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Abstract Precision medicine seeks to find the optimal treatments tailored to the in-
dividual characteristics of each patient. Dynamic treatment regimes consists of a se-
quence of personalized treatment decisions that formalizes the process of decision-
making that translated the patients’ information into the recommended treatment.
Q-learning is a popular approach to estimate the optimal treatment regime, which
is closely related to the regression-based analysis in statistics, and reinforcement
learning methods. In this book chapter, we provide a comprehensive introduction
of Q-learning based methods for the estimation of dynamic treatment regimes. We
start with the potential outcome framework that lay the ground for Q-learning, fol-
lowed by the introduction of reinforcement learning and its application in precision
medicine study. We then delve into Q-learning based methods in dynamic treatment
regime with finite time horizon, including both single-decision setting and multi-
stage decision setting, and infinite time horizon, respectively. To concretize the con-
cepts discussed, we present a simple example of Q-learning implementation for the
two-stage setting using the R statistical programming language.
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1 Introduction

The goal of precision medicine is to “match the right treatment to the right patient at
the right time” [1, 7]. Unlike more traditional approaches used to generate evidence
for health and healthcare decision-making, the precision medicine paradigm focuses
on learning from data the best way to tailor treatment or a sequence of treatments to
individuals based on their specific characteristics. This is often referred to as “lever-
aging heterogeneity”. The idea is that by learning how to optimally tailor treatments
to individuals, individual outcomes and thereby population outcomes can be im-
proved over those from one-size-fits-all or non-data-driven treatment strategies.

In precision medicine, the formal structure for matching patients to treatments
is the dynamic treatment regime (DTR), which is also known as adaptive treatment
strategies [17, 23], adaptive interventions [8, 24], treatment policies [20, 42], or in-
dividualized treatment rules [28]. DTRs are sets of treatment rules, one for each
key decision point, that map from patient features to an available treatment. The
features may include disease and treatment history, clinical, prognostic, and/or ge-
nomic characteristics, behaviors, and response to past treatments. In the language of
DTRs, the goal of precision medicine then is to learn optimal DTRs, decision rules
that, if followed, would favorably optimize the expected value of a target outcome
over the patient population of interest.

Y | Break/

Lesser Dose
Breast C: Surgery hemothe-
Chemotherapy Toxic.
aen & Radiation 4

Chemotherapy &
Targeted Agent

Aromatase
Inhibitor

Post-
enopausal2

Fig. 1 Schematic depiction of DTR for breast cancer patients reproduced from [14]. A patient
diagnosed with breast cancer may get the surgery, followed by chemotherapy and radiation at the
first stage. The physician will modify this to take a break from chemotherapy and radiation or give
a lesser dose if these treatment actions are too toxic to the patient. If the cancer is eradicated by
the surgery or these treatment actions, and if the patient is hormone receptor-positive and post-
menopausal, an aromatase inhibitor will be prescribed. If the cancer has not been eradicated yet
or there is evidence of cancer, the physician may suggest additional chemotherapy and a targeted
agent.

In practice, DTRs can be widely applied to the study of chronic diseases or dis-
orders, and are particularly well-poised to support decision-making in disease set-
tings that may require a sequence of medical interventions; examples include cancer
[39, 47], attention deficit hyperactivity disorder (ADHD; [27]), human immunodefi-
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ciency virus (HIV) infection/acquired immune deficiency syndrome (AIDS) [4], and
diabetes [19]. The schematic in Figure 1, which is used to describe the possible med-
ical interventions for the treatment of breast cancer in [14], can help us understand
DTRs more concretely. As shown in Figure 1, a patient diagnosed with breast can-
cer may initially be treated with surgery followed by chemotherapy and radiation.
Depending on the toxicity of chemotherapy for the individual patient, the provider
will modify the treatment strategy: a break from or reduced dose of chemother-
apy if chemotherapy is too toxic for the patient, augmented chemotherapy with a
targeted agent if the chemotherapy is not too toxic, and the cancer is not yet erad-
icated, or an additional aromatase inhibitor if the patient’s cancer is eradicated and
they are hormone receptor-positive and post-menopausal. Patients whose cancer is
eradicated after chemotherapy and are not hormone receptor-positive, or are hor-
mone receptor-positive and not post-menopausal, are surveilled for recurrence but
not given any further active therapies.

To illustrate how a DTR might support clinical decision-making, let us reconsider
the case of a 60-year-old, hormone receptor-positive and post-menopausal woman
with stage II breast cancer using the DTR depicted in Figure 1. For this woman, the
treatment recommendations are as follows [14]:

Following surgery, treat with chemotherapy for six cycles. If there is no evidence of cancer
and the lymph nodes are negative, treat with an aromatase inhibitor for five years. If there is
evidence of cancer following chemotherapy, continue chemotherapy for another six cycles.
If the patient experiences a grade III or higher toxicity on the prescribed chemotherapy,
switch to another chemotherapy.

We note that the DTR provides guidance on how to tailor treatments based on the
woman’s health and disease status (post-menopausal, lymph node involvement, can-
cer persistence or eradication, hormone receptor-positive) and response to previous
treatment (degree of chemotherapy toxicity) — in other words, how to tailor treat-
ment to this particular patient.

The example DTR outlined in Figure 1 can also give us an idea of the data and
statistical elements needed to learn such a DTR. We observe that in the example,
there are multiple decision points at which treatment decisions need to be made and
possible treatments for each decision point. These include the decision whether to
continue and/or augment chemotherapy and the decision whether to prescribe an
aromatase inhibitor. The recommendations rendered by the DTR at each of these
decision points, in turn, depend on individual patient features and responses to pre-
vious therapy. For example, the decision to continue and/or augment chemotherapy
depends on whether the chemotherapy is too toxic for the patient and whether or
not the patient’s cancer has responded to the previous treatment of surgery in com-
bination with chemotherapy and radiation. Similarly, the decision to prescribe an
aromatase inhibitor for patients whose cancer has been eradicated depends on the
patient’s cancer characteristics, specifically, whether the cancer is hormone receptor-
positive. While not explicitly illustrated in Figure 1, the goal of the DTR is to opti-
mize patient outcomes such as progression-free survival or recurrence-free survival.
Thus, at a minimum, the statistical framework for learning DTRs will include deci-
sion points, patient features, treatments, and outcomes. Additional features may be
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included in model-specific settings or problem attributes, but in general, the main
elements remain the same.

Data collected from randomized controlled trials (RCTs) and sequentially mul-
tiple adaptive randomized trials (SMARTSs), as well as observational data, may be
used to estimate DTRs. Generally, by design, data from RCTs are suitable for learn-
ing DTRs with a single decision point, and data from SMARTS are suitable for
learning DTRs with multiple decision points. For each, the decision points corre-
spond to the randomization points, and the possible treatments correspond to the
treatments being randomized at the randomization points. Point exposure or multi-
ple exposure observational data, too, may be used, although additional assumptions
are needed to identify key statistical estimands related to DTRs when using obser-
vational data. For additional discussion on trial and study designs that generate data
appropriate for DTR estimation, see [16].

