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Abstract—When human acquire physical skills (e.j
from experts, we tend to first learn from merely ob
expert. But this is often insufficient. We then engage
where we try to emulate the expert and ensure that
produce similar effects on our environment. Inspii
observation, we introduce Combining IMitation and
Jor Motion Refinement (CIMER) - a two-stage fra
learn dexterous prehensile manipulation skills fron
observations. CIMER’s first stage involves imitation:
ously encode the complex interdependent motions o
hand and the object in a structured dynamical sy
results in a reactive motion generation policy that
reasonable motion prior, but lacks the ability to re
contact effects due to the lack of action labels. "
stage involves emulation: learn a motion refinement
reinforcement that adjusts the robot hand’s motion
that the learned object motion is reenacted. CIMI
task-agnostic (no task-specific reward design or sh
intervention-free (no additional teleoperated or label
strations). Detailed experiments with prehensile dext
that i) imitation alone is insufficient, but adding emu!
tically improves performance, ii) CIMER outperforius vassuug
methods in terms of sample efficiency and the ability to generate
realistic and stable motions, iii) CIMER can either zero-shot
generalize or learn to adapt to novel objects from the YCB
dataset, even outperforming expert policies trained with action
labels in most cases. Source code and videos are available at
https://sites.google.com/view/cimer-2024/.

I. INTRODUCTION

Learning dexterous manipulation skills involving multi-
finger hands (e.g., relocation and tool use) presents numerous
challenges, such as high-dimensional state and action spaces,
complex nonlinear dynamics, and contact effects. Unfortu-
nately, both imitation learning (IL) and reinforcement learning
(RL) tend to struggle with such complex tasks when employed
alone. Specifically, IL suffers from distribution shift [1], [2]
and RL from poor sample efficiency [3]. To address these
challenges, prior works have shown promise in leveraging
demonstrations to expedite reinforcement learning [4]-[9].

However, collecting demonstrations for dexterous manip-
ulation in the form of state-action pairs can be challenging
and cumbersome due to complex system design and setup
[10], [11]. To alleviate this burden, recent research has focused
on learning dexterous manipulation skills from state-only ob-
servations [12]-[14]. However, learning without action labels
can result in kinematic motions that are oblivious to force
and contact. This lack of knowledge is particularly limiting
in dexterous prehensile manipulation tasks (e.g., grasping and
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Figure 1: CIMER is a task-agnostic and intervention-free framework
to learn dexterous manipulation skills from state-only observations by
learning to first generate interdependent desired motions of the robot
hand and the object (Imitation), and then refine the generated robot
motion in order to reenact the learned object motion (Emulation).

tool use) as they exhibit heightened sensitivity to applied
force [12], [15]-[17]. To compensate, existing methods of-
ten require additional teleoperated demonstrations [14], [18],
human-in-the-loop corrections [19], task-specific rewards [5],
[13], [20], [21], or user-defined sub-goal images [7], [22].

In this work, we contribute a novel two-stage framework
to learn dexterous prehensile manipulation skills from state-
only observations. We call our framework CIMER, short for
Combining IMitation and Emulation for Motion Refinement
(see Fig. 1). The first stage is Imitation: CIMER encodes
the interdependent desired motions of both the robot hand
and the object from the observations into a structured time-
invariant dynamical system that acts as a reactive policy and
a reasonable motion prior (see Sec. III-C). The second stage
is Emulation: CIMER learns to refine the robot’s motion prior
based on context by optimizing a fask-agnostic reward that
incentivizes the reenactment of the learned object motion [23].

Three key insights motivate our design of CIMER. First,
dexterous prehensile manipulation involves complex and inher-
ently interdependent motions of the robot hand and the object.
As such, CIMER'’s imitation stage captures both their motions
simultaneously using a single but structured dynamical system.
Second, state-only observations of the expert unambiguously
demonstrate how the object is supposed to move, and contain
valuable (albeit crude) information about the robot hand’s
motion. As such, CIMER learns to only refines the hand
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motion and relies on the learned object motion for reward
signals. Third, separating motion generation and refinement
amounts to first learning what the robot must do from state-
only observations, and then learning how to do it via self-
guided experimentation. Unlike prior methods, CIMER is
both intervention-free and task-agnostic — it neither requires
in-context additional demonstrations nor task-specific reward
design. See Sec. II for a detailed discussion of related work.

