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Abstract

In many contexts involving ranked preferences, agents submit par-

tial orders over available alternatives. Statistical models often treat

these as marginal in the space of total orders, but this approach over-

looks information contained in the list length itself. In this work,

we introduce and taxonomize approaches for jointly modeling dis-

tributions over top-k partial orders and list lengths k , considering

two classes of approaches: composite models that view a partial

order as a truncation of a total order, and augmented ranking mod-

els that model the construction of the list as a sequence of choice

decisions, including the decision to stop. For composite models, we

consider three dependency structures for joint modeling of order

and truncation length. For augmented ranking models, we consider

di�erent assumptions on how the stop-token choice is modeled.

Using data consisting of partial rankings from San Francisco school

choice and San Francisco ranked choice elections, we evaluate

how well the models predict observed data and generate realistic

synthetic datasets. We �nd that composite models, explicitly mod-

eling length as a categorical variable, produce synthetic datasets

with accurate length distributions, and an augmented model with

position-dependent item utilities jointly models length and prefer-

ences in the training data best, as measured by negative log loss.

Methods from this work have signi�cant implications on the simula-

tion and evaluation of real-world social systems that solicit ranked

preferences.

CCS Concepts

•Computingmethodologies→Model development and anal-

ysis; • Information systems→ Learning to rank.
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1 Introduction

Ranked preferences serve as input to many consequential social

systems. In election contexts, ranked choice voting (RCV) asks vot-

ers to express their preferences for candidates with a ranked list of

available candidates, and these rankings are aggregated to select a

winner. In school choice contexts, families express preferences for

their child’s education by submitting a ranked list of available pro-

gram o�erings to their district, and these preferences are considered

when matching students to programs.

In the vast majority of such contexts, participants often sub-

mit partial rankings, speci�cally top-k rankings. For example, a

voter given a slate ofm alternatives may only express strict prefer-

ences for their �rst k < m alternatives, and not bother to provide a

strict ordering of the rest. In many preference elicitation contexts,

truncating rankings in this manner can be highly consequential.

For example, in San Francisco school choice, families often sub-

mit truncated rankings over only k programs, but around 11% of

households do not get assigned to any of their chosen alternatives

[1]. Submitting longer rankings would only increase their place-

ment chances, but the decision to truncate a preference list can be

easily understood in terms of high search costs, a misunderstand-

ing of the mechanism, or in�ated subjective placement chances

[4, 12, 13, 21, 22, 32]. In school choice, the decision to truncate can

thus mean the di�erence between gaining admittance to a preferred

school and being relegated to participating in a later round of as-

signment. As a lesser but still meaningful consequence, in ranked

choice voting, truncation can mean the di�erence between having

a say in later rounds of instant run-o� voting vs. having one’s ballot

“exhausted.”

Statistical models of ranking data are often used by researchers

to model demand, understand trends in preferences, or simulate

counterfactual outcomes [2, 3, 10, 20, 28, 34]. In counterfactual

simulations, inquiries center around what would happen (e.g., to

overall welfare) if people’s alternatives or preferences changed in

some structured way: some new candidate or school is added or

removed from the slate of alternatives, the school-age population

changes, or school prioritization changes. But investigating these

counterfactuals invariably involves strong assumptions about pref-

erence lengths: either that lengths are directly taken from observed

data or otherwise chosen independent of the ordered preferences

themselves [2, 20].

In this work, we argue that the problem of suitably modeling

length in top-k partial orders is an overlooked and highly conse-

quential component of real-world deployments of ranking data

models. We consider two distinct approaches to modelling top-k

orders: composite models and augmented ranking models. First, con-

sider the probability of a partial orderQ of length k . The probability

of the order can be written as the probability of its length times the

marginal probability of total orders whose �rst k elements match
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Q . Informally (see Section 3.2 for a formal treatment), we have

Pr(Q) = Pr(k) ·
∑

R∈Q̄

Pr(R |k),

where Q̄ denotes the set of total orders ofm items whose �rst k

elements areQ , andR is an element of that set. Decoupling these two

component probabilities, a length model and a conditional ranking

model can indeed be combined to form a model of partial rankings,

a model class we call composite models. Under an independence

assumption, such a composite model is simply:

Pr(Q) = Pr(k) ·
∑

R∈Q̄

Pr(R),

dropping the conditional dependence in the ranking model. Moving

beyond independence, we consider situations where the component

models (of length, of order) can be have structured dependence,

and the models themselves be simple or complex.

Beyond composite models, we also take an alternative approach

that we call augmented ranking. In this approach, we augment the

choice universe with an END token representing end-of-list, and

consider a partial order as arising from a sequential choice process

that models termination itself as one of the available alternatives.

The agent selects k alternatives and then “chooses” the END token

at position k + 1. This approach extends earlier ideas on model-

ing non-choice/non-purchase from choice settings to the ranking

setting. Using a choice-based approach to ranking, as developed

in the theory of L-decomposable ranking distributions [9, 25], the

probability of a partial ranking Q becomes

Pr(Q) = Pr(q1 { q2 { ... { qk )

= Pr(q1) · Pr(q2 |q1) · ... · Pr(qk |q1, ...,qk−1) · Pr(END|q1, ...,qk ).

This lens implicitly models list length by augmenting the choice

space to include a token alternative representing end-of-list. This

token can be modeled as having �xed or position-dependent selec-

tion probabilities, and we evaluate such modelling decisions in our

work.