Various statistical analysis methods have been developed in support of data-
driven decision-making [15, 16, 40], including outcome weighted learning (OWL)
[45, 46] and related methods, inverse probability weighted (IPW), and doubly robust
augmented inverse probability weighted (AIPWE) estimators [43, 44], among oth-
ers (see [15, 16, 40]). Among the methods for learning optimal DTRs, Q-learning
is one of the widely used approaches and is our focus in this chapter. Q-learning,
where “Q” stands for “quality,” is a strategy for learning optimal DTRs by positing
models for and estimating Q-functions. As we will see, Q-functions are conditional
expectations, which in turn are closely related to the widely adopted regression-
based methods in statistics.

We proceed as follows: In Section 2, we lay out the precision medicine frame-
work, providing the notation and language of precision medicine used throughout
this chapter. This framework sets the statistical goal of learning optimal DTRs. Sec-
tion 3 formalizes Q-learning in precision medicine and contrasts it with reinforce-
ment learning, providing a conceptual overview and highlighting the distinctions.
Sections 4 and 5 introduce Q-Learning for optimal DTRSs in the finite and infinite
time horizon settings, respectively. In Section 6, we provide a simple example with
code to illustrate how to implement Q-learning for the finite horizon setting in R.

2 Introduction to the Precision Medicine Framework

The idea of “matching the right treatment to the right person at the right time” can
be formalized concisely as the goal of learning an optimal DTR. Put otherwise, the
goal is to learn a sequence of functions, one for each key decision point, that maps
from observed patient features to a recommended treatment. An optimal DTR is a
DTR that, if followed, would optimize outcomes on average in the target population.
In this section, we develop this idea formally.
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2.1 Notation and potential outcomes

We begin by discussing causal inference and the potential outcomes or counterfac-
tual framework. The concept of potential outcomes was first proposed by [25] for
causal effects in the context of completely randomized experiments, and was then
extended to a general framework for causation in [34] in both observational and ran-
domized studies. In the standard causal inference setting, or as one might describe as
the single timepoint decision setting, a potential outcome is defined as the outcome
a subject would have had under a particular treatment. For each subject, there is a
potential outcome associated with each possible treatment. At most, only one poten-
tial outcome is realized for each individual, and the not-realized potential outcomes
are thus counter to fact. Formally, we let .7 denote the set of treatment options and
a € o/ denote a particular treatment option. Then, we denote Y*(a) as the potential
outcome that would be observed if a subject were assigned treatment a € o7, and
{Y*(a)}4eor is the set of all potential outcomes. A more detailed overview of the
potential outcomes framework and causal inference can be found in [12] and [26].
In the precision medicine setting, however, we are often interested in clinical
decision-making over time rather than a single timepoint and thus need a more gen-
eral notion of potential outcomes that can accommodate potential outcomes under
sequences of treatments. We let t = 1,...,T denote the sequence of timepoints at
which a treatment decision is made and T < oo the total number of decision points.
Later we will consider the case with infinitely many decision points (Section 5). Po-
tential outcomes in the multiple decision point (multiple stage) setting are slightly
more complicated than those in the single decision point (single stage) setting. Most
obviously, instead of considering a single treatment assigned at a single decision
point, we will need to consider entire sequences of treatments. To denote a sequence
of treatments, we will use an overline, for example, @; = (ay,...,q,). Additionally,
we define @ = ay = (ay,...,ar). Because the treatments that are available at each
decision point may differ, the set of possible treatments available at time ¢ is denoted
by o7, and we denote the set of possible treatments that could be realized by the se-
quence @; as &) X --- X <. Letting Y denote the outcome of interest measured after
the T-th treatment decision, we let Y* (@) denote the potential outcome we would ob-
serve if an individual received a particular sequence of treatments @ € 7] X - - - X 277
In addition to treatments and final outcomes, precision medicine often involves
incorporating patient features that evolve over time as well as proximal outcomes
that are collected in close proximity to when a treatment is administered. An exam-
ple of proximal outcomes can be found in mobile health (mHealth) studies [18].
In mHealth interventions, mobile devices can deliver treatments/interventions to
individuals during daily lives, and those outcomes collected in the near time the
treatment is taken are considered proximal outcomes, such as stress or physical
activity like step counts. Because the treatments applied at time ¢ affect both prox-
imal outcomes and interim measurements, when extending the potential outcomes
framework to multiple treatments over time, we will need to consider both poten-
tial proximal outcomes and potential interim measurements. We let A, € . denote
the assigned treatment, ¥; denote a proximal outcome measured after the treatment
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at stage ¢, and let ¥,*(a,) be the potential proximal outcome we would observe if
a; € o) X --- x o had been assigned fort = 1,..., T — 1. Further, we let X; € 2]
denote baseline patient information at time r = 1, and forr =2,..., T, X; € Z; stand
for interim patient information collected after the (¢ — 1)-th decision and before the
t-th decision is to be made. Baseline patient information, also referred to as baseline
covariates or baseline features, might include co-morbid conditions, biomarkers,
disease status, and other patient characteristics observed at the time of the first deci-
sion. Interim patient information might include patient features, or covariates, that
evolve over time and possibly in response to prior treatments. We let X7 (@, ) de-
note the potential interim measurements of patient information at time ¢+ we would
observe if treatment sequence @, € 7] X --- X .« _1 had been assigned.

Thus far, we have considered potential outcomes for sequences of treatments
rather than treatment rules which are the central target of precision medicine.
To extend from sequences of treatments to treatment rules, the history notation
is convenient. Define H; as the history data at time ¢, so H;y = X; and H, =
(H;—1,A;—1,Y-1,X;); that is, from ¢ to ¢ + 1, we update the history with the treat-
ment and response collected at 7, and the patient covariates collected between ¢ and
t+ 1. An important technical note is that not all treatments in <%, t = 1,...,T, may
be feasible for all patients. This may be because of drug interactions, past history of
drug intolerability, a previous therapy that precludes a future therapy (e.g., amputa-
tion of a limb precludes future amputation of the same limb), or other contraindi-
cations to a particular treatment or course of therapy. Using the history notation we
formalize feasible treatments; letting 7% be the space of all possible histories, we
denote the set of feasible treatments for a patient presenting with H, = h, at time ¢

as y; () € .

2.2 DTRs and optimal DTRs

With some notation established, we can now formally define a dynamic treatment
regime (DTR). A DTR is a sequence of mappings d = (dj,...,dr) such that for
t=1,....,T, d; : 7 — <, and d;(h;) € y,(h,) for all h,. That is, at each decision
point, a DTR maps from known patient features and history up to that point to a
treatment. Our interest is in finding the optimal DTR, the DTR that, if followed,
would lead to the greatest expected value of the outcome (assuming that larger out-
comes are better). DTRs may take many forms, ranging from simple decision lists
to complicated non-linear functions of features and treatments. We will denote the
class of regimes under consideration as &. The optimal DTR is how the precision
medicine idea of “leveraging heterogeneity” is operationalized. Patient outcomes
may be improved by assigning treatments tailored to patients’ unique features and
disease histories, and the optimal DTR is the rule that tells us how to make optimal
tailored treatment assignments.

We formalize the concepts of treatment regime and interim information using the
example of a two-stage setting. In this setting, treatments are assigned according to a
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treatment regime d = (d;,d, ), and we denote the corresponding interim information
and final outcome as follows.