To both experimentally investigate the central issues and to
evaluate CIMER, we conducted a series of thorough experi-
ments on three dexterous prehensile manipulation tasks: Tool
Use, Object Relocation, and Door Opening.

First, we demonstrate that pure imitation (without emula-
tion) is rarely successful, and necessitates meticulous expert
tuning of the low-level controller when it does. But combining
imitation and emulation (i.e., CIMER) significantly improves
the task success rate, even while using the same controller
across tasks. We also uncover qualitative insights into how
CIMER refines motions and why they succeed.

Second, we demonstrate that CIMER tends to achieve better
sample efficiency compared to existing methods that can
learn from state-only observations. Moreover, we highlight
CIMER’s ability to effectively leverage motion priors (encoded
in a dynamical system) to produce realistic and stable motions,
in contrast to baselines that tend to exploit the simulator and
generate aggressive behaviors. We also show that policies
trained using CIMER exhibit better robustness against changes
to physical parameters such as mass and damping.

Third, we show that CIMER significantly outperforms the
baselines in terms of zero-shot generalization to 17 unseen
objects from the YCB dataset [24]. Notably, CIMER surpasses
even the expert policy trained with action labels in many
instances. When CIMER can’t readily generalize to a novel
object with significant differences, it can effectively leverage
previously learned skills to expedite adaptation.

In summary, we contribute CIMER - a two-stage framework
that effectively combines imitation and emulation in order to
learn dexterous prehensile manipulation skills from state-only
observations. CIMER first learns a reasonable motion prior
by imitating observations without relying on action labels or
user interventions, and then employs a task-agnostic and self-
guided strategy to learn how to refine the hand’s motion so
that it emulates the learned object motion.

II. RELATED WORK

In this section, we discuss our contributions within the
context of different related bodies of work.

Learning dexterity from observations: Given the abun-
dance of video data on the internet and the advances in
motion retargetting (e.g., [5]), recent research has focused on
learning dexterous manipulation skills from videos or state-
only observations in general. A key challenge in learning
from videos or state-only observations is the lack of action
labels that speaks to the contact effects between the robot,
the object, and the environment. Existing works circumvent
this challenge in one of two ways. Some methods provide
robots an opportunity to learn from interactions, either in

simulation [5], [9], [25], [26] or in the real world [7], [8], [22].
Other methods leverage additional in-domain teleoperated
demonstrations from an expert [6], [14], [18], [20], [27]. Our
work falls under the first category since it does not rely on
any additional demonstrations. Unlike CIMER, many of the
prior methods in the first category are limited to replicating a
specific hand motion from a video clip, such as object grasping
[8], [9], [25], [26], bagel flipping [6] or bottle opening [27].
While the remaining methods are capable of learn a variety of
skills and can handle changes to the objects’ initial and target
configurations, they require at least one of the following: task-
specific reward engineering [5], [20], user-provided sub-goal
images as reward signals [7], [22], and bespoke refinements
tailored to dexterous grasping [12], [28]. In contrast, CIMER
can learn a variety of skills requiring neither task-specific
reward shaping nor expert interventions.

Learning dexterous teleoperation: Another class of existing
methods enable a human operator to seamlessly teleoperate
a dexterous robotic hand by leveraging learning to close the
embodiment gap [11], [29]-[31]. However, it is important to
note that these methods do not learn autonomous policies.
Instead, they rely on real-time corrections and guidance from
the human operator who tends to compensate for the robot’s
inability to reason about contact effects [32].

Learning low-dim skills from videos: There is a large body of
work that focuses on learning polices for low-dimensional ma-
nipulators (serial-link robots with parallel jaw grippers) from
videos. One group of methods utilize a hierarchical framework
to learn task-specific waypoint trajectories from human videos
that can then be tracked using standard controllers [33]-
[36]. Other methods learn a high-level planner that operates
in a latent space and then use it to condition a low-level
planner that can produce diverse robot behaviors [37]-[39].
However, unlike the low-dimensional skills learned by these
methods, dexterous manipulation with multi-fingered hands
inherently involves more complex finger-object interactions
and contact effects. Further, similar to their counterparts that
learn dexterous skills, many of these methods also rely on
additional teleoperated demonstrations.

