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EXISTENCE OF MAXIMAL AND MINIMAL WEAK SOLUTIONS AND
FINITE DIFFERENCE APPROXIMATIONS FOR ELLIPTIC SYSTEMS WITH
NONLINEAR BOUNDARY CONDITIONS

SHALMALI BANDYOPADHYAY, THOMAS LEWIS, NSOKI MAVINGA

ABSTRACT. We establish the existence of maximal and minimal weak solutions between or-
dered pairs of weak sub- and super-solutions for a coupled system of elliptic equations with
quasimonotone nonlinearities on the boundary. We also formulate a finite difference method to
approximate the solutions and establish the existence of maximal and minimal approximations
between ordered pairs of discrete sub- and super-solutions. Monotone iterations are formulated
for constructing the maximal and minimal solutions when the nonlinearity is monotone. Nu-
merical simulations are used to explore existence, nonexistence, uniqueness and non-uniqueness
properties of positive solutions. When the nonlinearities do not satisfy the monotonicity condi-
tion, we prove the existence of weak maximal and minimal solutions using Zorn’s lemma and a
version of Kato’s inequality up to the boundary.

1. INTRODUCTION

We consider the coupled system of elliptic equations with nonlinear boundary conditions
—Au;+u; =0 in

3ui

an

where 2 C RY is a bounded domain with Lipschitz (C%!) boundary €2, N > 2, and 9/dn := n(z)-

V denotes the outer normal derivative on the boundary 9Q. For each i = 1,2, f; : 9Q x R? — R

is a Carathéodory function; that is, f;(-,u;,us) is measurable for all (u1,us) € R? and f;(z,-, ")

is continuous for a.e. z € 0. Throughout this article we assume that each f; satisfies the
quasimonotonicity condition

(1.1)

= fi(z,u1,u2) on 9N, i =1,2

(A1) the functions f; are quasimonotone nondecreasing in the sense that fi(z,u1,us) is nonde-
creasing in us for all fixed x € 0Q,u; € R, and fa(x, uq, us) is nondecreasing in u; for all
fixed z € 00, us € R.

In this article, we establish the existence of maximal and minimal weak solutions for . In
particular, we use a monotone iteration method when the f;’s are monotone nondecreasing in both
variables u; and usg, and for the f;’s that are nonmonotone in one of the variables, we utilize the
surjectivity of a bounded, pseudomonotone and coercive operator, Zorn’s lemma and a version of
Kato’s inequality up to the boundary to obtain the existence of maximal and minimal solutions.

To visualize solutions, we utilize numerical methods. Some common numerical approximation
techniques for reaction diffusion equations can be found in [19] 20} 23] [24] 25]. We use the finite
difference method to approximate solutions inspired by the results for approximating semilinear
elliptic problems with Dirichlet boundary conditions in [15]. We formulate a finite difference
method for and prove admissibility and stability results. We also formulate a methodology

2020 Mathematics Subject Classification. 35J60, 35J67, 65N06, 65N22.

Key words and phrases. Weak solutions; quasimonotone; subsolution; supersolution; Zorn’s lemma;
finite difference method; Kato’s inequality.

(©2025. This work is licensed under a CC BY 4.0 license.

Submitted April 17, 2024. Published Aril 23, 2025.



2 S. BANDYOPADHYAY, T. LEWIS, N. MAVINGA EJDE-2025/43

for finding maximal and minimal solutions in the monotone case. This methodology is used
to generate bifurcation diagrams for several one-dimensional examples. The numerical study
complements the analytical results.

Elliptic equations are important for studying mathematical models in problems such as chemical
reactions, ecology, population dynamics and combustion theory. Extensive studies have been done
when the elliptic equation has linear boundary conditions which includes Dirichlet, Neumann,
and Robin boundary conditions. However, there are certain scenarios where chemical reactions,
the biological bonding, or species interactions may occur in a narrow layer or region near the
boundary. In such cases, linear boundary conditions are deficient to describe the mathematical
model (see e.g. [5 [10, [13] [16] 22] 21] and the references therein). Therefore, studying elliptic
problems with nonlinear boundary conditions has been of much interest over the past few decades
(see e.g. 21 3 4L 5 9L [111 [16] 17} 26] and the references therein).