X5(di) =Y, Xi(a)H{di(Xi)=a1},
aj €|

Yid)= )Y  Hdi(X))=a,dr2(Xy,a1,X5(a1)) = a2}Y*(ar1,a2), (1)
(a1,a2) € x oy

where I(+) is an indicator function. For an arbitrary T, the potential interim infor-
mation and potential outcome can be defined analogously.
Define the (marginal) value function of a regime d as

V(d) =E{Y"(d)}, )

the expected value of the outcome if all individuals received treatment assignment
according to d. Finally, an optimal treatment regime d°” maximizes the expectation
of a prespecified cumulative outcome measure Y and satisfies:

(a) fort=1,...,T,Yh; € 7, d™ (h;) € y,(h,);
(b) fort=1,...,T,Vh, € 4, ford satisfying d;(h;) € y,(h;), EY*(d°™) > EY*(d).

That is, an optimal dynamic treatment regime is a regime that, if followed, would
yield the greatest expected outcome when compared to other regimes in 2.

2.3 Identification

In precision medicine, our goal is to use the observed data to learn or estimate d°'.
Thus far, however, we have described the decision-making framework and the value
of DTRs in terms of potential outcomes. Because patients can receive only one
treatment at each decision point, only the potential outcomes corresponding to real-
ized treatment histories are observed, and the rest are unobserved. Without further
assumptions, V(d) cannot be identified from the observed data. Fortunately, the ap-
plication of the g-computation algorithm [30] from the causal inference literature
shows how V (d) can be identified from the data under certain assumptions.

Suppose the observed data consists of n i.i.d. trajectories of the longitudinal data
{(Xt,A,,Y,)})tT:l, presented in the form {(Xy;,A1;,Y1;,..., X7, A7, Y7,i)} . To
identify the value of a regime using observed data, we will assume that the following
identifying assumptions hold:

1. Stable unit treatment value assumption (SUTVA): also referred to as the consis-
tency assumption [35], which can be formalized as

thx;k (Klfl): Z X;(atfl)l(xtflzalfl)7 t:2,...7T,
;| €A XXy

y=Y(A)= Y Y(@IA=a), t=1,..T

a; o) X X oy
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In other words, the potential outcome is consistent with the observed outcome
under the treatment option, and SUTVA also implies no interference between
subjects and treatment variation irrelevance.

2. Sequential randomization assumption (SRA): also known as the no unmeasured
confounders [30, 33], sequential ignorability, or exchangeability assumption in
the multiple decision setting, which can be formalized as for any regime a;,
t=1,....T,

{Xii@),.... Xp(@r), Y @), Y"(ar)} L A[H,.

In other words, for any possible regime a;, the current treatment A; one receives
is independent of all future potential covariates or outcomes given the observed
histories Hy,t = 1,..., T, respectively. In SMART, the treatments are assigned at
random; thus, SRA is automatically satisfied. However, in observational studies,
SRA is untestable because it is impossible to verify from the observed data,
and to tell from the data at hand if there are additional associated variables not
recorded. SRA can be formalized in different ways, ranging from weak to strong
versions. For further discussion, see [40].

3. Positivity: Positivity assumption guarantees the existence of observations for
every treatment and each possible realized history given the covariates; other-
wise, the effect of the treatment regime might not be estimable. The positivity
assumption can be formalized as: for all treatments a, that are feasible for the
history h;,

PA=aH =h)>0, t=1,...,T.

With these identifiability assumptions, we can introduce the conditional expecta-
tion for the outcome given covariates and treatments, that is, Q-function, which we
focus on and give a detailed introduction through the following of the chapter.

3 Q-learning for Precision Medicine

In this section, we formalize Q-learning in precision medicine and contrast with
reinforcement learning. We provide a conceptual overview of reinforcement learn-
ing, and illustrate how it can be linked with Q-learning as well as the distinctions
between the two.

3.1 An incomplete conceptual overview of reinforcement learning
to Q-learning

In computer science, reinforcement learning (RL) is a type of machine learning char-
acterized by a learning agent and an environment that the agent wants to learn about,
as illustrated in Figure 2. At each decision point, the agent observes the state of their
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current environment and chooses an action in the action set. Then, the environment
responds to the action by transitioning to a new state, and the agent observes a re-
ward that corresponds to the immediate desirability of the action the agent chose.
RL problems can be characterized in many different ways. One key descriptor is
the time horizon or the number of stages (decision points) and thereby actions an
agent takes. When the number of stages is finite, it is called a finite horizon, and
when the number of stages is infinite, it is called an infinite horizon. Much of the
RL literature has traditionally focused on online learning, where the agent interacts
with the environment and uses experiences from those interactions to improve their
decision-making. However, in many medical contexts, this is not feasible, and op-
timal decisions must be learned from a sample of previously collected data. When
optimal policies are learned solely from previously collected data, the RL problem
is described as offline.

OBSERVATIONS
State changes: S¢yq
DECISION d Reward/Utility: Ry
MAKER [ .
Action: A¢

TREATMENT/
INTERVENTION

Fig. 2 Reinforcement learning flowchart.

PATIENT

We will mostly use the notation previously established in Section 2 throughout
our formal development of RL. As the language of RL differs from that of statis-
tics and precision medicine, before continuing, we will comment on some of these
differences. In the parlance of RL, the environment in which the agent is making de-
cisions is referred to as the set of states, usually denoted as S;; in precision medicine,
these states correspond to patient features X;. Similarly, the action the agent takes
at time ¢ in the RL setting corresponds to treatment decisions A, in the precision
medicine setting, and rewards (usually denoted as R;) correspond to proximal out-
comes Y; along with the terminal outcome Y = Yr. The functions mapping from the
history of previous states, previous actions, and the current state to the next action
are called policies in RL and correspond to DTRs d. However, it is worth noting that
the term DTR is commonly used to refer to finite time horizon policies exclusively.
In Table 1, we summarize the corresponding terminology between RL and statistical
precision medicine, which was originally introduced in [6].

In RL, rewards are conceptualized as known functions y of the history, current
action, and the next state; that is,

Yt :yl(HhAtaXt-'rl) :yl(YhX[,Xt-i-l)? (3)
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Table 1 Corresponding terminologies between the dynamic treatment regimes and reinforcement
learning literature (the original table was provided in [6]).

Generic Reinforcement learning | Dynamic treatment regimes |Symbol
Observation unit index Trajectory Patient i
Time index Time (or time point) Stage t
Utility Reward (R;) Outcome Y,y
Context State (S;) Covariate X,x
Decision Action Treatment A,a
Decision strategy Policy (Dynamic) treatment regime| d

and as before, we will assume that larger outcomes are better. The goal of RL is
to learn the map, i.e., policy, from state space ¢ to action space <7 to maximize
the total (discounted) reward. For ease of exposition, we let T = oo for the remain-
der of this subsection as we develop the main ideas from RL, and we will return to
the finite horizon case in Section 3.2. For time ¢, 1 < < oo, the goal can be writ-
ten as max Yo ¥*Y;4, where y € [0,1] is a discount factor. When y = 0, the agent
is short-sighted and evaluates the action only with the current award; when Y ap-
proaches 1, the agent learns the action in each iteration more based on the long-term
reward. In the infinite time horizon setting, it is required that 7 < 1 to guarantee the
convergence of cumulative reward.

