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Developing high-precision models of the nuclear force and propagating the associated uncertainties in
quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear
theory. In this Letter, we demonstrate that generative machine learning models can construct novel
instances of the nucleon-nucleon interaction when trained on existing potentials from the literature.
In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order
in chiral effective field theory and at three different choices of the resolution scale. We then show that the
model can be used to generate samples of the nucleon-nucleon potential drawn from a continuous

distribution in the resolution scale parameter space. The generated potentials are shown to produce high-
quality nucleon-nucleon scattering phase shifts. This work provides an important step toward a
comprehensive estimation of theoretical uncertainties in nuclear many-body calculations that arise from
the arbitrary choice of nuclear interaction and resolution scale.
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Introduction—High-precision models of the nuclear
interaction are essential not only for explaining the struc-
ture and dynamics of atomic nuclei [1,2] but also for
describing the properties of hot and dense matter in extreme
astrophysical environments, such as neutron stars, core-
collapse supernovae, and neutron star mergers [3,4]. In this
Letter, we show that modern machine learning generative
models have the ability to learn salient features of the
nucleon-nucleon (NN) interaction, reconstruct distributions
of potentials, and create novel and physically reasonable
instances of the nuclear potential. Generative models have
become a popular research topic in machine learning due to
their ability to generate new data based on existing data
distributions, which has many practical applications to image
and speech synthesis [5-8]. Here, we apply generative
models as a tool for uncertainty quantification in nuclear
many-body calculations, which depend on the resolution
scale of the employed nuclear force. This work is related to
other recent investigations across diverse fields that have
explored generative models in the context of the renormal-
ization group and uncertainty quantification [9-12].

Since the nuclear potential arises from quantum chromo-
dynamics as the low-energy effective interaction among
composite nucleons, there is an inherent uncertainty due to
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the choice of resolution scale at which nuclear dynamics
is resolved [13,14]. This resolution scale is typically
parametrized in the nuclear potential through a momen-
tum-space regulating function parameter A that demarcates
the separation between low-energy and high-energy (unre-
solved) physics. In principle, physical observables should
be independent of the resolution scale, but in practice, the
results of nuclear many-body calculations exhibit a mod-
erate residual uncertainty due to this choice [15-17]. In
recent years, chiral effective field theory (EFT) [18-20]
has emerged as a suitable tool to systematically study not
only the scale dependence of nuclear interactions but
also to estimate uncertainties due to missing physics
through an analysis of effective field theory truncation
errors [4,21-31]. In the framework of chiral EFT, a specific
nuclear interaction is obtained by first defining the high-
momentum regulating function and then fitting to exper-
imental scattering and bound state data the low-energy
constants (LECs) of the theory that characterize unresolved
short-distance physics [25,32].

Nuclear potentials from chiral EFT are typically fitted at
only a few select values of A, from which one can obtain a
qualitative estimate of the resolution scale uncertainties.
For statistical inference, however, one requires the ability to
draw samples of the NN potential from a continuous
distribution in A, which when combined with EFT trunca-
tion errors and variations in the LECs consistent with data
[33,34] can provide a comprehensive assessment of theory
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uncertainties. For this purpose, we utilize the Generative
Flow (Glow) model [35,36], which was originally devel-
oped in the field of computer vision for generating realistic
images and manipulating their attributes. We adapt and
refine the Glow model to develop a generative machine
learning model for nuclear potentials. Effectively, we will
treat the momentum-space matrix elements of the potential
in different partial waves as “images.” We show that the
model can recreate the training potentials and generate new
physically reasonable nucleon-nucleon potentials over a
continuum of cutoff scales. The reliability of the generated
potentials is benchmarked by calculating nucleon-nucleon
scattering phase shifts. Finally, we show that a combination
of the Glow model and Vision Transformer model (ViT)
[37] allows for the extraction of chiral EFT LECs from the
generated nuclear potential matrix elements.

Methods—The Glow model attempts to learn the proper-
ties of a given dataset by constructing an appropriate
probability distribution to estimate the probabilities of
some features of a sample. Once an appropriate probability
distribution is found, the Glow model can generate novel
samples by drawing from the distribution through sam-
pling. The Glow model initializes a trainable distribution
whose parameters @ are iteratively adjusted such that the
likelihood of the distribution can be maximized with
respect to . In practice, one minimizes [38]

£00) =~ > oz polx) (n

where pg(x;) is the probability of the sample x;, 6
represents trainable parameters, and N is the number of
samples.