In [4] the authors studied the existence of a maximal and a minimal weak solution between
ordered pairs of sub and supersolutions for elliptic (scalar) equations with nonlinear boundary
conditions for both monotone and nonmonotone nonlinearities. The aim of this paper is to extend
the results to the case of elliptic systems with quasimonotone nonlinearities on the boundary, and
approximate these solutions using the finite difference method. We shall point out that quasi-
monotone elliptic systems have been studied by several authors, we refer to [7,[18,22]. In [18], the
authors proved the existence of a maximal weak solution between ordered pairs of sub and super-
solutions for quasimonotone elliptic systems with linear boundary conditions, namely, Dirichlet
boundary conditions. Furthermore, they assumed that the nonlinearities are not necessarily dif-
ferentiable or even continuous. In such a case the monotone iteration procedure is not applicable,
and the main ingredient is the use of pseudomonotone operators theory. As for 7] the author
extended the results in [18] to the p-Laplacian case but still with Dirichlet boundary conditions.
The author in [22] considered quasimonotone elliptic systems with smooth nonlinear boundary
conditions, and they proved the existence of maximal and minimal classical solutions using mono-
tone iteration methods. Here, we address the existence of maximal and minimal weak solutions
for assuming that the nonlinearities are Carathéodory.

Throughout this paper H!(2) denotes the usual real Sobolev space of functions on ; the
product Sobolev space H!(2) x H(Q) will be denoted by (H'(Q))? and is endowed with the
norm || (uy,uz)|| ()2 = l|uillmr) + lluzllai). Moreover, the product space (H'(£))? is
reflexive as H'(Q) is reflexive (see e.g. [12, p.15]). Besides the Sobolev spaces, we use the real
Lebesgue space L?(9R2), and the compactness of the trace operator I' : H'(Q) — L4(99) with
Tu = ulgqn (see e.g. [1, 8], [6, Thm 2.79], and [12| Chapter 6]), that is, I is continuous (compact)
if

2N — 1) AN —1). .
1<g< ——2 (1< _ fN>2
Ses—y—5 (Use<—g—5), iN>2 (1.2)
1<q (1<q) ifN=2
To keep the notation simple, we will use the following: U := (ui,us), U := (u1,u2) and U :=

(1, us). The inequality U < V means u;(z) < v;(z) a.e. z € Q and a.e. z € I for each i = 1, 2.

Definition 1.1. We say that a function (u1,us) € (H(Q2))? is a weak solution to (1.1)) if
(i) Foreveryi = 1,2, fi(-,u1(-),uz2(-)) € L™(99Q) for some r > 1if N = 2 and f;(-,u1(-), u2()) €

2(N—1)

L™~ (09) if N > 2 and
(i) [o (VuiVp +uih) = [oq, fi(2, u1,uz)¢ for all ¢ € H ().

Definition 1.2. We say that a function (uy,u2) € (H(Q))? is a weak supersolution to (1.1)) if
(i) Foreveryi=1,2, f;(,ui(-),us(-)) € L"™(9Q) for some r > 1if N = 2 and f;(-,u1(-),ua(-)) €

2(N—1)

L™~ (09)if N > 2 and
(i) [ (VuVy +a) > [0 fi(z,u, )y for all 0 < ¢ € H'(Q).
A weak subsolution (uy,u,) is defined by reversing the inequality in (ii) above. Observe that
the integrals on the right hand side of (ii) of Definition and Definition make sense since (i)

holds and r = w is the conjugate of 2(]3/:21) when N > 2.
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In what follows, we state our main results which include the case where the f;’s are monotone
nondecreasing in both variables u; and us (see Theorem [1.3) and the case where the f;’s are
nonmonotone in one of the variables (see Theorem [1.4]).

Theorem 1.3. Assume that there exist a weak subsolution (u;,u,) and a weak supersolution
(T1,u2) of (L.1) such that (uy,us) < (T1,T2) a.e. on Q, and
(A2) there exists k1 > 0 such that for all z € 0Q and (s1,s2) € R? with (u;(x),uy(x)) <
(s1,82) < (uy(x),w2(x)), f1(z,s1,s2) + kis1 is nondecreasing in s;.
(A3) there exists ko > 0 such that for all x € 0Q and (s1,s2) € R? with (u;(x),uy(x)) <
(s1,82) < (uy(x),u2(x)), folx,s1,82) + kasa is nondecreasing in ss.
Then, there exist a minimal weak solution (u1.,us2) and a mazimal weak solution (uf,ul) to
(1.1), that is, if (u1,us) is any weak solution to (1.1) such that (uy,us) < (u1,u2) < (Uy,us), then
(UL*,UZ*) < (u17u2) < (UT,US)
In the next theorem, we remove the monotonicity conditions (A2) and (A3) and obtain the
following result.