To model general dependence between ranking and length, we

utilize two model strati�cation techniques [5]. In the composite

case, the ranking model can be made dependent on the length by

learning K separate ranking models that cover K disjoint subsets

of the space of partial orders, partitioned by length. The probability

of a particular partial order Q would then be the probability of

its length, k , times the probability of the ordering Q under the

corresponding ranking model. In the case of augmented ranking

models, the END alternative (and/or the other choice alternatives)

are given K distinct choice probabilities depending on its choice

position within the ranking. This way, the probability of choosing

an alternative, including the END token, is allowed to vary down

the ranking.

The primary contribution of our work is the development and

evaluation of the composite and augmented ranking models, two

classes of models tailored to this consequential task. We consider

several instances and sub-classes of such models, and evaluate their

performances across a range of datasets with considerable variation

in the size of their choice universes,m. We �nd that the composite

approaches, which model list length explicitly, can produce more

accurate sampled length distributions when generating synthetic

datasets from the models, and that model strati�cation—a strategy

we employ in both composite and augmented models—improves

simulated demand over alternatives. While our results do not pro-

mote a universally dominant model nor model class, this work

begins to formalize and taxonomize approaches for modeling distri-

butions over the space of partial orders, and the results showcase

how these components can lead to improved demand modeling and

more realistic synthetic datasets.

In Section 2, we survey the related literature. In Section 3, we

present notation and de�nitions relevant to statistical models of

ranking. In Sections 4 and 5, we introduce and de�ne the two classes

of partial order models discussed in this work, composite models

and augmented ranking models, respectively. Model selection and

estimation is discussed in Section 6. Datasets and experiments are

presented in Section 7. Section 8 concludes.

2 Related work

Traditional statistical models for rankings focus on modeling total

orders. Notable among these are variations of the Plackett–Luce (PL)

model, which has been extensively used in economics, marketing,

and revenue management, to learn consumer preferences from

choice and rank data. The Plackett–Luce model is a multi-stage

model whereby rankings are broken into sequential choices, which

are then modeled by a random utility choice model, the multinomial

logit (MNL) model [33].

Several works apply these models to learn preferences from

partial order datasets for the purposes of rank aggregation or ex-

planation of user preferences. For example, Zhao and Xia [37] de-

velop theory around the task of learning mixtures of Plackett–Luce

models from partial order data. In a school choice setting, Abdulka-

diroğlu et al. [2] learn an MNL choice model from partial order

data to evaluate how much parents value certain school attributes.

Li et al. [24] develop Bayesian techniques to learn from total and

partial ranking data with heterogeneous ranker preferences and

item covariates. While these works enlist the Plackett–Luce model

which produces a distribution over the space of total rankings, the

present work seeks to develop models that produce distributions

over a larger sample space, namely the set of all partial orderings

(which subsumes the former).

At other times, ranking models are speci�cally used to simulate

real agent behavior, including the submission of partial orders in

some preference elicitation contexts. In these instances, researchers

tend to learn models of total orders like the Plackett–Luce, simulate

sequences of choices, and then make some assumption about the

truncation of the data to achieve a dataset of partial orders. For

example, Pathak and Shi [2] learn anMNL choice model from partial

order data and then simulate partial orders by manually truncating

total orders to a predetermined length of ten. Laverde [20] models

partial orders to simulate counterfactual outcomes for Black and

Hispanic students in Boston, but chooses to impose the original list

lengths from the data. As a signi�cant improvement, the models

developed in this work jointly model preferences and order lengths

from data, and we show this model enrichment is consequential for

counterfactual simulations.

Our augmented ranking model modi�es choice-based ranking

to incorporate an alternative in the choice universe representing
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end-of-list. The idea has roots in demand modeling and revenue

management for modeling the value of outside options or non-

choice/non-purchase behavior [8, 11, 17, 29]. To our knowledge,

the modelling of non-choice has not been previously employed in

the ranking context for models of partial orders.

The problem of modeling partial orders is related to the problem

of selecting a subset of a choice universe, as is studied in marketing,

operations research, information retrieval and data mining. Such

works focus on predicting or generating subsets of size k > 1 of a

universe set ofm alternatives, but not on ordering these subsets

to yield rankings [6, 7, 23, 31]. A notable subset selection model is

that of Regenwetter et al. [31]. In that work, their “subset model” is

identical to our independent composite model, but the work is (1)

interested in modeling the total ordering, not modeling the subsets

themselves, and (2) does not consider any dependence between size

and preferences as we do in this work.

Finally, we apply model strati�cation in this work, a common

technique in machine learning for understanding heterogeneity

between di�erent demographic and other characteristic groups in

the population [14, 18, 19]. Several preference modeling works

use model strati�cation to develop tailored models for various

demographic groups of interest [12, 20]. Here, we apply regularized

strati�cation [35] as a modeling tool for encoding dependence (in

the composite case) or enriching the expressivity of a ranking

model (in the augmented case), even within the same populations.

Most recently, Awadelkarim et al. utilized a similar rank-based

strati�cation technique to model heterogeneity in school choice

preferences within the rankings of single individuals [5]. We adopt

and expand upon their idea in the present work.

3 Preliminaries

Rankings, or ordered preferences, are seemingly intuitive objects

that we engage with everyday. We routinely express ordered pref-

erences over where we want to eat, who we want to lead an or-

ganization, or which movie we would like to watch with friends.

