container communication
across nodes. Although it might be possible to overcome these issues
with additional configuration, we chose to simplify the experimen-
tation process by not relying on containerization as a requirement
for our deployment.

3.2.2 Adversary Goals and Capabilities. The primary goal is to
execute a data poisoning attack as described in Section 2.3, where
the integrity of the training data is compromised to degrade the
global model performance. Figure 3 shows a detailed step-by-step
attack pipeline for the process. We assume that the attacker has

1https://flower.ai/
2https://www.tensorflow.org/federated
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Figure 2: A Simplified Step-by-Step Process for AERPAW Development Experiment Setup and Execution

gained limited access to the file system of at least one drone in the
network during flight. The attacker is aware of the existence of a
FL model, but lacks in-depth knowledge of the DNN architecture,
training process, secure transfer or the global aggregation algorithm.
However, by using command-line tools, the attacker can inspect sub-
processes running on the compromised node, potentially gaining
insight into the dataset content, targets, and variables once the
relevant files are located.

To implement this attack considering the attacker’s perspective,
the first step involves locating all files with a .csv extension within
the identified folder. These files are then strategically corrupted
with minor modifications to escape detection. Once the files are
identified, the simulation proceeds to identify a “Label” column
within each dataset, representing the target for a label-flipping
attack. In this step, the simulation assumes that the attacker can
recognize a generic label column. The attack involves replacing a
certain percentage of the labels, simulating the introduction of er-
rors. For binary classification tasks, labels such as 1 and 0 are flipped,
while in non-binary cases, the least frequent label is identified and
flipped, simulating a more sophisticated attack vector.

For the feature noise attack, the simulation considers each column
in the dataset, identifying those that contain numeric data. For each

identified numeric column, the simulation adds random noise to the
values, considering the distribution of the data. By introducing small
but impactful changes, the attacker subtly degrades the quality of
the dataset. Finally, the adversary replaces the original training
data with the poisoned data in the designated folder, representing
the completion of the attack.

3.2.3 Defense strategies. To counter these adversarial threats, we
incorporate two primary defense mechanisms into our FL pipeline:
Differential Privacy and Adversarial Training.

Differential Privacy is employed to protect the contributions
of individual data points by introducing noise into the gradients
during training. This method ensures that even if an attacker gains
access to the model updates, they cannot accurately infer sensitive
information from any single data point. The gradients are first
clipped to a predefined norm and then perturbed with Gaussian
noise, as represented by the equation: 𝑔 =

𝑔

max(1, | |𝑔 | |2
𝐶

)
+N(0, 𝜎2𝐶2),

where 𝑔 represents the gradient, and N(0, 𝜎2𝐶2) is the Gaussian
noise added to ensure privacy. This technique effectively masks
the impact of individual data points on the overall model, thereby
preserving privacy and increasing the system resilience to inference
attacks.
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Figure 3: Attack Pipeline Setup showcase with the label flipping attacks and
feature noise attacks.

Adversarial Training involves incorporating adversarial exam-
ples—data points intentionally perturbed tomislead themodel—into
the training process. By doing so, the model is trained to resist these
perturbations, thereby enhancing its robustness against potential
adversarial attacks. The process of generating adversarial examples
can be expressed as: 𝑥adv = 𝑥 + 𝜖 · sign(Δ𝑥L(𝑀 (𝑥), 𝑦)), where
𝑥adv is the adversarial example, 𝜖 is the perturbation magnitude,
and Δ𝑥L(𝑀 (𝑥), 𝑦) is the gradient of the loss function with respect
to the input 𝑥 . These defense mechanisms are integrated into the
Federated Averaging algorithm, where each client performs local
updates with the specified defense strategies in place. The central
server then aggregates these updates to refine the global model,
ensuring that it remains robust against adversarial manipulation.

3.2.4 Monitoring. To ensure the integrity and stability of the FL
model, we embeddedmonitoring and evaluationmechanismswithin
the FL process. These mechanisms are crucial for promptly detect-
ing any deviations due to attacks, although they introduce addi-
tional complexity and potential latency, particularly in edge en-
vironments with limited computational resources. Despite these
challenges, the chosen defense strategies are designed to provide a
robust defense mechanism, balancing the trade-offs between secu-
rity and efficiency. The overarching goal is to maintain the model’s
integrity without compromising the operational stability of the
drones, ensuring they can perform their tasks with minimal disrup-
tion, even in the face of adversarial threats.