As a flow-based model, Glow couples several layers of
transformation functions to form the flow f, which trans-
forms a sample x from the data space to the latent space
variable z via

z=frxofk-10...0fro...of1(x), (2)

where f} is the transformation function at the kth layer. In
this work, a layer of transformation is composed of three
parts: an ActNorm, a 1 x 1 convolution transformation
(1 x 1 conv) [39], and a rational quadratic spline (RQS)
transformation [40,41]. The Glow model incorporates
multiple-scale architecture [36] for efficiency purposes.
A sequence of operations is performed on each sample at
every scale. The first operation, squeezing, changes the
shape of a sample from (C,H,W) to (4 x C,H/2,W/2),
where C is the number of channels, and H and W are the
height and width, respectively. At the second operation,
K layers of transformation functions are coupled. The
sample now is transformed according to Eq. (2). Upon
reaching the end of the scale, the sample is again split into
two halves along the channel dimension. The first half is

treated as part of the fully transformed sample z in the
resulting latent space. Its probability will be calculated by a
tractable base distribution model whose parameters are
the output of neural networks, and contribute to the total
probability g,(z). The remaining half is employed as the
input of the neural networks responsible for constructing
the base distribution and will continue progressing to the
next scale. A tensor with the shape of (C, H, W) traverses
through L-layer scales and finally there are still (2L x C,
H/2L, W /2L) elements whose distribution has not been
determined. The base distribution to evaluate the proba-
bilities of final elements is built by neural networks whose
inputs are the labels of the sample. In our work, the base
distributions are Gaussian distributions.

To produce samples with new labels, one obtains
samples in latent space and transforms them back into
data space. For this we apply two different approaches:
(1) latent space sampling (LSS) and (2) latent space
interpolation (LSI). In LSS we first draw samples z in
the latent space from a Gaussian that is built according to
the labels from the training set. Next, we perform inter-
polation based on the obtained z samples and the new label.
Finally, we transform the interpolated sample back into the
data space. In LSI the samples of z are obtained by
transforming given x’s from the data space to the latent
space. The next two steps are the same as in LSS approach.
The first approach is suitable for drawing samples from
distributions with desired labels, while the second approach
can be applied to predict instances of samples based on
existing samples. For nuclear interaction modeling, we
view the partial wave matrix elements as the samples for the
Glow model. Therefore, a nuclear potential can be viewed
as a sample with shape (C, H, W), where C is the number of
partial wave channels a, and H and W are the number of
momentum-space mesh points of p and p’ for the poten-
tial V,(p, p’).

Results—We conduct two experiments to investigate the
Glow model’s capabilities in reconstructing actual nuclear
potentials, building distributions, and generating new,
realistic ones. Our first experiment employs potentials
generated from the similarity renormalization group (SRG)
[42,43], where the resolution scale can be freely chosen. In
the SRG, a potential V), is evolved with a flow parameter A
from an initial potential V by a unitary transformation. In
this Letter, the initial potential for the SRG is the next-to-
next-to-next-to-leading order (n3lo) chiral nuclear potential
of Entem and Machleidt [44] with momentum-space cutoff
A =500 MeV. The second experiment attempts to train
the Glow model to learn the characteristics of chiral
potentials nvloA at different orders v in the chiral expansion
and different high-momentum cutoff values A. The SRG
potential experiments include three partial-wave channels
C = 3, and the size of the momentum-space mesh grid is
H =W =32, In the chiral potential experiments, we
include all partial waves that have associated short-distance
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FIG. 1. Top: Vis, matrix elements of Glow-generated SRG
potentials at A = 2 and 5 fm~! at different training iterations. The
true SRG potential matrix elements are shown on the right side
for comparison. Bottom: the mean squared error, calculated based
on the difference of all the elements from all the corresponding
potentials.

contact terms, which requires C = 14, and we set
H =W =48. In addition, (L,K) = (3,2) for the SRG
potential experiments, and (L, K) = (4,4) for the chiral
potential experiments.