In Section 3.1, we de�ne the notions of total and partial orders,

and their related outcome spaces. We de�ne statistical models, or

distributions over these spaces, in Section 3.2.

3.1 Rankings

Given a collection ofm alternatives, A = {a1, ...,am }, let L(A)

denote1 the set of complete rankings, or total orders, of the elements

ofA, which contains |L(A)| =m! elements. As an illustration, for

a collection A = {a,b, c} ofm = 3 items, we have

L({a,b, c}) =

{
a { b { c b { a { c c { a { b

a { c { b b { c { a c { b { a

}
.

Here the element R = a { b { c is the event that a is preferred to b

and b is preferred to c .

Borrowing nomenclature of Xia [36] and Zhao and Xia [37],

we focus in this work on top-k partial orders, Q = q1 { q2 {

... { qk [{ others]. In this case, an agent orders their top k most-

preferred elements of A and leaves the rest unordered. We denote

1There is a bijection between the elements of L(A) and the symmetric group, Sm .
However, we need not invoke the group properties and operations of Sm , and as such,
refer to the space in this work as L(A).

by Ωk (A) the set of all top-k partial orders of A, and Ω(A) to be

the union of these sets, for any k . The size of Ω(A) is

|Ω(A)| =

m∑

i=1

|Ωi (A)| =

m∑

i=1

m!

(m − i)!
.

A total ordering is a special case of a top-k partial ordering where

k = m, so we have L(A) = Ωm (A) ¦ Ω(A). For the collection

A = {a,b, c} as above, we then have the space of top-2 partial

orders and the (full) space of partial orders,

Ω2({a,b, c}) =

{
a { b b { a c { a

a { c b { c c { b

}
,

Ω({a,b, c}) =





a b c

a { b b { a c { a

a { c b { c c { b

a { b { c b { a { c c { a { b

a { c { b b { c { a c { b { a





.

Note that the top-2 partial order a { b and the total order a { b { c

represent the same overall preference pro�le over the items A =

{a,b, c}, and as such would be equal-probability events under a

ranking model. These two preferences would also �gure identically

in many uses of ranked preferences, e.g., ranked choice voting.

But the models in this work assign these two elements di�erent

probabilities on purpose, andwe emphasize that this is not a bug, but

a feature. The event of reporting a list of length two is di�erent than

that of listing all three and the distinction is not informationless.

Given a k-length partial order Q ∈ Ωk (A), we de�ne by Ext(Q)

the set of completions ofQ inL(A). Speci�cally, letRk be shorthand

for the �rst k elements of R ∈ L(A): Rk = r1 { r2 { ... { rk . We

have

Ext(Q) = {R ∈ L(A) | Rk = Q}. (1)

For A = {a,b, c} and Q = a, the completions of this partial order

are given by

Ext(a) =
{
a { b { c a { c { b

}
.

Finally, for any Q ∈ Ω(A), let kQ be shorthand for the length of

the partial order, kQ = |Q |.

3.2 Statistical models

A statistical model de�nes a probability distribution over a sample

space S. Speci�cally, let Ãθ be that distribution, parameterized by ¹ ,

such that Ãθ : S 7→ [0, 1]. The distribution Ãθ maps events in S to

probabilities and therefore must sum to 1,
∑
s ∈S Ãθ (s) = 1. Given a

distribution over a sample space Ãθ and a subset of its sample space

C ¦ S, we slightly overload notation and denote the probability of

C under Ãθ as the sum of its constituent probabilities:

Ãθ (C) B
∑

c ∈C

Ãθ (c). (2)

This expression holds mathematically as the events in C are disjoint,

so the probability of their union is the sum of their individual

probabilities.

In this work, we are concerned with the task of modeling dis-

tributions over the space of top-k partial orders, S = Ω(A). One

modeling approach would be to assign a distinct probability to

every element in Ω(A), learning |Ω(A)| =
∑m
i=1m!/(m − i)!model
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Q

k R

(a) Independent

Q

k R

X

(b) Conditionally

independent

Q

R

k

(c) Length-dependent

Figure 1: Three dependence structures for compositemodels.

k ∈ [m] is a random variable representing length, R ∈ L(A)

is a random variable representing a total order, X ∈ Rd are

covariates, and Q ∈ Ω(A) is a top-k partial order. Observed

quantities are shaded in grey.

parameters, but this strategy quickly becomes intractable as m

grows.

Another strategy commonly employed for learning models from

partial order data is to treat these events as marginal in the space

of total orders. That is, given a distribution over linear orders,

Ãθ : L(A) 7→ [0, 1], consider a distribution over partial orders

Ã ′
θ
: Ω(A) 7→ [0, 1] that is de�ned as

Ã ′
θ
(Q) B Ãθ (Ext(Q)) =

∑

R∈Ext(Q )

Ãθ (R). (3)

This perspective alone does not allow a researcher to sample par-

tial orders from the space, since the list length itself is taken as

exogenous and left unmodeled. In the following two sections, we

present our two classes of models for e�ciently parameterizing

distributions over Ω(A).

4 Composite models

Recall our illustrative expression of the composite model from the

introduction. Now we formally de�ne the two component models,

one of length and one of preferences. To signify these di�erent

model types, we use a superscript of k to indicate a length distribu-

tion and a superscript of R to indicate a ranking distribution,

Ãk
θ
: [m] 7→ [0, 1], ÃR

θ
: L(A) 7→ [0, 1].