The detailed evaluation of the FL pipeline’s performance, includ-
ing its resilience to attacks, is discussed in Section 4. Our initial
intuition suggests that adversarial training alone should suffice
to maintain model performance under attack scenarios. The inte-
gration of defense mechanisms such as differential privacy and
adversarial training should not significantly compromise the com-
putational performance of the edge devices. Interestingly, during

the mission, it was observed that the battery life of the drones re-
mained unchanged despite the computational demands, suggesting
that the current testing environment may not fully replicate the real-
world impact of computational consumption on battery performance,
which could be a critical factor in actual deployment scenarios.

3.3 During flight computational workload
In this study, we explored two realistic operational scenarios to
rigorously assess the performance and resilience of our FL model
under different conditions. The experimental design was struc-
tured to simulate flight planning and real-time object detection
tasks, focusing on computationally intensive operations to evalu-
ate the system’s efficiency and robustness. These scenarios were
specifically chosen to stress-test the FL model by imposing high
computational demands, thereby providing a comprehensive eval-
uation of the system’s capability to maintain operational security
and efficiency under resource-intensive conditions.

For the flight route planning component, we utilized the Fly-
Paw [8] software suite, which is integrated with the AERPAW
testbed infrastructure. FlyPaw employs a time-optimized planning
(TOP) algorithm to manage task offloading and route planning, tak-
ing into account variables such as network connectivity uncertain-
ties and data collection requirements. This setup allowed for con-
trolled experiments, including simulated poisoning attacks, to eval-
uate the resilience of the FL system. The analysis of post-experiment
data, including iPerf synthetic traffic information and flight metrics,
provided insights into system performance and helped refine our
approach. This experimental framework enabled a thorough evalua-
tion of the system’s ability to handle high computational loads while
maintaining robust security measures, demonstrating the practical
applicability of our solutions in real-world drone operations.

In parallel, we developed an object detection model using the
YOLOv8 [23] architecture, specifically trained on the VisDrone
2021 [28] dataset, which is tailored for aerial object detection tasks.
The dataset comprises of more than 288 video clips with 261,908
frames and 10,209 static images, annotated with over 2.6 million
bounding boxes representing various objects such as pedestrians,
vehicles, and bicycles. Collected across 14 cities in diverse urban and
rural settings, and under varying weather and lighting conditions,
this dataset provides a robust foundation for object detection in
real-world scenarios. An example of the images and annotations
from this dataset is depicted in Figure 4.

The YOLOv8 model was also integrated into our FL framework
using the Flower framework [6], presenting a realistic scenario
for object detection on edge devices such as drones. During flight,
drones must navigate obstacles and capture visual data in environ-
ments specific to their operational paths, making federated training
critical for adapting to specific conditions. Object detection is es-
sential for navigation, surveillance, and environmental monitoring,
requiring drones to accurately identify and track objects in real-
time. This capability is vital for the autonomous operation of drones,
allowing them to dynamically adjust to changing environments
and update their operational parameters. By training the model on-
line, the system remains adaptive to new conditions and emerging
threats, enhancing its responsiveness.
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Figure 4:Annotation exemplars in the VisDrone-DET2020 challenge. Reprinted
from [28].

The inclusion of these advanced computer vision tasks signifi-
cantly increases the computational demands on the system. Real-
time image processing and model training, particularly for com-
plex models such as YOLOv8, impose substantial computational
requirements on the limited resources typically available onboard
drones, including CPU, GPU, and memory. These high computa-
tional loads can lead to increased latency, potentially affecting the
drone’s responsiveness and compromising mission-critical tasks
that require real-time decision-making. The integration of such
resource-intensive tasks thus presents a rigorous test of the sys-
tem’s ability tomanage high processing demands while maintaining
operational integrity and security.