To train a Glow model for the SRG, we gather potentials
with 1€{2,3,4,7,8,10,11,12} fm~'. We then employ the
Glow model to deduce potentials with 1 = 5,6,9, 13 fm~!
using LSI throughout the training to evaluate the model’s
inference capability. When using LSI, the input potentials
are the actual SRG potentials used for training. We
calculate the mean square error (MSE) by measuring the
difference between all the matrix elements of Glow-
generated potentials and the actual potentials from SRG.
In the bottom panel of Fig. 1, we show the MSE as a
function of training iteration. During the training process,
both the reconstructed potentials (blue line) and the inferred
potentials (orange line) converge toward the true potentials
generated by the SRG, as indicated by the decreasing MSE.
The top panel of Fig. 1 shows the 1 = 2 fm~! (training) and
A=5fm™! (inferred) Glow-generated SRG potential matrix
elements in the 'S, partial wave at different iterations (three
columns on the left) and the actual potentials from SRG
(rightmost column). Initially, the Glow model only gen-
erates Gaussian noise. Upon completion of the training, the
potentials obtained from the Glow model and the SRG
appear indistinguishable.

Next, we train a separate Glow model based on a set of
six chiral potentials with truncation orders v € {2,3} and
cutoffs A € {450,500,550} MeV [45]. Since the chiral
potentials generated by the Glow model are given in terms
of their partial-wave matrix elements, we have also trained
a ViT model [37,46] to deduce the associated LECs and

(p', p)=(3.07,0.09) fm~" (p’,p)=(0.36, 0.02) fm~*

&
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FIG. 2. SRG (left) and chiral (right) off-diagonal potential
matrix elements in the 'S, partial-wave channel. The plus and dot
markers as well as the dashed lines are from the exact potentials,
while solid lines are generated by trained Glow models using LSI
and LSS for SRG and chiral potentials, respectively.

value of A from Glow-generated potentials. The ViT model
is a widely used machine learning model that is well-suited
for regression and classification tasks. In the present case,
the ViT model is trained on a large dataset of (unphysical)
chiral potentials with LECs randomly sampled from a
uniform distribution.

In Fig. 2, we show the cutoff dependence of selected 'S,
off-diagonal matrix elements of the Glow-generated SRG
potentials (left panel) and chiral potentials (right panel).
The Glow-generated SRG potentials are obtained from LSI,
where the inputs for LSI are the actual preexisting poten-
tials, while the Glow-generated chiral potentials are gen-
erated via LSS. In the left panel, the plus symbols mark the
actual values of the SRG potential matrix elements at the
values of 1 used for training, which naturally lie exactly on
the dashed-blue line that indicates the actual SRG matrix
elements as a function of A. The matrix elements from
the Glow model are shown with the solid red line, which
lies nearly on top of the blue dashed line of the actual SRG
matrix elements. We note that the Glow model is not
naively interpolating between training points, since the
points between 4 =4 and 7 fm~! would then be much
farther from the blue-dashed SRG line. In addition,
from the left panel of Fig. 2 we see that the Glow model
expected [47] decay V,(pi,ps)~
V(py.py)e~ =P/ of the far off-diagonal matrix
element (p'=3.07fm™"|Vig [p=0.09 fm™") with respect
to A. Similarly, in the right panel of Fig. 2, we see that
the chiral EFT matrix elements (p’ = 0.36 fm™!|Vig [p =
0.02 fm~!) generated by the Glow model across a con-
tinuum of A values follow a smooth contour that passes
through the actual values at A = 450, 500, 550 MeV.

The Glow model can also be used to obtain LEC
distributions either (i) starting from scratch by directly
fitting to phase shifts or (ii) from existing LEC distributions
at different resolution scales. To demonstrate (i), in the
left panel of Fig. 3 we start by training a Glow model at
three different cutoffs, A = {450(cyan), 500(orange),
550(magenta) } MeV, using a wide distribution (top panel,

produces the
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FIG. 3. Left panel: distributions for C]SO before (top row) and after (middle row) phase shift training. The mean values of the
distributions after phase shift training are shown as circles, while the literature values are shown as stars. Right panel: The first two
columns show LEC distributions predicted using LSS for n3lo chiral potentials with A = 500, 550, 520 MeV. We show for comparison
the input distributions as dashed lines. The rightmost column shows the evolution of the LEC distribution mode as a function of the
cutoff, where the stars are the LECs values from the actual chiral n3lo potentials. The bottom-right panel shows the ViT predicted cutoff
vs the cutoff input label into the Glow model. A red diagonal line (bottom right) is plotted to gauge the quality of the Glow-learned and

ViT-extracted cutoffs.