Through the composite lens, a partial order arises from the real-

ization of these two component variables—a length and an order—

where the order is then truncated to the sampled length to generate

a partial order Q ∈ Ω(A).

We now consider both independent or conditionally indepen-

dent variations of the composite model, given agent covariates,

graphically modeled in Fig. 1(a)-(b). Namely, given a realization of

covariates X , independence assumes that the distribution is decom-

posable in one of the following ways, with or without agent and

item covariates:

C-I: Ãθ (Q) = Ãk
θ
(|Q |) · ÃR

θ
(Ext(Q)), (4)

C-CI: Ãθ (Q |x) = Ãk
θ
(kQ |x) · Ã

R
θ
(Ext(Q)|x). (5)

where by Eq. (2), we have ÃR
θ
(Ext(Q)) =

∑
R∈Ext(Q ) Ã

R
θ
(R). We refer

to Eq. (4) and Eq. (5) as the independent (C-I) and conditionally-

independent (C-CI) composite models. In a recent preference

modelingworkwhere sampling partial orderswas required, Laverde

[20] e�ectively used an independent composite model, which serves

as one of two baselines in this work for the task of modeling top-k

partial orders.

Beyond independence, we also consider length-dependence, as

depicted in Fig. 1(c), where the ranking is dependent on the length.

That composite distribution is modelled as:

C-LD: Ãθ (Q) = Ãk
θ
(kQ ) · Ã

R
θ
(Ext(Q)|kQ ). (6)

This assumption posits that howmany elements an agent chooses to

rank provides additional signal as to what they may choose to rank.

In the school choice setting, this modeling decision allows families

who rank one school program to have a di�erent utility structure

over the available alternatives than a household that ranks, say, �ve

alternatives. Eq. (6) is the length-dependent (C-LD) composite

model.

It is logical to ask at this point: what about a composite model

where the length k is dependent on the ranking R? While mathe-

matically coherent, conditioning a simple length distribution on

a total order is rather unwieldy. When there are many items, it

requires spelling out a total order R before �nding that the length

distribution, conditional on R, may actually be concentrated on

very short lengths. Rather than condition the length on a total

order, our augmented ranking approach in this next section can

be thought of as a nuanced approach to this type of dependence,

through a choice-based perspective on ranking. As an intuition for

the augmented ranking model to come in Section 5, it e�ectively

conditions the probability of di�erent length outcomes upon the

sequential “choices” made in the assembly of a ranking, up to a

given truncation length.

4.1 Model speci�cation

4.1.1 Ranking model. We enlist the classic Plackett–Luce (PL)

model [26, 30] as the ranking model, ÃR
θ
, of the composite class.

Under PL, we model the probability of a ranking as the product of

sequential choice probabilities from shrinking choice sets. Partial

orders are modeled as marginal events in L(A) as given by Eq. (3).

Speci�cally, the probability of a partial order Q = q1 { ... { qk is

ÃR
θ
(Q) = ÃR

θ
(Ext(Q)) (7)

=

k∏

j=1

exp(¹qj )∑
a∈A\{q1, ...,qj−1 } exp(¹a )

. (8)

The parameters ¹ ∈ Rm are directly interpretable as latent item

utilities. However, given features xi j ∈ R
d of agent i and item

j, we can further model the utilities as linear in these attributes,

parameterizing item j’s utility to agent i as ¶j + ´
T xi j , where ¹ =

(¶ , ´) ∈ Rm × Rd are the model parameters. The probability of

agent i producing partial order Q is then

ÃR
θ
(Q ;Xi ) =

k∏

j=1

exp(¶j + ´
T xi j )

∑
a∈A\{q1, ...,qj−1 } exp(¶a + ´

T xia )
.

When covariates are available, we enlist the linear model version

of Plackett–Luce. If not covariates are available, we use the simpler

model with only �xed e�ects ¶j .
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We choose to model the length-dependence of C-LD by strat-

ifying the preference model by list length. In this case, we use

strati�cation to train separate preference models for people who

ranked exactly one item, people who ranked exactly two items, and

so on, all the way up to those who ranked exactly K − 1 items. The

�nal strata we reserve for those who ranked K or more items.

Taking the number of strata to be K , a strati�ed ranking model

is then the composition of K sub-models, each with its own pa-

rameters: ¹ = {¹1, ..., ¹K } ∈ R
m×K . Speci�cally, the likelihood of a

partial order Q is modeled as

ÃR
θ
(Q |kQ ) = ÃR

θk′
(Q).

where k ′ = min(kQ ,K) and kQ is the length of Q ; orders of length

k ∈ [1,K] are modeled by Eq. (8) with parameters ¹k , and rankings

of length k > K are modeled with parameters ¹K .

A possible concern with this approach is that we end up with

considerably less data for each model, compared to estimating a

single common model. The thinning of the training data can lead

to over-parameterization which leads to over�tting. To address

these concerns, we encourage models of neighboring lengths to be

close to one another via Laplacian regularization [35], borrowing

the predictive power of neighboring models. The regularization

is “Laplacian” because the K sub-models are regularized towards

each other as dictated by an accompanying regularization graph

with weights governed by the graph’s Laplacian. Length-based

strati�cation lends itself well to a common path graph—the model

of top-1 partial orders should be similar to a model of top-2, and so

on—so this regularization takes on a simple form. See Section 6 for

presentation of the strati�ed objective function.