Theorem 1.4. Assume that there exists a pair of ordered weak subsolution (uy,us) and superso-
lution (u1,us) of (1.1), and that the following condition holds:
(A4) there exist K1,Ko € L"(09Q), r > w, such that | fi(z, s1,s2)| < Ki(z) a.e. x € 09,
whenever u,(x) < s; <w;(x), i=1,2.
Then there exists a weak solution (uy,us) of (1.1) such that (uy,uy) < (u1,us) < (u1,u2). More-

over, there exist a minimal weak solution (u1.,us2.) and a mazimal weak solution (uj,us) to
(1.1); that is, for any weak solution (ui,us2) to (L.1) with (uy,uy) < (u1,us) < (U1,T2), we have
(U1, u2,4) < (u1,u2) < (uj, u3).

In the course of the proofs, we will need the following result on the existence of weak solutions
for the single equations case.

Proposition 1.5. Consider the nonlinear problem
—Au+u=0 1inQ;
ou
on

where f: 9L x R — R is a Carathéodory function. Suppose that there exists a pair of a weak

subsolution u and a weak supersolution T such that u < @ in Q, and that there exists K € L"(99Q),

r > 2(_1), such that | f(z,s)| < K(z) a.e. x € 9Q and for all s € R satisfying u(zr) < s < u(z).

Then (1.3) has at least one weak solution u such that u < u < w.

= f(z,u) on 09, (1.3)

The proof of Proposition can be found in [4], which relies on the surjectivity of bounded,
coercive pseudomonotone operators, Zorn’s lemma and a version of Kato’s inequality up to the
boundary for single equations.

This article is organized as follows. In section 2] we prove Theorem Section [3] is devoted
to the proof of Theorem In Section |4} we formulate and analyze a finite difference method
to approximate solutions and generate bifurcation diagrams for several one-dimensional cases.
Finally, in Section [5] the appendix, we state a version of Kato’s inequality up to the boundary
for single equations and employ it to prove that the componentwise maximum of two solutions of

(1.1) is a subsolution of (1.1)) (see Proposition [5.4) and componentwise minimum of two solutions
of (1.1)) is a supersolution of (1.1 (see Proposition [5.6)), results necessary to prove Theorem

2. PROOF OF THEOREM [L.3

We will first construct a monotone operator and then use a corresponding iterative scheme to
show the existence of a minimal (maximal) solution using the convergence of a sequence of weak
subsolutions (supersolutions).
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(I) Construction of the monotone operator. We define the map 7": J — (HY(Q)? by T(U) =W,
where J = {U = (u1,u2) € (H'(Q))? : U < U < U} and W = (wy,ws) is the unique weak
solution of the decoupled system

—Aw; +w; =0 in Q;

ow; 2.1
810 + kw; = fi(x,ur,uz) + ku; on 0Q, i=1,2, (2.1)
n
where k = k1 + ko > 0. Observe that, for each i, (2.1) is a linear equation for w;. Also notice

that f;(z,ur,uz) + ku; € L2%(09). Indeed, fi(us (), uz(-)) € L*F(99) by Definition [1.1]
and (1.2)) implies u; € L5 (09) since 2%\7:21) > 2(1\1[\,71). Hence, by the existence results for
linear elliptic equations (see e.g. [14, P.160-162], there exists a unique solution of (2.1). Thus, T
is well-defined.

Now, we prove that T is monotonically nondecreasing and maps J into itself. Indeed, let
U,V € J with U <V. We have that T(U) = W = (wy,w2) and T(V) = Z = (21, 22) satisfy the
following:

—Aw; +w; =0 in Q;

ow; 2.2
aw + kw; = fi(x,u1,uz) + ku; on 0Q, i=1,2, (2:2)

n

and
—Azi+ 2z =0 in Q,

) 2.3
8621 + kz; = fi(z,v1,v2) + kv; on 0Q, i =1,2. (2:3)

n

By (A2) and the fact that (ui,u2) < (vi,v2) and k& > 0, we have fi(z,ui,us) + kuy <
fi(z,v1,u2) + kvy. Applying the quasimonotonicity condition (Al), we conclude fi(x,u1,us) +
kuy < fi(x,v1,v)+ kv, Similarly, by (A1) and (A3), we have fao(z,ur, u2) +kus < fo(z,v1,v2)+
k’Ug.

Substracting (2.2)) and (2.3)), we obtain that w; — z; satisfies

—A(w; — Zl) + (wi - Zi) =0 in Q;
8(11)1 - Zi)
an
It follows from the comparison principle (see e.g. [8]) that w; < z;. So, T(U) < T(V).

Now, we show that T(J) C J. With the monotonicity of T, it is sufficient to show that
U <T(U) and T(U) < U. Take the subsolution U = (u;,u,). Then T(U) = (w;,w,) satisfies the
system

+ k(w; —2;) <0 on 9.