4 Results
4.1 Evaluation Framework
The workflow outlined in the Figure 5 begins with the selection
of testing options for portable nodes, categorized into two pri-
mary pathways: FL and Flight. Within the FL pathway, two models
are considered: FL Baseline, which represents standard conditions
without any poisoning or defenses, and FL poisoned model. The
poisoned model is further subdivided into scenarios with or with-
out defenses. Thus, it represents diverse cases for benign, suspi-
cious, malicious and safe conditions. Measurements play a central
role across all testing options, encompassing various aspects such
as iPerf synthetic traffic for evaluating bandwidth and bit-rate,
QGroundControl for tracking time and battery usage, CPU Logger
for monitoring memory and CPU usage, and FL Logs for assessing
evaluation and training times and results.

On the other side, Flight pathway branches into the base model
and the FL Dependent path, indicating the integration of FL mod-
els with flight operations. Both pathways feed into the broader
measurement framework, ensuring comprehensive data collection
and analysis across the different tested scenarios. Such a struc-
tured approach allows for a thorough evaluation of the system’s
performance under various experimental conditions.

To facilitate comprehensive testing, our workflow leverages var-
ious tools and scripts. The versatile network measurement tool,
iPerf3[3], is integrated as a traffic generation software preloaded
onto drone systems within AERPAW for the testing of bandwidth,
delay, and packet loss on IP-enabled links. In the AERPAW testbed,
a client-server pair, consisting of a large drone with an active flight

Figure 5: Tree of the experiment design space.

plan and a fixed node, establishes a measurable network connec-
tion. During development, this connection traverses testbed radios,
ensuring an accurate experimentation of real-world scenarios.

For the collection of system metrics such as memory and CPU
usage, test times, and battery usage, we extend the measurement
workflow with custom Python scripts tailored to AERPAW’s envi-
ronment. QGroundControl is employed to record time and battery
usage during tests. Since AERPAW does not natively support metric
logging, a Python script utilizing the psutil library was developed
to monitor these parameters. The CPU Logger plays a critical role in
tracking memory and CPU usage, ensuring the effective monitoring
of computational resources. FL Logs are meticulously maintained
to document evaluation and training times and results.

4.2 Hardware Specification
In Section 2.1, we introduced the preliminary capabilities of the
AERPAW platform. Herein, we delve into the hardware capabili-
ties of the system that we use in our experimentation. The Lake
Wheeler site, the central area for drone experimentation within the
AERPAW testbed, is equipped with five fixed nodes (LW1, LW2,
LW3, LW4, LW5) [2]. These nodes are outfitted with NI Software
Defined Radios, which offer versatile signal processing and commu-
nication functionalities. Additionally, the fixed nodes are integrated
with Keysight RF Sensors for precise radio frequency measurement
and analysis, and Fortem Drone Detection Radars for monitoring
drone activities. For Internet of Things (IoT) applications, LoRa IoT
equipment facilitates long-range, low-power communication. More-
over, an Ericsson 4G/5G Base Station supports advanced cellular
communication experiments, providing the necessary bandwidth
and low-latency connectivity essential for testing contemporary
communication standards.

Overall, we found that the AERPAW testbed’s hardware infras-
tructure provides a versatile and powerful platform capable of sup-
porting a comprehensive range of wireless communication and
drone experimentation. The integration of high-capacity network
infrastructure, powerful CPUs, ample memory, and Intel UHD
Graphics enables the testbed to meet the demands of our work
that features both fundamental and applied research in advanced
wireless communication and drone technologies.
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Through our experimentation, we concluded that the combina-
tion of these advanced hardware components, alongside the flexible
"Sandbox" environment equipped with the Keysight Propsim Chan-
nel Emulator and the use of industry-standard tools such as USRPs,
OpenAirInterface, srsLTE, GNU Radio, and Matlab, significantly en-
hanced our capability to simulate, emulate, and test diverse wireless
and drone-related scenarios.
4.3 Dataset exploration
This section examines the CICIOT1 and IOTBOTNET2 datasets,
comparing their attack variety, class imbalance, feature selection
methodologies, and the design of Deep Neural Network (DNN)mod-
els used in FL, tailored to each dataset. The analysis of the CICIOT
and IOTBOTNET datasets reveals distinct differences in the variety
and distribution of attacks. Table 1 presents a comparison of the
attacks detected in both datasets. CICIOT includes a broader range
of detected attacks compared to IOTBOTNET, providing a more
diverse dataset for analysis. However, both datasets exhibit class
imbalance, albeit in different ways. In IOTBOTNET, the Normal
Traffic class is significantly underrepresented, which poses chal-
lenges for effective model training, as the scarcity of normal data
can bias the learning process. Conversely, in the CICIOT dataset,
categories such as Web-Based attacks and Spoofing are notably un-
derrepresented. While this imbalance is less problematic in binary
classification tasks, it remains a factor to consider in model training.
Additionally, both datasets show a heavy over-representation of
DDoS attacks, which can reduce the impact of other attack classes
during training. To address these imbalances, Random Undersam-
pling was employed to create a more balanced training set, though
this method also led to a reduced sample size, particularly affecting
the IOTBOTNET dataset.