An important function in RL is the state-value function, the total expected future
rewards of an agent in a particular state if the agent were to follow the given policy
thereafter. Letting d be a policy from the class of all policies &, we can write the
value function at time ¢ for state h; as

VAh)=Ey | Y /Y Hi =h |, @)
k>0

where E; denotes that the expectation is taken with respect to the trajectories that
would be generated under policy d. Immediately, it can be seen that one could find
the optimal policy, the policy that yields the highest (discounted) reward, starting
at time ¢ in state h, by taking the policy that yields the highest value of (4). Except
for the simplest of settings, using (4) in this way is impractical. Instead, in RL, one
typically uses a recursive formulation of the state-value function to learn optimal
policies:
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(Z VYo |H = h,>
Y Vi H, = h,>

k>1

=K, <Yt H, = ht) +Ed{ (7’2 7/<Yz+1 +k‘Ht+1> ’Ht —ht}

k>0

=E, (Yz H; = hz) +E4 (

—~Ea (%[H, = ) + 78 {Vey (Her [0 =) |
=B { ¥+ 7Y%y (o) [He = b }. 5)

As we will see, this recursive formulation of the state-value function, and later the
action-value function, will be essential for learning optimal policies in the infinite
time horizon setting and gives us a general strategy for learning optimal policies.

In terms of the time ¢ state-value function, we can express our goal of learning
an optimal policy as

VI (hy) = max V! (). 6)

Put otherwise, an optimal policy is the policy in & that if we start in state #, maxi-
mizes the total (discounted) future reward, and we let V°P' denote the optimal state-
value. We say “an” optimal policy as opposed to “the” optimal policy since more
than one policy in & may optimize the state-value function. Optimal polices are
related to the state-value function via the Bellman optimality equation:

V,Opt(ht) = ma;{( Edopt (Z ')/kYt

ac k>0

H, = htht = at>

maxE{Y,Jr}/Z )/‘YH_I +k’tht,A,al}

\ e k>1

Z{ftnég%Edopt {YH—Y 41 (Hi41) ’Hz h; A —az} (7N

One can see that the optimal policy satisfies

dzopt(ht) € argrr;le{Yt—i—’y +1 (Hyy1) ‘HI =h;, A, —Clt} 3)
ar €

In precision medicine, we will often be interested in the marginal value function
vi=Ey, {vi(m)}, ©)

where Ey, denotes expectation with respect to the baseline distribution of patient
features. Averaging over the baseline features can be thought of as taking the average
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value of a policy over the population to which it is applied. The marginal value
function corresponds to the value function from the precision medicine framework
defined in Section 2.2.

Before going further, it is worth mentioning that the first class of methods devel-
oped to solve multistage decision problems is called dynamic programming and was
introduced by [2]. Dynamic programming is not the most practical strategy because
it depends on fully knowing the system dynamics of the learning environment, al-
though work by [3, 9, 29] have adapted dynamic programming to environments with
unknown transition dynamics. A breakthrough in RL came in 1989 when Watkins
developed Q-learning, a way to learn optimal policies based on sample data tra-
jectories. This approach is known as off-policy learning as it allows for learning
policies outside of the policy that generates the data trajectory. Broadly speaking, in
Q-learning, one seeks to find the action that yields the high expected reward given
the current state rather than determining the expected value of a given state. Indeed,
Q-learning methods focus on the Q-function, which returns the quality of an action.
The Q-function, also referred to as the action-value function, at time ¢, is defined as

Q?(htvat) =K, <Z 7’kYt+k‘H1 = hlaAt = at) . (10)
k>0

The Q-function at time ¢ yields the total (discounted) expected return if one were
in state h;, took action a;, and then followed policy d thereafter. Like the value
function, the Q-function can be defined recursively

Qfl(h,,a,) :]Ed {Yt + VQ?H (Ht+17At+l)‘Ht = hlaAt = at} . 11

Similar to the development of the optimal state-value function, the optimal Q-
function relates the recursive formulation of the Q-function to an optimal policy

Q% (h;,a;) = E jop {Y, +vy max QOpt(Ht+17at+1)‘Ht =h A = at}7 (12)

Q41 €4
and the optimal decision at time ¢ can be derived directly from the Q-function as

d™ = argmax Q?Pt(h,,at). (13)

aqE,

Before connecting RL to the precision medicine context, we mention that the value
function is closely related to the Q-function, i.e., V¥ (h,) = maxg, cq; Or(hy,ar).
3.2 Q-learning in the context of precision medicine

So far, we have described RL generally. While the framework echoes medical
decision-making, some aspects differ from the precision medicine framework de-
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scribed in Section 2. For example, we described medical decision-making in terms
of potential outcomes which are generally not part of the RL setting. Moreover,
we have purposefully, to this point, avoided making any explicit assumptions about
the transition probabilities between states, and some readers familiar with the RL
literature will have certainly noticed that we have not (yet) invoked the Markov De-
cision Process (MDP) structure (although we will shortly). In fact, we implicitly
allowed for non-Markovian transition probabilities as we wrote treatment regimes
as functions of the entire accrued history of patients. Susan Murphy’s seminal works
[21, 22] united the RL literature with the potential outcomes framework, commonly
used to describe treatment regimes, and regression modeling to develop what is
referred to as Q-learning in the statistical literature. Her work provided an algo-
rithm for the finite horizon precision medicine setting to learn the optimal dynamic
treatment by recursively estimating Q-functions, one for each decision point. This
method avoids the need to know or estimate the transition dynamics, making it pos-
sible to use Q-learning for optimal policy guidance without assuming the overall
MDP structure or knowing the specific transition probability from one stage to an-
other.

For the remainder of this section, we will describe the optimal Q-functions for
learning optimal policies in the precision medicine context, first in the finite horizon
setting and then in the infinite horizon setting. Learning the optimal Q-functions is
essential for learning optimal policies using Q-learning, and we will discuss some
of the nuances of applying Q-learning in the precision medicine framework. Later,
Sections 4 and 5 will focus on the implementation of Q-learning in the finite horizon
and infinite horizon settings.

For precision medicine problems in the finite horizon setting, the optimal Q-
functions are defined as follows:

Q;)wpt(hT,aT) :E (YT‘H, = h[,AT = CZT)7 and

Q;)pt(htuat) :E{Yt +7 max Qt+1(Ht+laa) H, =h A = at} (14)
acy(H; 1)

fort = 1,...,T — 1. We observe that once Q7" is defined, the t = 1,...,7 — 1 op-
timal Q-functions are defined recursively as in (12). The maximization in (14) is
taken over the feasible treatments Y(H,|) € <% rather than % as in (12). This
is to reflect the realities of medical decision-making where not all treatments may
be feasible for all patients, e.g., due to an allergy or a known counterindication for
a particular treatment, a situation that is generally not encountered in general rein-
forcement learning problems. Often, in the finite horizon precision medicine setting,
7Y is taken to be 1 so that the reward is the undiscounted sum of the proximal and
terminal outcomes. Futhermore, it is often the case that there is only one terminal
outcome of interest Y7, and we take ¥; =0 for¢t = 1,...,T. As we describe in Sec-
tion 4, the algorithm for learning the optimal DTR using (14) proceeds iteratively
via backwards induction.