Learning locomotion from observations: Our approach to
emulation is inspired by research in learning locomotion skills
by imitating animals [40] or animated characters [41], [42].
These methods first extract the reference motion from video
clips, and refine the learned motions to account for foot-ground
contact effects and to ensure that the resulting gaits closely
track the demonstrated ones. However, merely imitating the
observed robot motion is unlikely to succeed in dexterous ma-
nipulation since it is object-centric (see Sec. IV-B for empirical
validation). In contrast, we emphasize the reenactment of the
learned object motion.

III. APPROACH

We begin by formulating the problem of learning dexterous
manipulation skills from state-only observations.

A. Problem Formulation
D) (D=7 N) (N)y =7
Let D = [{by") of }={™ o (™ of Y= ™) de-
notes a dataset of N state-only observations of a prehensile



manipulation skill, where h§”) € H C R™ and ot") ¢
R™ respectively denote the robot hand state and objes
(e.g., hand joint positions and object 6D poses) at tin
n-th observation. We focus on prehensile manipulatior
since they are particularly challenging to learn without
labels. (see Sec. IV-B). Our goal is to learn a polic
the dataset D that will enable the robot to autonoi
perform the associated dexterous skill. In addition
dataset, we assume access to a simulator. But, to ensure
agnostic solution, we do not allow task-specific reward
or shaping. To remain intervention-free, we do not :
access to additional labeled demonstrations. As suc
problem requires an approach that learns a robust de:
manipulation skill purely from state-only observatio:
self-guided interactions with a simulator.

B. Solution Overview

Our framework to address the above problem, Combining
IMitation and Emulation for Motion Refinement (CIMER), op-
erates in two stages: 1) Imitation: learn a Motion Generation
Policy ® in the form of a structured dynamical system that
encodes the desired reference motions for both the robot and
the object from state-only observations, and ii) Emulation:
learn a Motion Refinement policy ¥ that compensates for
the lack of action information by refining the desired robot
motions such that the learned object motion is achieved. The
overall pseudo-code is given in Appendix D.

C. Motion Generation via Imitation

We view the complex interdependent desired motions of
the robot and the object as solutions to a learnable underlying
nonlinear behavioral dynamical system [2], [43], [44]. Once
learned, these dynamical systems can be integrated to predict
the next desired robot state from initial conditions or the
current state [2]. In recent work, we developed a framework
named KODex [45] that learns such underlying dynamics
in a highly computationally-efficient manner using Koopman
operator theory. Data-driven Koopman-based approaches help
effectively encode highly nonlinear dynamical systems in a lin-
ear system using lifted global linearization [46], [47]. Building
on this, CIMER employs a Koopman-based method theory to
learn the Motion Generation Policy ® from the dataset D.
Note that KODex requires access to action labels, but CIMER
does not. Formally, we formulate the ® as a linear dynamical
system in the lifted space: ¢(hyy1,0¢11) = K ¢p(hy, o), where
¢ : R — RP (with p > (n + m)) is a user-defined
function that “lifts” the robot hand and object states to a
higher-dimensional space in which the underlying dynamics
appear linear, and K is the Koopman matrix [46], [47]. We
use a task-agnostic second-order polynomial lifting function
for all tasks in all our experiments. A key benefit of using a
Koopman-based approach is that we can analytically compute
K (and thereby our motion generation policy ®) from D using
least squares [47]. To extract the original states without a
decoder, we augment the original states to the lifted states
before learning the Koopman operator. See Appendix E for
details. We then use the learned dynamical system as an
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Figure 2: CIMER generates a motion prior based on initial conditions
and refines it based on context to generate PD targets for the hand.

autonomous policy to predict desired hand and object motions
for any initial condition.

D. Motion Refinement via Emulation

Merely tracking the hand trajectory generated by the motion
generation policy ® does not guarantee task success in dex-
terous prehensile manipulation tasks due to the small margin
for error and the lack of reasoning about contact effects (see
Sec. IV-B for empirical validation). As such, CIMER refines
the robot’s hand motion so as to ensure emulation of the
learned object motion. Specifically, CIMER learns W to refine
finger and palm trajectories (as opposed to all the DoFs)
generated by @ such that the robot reenacts the object motion
generated by ®. Interacting with the object helps compensate
for the lack of action labels and account for contact effects.
Once learned, CIMER employs a task-agnostic PD controller
to track the refined hand motions.