CICIOT-2023 IOTBOTNET-2020
Binary

Category
General
Category

Binary
Category

General
Category

Attack

DDoS

Anomaly

DDoS
DoS DoS
Recon Scan

Web-Based Theft
Brute Force -
Spoofing -
Mirai -

Benign Benign Normal Normal
Table 1: IOTBOTNET 2020 and CICIOT 2023 Attack Categories and Labels

For the CICIOT dataset, feature selection was conducted using
mutual information, decision trees, and recursive feature elimina-
tion algorithms, which are standard techniques within the sklearn
library. The IOTBOTNET dataset, on the other hand, has been ex-
tensively studied, and the selected features are supported by prior
research, including studies from [22] and [24]. The features were
chosen based on their stable performance in machine learning mod-
els, as determined by running the aforementioned algorithms on a
baseline model prior to the training step.

DNNmodels employed for FL were specifically designed for each
dataset, as outlined in Table 2. Both models were trained using iden-
tical hyperparameters, following commonly accepted defaults. For

1https://www.unb.ca/cic/datasets/iotdataset-2023.html
2https://sites.google.com/view/iotbotnetdatset/home

Parameters Values
Number of epochs for local model 5

Batch size 64
Optimizer for local model Adam

Learning rate for local model 0.001
Loss function Binary cross entropy loss

Federated number of rounds 1, 3
Betas 0.9, 0.999

Table 2: Default hyperparameter settings for the baseline model

Dataset Defense
Strategies

Poisoning
Volume Accuracy Precision Recall Loss Log-

Cosh
Time

Elapsed(s)

CICIOT

Baseline 0% 93.2% 95.4% 90.9% 21.9% 2.5% 194
Differential
Privacy

33% 76.5% 99.8% 74.4% 54.1% 6.4% 435
66% 72.5% 99.8% 69.9% 67.7% 8.7% 514

Adversarial
Training

33% 85.8% 99.7% 84.6% 39.4% 4.9% 668
66% 81.9% 99.7% 90.3% 52.0% 6.6% 645

All Defenses 33% 91.1% 95.7% 94.5% 76.5% 11.2% 881
66% 71.6% 99.8% 68.9% 71.7% 10.1% 890

IoTBotNet

Baseline 0% 91.2% 99.8% 82.6% 39.1% 5.1% 465
Differential
Privacy

33% 81.1% 100% 76.4% 55.6% 8.0% 552
66% 26.4% 100% 8.1% 84.5% 10.3% 547

Adversarial
Training

33% 83.7% 91.8% 87.5% 56.6% 5.7% 500
66% 80.3% 99.8% 75.5% 64.2% 7.0% 496

All Defenses 33% 79.5% 79.9% 99.4% 57.9% 8.4% 489
66% 67.7% 78.9% 81.4% 63.3% 9.8% 594

Table 3: Feature noise attack metrics for CICIOT-FL-DNN and IoTBotNet-FL-
DNN models under data poisoning scenarios

the CICIOT dataset, the DNN model was structured sequentially
with layers comprising 64, 32, 16, 8, 4, and 1 neuron(s), each incor-
porating batch normalization and a dropout layer with rate of 40%,
except for the final layer. When the differential privacy defense
strategy was applied, the 64-neuron layer was omitted, and the
dropout rate was reduced by 10% to enhance training stability [24].
DNN model for the IOTBOTNET dataset was constructed with a
sequential layer structure of 16, 8, 4, and 1 neuron(s), accompanied
by batch normalization and 30% dropout rate. This model structure
remained consistent due to its proven efficiency for this data.