To estimate optimal DTRs in the infinite time horizon setting in precision
medicine, additional modeling assumptions are required. A common strategy is to



14 Xinyi Li, Nikki L. B. Freeman, and Lily Wang

model decision-making as an MDP as in the traditional RL literature. An MDP as-
sumes constant states that describe an individual’s health status and constant actions
available at each time pointz = 1,..., T, denoted as 2" and <7, respectively. It is also
assumed that the reward function y : Z" x &/ x 2" — Ris constant, fort=1,...,T.
That means, for an individual with health status x, receiving treatment a, and tran-
sition to health status x’, the proximal reward, y(x,a,x’), is constant. Moreover, an
MDP assumes that the transitions between states are time-homogeneous and Marko-
vian for all ¢ so that formally P(-|H;,A;) = P(-|X;,A;) [38]. In this setting, the opti-
mal infinite-horizon Q-function is defined as

QP (x,a) =E o (Z Y X =xA = a) , (15)
t=1

where as before y € [0, 1) is a discount factor. Because the optimal infinite-horizon
Q-function is the Q-function that corresponds to the optimal policy d°, a general
strategy of Q-learning in this setting is to estimate Q°" and thereby learn the optimal
DTR. Rather than using the optimal infinite-horizon Q-function directly, a recursive
formulation is used to estimate Q°. Observe that

Xl :x,Al = a)

:]E{Y] +’)/m?.X]Edopt (Z ')/71Y;+[|Xt+]7A] :a') ‘X] :x,A1 :(l}
d

t=1

R o
t=1

:]Edopt {Yl + ’}/melle‘)pt(Xz,a/)|X1 = val = a} R
a
so that in general
Q°"(x,a) =E {Y, +ymax Q% (X;41,a)|X; = x,A; = a} ,
al

which is precisely the MDP analogue of (12). We let B denote the Bellman optimal-
ity operator defined as

7)) =E{,+ ymos X )X =5 =af (9

for a function f, then the optimal infinite-horizon Q-function can be written as
Q°P'(x,a) = (BQ°"")(x,a). From this representation, we observe that Q°" is a fixed
point and motivates what is called the value-iteration algorithm: Q;+; — BQ; for
T =1,2,..., until convergence. We will see in Section 5 how this recursive expres-
sion and value iteration are used to estimate the optimal infinite-horizon Q-function.
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4 Q-Learning for Optimal DTRs in the Finite Time Horizon
Setting

To describe how Q-learning is used in the finite-horizon settings, we start with the
single-decision setting (T = 1), which is highly instructive before generalizing to the
multistage decision setting (2 < T < o). Although we only have one decision point,
we still refer to the learned regime as “dynamic” because it still tailors treatments to
patient features and patient history, unlike a “static” regime in which the treatment(s)
is fixed in advance with a priori.

4.1 Q-learning for optimal single-stage DTRs

For the single-decision setting, a DTR is a function d : &~ — &/ that satisfies
d(x) € y(x) for all x € Z". As in (1), we denote the potential outcome that would
be observed if treatments were assigned according to d € Z as

v(d)= Y Y*(@){d(X)=a}.

acd

The value of a DTR and the definition of the optimal DTR are given analogously in
Section 2.2.

Under the requisite identifying assumptions, the optimal Q-function in the single-
decision setting is defined as in (14). Since the first stage is the terminal stage, we
simply have

Ox,a) =E(¥X=x,A=a),

which suggests d°P' = arg MaX,cy(x) QO(x,a) and that the value of regime d°P" is

V(d®™) =E {max o(X, a)} .
acd

Because the Q-function in this case is a conditional mean model, it is reasonable to
propose to estimate the Q-function using regression modeling [40]. That is, if we
posit a regression model for Q(x,a) and suppose the model is correctly specified,
we can construct a regression estimator Q,(x,a) of Q(x,a), and plug it in to get
f)l’t(x) = argmaXx ey (y) On(x,a).

As a simple illustration, suppose 2" C R, o7 ={0,1}, y(x) = & forallx € 2,
and Y is continuous. We posit the following parametric regression model for the
Q-function:

O(x,a; B) = Bo+xPi +aPr + axpPs, (17)

where B = (By. B, Ba. B3) T are regression parameters. We let B = (Bo. Bi. Bz, Bs) "
denote estimates of the regression parameters that can be obtained via least-squares

regression or other M-estimation methods. Then Q,, (x,a; B) is our estimator for the
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Q-function, and the optimal DTR is

c?"pt(x) = argmax Q,,(x,a;ﬁ)
acy(x)

= argmax EO +x31 + a/?z + axl%
ae{0,1}

= argmaxB\o +xﬁl +a (32 +xﬁ3)
ac{0,1}

= I(EZ‘FXB; >O).
Furthermore, V (d°") can be estimated by
V(d) = P, max Q(xi,a:B)
acy(x)
=P, {ﬁo +xif1+1 (ﬁz +xif3 > 0) (Bz +xiﬁ3> } :

Of note, in Q-learning, the class of treatment regimes under consideration is de-
termined by the Q-function. This is illustrated in (17); the class of regimes under
consideration are those of the form /(3 +xf33 > 0) and indexed by the parameters

ﬁz and ﬁ3 .

4.2 Additional considerations for the single-stage setting

Before proceeding, it is worth mentioning the relationship between the DTRs and
optimal DTRs in the single-decision setting and the conditional average treatment
effect (CATE) often encountered in the causal inference and other related litera-
ture. To illustrate this relationship, suppose momentarily that 7 = {0,1}. In this
scenario, the CATE is defined as

A(x) =E{Y*(1) - Y*(0)|X = x}.

The CATE represents the difference in the average outcome that would be achieved
if individuals with baseline features x were treated with A = 1 and the average out-
come that would be achieved if individuals with baseline features x were treated
with A = 0. In the parlance of DTRs, treating everyone with A = 1 is equivalent
to the particular DTR d(X) = 1, and the value of this DTR is E{Y*(1)}; similarly,
treating everyone in the population with A = 0 is equivalent to the particular DTR
d(X) =0 and the value of this particular DTR is E{Y*(0)}. Thus the expected value
of the CATE taken over the covariates is the difference of the value of the regime
dX)=1landd(X)=0,ie., E{A(X)} =V{d(X) =1} —-V{d(X) =0}. Generally,
if the optimal treatment regime is an indicator function of the linear combination of
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the covariates, CATE will give a good estimate for d°*. See more discussions and
examples in [15].

Statistical inference and large sample properties of DTRs and related estima-
tors are of great statistical interest. Consider the single-stage decision setting. In
this case, estimating the optimal DTR using Q-learning is relatively straightfor-
ward since regression-based analysis may be employed. Asymptotic consistency
and asymptotic normality of the regression coefficients are achievable under stan-
dard regularity conditions. However, the conventional asymptotic theory cannot be
applied directly to the estimators for the maximum value of the regime, even in a
simple case. Let’s rev1s1t the s1mple example in (17). It is evident that the asymp-
totic distributions of [30, /31, 132 and [33 are jointly normally distributed; however,

(d"p‘) is not asymptotically normally distributed due to the non-differentiability
of the indicator function. In general, because of the involvement of the non-smooth
maximum operator in definition, it is difficult to provide inference for V (d°"), and
the difficulty extends to the multistage decision setting; see [40] for more discussion.