We formulate emulation as an RL problem and maximize
rewards computed from policies learned via imitation. Our
task-agnostic reward function captures the essence of emu-
lation: reenacting the desired object motion rather than only
the expert’s motion [23]. To reduce training variance, we use
Generalized Advantage Estimator (GAE) [48] and PPO [49].

State & Action Space: We parameterize ¥ as an MLP
network that predicts the current action: ﬁt = U(q¢, ). Here,
B(t) € H contains the refined PD targets of the robot hand at
time ¢, q; = (hy_2.t,0¢_2., ﬁt,g:t,l) is the context containing
the history of hand and object states and refined PD targets,
and gt = (ht+1,t+5,t+10aOt+1,t+5,t+10) provides the motion
prior (predicted by the motion generation policy ®) that needs
to be refined. Since the necessary refinements are likely to be
local and fine-grained, we restrict ¥ to only refine the finger
and palm trajectories. See Fig. 2 for an illustration.

Rewards: Unlike prior works that rely on
specific reward shaping, we wuse tracking errors
of both the robot hand and the object as reward
signals. Formally, we define the reward function as
ry = 1+ rf 4+ 2, where ' = exp (—k"|[hy1 — hega[]?),
¢ = exp (—k°|[6141 — 0441][?), 7} is a bonus reward that
is triggered when the object tracking error is smaller than
a threshold ¢,. Here, Et+1,ht+1, and Oyy1,0.41 denote the
hand and object states from both the robot and reference

task-
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IV. EXPERIMENTAL

Our experiments pose the follow
tion necessary? (Sec. IV-B), ii) Is
cient than baselines? (Sec. IV-C),
robust and realistic motions? (Sec.
generalize and adapt to novel objecw \oev. 1 v-ry.

A. Experimental Design

Evaluation Platform: We used the widely-used ADROIT
Hand [4] — a 30-DoF simulated system (24-DoF hand + 6-
DoF floating base) built with MuJoCo Simulator [53].
Data and Expert Policy: We utilized expert DAPG poli-
cies [4] trained using action labels to generate 200 state-only
observations (both hand and object states) for each task.
Tasks: We consider three widely-used prehensile tasks origi-
nally proposed in [4] (see Fig. 3 and Appendix A).
e Tool Use: Pick up the hammer to drive the nail into the
board placed at a randomized height.
e Object Relocation: Move an object to a randomized target
location (green sphere).
e Door Opening: Given a randomized door position, unlock
the latch and pull the door open.

To ensure fairness and reproducibility, we adopt the same
success criteria originally proposed in [4].

Metrics: We quantify performance in terms of Task success
rate (see [4], [13], [45] for criteria) and sample efficiency,
reported across five random seeds unless specified otherwise.

B. Need for Emulation

We first demonstrate why it insufficient to imitate state-
only observations without emulation. To this end, we compare
CIMER against three baselines that solely rely on imitation:
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Figure 4: Emulating the observed object motion is significantly more
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Figure 5: Intuitive refinements emerge from CIMER’s emulation. Top:
Hand ensures hammer hits closer to nail’s center, and applies larger
driving force; Bottom Left: Fingers exert more force to ensure firmer
grasps and stable transport; Bottom Right: Hand rotates faster to boost
momentum while turning door handle (enclosed by dotted lines).

a). Expert Obs. [4] + PD: Reference hand motion generated
by the expert policy trained with action labels, b). Motion
Gen. + PD: Reference hand motion generated by ®, and c).
DexTransfer [12] + PD: Reference hand motion generated by
a policy trained on an augmented dataset (generated by simu-
lating perturbed observations and augmenting new trajectories
deemed successful by task-specific success criteria). We used
the same PD controller with identical gains for all tasks and
methods, and report success rates over 200 initial conditions.

Table I: Tracking state trajectories from an expert or an imitation
policy is insufficient for prehensile manipulation. Combing imitation
and emulation (CIMER) dramatically improves task performance.