4.4 Metrics & Model Performance Discussion
4.4.1 FL results. We employed accuracy, precision, and recall as
key performance metrics to evaluate the FL model. Precision and
recall are particularly crucial for assessing the model’s capacity to
manage the diverse data distributions encountered across different
clients. These metrics often exhibit an inverse relationship, where
improvements in one may lead to a decline in the other. By pre-
senting both precision and recall, we provide a more nuanced and
comprehensive analysis of the model’s performance. While accu-
racy offers a general overview, it can be misleading in FL contexts
characterized by significant class imbalances. Therefore, it is es-
sential to supplement accuracy with precision and recall to ensure
the model robustness across all clients, particularly when evalu-
ating the effects of various data poisoning strategies and defense
mechanisms on model performance.

The performance of various defense strategies under different
attack scenarios was systematically evaluated over three rounds at
the global model level.While individual nodes might be impacted by
poisoned training data, the global model is expected to demonstrate
robust behavior in the face of such attacks. We start by presenting
the machine learning metrics in Table 3 for feature noise attack
across both the datasets. The second column details the defense
strategies employed, while the third column provides the volume
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Figure 6: Time-series for Global Model Evaluation Metrics over 3 Rounds with
varying defenses against Label Flipping 33 percent volume attack

Figure 7: Time-series for Global Model Evaluation Metrics over 3 Rounds with
varying defenses against Label Flipping 66 percent volume attack

of poisoning applied. The final column displays the wall clock time,
which reflects the computational cost associated with each scenario.

We begin by showing the baseline values (no attack, no defense)
for anomaly detection for the benign use case. As the effect of
volume of poisoning data doubles from 33% to 66% for each de-
fense strategy, the effectiveness of defenses in recovering accuracy
slightly decreases with the drop of <5% in most cases. The “all
defenses” strategy where both differential privacy and adversarial
training are applied is not always the best due to poor accuracy
(4th column) at higher computational cost (last column) and hence
is unnecessary. In case of feature noise attack, adversarial training
(for both datasets) seems to be the most effective defense irrespec-
tive of the poisoning levels. Although the defense results are not
all comprehensive or perfect w.r.t. baseline values, they demon-
strate effectiveness as shown by the other FL metrics (particularly
precision), supporting their overall value in mitigating attacks.

We present the time-series results for label-flipping attack for
IoTBotNet dataset with two different volumes of poisoning: 33%
and 66% in Figures 6 and 7, respectively. Results are shown for
both 1 and 3 client nodes. Although we focus on one dataset for
brevity, the findings are broadly applicable. Adversarial training
proves to be the most effective defense across both poisoning levels
in terms of accuracy and stable progression. However, these results
are less optimistic than those for feature noise due to the targeted
nature of the label-flipping attack. This attack directly manipulates
critical labels, making it harder for the model to maintain accuracy,

FL-DNN
Model Scenario

Max
CPU Usage

AVG
CPU Usage

Max Memory
Usage

Energy
Usage

Time
Elapsed (s)

Stationary Drones (No FLYPAW)
Baseline 127% 98% 0.3% 0% 172

Baseline + LF33 134% 101% 0.4% 0% 221
DP + LF33 147% 119% 0.6% 0% 471
AT + LF33 121% 97% 0.7% 0% 536
AD + LF33 152% 116% 1.0% 0% 839
Baseline +
FL-YOLO 217% 183% 1.0% 0% 10041

Active Drones (FLYPAW)
Baseline 207% 150% 0.6% 7% 204

Baseline + LF33 216% 157% 0.4% 7% 232
DP + LF33 225% 181% 0.7% 7% 476
AT + LF33 204% 154% 0.6% 7% 531
AD + LF33 233% 179% 1.0% 7% 857
Baseline +
FL-YOLO 307% 253% 1.0% 7% 10124

Table 4: System metrics for different FL-DNN model scenarios for Stationary
Drones and Active Drones.

especially when the training data has not been exposed to such
manipulations before.