4.3 Q-learning for optimal finite-stage DTRs

In the multistage decision setting (2 < T < ), where there are multiple times at
which treatment decisions need to be made, it is crucial to account for both the im-
mediate and long-term impacts of treatment [15]. As we will see in this section, the
backward induction algorithm can help us do so when there are multiple decisions
and thus sequences of treatments at hand.

The characterization of the optimal regime in the multistage decision setting is
more complicated than that in the single-decision setting, and the backward induc-
tion algorithm is usually employed to define the optimal regime. The backward
inductive argument starts at the end and moves backwards through the stages. To
demonstrate the reasoning, we first consider a simple two-stage case, that is, 7 = 2.
In this case, the Q-functions are defined as

Os(hy,a0) = E(Y|Hy = hy, Ay = a3), (18)
Qi(hi,a1) =E {rllagXQz(h27a2)|H1 =h, A = 611}7
or equivalently,
O (x1,a1,%2,a0) = E(Y[X) =x1,A1 = a1, X0 =x,A0 = ay),

Oi1(x1,a1) = E {HEXQ2(X17A17352702)X1 =x1,A1 = 611}~
It follows from dynamic programming [2] that

d;pt(hg) = argmax Oy (h,ay), d(l)pt(hl) = argmax Qj(h;,a;).
arey, (hy) arey (hy)
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Similar to the illustration in the single-decision setting, we consider the simple ex-
ample that 2" C R, &/ = {0, 1}, Y is continuous, and the Q-functions are regression
models with

0> (h2,a2;B51.B2,) = hy By +a> (hzTﬁzz) )
Q1 (hi,ai; i, Br2) = P +ai (hiBi2).

By solving M-estimating equations, the following steps are involved to obtain the
coefficient estimators:

Step L. Stage-2 regression coefficients

(leaﬁzz) =argminP, {Y —hy By —a (hzTﬁzz) }2'

ﬁZl!B22

Step II. Stage-1 regression coefficients

2
(Bi1,Bi2) = argminP, [max{hgﬁzl +ap (h;ﬁzz) } —m P —a (h1B12):|
Bi1,B12 “@

Once the Q-functions have been estimated, the optimal rule can be estimated by

égpt(hz) = argmax Q» (hzaa2;EZI’E22>

a
= I{QZ(hza 1?3217322) > Q2(h270;/ﬁ\217322)} :1<h2TB22 > 0) ;
@pt(hl) = argmax Q| (hlaaléﬁllaEn)
= I{Ql(hl, 1;l§11,312) > Q1(h1,0;l§117[§12)} =1 (Mﬁn > 0) .

The procedure for determining the optimal regime can be extended to the case
where there are more than two decisions, 7 > 2, and (18) can be generalized as

QOr(hr,ar) = E(Y|Hr = hr,Ar = ar),

Qt(ht;al) = E{%la?(Qt+l(ht+lvat+l)Ht = h;, A 01}7 t=1,...,T -1
1+

The estimated optimal DTR is

(/j?pt = argmaxét(h,,a,)7 t=1,...,T.

ar
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4.4 Additional considerations for the general finite-stage setting

Obviously, the success of this approach relies on the modeling assumption and the
high-quality estimator of the Q-function. An alternative choice to Q-learning is A-
learning or advantage learning [21], which also can be viewed as a special case of
g-estimation [32, 37]. Both Q-learning and A-learning rely on the Bellman equation
to learn the optimal policy as opposed to directly optimizing an objective function,
and are sometimes referred to as indirect methods. A-learning does not require full
knowledge of the Q-function, i.e., the conditional mean of the outcome; instead,
A-learning models contrast functions to construct the estimate. Under the model
misspecification for Q-function, A-learning is more robust; and when the model of
Q-function is correctly specified, Q-learning is more efficient. One can refer to [36]
for more details on comparisons, discussions and implementations for these two
popular methods. Finally, we note that as in the single-decision setting, inference
for the value of a multistage decision rule is complicated and in general non-regular.

5 Q-Learning for Optimal DTRs in the Infinite Time Horizon
Setting

For some diseases, decision support for disease management and prevention re-
quires many similar decisions to be made over time, as illustrated in Figure 2. For
example, individuals living with diabetes make decisions about exercise, food, and
insulin dosage multiple times every day to manage their blood glucose. In these
cases, an infinite time horizon formulation of the decision problem is used. As pre-
viously described in Section 3, infinite-horizon problems are modeled as MDPs.
Letting y(x;) € &7 denote the feasible treatments for an individual with health sta-
tus x; as in the finite time horizon setting, a dynamic treatment regime is a map
d: Z — o such that d(x) € y(x) for all x € Z". Note that by construction, d is
stationary, and thus can be applied for all # including ¢ > T'. As in the finite time hori-
zon setting, the potential outcomes framework is used to characterize the decision-
making problem. Then we can write the potential health status if regime d had been
followed as

t—1

X/ (d) = Y X/ (@) [[1[d{X;(@-1)} = ],
a; | €A XXy k=1

and the potential momentary outcome for that would be observed under d as
Y (d) = y(X}(d),d(X}(d)), X}, (d)), where y(-,-,-) is the reward function defined
in Section 3.2.

We assume that the observed data used to learn d°P' are n i.i.d. trajectories
{(X1,i,A1:, X2, .., X7—1,i,Ar—1,, X7,i) }}_,. Although data are collected over a fi-
nite time horizon T, the Markovian structure of the MDP enables us to learn an
optimal DTR that can be applied repeatedly over time. Under the same identifying
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assumptions as in the finite horizon setting, the optimal infinite-horizon Q-function
is identified, and we repeat its Bellman equation representation here:

0" (x,a) = E jon (i Y [X =x,A = a) = (BQ™)(x,a).

t=1

With the increasing prevalence of long-term chronic disease conditions requir-
ing ongoing management, there is growing interest in the infinite-horizon precision
medicine problem, and it is an open area of research. Following [6], we describe two
such methods that have been proposed using Q-functions. The first is an estimating
equation approach proposed by [10]. They model the optimal infinite-horizon Q-
function with a differentiable parametric model Q(-; ). Substituting this into the
Bellman equation yields

0(x,:6) —E{n T ymax QX1 0)[X, = x4, = } |
a/
Then it follows that
E {Y, +ymax Q(X;+1,d’;0) — Q(x,a;0)|X, = x,A; = a} =0
a/

=E HY; + }/ma}xQ(XHha'; 0)— Q(x,a;O)} VeO(x,a;0)|X;, =x,A; = a} =0

T-1

Yy {Yt +ymaxQ(Xi41,d’;0) — O(x,a;0) } VoO(x,a;0)|X; =x,A, = a] =0,

t=1

=E

yielding an estimating equation for 8. The empirical estimating equation is given
by

T
P, (Z HYZ + yrr:le}xQ(X,H ,d;0)—0(x,a;0) } VeQ(x,a; 6)} > =0.
=1

For a linear model for Q°, [10] showed that the solution to the estimating equation
is consistent and asymptotically normal under some regularity conditions.