Task Success Task
Rate Tool Relocation Door
Policy
Expert [4] Obs. + PD 28.0% 34.5% 10.5%
Motion Gen. + PD 32.0% 35.5% 10.5%
DexTransfer [12] + PD | 46.6(£3.2)% | 24.2(£0.7)% 9.3(£0.8)%
CIMER + PD 92.7(+1.7)% | 96.0(+0.5)% | 76.3(+13.4)%

As seen in Table I, CIMER significantly outperforms all
three baselines. These results support our claim that merely
tracking an observed expert trajectory is insufficient for pre-
hensile dexterous manipulation since contact effects and grasp
forces are ignored when merely imitating state-only obser-
vations. Though DexTransfer uses the simulator to evaluate
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analyses reveals that both the baselines exploit the simulator and generate unrealistic and aggressive behaviors in all three tasks (see dashed
red circles indicating loss of grasp, bouncing objects, and hand-object penetration). In contrast, CIMER generates realistic motions as its

refinement is anchored by the motion priors from its imitation phase.

the effectiveness of perturbed trajectories, it only learns from
successful trajectories and disregards ones that fail. In contrast,
CIMER uses emulation to “practice” what it learned during
imitation, refining the hand motion to reproduce the observed
object motion. We also observed that refining only the robot
finger and palm motions may not always be sufficient. Specif-
ically, we found that doing so improves task success to only
46.5(£3.4)% in the Door Opening task. However, the success
rate jumps to 76.3(+13.4)% when CIMER also refines the
motion of the 6-DoF hand base. This more comprehensive re-
finement is likely helping the hand generate larger momentum
to successfully turn the door handle.

A key aspect of our approach to emulation is the increased
focus on the object. To validate this focus, we evaluated
the relative importance of hand- and object-tracking rewards.
Results in Fig. 4 highlight the crucial role of object tracking
rewards. Importantly, using hand tracking rewards alone results
in little to no performance gains.

To better understand how emulation improves performance,
we qualitatively analyzed the modifications made by the
motion refinement policy to compensate for the lack of action
labels in each task (see Fig. 5). Tool Use: The hammer hits the
nail closer to its center point and with greater force (measured
by a touch sensor on the nail head), helping drive the nail
completely into the board. Object Relocation: the grasping
force applied from each fingertip on the object is noticeably
increased, producing a more secure grasp during the initial
contact and transportation towards the target. Door Opening:
the hand initially rotates in one direction, then swiftly changes
direction to generate greater momentum for turning the handle
(the dashed lines denote the handle turning phase). These
observations suggest that emulation indeed nudges the robot
to apply the necessary forces and adjusts the hand’s motion

so that the object is manipulated as desired.

C. Sample Efficiency and Realism

Though no existing methods can accommodate all the con-
straints and challenges of our problem setting (see Sec. III-A),
we compare CIMER to the following baselines to evaluate its
relative benefits in terms of sample efficiency and realism:

e Pure RL: We trained TRPO [54] as a pure RL baseline
without offline data, but with task-specific reward shap-
ing [4] to evaluate the benefits of leveraging observations.

e SOIL [13]: We also evaluated CIMER against this SOTA
state-only imitation method for dexterous manipulation,
which also leverages both expert observations and in-
teractions with a simulator. Unlike CIMER, SOIL also
requires task-specific reward engineering [4].

For both baselines, we utilized the same model architectures
and training parameters as recommended in their original
works. We report all results over five random seeds.

As shown in Fig. 6 (top), CIMER exhibits significantly
better sample efficiency than SOIL and Pure RL for both
Tool Use and Object Relocation tasks. In particular, while
the baselines struggle to make any progress on the Object
Relocation task, CIMER achieved 100% task success rate.
This is likely the baselines end up learning a fragile strategy
of bouncing the ball against the table instead of grasping
it (see Fig. 6 (bottom)). In contrast, baselines were able to
achieve higher success rates in the Door Opening task with
fewer samples compared to CIMER. This is partly due to the
door opening task likely requiring more significant motion
refinements to generate enough momentum that will swing
the door open. Further, unlike the baselines, CIMER does not
benefit from task-specific reward design.
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Figure 7: The evaluation of the robustness of each method to
systematic changes in mass and damping coefficients.

A closer examination revealed something important: the
baselines tend to exploit the simulator and generate unrealistic
or aggresive motions across all tasks. Exemplar rollouts in
Fig. 6 (bottom) show that the baselines tend to drive the hand
o “throw” the hammer, hit and bounce the ball, and penetrate
the door handle, while CIMER generates more realistic and
stable motions. This is because CIMER’s motion generation
policy employs a structured dynamical system that provides a
realistic and effective motion prior for the motion refinement
policy to adjust. These results also suggest that CIMER is
better suited for real-world deployment and will not likely
require significant efforts in ensuring safety and efficacy.