4.4.2 Usage results. Table 4 details the system metrics for different
FL-DNN model scenarios for stationary drones and active drones.
The results indicated that implementing defense mechanisms, es-
pecially in active drone scenarios, incurs significant computational
costs. For stationary drones not equipped with the FlyPaw system,
deploying all defenses (FL-DNN-AD + LF33) led to a peak CPU
usage of 152% and an average CPU usage of 116%, with mission
durations extending up to 839 seconds. In contrast, when active
drones operated with the FlyPaw system, the computational load
escalated sharply, with maximum CPU usage reaching 233% and av-
erage CPU usage rising to 179%, extending mission times to as long
as 857 seconds. This marked increase in computational demand un-
derscores the resource-intensive nature of these defense strategies,
particularly when applied in real-time operational contexts.

4.4.3 Object Detection results. The integration of YOLOv8 for real-
time object detection further increased these demands. When de-
fenses were applied alongside YOLOv8 training (FL-DNN-Baseline
+ FL-YOLO Training), the computational requirements spiked, with
stationary drones experiencing up to 217% maximum CPU usage
and 10124 seconds of mission time, while active drones saw a stag-
gering 253% maximum CPU usage and the same extended mission
duration of 10124 seconds. These results illustrate the challenges
of maintaining both security and operational efficiency under such
heavy workloads, especially in scenarios where drones must make
real-time decisions with limited computational resources.

The study measured energy usage during the experiments but
found it remained constant due to the emulation setup on the AER-
PAW testbed, which did not factor in the impact of computational
consumption on battery life. This creates an unrealistic representa-
tion of real-world scenarios where increased computational loads,
such as those from implementing defenses, would likely lead to
higher energy consumption, reducing battery life and limiting mis-
sion duration. This limitation underscores the need for more realis-
tic energy modeling in future experiments to accurately evaluate
the practicality of resource-intensive tasks in drone operations.

4.4.4 Network results. The analysis of network measurements
shown in Table 5 allows us to observe a moderate increase in re-
source demands when advanced defenses are implemented. Such
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FL-DNN
Model Scenario

AVG Bitrate
(Gbit/sec)

AVG RTT
(s)

Bandwidth
(GB/sec)

Time
Elapsed (s)

Baseline 8.65 0.939 1.08 204
Baseline +
FL-YOLO 6.02 0.939 0.75 232

Baseline + LF33 8.65 0.939 1.08 476
DP + LF33 8.04 0.939 1.01 531
AT + LF33 8.35 0.939 1.04 857
AD + LF33 9.33 0.939 1.17 10124

Table 5: Network metrics for different FL-DNN model scenarios for Active
Drones.

an increase is expected given that these defenses are applied at the
model level rather than at the network layer. For instance, the aver-
age bitrate increased from 8.65 Gbits/sec in the baseline scenario
to 9.33 Gbits/sec when both anomaly detection and label flipping
defenses were applied. Similarly, bandwidth usage saw a moder-
ate rise from 1.08 GBytes/sec to 1.17 GBytes/sec under the same
conditions. While these increases are notable, they are not dras-
tic. However, the mission time experienced a significant extension,
jumping from 204 seconds in the baseline scenario to 10,124 sec-
onds with the advanced defenses in place. This suggests that while
network demands moderately increased, the impact on operational
duration was much more substantial, reflecting the higher compu-
tational and communication overhead introduced by the defenses.
The moderate increase in network resource usage is aligned with
expectations, as the defenses do not directly alter the network pro-
tocols but rather add complexity to the model processing, leading
to extended mission times.

Overall, these results underscore the importance of selecting ap-
propriate defense mechanisms based on the specific attack scenario,
poisoning volume, and dataset used. While Differential Privacy
provides a strong defense against label-flipping attacks. However,
it was not able to achieve expected levels with no defense, showing
that it is less effective against high-volume feature noise attacks,
where Adversarial Training is better. The combined defense ap-
proach may not always work due to its higher computational costs
and occasional performance trade-offs, especially as observed in the
CICIOT dataset, where the time elapsed was significantly higher.
5 Conclusion
The growing use of collaborative drones demands real-time pro-
cessing of large volumes of sensitive data for immediate decision-
making. However, the decentralized nature of these systems makes
them vulnerable to security threats, highlighting the need for ad-
vanced threat intelligence frameworks. Our work addresses this
by developing a custom FL model using a Deep Neural Network
for anomaly detection within a drone swarm, deployed on the
AERPAW testbed. We demonstrated effective threat detection while
preserving data privacy and validated the model’s resilience against
grey-box data poisoning attacks. To mitigate these threats, we opti-
mized defense solutions with adversarial training. Additionally, we
showcased the practical application of our FL model by running it
alongside computer vision tasks during in-flight drone operations,
ensuring its viability in real-time scenarios. A custom measurement
workflow for AERPAWwas also developed to balance the trade-offs
in FL tasks.