In [9], an alternative approach to learning the optimal dynamic treatment regime
in the infinite-horizon setting using Q-learning was proposed, called fitted Q-
iteration (FQI). Similar in spirit to the Q-learning in the finite-horizon setting, FQI
fits a sequence of candidate Q-functions. Let 2y, 21,... be asequence of candidate
Q-functions, then let Qp < argming, e g, Pu[¥7_1 {¥; — Qo(X:,A;) }?]. The algorithm
proceeds as follows:
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fork=0,1,..., until convergence,

T N 2
Qi+1 < argmin P, lz {Yt +}/m§1ka(X,,a) - Qk+l(XtaAt)}

Qi+1€ %11 =1

FQI allows for highly flexible models to be used for the Q-functions; however, it suf-
fers from bias and nonregularity. To address these limitations, [5] offered a variant
of FQI with linear function approximations, which helps to reduce bias.

6 An Illustrative Example

To concretize finite-horizon Q-learning and the backward induction approach, we
present a simple example of Q-learning implementation for the two-stage setting in
the R statistical programming language. We will use the bmiDat a dataset from the
DynTxRegime package [13], a package that features a number of functions and
methods for implementing Q-learning and other precision medicine methods. Al-
though the DynTxRegime package includes a function for Q-learning, gLearn,
we will use primitive R functions for tractability and ease of exposition in the fol-
lowing example.

The bmiData dataset mimics a two-stage randomized clinical trial that studied
obesity in adolescents. At the first randomization point, adolescents in the study are
randomized to meal replacement shakes “MR” or their conventional diet “CD”. The
trial collected data to study the effect of meal replacement shakes on adolescent obe-
sity, with the primary endpoint being body mass index (BMI) defined as body weight
(kg) divided by squared height (m?). Throughout, we assume that there is no miss-
ing data, there were no participants lost to follow-up, and all study participants were
compliant with their assigned treatment. We begin by loading the DynTxRegime
package. Once loaded, we load the bmiData dataset and use the function head to
take a look at the first five observations in the dataset.

# Load the DynTxRegime package
library (DynTxRegime)

# Load the bmiData dataset
data (”bmiData”)

# Take a peek at the bmiData
head (bmiData, 5)

gender race parentBMI baselineBMI month4BMI monthl2BMI Al A2

1 0 1 31.59683 35.84005 34.22717 34.27263 CD MR
2 1 0 30.17564 37.30396 36.38014 36.38401 CD MR
3 1 0 30.27918 36.83889 34.42168 34.41447 MR CD
4 1 0 27.49256 36.70679 32.52011 32.52397 CD CD
5 1 1

26.42350 34.84207 33.72922 33.73546 CD CD
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We see that this dataset contains the baseline features gender, race, parent BMI,
and baselineBMI. Variables A1 and A2 record the treatments assigned at the first
and second randomization point, respectively, mont h4BMI is a BMI measurement
after the first treatment assignment and before the second treatment assignment, and
month12BMI is the final BMI measurement at the end of the study period. Our
analysis will focus on the percent change in BMI between the baseline BMI mea-
surement and the measurement taken after 12 months from the initial randomization.
We add the variable pctBMIchange to bmiData in the following. Additionally,
we negate the percent change in BMI change so that larger percent changes are
better.
dplyr :: mutate (bmiData ,

pctBMIchange = —-100 % (monthl12BMI - baselineBMI)/baselineBMI)

To learn an optimal DTR using Q-learning, we proceed using the backward in-
duction. This is a two-stage problem, so we begin by positing a model for the Stage
2 Q-function O, (hy,a) given in (18):

02 (h2,a2; B,) =E (pctBMIchange|hy,a2; B,)
=Pa0+ Br1gender + By 2race + By 3 parentBMI + B abaselineBMI
+ ﬁ275A1 + ﬁ276m0}’lth4BMI—‘r ﬁ277A2 + ﬁ278A2 X baselineBMI1

+ B2,9A2 x monthABMI + B> 10A2 x parentBMI + B> 11A2 x Al.
(19)

The model specified in (19) is a linear model. As specified, gender, race,
parentBMI, baselineBMI, first-stage treatment (Al), and month4BMI are
specified as treatment effect modifiers; that is, they affect the conditional mean of the
percent change in BMI. Additionally, baselineBMI, month4BMI, parentBMI,
and A1 are specified as prescriptive variables meaning that the derived decision rule
will recommend treatment based on those four variables. In particular, the form of
the decision rules under consideration is

1(B27 + BasbaselineBMI + By gmonth4BMI + Ba 1o parent BMI + By 11A1 > 0),

where ﬁ277, ... 7,32711 are real-valued parameters, and if the treatment rule is valued

as 1, then meal replacement therapy is recommended at Stage 2. In R, we use the

1m function to estimate the parameters in (19).

# Fit the second stage regression model (Q2)

stage2mod <- Im(pctBMIchange ~ gender + race + parentBMI +
baselineBMI + Al + month4BMI + A2 +

A2:baselineBMI + A2:month4BMI + A2:parentBMI +
A2:Al, data = bmiData)

Using the Stage 2 model, we can use the predicted values to estimate the Stage
2 optimal treatment rule c/i;pt(hz). In particular, we set A2 to “MR” for all study
participants and compute the predicted values for this modified dataset, and then
we repeat the procedure by setting A2 to “CD”. Next, we compare the predicted
values. For those whose predicted response is greater when the Stage 2 treatment is
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set to “MR” than to “CD”, the optimal Stage 2 treatment recommendation is “MR”.
Similarly for those whose predicted response is greater when the Stage 2 treatment
is set to “CD”, the optimal Stage 2 treatment is “CD”’.

# Fitted values when A2 == "MR”
stage2MRfitted <- predict(stage2mod ,
data = dplyr:: mutate (bmiData, A2 = "MR”))

# Fitted values when A2 == "CD”
stage2CDfitted <- predict(stage2mod ,
data = dplyr:: mutate (bmiData, A2 = "CD”))

# Optimal Stage 2 treatment recommendations
d2opt <- dplyr::if_else(stage2MRfitted > stage2CDfitted ,
"MR”, “CD”)

# Allocation of Stage 2 treatments under the optimal rule
table (d2opt)

CD MR
109 101

Thus, at the second stage decision, the optimal rule recommends meal replace-
ment for 101 study participants and conventional diet for 109 study participants.
Using the estimated coefficients for the Stage 2 Q-model, we can write down the
estimated stage-decision rule as

d>(hy; By) = 1(—0.68 — 0.13 x baselineBMI+0.13 x monthABMI
+0.04 x parentBMI—0.30 x I(Al = “MR”) > 0),

where dAg (ha; B,) = 1 recommends treatment with meal replacement at stage 2. With
the Stage 2 decision rule now learned, we can now work backwards to learn the op-
timal decision rule for the Stage 1 decision. As with second-stage analysis, we posit
a model for the Stage 2 Q-function Q;(h;,a;) given in (18). One notable difference
between the Stage 2 and Stage 1 Q-functions is that, for the Stage 2 Q-function, we
modeled the conditional mean of the response variable, whereas, for the Stage 1 Q-
function, we will model the conditional mean of the predicted value estimated from
the model posited for O, assuming that optimal treatment was assigned in Stage 2.
Denoting this fitted value as 171, we posit the following model:

01 (h1,a1;B,) =E[Y; |hy,a1;B,]
=P ogender+ i 1race + i rparent BMI + By sbaselineBMI
+ B14A1 + By 5A1 x baselineBMI + B 6Al x parentBMI. (20)

For simplicity, we have again chosen a linear Q model though more diverse models
could be considered. Gender, race, parental BMI, and baseline BMI are specified
as modifiers of the first-stage treatment. By interacting baseline BMI and parental
BMI with the first-stage treatment, they are the variables by which the first-stage



24 Xinyi Li, Nikki L. B. Freeman, and Lily Wang

treatment rule will tailor treatments. The form of the decision rules under consider-
ation is I(P 4 + B1 sbaselineBMI + B, ¢parentBMI), where B 4, Bi 5, and P ¢ are
real-valued parameters, and if the value of the function is 1, then the recommended
treatment is meal replacement. As before, we use the 1m function in R to estimate
the parameters in (20).

# Compute yhat

yhat <- dplyr::if_else(stage2MRfitted > stage2CDfitted ,
stage2MRfitted , stage2CDfitted)

# Append yhat to bmiData
bmiData <- cbind (bmiData, yhat)

# Fit the first stage regression model (QI)

stagelmod <- Im(yhat ~ gender + race + parentBMI + baselineBMI +
Al + Al:baselineBMI + Al:parentBMI,
data = bmiData)

As we did with the Stage 2 analysis, we can use the predicted values from the
Stage 1 estimated Q-function to estimate the Stage 2 optimal treatment rule &? Pt (hy).
As before, we compare the predicted values generated by the estimated Stage 1
model with Stage 1 treatment set to “MR” to Stage 1 treatment set to “CD”.

# Fitted values when Al == "MR”
stagel MRfitted <- predict(stagelmod,

data = dplyr:: mutate (bmiData, Al = "MR”))
# Fitted values when Al == "CD”
stage | CDfitted <- predict(stagelmod,

data = dplyr:: mutate (bmiData, Al = "CD”))

# Optimal Stage 1 treatment recommendations
dlopt <- dplyr::if_else(stagel MRfitted > stagelCDfitted ,
"MR”, “CD”)

# Allocation of Stage 1 treatments under the optimal rule
table(dlopt)

CD MR
109 101

Coincidentally, the same number of participants (but not necessarily the same
participants) are recommended to receive meal replacement at the first stage as the
second stage under the optimal dynamic treatment regime. Using the regression
coefficient estimates, we can write down the estimated optimal Stage 1 decision
rule

c?l)pt(hl;ﬁl) =1(11.1140.74 x baselineBMI — 1.23 x parentBMI),

where c?l)pt(hl ;B,) = 1 recommends meal replacement and c?fpt(hl ;By) =0 rec-

ommends conventional diet. Together, ff Pt and dg’pt form the estimated optimal dy-
namic treatment regime.
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We have illustrated the two-stage treatment regime using basic R functions (and
a few functions from dp1lyr just to keep things tidy), but the DynTxRegime pack-
age offers functions that automate the steps we have outlined, as well as automati-
cally calculate the value of the estimated optimal DTRs on the training data and test
data, as shown below. This is important as it allows for the assessment of the gener-
alizability of the estimated DTRs, and whether it can effectively predict outcomes
for new patient populations.

# Q-learning to learn the optimal dynamic treatment regime

# — using DynTxRegime package

yl12 <- -100%(bmiData[,6L] — bmiData[,4L])/bmiData[,4L]

moMain <- buildModelObj(model = “parentBMI+month4BMI +gender +
race + baselineBMI +Al, solver.method = ’Im’)

moCont <- buildModelObj(model = “baselineBMI + parentBMI +
month4BMI + Al, solver.method = ’Im’)

fitSS <- gLearn(moMain = moMain, moCont = moCont,
data = bmiData, response = yl2, txName = 'A2’)

First step of the Q-Learning Algorithm.

Outcome regression.
Combined outcome regression model: ~ parentBMI + month4BMI +
gender + race + baselineBMI + Al + A2 +
A2: (baselineBMI + parentBMI + month4BMI + Al).
Regression analysis for Combined:

Call:

Im(formula = YinternalY ~ parentBMI + month4BMI +
gender + race + baselineBMI + Al + A2 +
baselineBMI:A2 + parentBMI:A2 + month4BMI:A2 +
Al:A2, data = data)

Coefficients:
(Intercept) parentBMI month4BMI gender
7.94094 -0.04681 -2.66904 -0.10585
race baselineBMI A1MR A2MR
0.19576 2.49094 0.16042 -0.67686
baselineBMI:A2MR parentBMI:A2MR month4BMI:A2MR AIMR:A2MR
-0.13449 0.04189 0.12747 -0.30170

Recommended Treatments:
CD MR
109 101

Estimated value: 6.682276

moMain <- buildModelObj (model = “parentBMI + baselineBMI +

race + gender, solver.method = ’Im’)
moCont <- buildModelObj(model = “parentBMI+baselineBMI ,
solver .method = ’Im’)

fitFS <- gqLearn(moMain = moMain, moCont = moCont,
data = bmiData, response = fitSS, txName = "Al’)
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Step 2 of the Q-Learning Algorithm.

Outcome regression.

Combined outcome regression model: = parentBMI + baselineBMI +
race + gender + Al + Al: (parentBMI + baselineBMI) .

Regression analysis for Combined:

Call:
Im(formula = YinternalY ~ parentBMI + baselineBMI + race +

gender + Al + parentBMI:Al + baselineBMI:Al, data = data)

Coefficients:

(Intercept) parentBMI baselineBMI race
-2.66451 -0.06937 0.34328 -0.46095
gender AIMR parentBMI:AIMR DbaselineBMI:A1IMR
0.26356 11.10540 -1.22588 0.73594

Recommended Treatments:
CD MR
109 101

Estimated value: 9.416704

The R code above is available for access in the specified GitHub repository:
https://github.com/FIRST-Data-Lab/Q-learning.

7 Summary/Conclusions

In this chapter, we have described how Q-learning is used in precision medicine
to estimate optimal dynamic treatment regimes in both finite-horizon and infinite-
horizon settings. Given the breadth of the precision medicine literature, there are
a number of Q-learning extensions that were not included. For example, we have
mainly focused on the case where ¥ € R, but statistical Q-learning strategies have
been developed for more complicated outcomes such as right-censored data [11].

Q-learning is an attractive method for learning optimal DTRs since in many cases
Q-functions can be modeled using off-the-shelf software routines. Nonetheless, the
method depends on the model of the Q-function, so it is important to have high-
quality estimators for the Q-function. Despite these challenges, there is still much
exciting work to be done with Q-learning in the precision medicine setting. Infer-
ence for DTRs and the value function continues to be an active area of research,
and methods for infinite-horizon medical decision-making are being developed for
mHealth applications. Overall, Q-learning is an effective strategy for learning op-
timal treatment recommendations and is likely to be an important strategy in the
future.
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