dashed line) for the LEC (Nfg' Up ). The Glow model is able to

rebuild this wide distribution at all three values of A as
shown by the different colored distributions in the top
panel. The pretrained Glow model is then further trained to
minimize the difference between the calculated and exper-
imental phase shifts dig in the neutron-proton channel up to
the laboratory energy of 300 MeV. As shown in the middle
panel of the left subfigure in Fig. 3, after the phase shift

training, the distributions for the C fg:’ ) LEC extracted by

the ViT model converge separately for the three values
of A. Therefore, the Glow model can obtain LEC distri-
butions for different cutoffs from scratch. In the bottom
panel of the left subfigure, we show the peak values of

cf;;”)

compared to the actual values from the literature (star
symbols). The values are not identical, since the literature
values were obtained by fitting to experimental scattering
data and deuteron properties. Nevertheless, the LEC values
are quite similar and show the same trend as A is varied.
Finally, the obtained potentials produce high-quantity
phase shifts as shown with the triangle symbols in the left
panel of Fig. 4.

In the right panel of Fig. 3, we show the conditional
distributions of LECs for given As in the first two columns,
where the potentials are sampled via LSS. Again, we find
that the Glow model has the ability to rebuild the LEC
distribution at the training values of A = 500, 550 MeV
(top two rows). We also show in the third row the predicted
distribution p(LECs|A = 520 MeV). The central point of
the predicted distribution is positioned within the range
between the centers of p(LECs|A =500 MeV) and
p(LECs|A = 550 MeV). Finally, the right column shows

determined from the above method (circle symbols)

the continuous evolution of the peak in the LEC distribu-
tions between A = 450-550 MeV, where the actual values
are shown as stars for comparison. We also show in the
bottom-right panel of Fig. 3 the relation between the cutoff
Aglow as the input label for the Glow model and the cutoff
Av;t inferred by the ViT model. The near identity between
the two A values shows that the Glow model can generate
chiral potentials with the desired value of A and that the
ViT model can accurately extract A from the potential
matrix elements.

To verity the quality of the chiral potentials generated by
the Glow model, in Fig. 4 we show the calculated phase
shifts in selected partial-wave channels. From Fig. 4 we
observe that the Glow-n3loA potentials give good phase
shift results when compared to experimental data used to fit
the actual chiral potentials. The ability of the Glow model
to extrapolate outside the A training range is illustrated
by the phase shifts for the Glow-generated potential at
A = 435 MeV. Furthermore, even though the values of A
are uniformly sampled over the range 450 < A < 550, the
phase shifts need not be uniformly distributed.

A [MeV]
e ——— |
450 475 500 525 550
50 8, * Exp BEIDy et
p——i 4 VGlow—n3los w
5 10180 p— /
,_%C & _VG]ow—n‘Slo;L 18 ol < A_435 MeV
— Eo*> *
- A, 0F & ——
OLtso . TEsalowopiey Tt
0 100 200 300 0 100 200 300
ELab [Me\/] ELah [Me\/]

FIG. 4. Phase shifts for np scattering. The colored solid lines
correspond to Glow-n3loA potentials. Red stars correspond to the
phase shift analysis [48] of NN scattering data.
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FIG. 5. Pure neutron matter equation of state with different
cutoffs. The EFT truncation error (red region) from Ref. [49] is
plotted for comparison.

Finally, as a test case, we study the influence of the
resolution scale on the zero-temperature neutron matter
equation of state calculated up to second order in pertur-
bation theory, shown in Fig. 5 for two-body forces alone
and including the n2lo chiral three-body force. Below
saturation density, the uncertainties due to the choice of
cutoff scale are larger than those arising from the truncation
in the EFT expansion [49] shown as the red band. However,
beyond nuclear saturation density the EFT expansion
parameter increases and one observes the EFT truncation
errors to grow stronger than those due to the resolution scale.
Again, we can find that the distribution of the energy is not a
simple uniform distribution with respect to the cutoff.

Summary and outlook—In this Letter, we have ex-
tended the Glow machine learning model to generate
novel instances of the nucleon-nucleon interaction by
training the neural network on existing interactions in
the literature. We have shown that the Glow model can
accurately reconstruct the training nuclear potentials and
build a continuous distribution of potentials over a range
of resolution scales, all while reproducing nucleon-
nucleon scattering phase shift data. The Glow model
enables the generation of realistic nucleon-nucleon
potentials in a matter of seconds, and therefore it can
play an important role for more reliable estimations of
nuclear many-body uncertainties that arise due to the
arbitrary choice of resolution scale in the nucleon-
nucleon interaction. The treatment of nuclear three-body
forces within the Glow model is expected to be a
straightforward extension of the methods developed in
this study and will be pursued in future work. These tools
add to the growing body of recent literature exploring
machine learning models for uncertainty quantification
and the renormalization group.
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