4.1.2 Lengthmodel. Themodel of lengthwithin a composite model

is a distribution over S = [m]. For full generality, we �rst choose

to model the length as a categorical variable over thesem discrete

categories for two of the three composite models. Namely, given

parameters ¹ ∈ Rm , we have

Ãk
θ
(k) = pk =

exp(¹k )∑m
i=1 exp(¹i )

.

For the conditionally-independent composite model (C-CI), we

model length as a Poisson random variable. That is, given agent

covariates x , we de�ne the rate parameter as ¼(x) = exp(¹T x), and

the resulting length distribution is given by

Ãk
θ
(k ;x) =

¼(x)ke−λ(x )

k!
.

The domain of the Poisson model is not bounded between [1,m],

so we clip extreme values into this range. Parameters of this model

are then ¹ ∈ Rd where d is the dimension of covariates x .

5 The augmented model

Consider a set of alternatives, A, augmented with an end-of-list

alternative END as an additional alternative in the choice universe. A

similar idea has been utilized in the revenue management literature

for modeling no-purchase options [8, 11, 17, 29]. In this model, a

partial order Q ∈ Ω(A) is taken to arise from the following pro-

cess: let A+ be the universe of alternatives plus an END alternative

representing end-of-list, A+ = A ∪ {END}. A partial ranking Q of

length k = |Q | is viewed as the sequential selection of each item

qi from a sequence of shrinking choice sets Ci ¦ A
+, followed by

the selection of END at position k + 1.

Let Ext+(Q) represent all linear extensions of Q in L(A+) that

begin with Q { END. Namely,

Ext+(Q) = {R : R ∈ L(A+),Rk+1 = Q { END}.

For example, given A = {a,b, c} and Q = a, we have

Ext(a) =
{
a { b { c a { c { b

}

Ext+(a) =
{
a { END { b { c a { END { c { b

}
.

Under an augmented ranking model, the probability of observing

partial order Q is given by

A: Ãθ (Q) = ÃR
θ
(Ext+(Q)). (9)

Here ÃR
θ
represents a probability distribution over L(A+), since

elements R here order the augmented universe that includes the

END alternative.

Taking the Plackett–Luce model as our baseline ranking model,

we evaluate three approaches to parameterizing this new choice

system. Speci�cally, we consider various ways to parameterize the

END alternative relative the rest in A, yielding the (1) naïve, (2)

position-dependent, and (3) K-strati�ed augmented models. The

(naïve) augmented model (A) assigns the END alternative a �xed

utility, resulting in a standard Plackett–Luce over (m + 1) alterna-

tives with parameters ¹ ∈ Rm+1:

ÃR
θ
(Q) = ÃR

θ
(Ext+(Q))

=

k∏

j=1

exp(¹qj )∑
a∈A+\{q1, ...,qj−1 } exp(¹a )

·
exp(¹END)∑

a∈A+\Q exp(¹a )
.

Similar to the independent composite model, our naive augmented

model has been implemented for the purpose of modeling end-of-

list in at least one preference modeling application [29] and we

consider it as the second of two baselines for our modeling task.

The position-dependent augmented model (A-PD) endows

the END alternative with position-dependent utilities. Speci�cally,

the END token hasm utilities, µ ∈ Rm , depending on how far the

choice process has gotten without terminating. The m ordinary

alternatives have a single position-invariant utility each, ¹ ∈ Rm .

ÃR
θ
(Q) =

k∏

j=1

exp(¹qj )

exp(µj ) +
∑
a∈A\{q1, ...,qj−1 } exp(¹a )

·

exp(µk+1)

exp(µk+1) +
∑
a∈A\Q exp(¹a )

.

Finally, the K-strati�ed augmented model (A-S) allows all

alternatives position-dependent utilities, up to position K ,

ÃR
θ
(Q) =

k∏

j=1

exp(¹
(j′)
qj )

∑
a∈A+\{q1, ...,qj−1 } exp(¹

(j′)
a )
·

exp(¹
(k ′+1)
END

)
∑
a∈A+\Q exp(¹

(k ′+1)
a )

,

where i ′ = min(i,K). This strati�cation is adopted from [5] and is

in contrast with the length-dependent strati�cation of C-LD, de-

tailed in Section 4.1. There, the model assigns each user to one of

K PL models, depending on how long their list was. Here, each
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Table 1: Summary ofmodels;m denotes the number of choice alternatives and kQ denotes the length of partial orderQ ∈ Ω(A).

Model Distribution, Ãθ (Q) Description

Composite, Independent (C-I) Ãk
θ
(kQ ) · Ã

R
θ
(Ext(Q)) Categorical length and PL ranking.

Composite, Conditionally-independent (C-CI) Ãk
θ
(kQ |x) · Ã

R
θ
(Ext(Q)|x) Poisson length and PL ranking, both conditional on covariates.

Composite, Length-dependent (C-LD) Ãk
θ
(kQ ) · Ã

R
θ
(Ext(Q)|kQ ) Categorical length and length-strati�ed PL ranking.

Augmented (A) ÃR
θ
(Ext+(Q)) PL overm + 1 alternatives: ¹ ∈ Rm+1.

Augmented, Position-dependent (A-PD) ÃR
θ
(Ext+(Q)) PL overm + 1 alternatives, but END getsm utilities: ¹ ∈ R2m .