To quantitatively evaluate realism and the suitability for
real-world implementation, we evaluated the robustness of
each method to systematic changes in all mass and damping
coefficients (see Appendix C for details). The results reveal
that CIMER results in comparable or better robustness, even
outperforming the expert policy trained using action labels
on the Relocation task. Though Pure RL and SOIL seem
to be more robust than CIMER on the Door task, note that
qualitative analysis revealed that both Pure RL and SOIL tend
to exploit the simulator and generate unrealistic and agrressive
motions (see Fig. 6 (bottom)).

D. Generalization and Adaptation to Novel Objects

In addition to the objects considered thus far, we evaluated
CIMER and the baselines on their ability to generalize to 17
novel objects (3 synthetic objects and 14 objects from the YCB
dataset [24]) in the Object Relocation task (see Fig. 8). Note
that the Ball is the only default object used for training the
expert policy and for collecting state-only demonstrations.

1) Zero-shot Generalization: We report the zero-shot gen-
eralization performance of each method and the expert across
five random seeds in Fig. 9. Given that both the baselines
struggled to learn to relocate the default Ball object, it is
no surprise that they consistently fail to generalize to novel
objects. While the expert achieves a 100% success rate on the
default object (ball) with the benefit for action labels, CIMER
notably outperforms the expert on the majority of the novel
objects. This impressive ability to readily generalize to novel
objects could be attributed to CIMER’s hierarchical structure

and suggests that CIMER’s motion prior and refinement strat-
egy are somewhat robust to changes in the object’s geometric
and kinematic properties. Further, CIMER demonstrates the
most consistent performance across different training seeds,
as indicated by shorter error bars.

2) Skill Transfer to New Objects: We also evaluated if
transferring the skills learned on the default object (Ball)
to novel objects would improve sample efficiency (see Ap-
pendix G for experiments on learning from scratch). Freezing
the motion generation policy, we fine-tuned CIMER’s motion
refinement policy on six novel objects (each of which resulted
in 50% or lower success rate during zero-shot generalization).
We compared against a similarly-finetuned expert policy [4],
and two additional policies trained from scratch (one using
CIMER and the other using the expert method). As shown
in Fig. 10, transferring motion refinement skills considerably
improves sample efficiency in four of the six objects. On
these four objects, CIMER with skill transfer outperforms the
baselines trained from scratch as well as the fine-tuned expert.
In contrast, skill transfer hurts sample efficiency when dealing
with other two objects. This is likely because skill transfer is
counter-productive when target objects are drastically different
from the source object, requiring a significantly different
grasping strategy. In such cases, CIMER has to “unlearn” the
previous skill before adapting to the novel object.

V. LIMITATIONS AND FUTURE WORK

Our work represents the first task-agnostic and intervention-
free approach to learning dexterous prehensile manipulation
skills from state-only observations. But it still leaves behind
several avenues for further improvement. First, given that
human videos are ubiquitous online, one could integrate recent
advances in motion retargetting [5] with CIMER to directly
learning from videos. Second, we do not consider the manip-
ulation of deformable and fragile objects. It is yet unclear how
to represent such objects in way that makes incentivizing em-
ulation easier and tractable. Third, some objects and contexts
require significantly different strategies (e.g., grasping a pencil
to write vs. a ball to throw). It might be possible to enable such
drastic adaptations by refining all available degrees of freedom
of the hand and accounting for affordances. Fourth, reasoning
about local contact events using tactile sensors [55]-[57] might
help improve refinement and tackle contact-rich tasks (e.g.,
peg-in-hole). Last, while our robustness experiments show
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Figure 8: We trained candidate policies on one object, and evaluated
their ability to generalize and adapt to 17 novel objects.
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and
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Leveraging the fact that it generates PD targets, we plan to
deploy CIMER on hardware and validate its benefits.
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APPENDIX A
STATE SPACE DESIGNS

Our simulation ran at 500 Hz and the state design for each
task is as follows:

Tool use: The floating hand base can only rotate along the
x and y axes, resulting in h, € H C R26. Unlike other
tasks, where the objects of interest are directly manipulated
by the hand, this task requires indirect manipulation of the
nail. As such, in addition to the hammer position, orientation,
and corresponding velocities pl°! ol pieol pleol (R3), we
define the nail goal position p™! (R?). Finally, we have
0; = [pgool’ O;ool, p;ool’ (')%0017 pnail] c0O C R15. We use the pttool
and o' as the object tracking states.