In the future, our framework can be enhanced by exploring ad-
vanced defense techniques, such as generative adversarial networks,
to further strengthen the model’s resilience against sophisticated

attacks. Additionally, we propose extending our FL approach to
integrate IoT networks, specifically focusing on smart home envi-
ronments. By designing an FL-integrated platform for IoT devices
in smart homes. This platform would allow IoT devices, such as
smart cameras and sensors, to collaboratively train a global model
without sharing sensitive data. Future work could include optimiz-
ing communication efficiency between IoT devices and the cloud,
and ensuring robust responses for critical security events.
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[9] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.
Federated optimization: Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527 (2016).

[10] K Naveen Kumar, C Krishna Mohan, and Linga Reddy Cenkeramaddi. 2024.
The Impact of Adversarial Attacks on Federated Learning: A Survey. IEEE
transactions on pattern analysis and machine intelligence 46 (01 2024), 1–20. https:
//doi.org/10.1109/tpami.2023.3322785

[11] K. Naveen Kumar, C. Vishnu, Reshmi Mitra, and C. Krishna Mohan. 2020. Black-
box Adversarial Attacks in Autonomous Vehicle Technology. , 7 pages. https:
//doi.org/10.1109/AIPR50011.2020.9425267

[12] Dongcheng Li et al. 2021. Detection and Mitigation of Label-Flipping Attacks in
Federated Learning Systems with KPCA and K-Means. In 2021 8th International
Conference on Dependable Systems and Their Applications (DSA). 551–559. https:
//doi.org/10.1109/DSA52907.2021.00081

[13] Vuk Marojevic et al. 2020. Advanced wireless for unmanned aerial systems: 5G
standardization, research challenges, and AERPAw architecture. IEEE Vehicular
Technology Magazine 15, 2 (2020), 22–30.

[14] Yassine Mekdad, Ahmet Aris, Leonardo Babun, Abdeslam El Fergougui, Mauro
Conti, Riccardo Lazzeretti, and A. Selcuk Uluagac. 2023. A survey on security
and privacy issues of UAVs. Computer Networks 224 (2023), 109626. https:
//doi.org/10.1016/j.comnet.2023.109626

[15] Alicia Esquivel Morel et al. 2020. Enhancing network-edge connectivity and
computation security in drone video analytics. In 2020 IEEE Applied Imagery

113

https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/1-aerpaw-overview/1-4-equipment-information
https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/1-aerpaw-overview/1-4-equipment-information
https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/4-sample-experiments-repository/4-3-traffic-generation-software/4-3-2-iperf
https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/4-sample-experiments-repository/4-3-traffic-generation-software/4-3-2-iperf
https://sites.google.com/ncsu.edu/aerpaw-wiki/aerpaw-user-manual/4-sample-experiments-repository/4-3-traffic-generation-software/4-3-2-iperf
https://doi.org/10.1109/ACCESS.2021.3127960
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://doi.org/10.1109/e-Science58273.2023.10254831
https://doi.org/10.1109/e-Science58273.2023.10254831
https://doi.org/10.1109/tpami.2023.3322785
https://doi.org/10.1109/tpami.2023.3322785
https://doi.org/10.1109/AIPR50011.2020.9425267
https://doi.org/10.1109/AIPR50011.2020.9425267
https://doi.org/10.1109/DSA52907.2021.00081
https://doi.org/10.1109/DSA52907.2021.00081
https://doi.org/10.1016/j.comnet.2023.109626
https://doi.org/10.1016/j.comnet.2023.109626


Federated Learning-enabled Network Incident Anomaly Detection Optimization for Drone Swarms ICDCN 2025, January 04–07, 2025, Hyderabad, India

Pattern Recognition Workshop (AIPR).
[16] Mohammad Mozaffari et al. 2019. A tutorial on UAVs for wireless networks:

Applications, challenges, and open problems. IEEE communications surveys &
tutorials 21, 3 (2019), 2334–2360.