Augmented, Strati�ed (A-S) ÃR
θ
(Ext+(Q)) Rank-strati�ed PL overm + 1 alternatives: ¹ ∈ RK (m+1).

sequential choice up to position K is governed by a unique PL

model over the elements of A+. The resulting model has parame-

ters ¹ = (¹ (1), ..., ¹ (K )) ∈ R(m+1)×K . Similarly to the length-based

strati�cation, we also apply Laplacian regularization between the K

adjacent models. Rank-based strati�cation also lends itself well to a

common path graph as regularization graph—in this case saying the

model of top-choices should be similar to a model second choices,

and so on. Of course, these two strati�cations (by length and by

rank) are not mutually exclusive and could be applied within the

same ranking model using a two-dimensional grid as the regular-

ization graph. We leave the investigation of how such multiple

strati�cations interact as future work. See Table 1 for a summary

of our six proposed methods for modeling top-k partial orders.

6 Model selection

Here we present our procedure for selecting model parameters

and hyperparameters. We estimate all model parameters using ℓ2-

regularized maximum likelihood estimation. Given a dataset of

partial orders from n participants, D = {Q1, ...,Qn } where Qi ∈

Ω(A), and an optional matrix of covariates on the agents and items,

X ∈ Rn×m×d , model parameters ¹ are chosen to maximize the

likelihood of the observed dataset by minimizing the regularized

negative log-likelihood (NLL),

F (D;¹ ) = ℓ(D;¹ ) + r (¹ ), (10)

where ℓ(D;¹ ) is the NLL loss and r (¹ ) is the ℓ2 penalty on parame-

ters:

ℓ(D;¹ ) = −
1

|D |

∑

Q ∈D

log (Ãθ (Q)) , r (¹ ) = ¼ | |¹ | |22 .

The regularization strength ¼ is a hyperparameter of the model.

Our proceedure for selecting ¼ and other optimization details are

provided in Section 7.1.

The ℓ2 regularization also makes our model identi�able; a statis-

tical model is identi�able if no two distinct sets of parameters, ¹

and ¹ ′, produce the same probability distributions over the sample

space. The traditional PL family of ranking distributions are non-

identi�able due to their shift-invariance: ÃPL
θ
(s) = ÃPL

θ+c®1
(s) for all

s ∈ S and c ∈ R. In this case, strategies for achieving identi�ability

are to �x one of the parameters, constrain their sum, or to apply

regularization and obtain the minimum-norm parameter estimates

[36], as we have chosen to do in this work.

For strati�ed models, notably the length-dependent compos-

ite model (C-LD) and the strati�ed augmented model (A-S), we

learn K PL models, over A and A+ respectively, with parameters

¹ = (¹1, ..., ¹K ), regularized toward each other via Laplacian reg-

ularization. These models are trained on K strati�ed bands of the

dataset, D = {D1, ...,DK }, but the two models stratify the data

di�erently. For C-LD, Di contains all partial orders of length i for

all i < K , and DK contains lists of length at least K . Speci�cally,

Di = {Q
��Q ∈ D, |Q | = i}, ∀i < K , and DK = {Q

��Q ∈ D, |Q | g K}.

For the A-S model class, for all i < K ,Di contains all choicesmade at

position i across all partial orders Q ∈ D, and DK contains choices

made in positions K onward across all partial orders.

Laplacian regularization in both cases is de�ned as:

rL(¹ ) = ¼L

K∑

i=2

| |¹i − ¹i−1 | |
2
2,

where rL is convex in ¹ and ¼L is a chosen Laplacian regularization

strength. Compared to the non-strati�ed objective in Eq. (10), the

regularized, strati�ed objective function is the sum of K decoupled

model losses (each with a local ℓ2 regularization) and the Laplacian

regularization term:

F (D;¹ ) =

K∑

k=1

[ℓ(Dk ;¹k ) + r (¹k )] + rL(¹ ). (11)

Both the C-LD and A-S model introduce two additional hyperpa-

rameters, the number of strata and the Laplacian regularization

gain, (K, ¼L). Selection of these hyperparameters is discussed in

Section 7.1.

7 Experiments

In this section we present an evaluation of six models—three com-

posite models (C-I, C-CI, C-LD) and three augmented models (A,

A-PD, A-S)—using seven partial order datasets, summarized in Ta-

ble 2. Our main motivation for modelling partial ranking data is to

provide a principled way to simulate partial order data for the pur-

poses of counterfactual policy simulation or demand modeling. In

these instances, researchers tend to learn models of total orders like

the Plackett-–Luce, simulate sequences of choices, and then make

some (unexplored) assumption about the truncation of the data to

achieve a dataset of partial orders [2, 20]. The method implemented

in [20] is actually equivalent to our independent-composite model,

and another work recently implemented what we consider as a

(naive) augmented model [29] for the same task. Of our combined

six variants of the composite and augmented classes of models,

these two basic models act as our working “baselines” for modeling

tractable distributions over Ω(A).

We structure our experiments to answer two key questions:
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Table 2: Dataset summary statistics for ranked-choice voting

(RCV) and school choice (SC) data. 2018 and 2019 Board of

Supervisor elections correspond to San Francisco Districts

8 and 5, respectively. Here n is the number of orders in the

dataset, m is the number of available alternatives, and k̄ is

the average order length.