Object relocation: The ADROIT hand is fully actuated, so
we have hy € H C R3Y (24-DoF hand + 6-DoF floating
wrist base). Regarding the object states, we define p'*& and

pbdl as the target and current positions. Then, we compute

phall = phall _ pareet which is the component of p¥! in a
new coordinate frame that is constructed by p® being the
origin. We additional include the ball orientation o?*!! and their
corresponding velocities pb!, ob¥! (all R?). Finally, we have
op = [pall) oball pball oballl & O C R12. We use the pt!! as the
object tracking states.

Door opening: For this task, the floating wrist base can only
move along the direction that is perpendicular to the door plane
but rotate freely, so we have h; € H C R2?®. Regarding the
object states, we define the fixed door position pd""r , which
can provide with case-specific information (similar to p"' in
Tool Use task), and the handle positions pf™de (both R?).
In order to take into consideration the status of door being
opened, we include the angular velocity of the opening angle
v;(RY). Finally, we have o; = [piadle o, pdoor] € O C RT.

We use the pdle ag the object tracking states.

APPENDIX B
CIMER HYPERPARAMETERS

Table II summarizes the hyper-parameter settings for train-
ing CIMER policies. For the three tasks, the hyper-parameter
settings are the same.

Table II: Training details

MLP Hidden Layer | RL Learning Rate | GAE~
(256, 128) 2e-6 0.98
PPO clip threshold PPO epochs GAE),
0.2 8 0.97

In addition, we used k" = 5,k° = 5,72 = 25 in all tasks
to compute the tracking rewards introduced in Sec. III-D.

APPENDIX C
ROBUSTNESS EXPERIMENTS

For the robustness experiments in Sec. IV-C, we varied mass
and damping since they are an important subset of differences
between simulation and hardware. Specifically, we varied all
mass and damping coefficients along eleven equally spaced
evaluation points at [0%, 10%, 20%, ..., 100%)] variation. For
each variation, we sampled mass and damping coefficients


https://ieeexplore.ieee.org/document/6386109

from a uniform distribution, with the lower and upper bounds
being multiples of the default values. The lower and upper
bound values (I; and u;) for each variation case (j) are

Vi €{0,0.1,0.2,...,1.0},1; = 1 — 0.8j,u; = 1 + 4.05.

After sampling a particular combination of mass and damping
parameters, we tested each policy for 200 episodes with
varying goal locations. We repeated this process 20 times for
each variation, and report the resulting average success rates.

APPENDIX D
CIMER PSEUDO-CODE

The overall pseudo-code for CIMER is given below.

Algorithm 1: CIMER
Inputs: State-only observation dataset D, Koopman
lifting function g(-);
Motion Imitation
1 Formulate Motion Generation Policy ® as a
Koopman-based dynamical system:
g(hiy1,0041) = K g(hy, 04)
2 Regress Koopman Matrix K on D;
Motion Emulation
3 Warm-start the Motion Refinement Policy ¥ to
reconstruct trajectories generated by ®;
4 for iter € {1,...,max} do

5 Initialize replay buffer B = @ ;

6 | forke{l,..,M} do

7 Specify random initial states {hgk), ogk)};

8 Generate reference motions {hik), ogk)}’tfzg(k)
by rolling out ®;

9 for t € {1,...,7™® — 1} do

10 Motion Refinement Policy W inputs s;, and

outputs a; for execution;

11 Compute the tracking reward 7;

12 end

13 Add {s?,a®) (=114 .

14 end

15 Update the Motion Refinement Policy ¥ with B;

16 end
17 Return: Trained policies ¢, ¥

APPENDIX E
DETAILS OF KODEX TRAINING

Modeling Dexterous Manipulation Skills: A central principle
behind KODex is that the desired behavior of a robot can be
represented using a dynamical system. To this end, we define
the state at time ¢ as x(t) = [hy ', 0, '] ", where h, € H C R"
and o; € O C R™ represent the state of the robot and the
object, respectively, at time ¢. As such, the dynamical system
we wish to capture is

x(t+1) = F*(x(t)) (1)

where F*(-) : H x O — H x O denotes the dynamics that
govern the interdependent motions of the robot and the object.