[17] Thuy Dung Nguyen et al. 2024. Backdoor attacks and defenses in federated learn-
ing: Survey, challenges and future research directions. Engineering Applications
of Artificial Intelligence 127 (2024), 107166.

[18] Ashwin Panicker, Ozgur Ozdemir, Mihail L Sichitiu, Ismail Guvenc, Rudra Dutta,
Vuk Marojevic, and Brian Floyd. 2021. AERPAW Emulation Overview and Pre-
liminary Performance Evaluation. Computer Networks 194 (2021), 108083.

[19] Arnau Rovira-Sugranes, Abolfazl Razi, Fatemeh Afghah, and Jacob Chakareski.
2022. A review of AI-enabled routing protocols for UAV networks: Trends,
challenges, and future outlook. Ad Hoc Networks 130 (2022), 102790.

[20] Siva Raja Sindiramutty et al. 2024. Data Security and Privacy Concerns in Drone
Operations. 236–290. https://doi.org/10.4018/979-8-3693-0774-8.ch010

[21] Khaled Telli, Okba Kraa, Yassine Himeur, Abdelmalik Ouamane, Mohamed
Boumehraz, Shadi Atalla, and Wathiq Mansoor. 2023. A Comprehensive Re-
view of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems
11, 8 (2023). https://doi.org/10.3390/systems11080400

[22] Imtiaz Ullah and Qusay H Mahmoud. 2020. A Technique for Generating a
Botnet Dataset for Anomalous Activity Detection in IoT Networks. (10 2020).
https://doi.org/10.1109/smc42975.2020.9283220

[23] Ultralytics. 2023. YOLOv8. https://github.com/ultralytics/ultralytics.
[24] Xiaofeng Wang et al. 2023. Federated deep learning for anomaly detection in

the internet of things. Computers & Electrical Engineering 108 (05 2023), 108651–
108651. https://doi.org/10.1016/j.compeleceng.2023.108651

[25] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. 2022. Fe-
dAttack: Effective and covert poisoning attack on federated recommendation via
hard sampling. In Proceedings of the 28th ACM SIGKDD. 4164–4172.

[26] Jean-Paul Yaacoub, Hassan Noura, Ola Salman, and Ali Chehab. 2020. Security
analysis of drones systems: Attacks, limitations, and recommendations. Internet
of Things 11 (2020), 100218. https://doi.org/10.1016/j.iot.2020.100218

[27] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and
Christian Bettstetter. 2018. Drone networks: Communications, coordination, and
sensing. Ad Hoc Networks 68 (2018), 1–15.

[28] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and
Haibin Ling. 2021. Detection and Tracking Meet Drones Challenge. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021), 1–1. https:
//doi.org/10.1109/TPAMI.2021.3119563

114

https://doi.org/10.4018/979-8-3693-0774-8.ch010
https://doi.org/10.3390/systems11080400
https://doi.org/10.1109/smc42975.2020.9283220
https://github.com/ultralytics/ultralytics
https://doi.org/10.1016/j.compeleceng.2023.108651
https://doi.org/10.1016/j.iot.2020.100218
https://doi.org/10.1109/TPAMI.2021.3119563
https://doi.org/10.1109/TPAMI.2021.3119563

	Abstract
	1 Introduction
	2 Related Work
	2.1 AERPAW Testbed
	2.2 Federated Learning & Anomaly Detection
	2.3 Adversarial Attacks on Federated Learning

	3 Framework for Experimental Configuration and Computational Analysis
	3.1 AERPAW Experiment Configuration
	3.2 Federated Learning pipeline
	3.3 During flight computational workload

	4 Results
	4.1 Evaluation Framework
	4.2 Hardware Specification
	4.3 Dataset exploration
	4.4 Metrics & Model Performance Discussion

	5 Conclusion
	Acknowledgments
	References