Name Label n m k̄

2018 Board of Supervisors RCV1 33,394 3 2.04

2019 District Attorney RCV2 193,492 4 2.32

2019 Board of Supervisors RCV3 23,698 4 2.06

2019 Mayor RCV4 178,924 7 2.58

2018 Mayor RCV5 253,866 8 2.52

2017-18 Kindergarten SC1 3,503 152 9.28

2018-19 Kindergarten SC2 3,544 152 9.97

(1) How likely is observed data, in its heterogeneously truncated

form, under each of the models?

(2) How well do synthetic datasets, sampled from models with

parameters estimated via maximum likelihood, simulate real

demand patterns?

In Section 7.2, we report on overall goodness-of-�t on held out data

as measured by negative log loss, addressing (1). To address (2), in

Section 7.3 we sample datasets from the models and present demand

statistics as comparedwith ground truth preferences in the observed

data, namely in terms of length and alternative-speci�c demand

distributions. Finally, in Section 7.4, we demonstrate a downstream

application of our models in the school choice realm, simulating

SFUSD policy assignments using preference data generated by our

models and comparing assignment outcomes under the synthetic

data with assignment outcomes under the true data.

7.1 Setup

Our data comes from two sources: we use four publicly-available

San Francisco ranked-choice voting (RCV) datasets from the on-

line library of preference data, preflib [27], and two (non-public)

school choice (SC) datasets from the San Francisco Uni�ed School

District (SFUSD). Both types of datasets contain strict (ie. no ties)

partial orders that we treat as top-k orders. The school choice data

features covariates on households and programs, which we incor-

porate through linear utility models. These datasets contain PII and

as such are not publicly available. See Table 2 for dataset summary

statistics.

Models that enlist regularized strati�cation, namely the length-

dependent composite (C-LD) and strati�ed augmented (A-S) models,

introduce two additional hyperparameters, the number of strati�ca-

tion buckets K and the regularization strength ¼L . We conducted a

grid search across suitable values of each of these parameters for

each model class (composite vs. augmented), on a representative

dataset of each type (RCV vs. SC). Each (K, ¼L) pair was trained

and evaluated using 5-fold cross validation on these datasets, and

the values yielding the lowest average validation loss were selected.

For the school choice datasets, we choose (K, ¼L) = (15, 1e − 3)

for the length-dependent composite model, and (K, ¼L) = (15, 0)

for the strati�ed augmented model. For the ranked-choice voting

datasets, we choose (K, ¼L) = (10, 0) for both models.

Figure 2: NLL loss (lower is better) of our test datasets under

the six models in Table 1. C-I (lightest blue) and A (yellow)

are the baselines.

For model optimization, we run Adam [15], implemented in

PyTorch, with default parameters, lr = 0.001, ´ = (0.9, 0.999),

ϵ = 1e − 8, adding ℓ2 regularization with weight ¼ = 1e − 5. Model

parameters are updated over batches of training data until reaching

max_epoch = 2000 or convergence, i.e., when the absolute di�er-

ence in losses is less than ϵ = 1e − 4. Within each dataset, we

conducted 5-fold cross-validation, training on four-�fths and evalu-

ating on the held-out �fth. Evaluation metrics are averaged across

each of these held-out portions and presented in this section. A

repository containing the ranked choice voting datasets, code for

our models, and a notebook for recreating the RCV results in this

section can be found at https://github.com/ameloa/partial-orders.

7.2 Goodness of �t

We present the negative log likelihood (NLL) loss on the test set of

our seven datasets under the six models in Figure 2. Recall that the

naive augmented (A) and independent composite (C-I) models serve

as our baseline models for modeling distributions over Ω(A). We

see some main themes emerge from these plots. Of the augmented

models, assigning only a single �xed-e�ect to the END token, as

does the naïve augmented model (A), results in the worst NLL

losses on observed data. The conditionally-independent composite

model (C-CI), only evaluated on the school choice datasets, yields

the second worst losses; the Poisson distributional assumption on

length in this model is not representative of our datasets, and thus

results in poor NLL losses on observed data. Obviously, researchers

should avoid making distributional assumptions that do not hold.

Of the remaining four models, the strati�ed augmented model (A-S)

demonstrates the lowest NLL loss on the RCV datasets, and all four

show similar NLL results on the school choice datasets.
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7.3 Synthetic datasets

A main objectives of this work is to advance the available statistical

models for sampling partial orders, key to generating synthetic

datasets for forecasting demand or simulating counterfactual policy

outcomes. Algorithms 1 and 2 provide pseudocode of the sampling

procedure used for the composite and augmented model classes,

respectively.

Algorithm 1 Sampling partial orders from the composite model

Input: Learned parameters ¹ of a composite model.

Output: Q ∈ Ω(A) from composite model, Ãθ .

1: Sample length, l ∼ Ãk
θ
.

2: Initialize Q = ∅ and A = A.

3: for i = 1 to l do

4: Sample an alternative a from A according to ÃR
θ

5: Q ← Q { a

6: A← A \ {a}

7: end for

8: return Q

Algorithm 2 Sampling partial orders from the augmented model

Input: Learned parameters ¹ of the augmented model.

Output: Q ∈ Ω(A) from augmented model, Ãθ .

1: Initialize Q = ∅ and A = A+.

2: loop

3: Sample an alternative a from A according to ÃR
θ

4: if a is END then return Q

5: else

6: Q ← Q { a

7: A← A \ {a}.