A key challenge in learning the dynamical system in (1)
is that it can be arbitrarily complex and highly nonlinear,
depending on the particular skill of interest. KODex leverages
Koopman operator theory to learn a linear dynamical sys-
tem that can effectively approximate such complex nonlinear
dynamics. To this end, we first define the Koopman lifting
function g(-) as follows

g(x(t) = e " Un(he), 00" Wolon)] T, Wt 2

where 1, : R® — R” and 1, : R™ — R™ are vector-
valued lifting functions that transform the robot and object
state respectively.

Now, we introduce the Koopman matrix K, which approxi-
mates the system evolution in the lifted state space as follows

g(x(t +1)) = Kg(x(t)) 3)

Learning the Koopman Matrix K: The next step is
to learn the Koopman matrix K from dataset D =
(i oM=T® o h() oM =T™ ) (Section. TI-B).
Recall that CIMER’s Motion Generation Policy ® is formu-
lated as the linear dynamical system shown in (3).

As described in [45], we can efficiently compute the Koop-
man matrix as K = AGT, where A and G are shown as
follows

neN t=T() _
VT g™ (4 1) © g(x™ (1))

A= Z Z N(T(n,) _ 1) ’
n=1 t=1 (4)
n=N t=T() —1
_ g(x" (1) ® g(x" (1))
G= ; ; N(T™M —1)

where GT denotes the Moore—Penrose inverse' of G, and ®
denotes the outer product.

We use the computed Koopman matrix K to generate
rollouts in the lifted state space. However, we need to obtain
the rollouts in the original state states to retrieve the predicted
robot and object states. Since we designed g(x(t)) such that
robot state h; and the object state o, are parts of lifted states
in (2), we can easily retrieve the reference motions of both the
robot and the object {h;,0:} by selecting the corresponding
elements in g(x(t)).

APPENDIX F
EMULATION MIGHT NOT BE NECESSARY FOR
NON-PREHENSILE MANIPULATION

We present the task success rate on another non-prehensile
manipulation task, In-hand Reorientation, which are as fol-
lows: Expert Obs. + PD: 91.0%, Motion Gen. + PD: 69.5%,
and CIMER: 72.7(£1.0)%. Contrary to the results presented
in Table. I, where Expert Obs. + PD shows poor performance
on three dexterous prehensile manipulation tasks, in this
scenario, it could achieves satisfactory results. This disparity
arises because the challenge of the In-hand Reorientation task

'Tt could be efficiently computed using thescipy.linalg.pinv (G)
function from Scipy library.
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Figure 11: We compare the RL sample efficiency between CIMER and expert policies when being trained on new objects. For each, solid
lines indicate mean trends and shaded areas show =+ standard deviation over five random seeds. We find that both methods will gradually
learn the manipulation strategy of the new objects, except for the power drill. Moreover, CIMER policies exhibit the better sample efficiency.

primarily pertains to the generation of precise and diverse hand
motions, rather than dealing with heightened sensitivity to
applied forces. Therefore tracking the observed expert motion
directly translates to achieving the desired object motion. This
is also why both the Motion Gen. + PD and CIMER are not
comparable to Expert Obs. + PD in this In-hand Reorientation
task. Therefore, we exclusively apply CIMER policies to
the three dexterous prehensile manipulation tasks, aligning
with the intended purpose of motion refinement policies. We
leave the improvement of motion generation policy for non-
prehensile tasks as a topic for future work.

APPENDIX G
ADAPTATION TO NEW OBJECTS

We also evaluated CIMER s ability to adapt to novel objects.
Specifically, we finetuned the CIMER on each of the seven ob-
jects for which its success rates was lower than 50%. To ensure
that CIMER remains intervention-free, we did not collect or
rely on additional observations. Instead, we reused the old
motion generation policy (trained on the default object), and
simply changed the object used in the simulator when training
the motion refinement policy. We similarly trained the expert
policies to ensure a fair comparison.

As shown in Fig. 11, we find that both methods gradually
learn to manipulate the new objects, with CIMER exhibiting
significantly better sample efficiency almost all objects. The
power drill presents a notable exception to this trend, with
CIMER particularly struggling to adapt. This is due to the
power drill likely requiring a significantly different grasping
strategy than the default object (Ball) on which CIMER’s mo-
tion generation policy was trained. Indeed, CIMER’s motion
refinement only adjusts finger and palm motions, and does
not account for grasp synthesis. This could potentially be
addressed by also learning to refine the hand base motions
with the help of appropriate regularizers [58] that encourage
refined motions to remain close to the reference motion.
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