8: end if

9: end loop

We sample N = 100 synthetic datasets, D̃(i) = {Q
(i)
1 , ...,Q

(i)
n } for

i ∈ [N ], from each of the sixmodels, for each of the seven datasets in

Table 2. We use the same covariatesX ∈ Rn×m×d for sampling as in

training, so the synthetic datasets are seen as simulated preferences

of those n households.

Each dataset D̃(i) produces an empirical length distribution over

n examples, and we summarize averaged statistics in Figure 3, tak-

ing one RCV and one SC dataset as representative examples. We see

that the biggest swings in either direction — longer or shorter lists

— come from the augmented class. The naive augmented model

(yellow) samples orders that are shorter than the rest, with higher

standard deviations on RCV dataset. The single END token of this

model learns a high utility to explain shorter-than-full-length lists

seen in the observed data. The strati�ed augmented model, where

all alternatives get position-dependent utilities, produces full-length

lists in the RCV case. In the school choice case it produces longer,

and more dispersed lists. The latter observation suggests that if the

sampled list happens to get longer than the modal length of 1, the

utility of other alternatives remains higher than END token and the

list length continues to grow. Surprisingly, the position-dependent
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Figure 3: Sampled length distributions statistics on a repre-

sentative RCV (left) and SC (right) dataset. Statistics of their

true distributions in grey. C-CI was not evaluated on the

RCV datasets as no voter covariates were available with the

data.
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Figure 4: Synthetic demand over 2018 SFMayoral candidates

(top row) and 2018-19 SFUSD program types (bottom row).

True demand in grey. Left plots show proportion of choices

in �rst position, right plots show proportion of choices over-

all.

augmented model, where END token gets position-dependent util-

ities but the other alternatives utility is �xed down the ranking,

matches true lengths distributions as well as or better than when

lengths are explicitly modeled as done by the composite class. Over-

all, the augmented class produces more varied length distributions

than the composite class, but still has potential to �t lengths well.

The composite class, which models list length explicitly, �ts the

true length distribution reliably well.

In Figure 4 we showcase the overall and top-choice demand of

each candidate in the chosen RCV dataset in the top row, and of the

most popular program types in the SFUSD school choice dataset

in the bottom row. In the latter plots, rather than presenting every

available program, the x-axis buckets school programs by program

type — General Education, Chinese Biliteracy, etc. In the left plots

of Figure 4, we see that the strati�ed augmented model (red) �ts

top choice alternatives best in both the RCV and SC datasets. It

is the only model to learn position-1 alternative utilities that are

independent of those down rank. Themodels are showcasing similar
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Figure 5: Assignment outcomes using synthetic school

choice datasets sampled from our 6 models compared with

true outcomes in grey. Proportion of students who were as-

signed to their top-1, a top-3, or any one of their listed alter-

natives (as opposed to non-assignment).

performance to one another and matching the overall distribution

of demand well in the right plots.

7.4 School assignment outcomes from
simulated preferences

Our �nal analysis aims to demonstrate downstream simulation

ability of our proposed methods. We generated N = 100 synthetic

school choice datasets and simulated real assignment outcomes us-

ing SFUSD’s 2023 assignment policy. In Figure 5, we summarize as-

signment outcomes of our six models compared with simulated out-

comes using true preference lists. Overall, we �nd that the strati�ed

models, C-LD and A-S, mimic true outcomes best as they are more

expressive preference models than their non-strati�ed counter-

parts. The independent composite (C-I) and position-dependent aug-

mented (A-PD) models seem to result in datasets where fewer stu-

dents gain access to their top choices than in assignments based on

the real preferences. These simpler models learn universal weights

over certain agent-item attributes, and may lead to “monoculture”

e�ects [16] and greater competition for program o�erings than

their strati�ed counterparts. If C-I and A are our baselines, we see

there is great potential in using some of the ideas developed in this

work, esp. the more expressive strati�ed models.

8 Conclusions

In this work, we study the statistical modeling of partial orders not

as marginal events in the space of total orders, but as deliberate

individual events. We developed two approaches to modeling top-k

partial orders with three implementations each. The sample space

of these models are the space of partial orders directly, Ω(A), and

they provide researchers with the ability to sample meaningful

synthetic datasets of this type. Under the augmented class of mod-

els, whereby end-of-list is modeled as another alternative in the

universe, the new alternative should have position dependent �xed-

e�ects, not simply one latent utility. The composite class, which

models list length directly, generally produces synthetic datasets

that exhibit the most accurate length distributions. Model strati-

�cation, applied in both the length-dependent composite model

(C-LD) and the K-strati�ed augmented model (A-S), is an important

aspect of preference modeling, improving the accuracy of simulated

demand and mimicking true school choice outcomes best in our

downstream application experiments.

There are some known limitations with the models and analyses

presented in this work. Plackett-Luce ranking models learn ranking

distributions over a �xed choice universe,A. As such, the methods

presented here are not capable of simulating counterfactuals that

add or change the properties of the alternatives in the item set. They

are, however, fully applicable to counterfactual evaluations that

study when, e.g., the distribution of household covariates changes.

Approaches to relaxing these two requirements on the alternative

set would increase the range of applications of our models and is

an area of future work. Additionally, further analysis is needed

to characterize the ranking distributions that are expressible by

one or both of our two methods, understand how canonical the

representations of each type are, and furnish theoretical guarantees

around identi�ability and convergence.
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