%wi + kw; = fi(x,uy,uy) + ku; on 0Q, i=1,2.

n
Using the fact that U is a subsolution to (1.1]), we obtain that

—Ay; —w;) + (4 —w;) =0 in

O(u; — wy)

on

By 7the comparison principle, we have u; —w; < 0 in Q. Hence, U < T'(U). Similarly, we can show
T(U) <U. Hence,

+k(u; —w,;) <0 ondQ, i=1,2.

U<TWU)<TO)<U. (2.4)
Thus, T maps J into itself.

(II) Construction of minimal and maximal weak solutions. We construct a monotone sequence
{Un} = {(u1,n,u2,,)} and a monotone sequence {W,,} = {(w1,n,wsn)} using the linear iteration
process as follows:

Up =T(Up_y) with Uy = U, and W, =T (W,_1) with Wy = U,
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where U,, and W, are weak solutions of
_A'U/i,n + Uiy =0 in Q;

Oui 2.5

g — + kuin = fi(x, U1,n—1,U2n—1) + KUjn—1 on 09, 25)

n
and
—Aw;p +w;pn =0 in Q;

0 i,m
% + kw; = fi(®, w1 n—1, W2 n-1) + kwjpn—1 on 0N

n

for each i = 1,2. The monotonicity of 7" and (2.4)) imply that
U=Uy<Uy <Uy <+ <W, <Wyy < < Wy =T.

We now proceed to show that the sequences U,, and W, are weakly convergent. Since U, =
T(U,-1) is a weak solution of ([2.5)), we have that

/ (Vi VO + win)) + k/ Ui p) = (fi(x, UL p—1,U1,n—1) + kuz,n—l)w (2.6)
Q Yy) o9
for all ¢ € H*(Q). Taking ¢ = u;,, for each i = 1,2, we obtain

/ (|Vum|2 + Ufn) + k/ Ufn = / (fi(z,win—1,U1,-1) + Kt n—1) Ui .- (2.7)
Q a0 a0

Observe that
| fiz, w1 no1, U2 m—1) + kui,n—1||L2(NN—1)

(692)
o B ~ (2.8)
< | filw, uy,us) + inHLz(NN—l) 09) + || fi(, wr, u2) + kui||L2<NN—1> (o) <C,

where C is a constant independent of n.

Hence, for each i = 1,2, f;(-,u1,n—1(-), u2n-1(-)) + kttjn_1(-) € LW(BQ). Then, the right-
hand side of can be estimated using Holder’s inequality and the bound , and so
can be estimated as follows:

il 0y < N7 @) + kllwinll7z00)

< |Ifilx,u1 p—1,u2n—1) + kui,n71||L2(NN*1) (aQ)Hui,n”L%I{,\’:Zl) o)
<C(ITN sy + U syen )<,
L N=2 (9Q) L N=2 (9Q)

where C’ is a constant independent of n. Hence,

1Unllrr@))2 = Nl nllar @) + luzmll o) < C, (2.9)

where C' is a constant independent of n. Since U, is uniformly bounded in (H(Q2))? and (H'(£2))?
is reflexive, it follows that there exists a subsequence (relabeled) U,, which converges weakly to
Us = (w10, u2,4) € (H'(2))%

Now, let’s show that f;(x,U,) + ku; , converges weakly to f;(z,U,) + ku, . in LW(GQ)
for ¢ = 1,2, where we have adopted the notation f;(x,V) = fi(x,v1,v2) for V = (v1,v3). From
, we have that the sequence U, is monotone increasing and bounded. Therefore, U,, converges
pointwise to U, that is, U.(z) = lim, o Un(z) and U(z) < U.(z) < U(x) ae. © € Q and a.e.
x € 0N Since f; is continuous with respect to the second and third variables, it follows that

i [y, Un (@) + kg o (2)] = file, Us(2)) + kug o ().

By the Lebesgue Dominated Convergence Theorem, f;(x,Up(x)) + ku; »(x) converges strongly to
2(N—1)

fi(z,Us(z)) + ku; » in L™~ (0R2). Hence, we have f;(x, Uy, (z)) + ku; n(x) converges weakly to
fi(z, Uy (x)) + kui ., that is, for all ¢ € H* (),

lim [ [file,Un) + kuialo = | [fi(2,Us(@)) + kug Jo. (2.10)
n=o0 Jan a0
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We will show that U, = (u1,«,u2,) is a weak solution of (1.1). By the continuity of the trace

. 2(N-1) . 2(N-1) . 2(N-1)
operator (L.2) and the embedding L™~¥-2 (0Q2) into L™~ (012), it follows that u; . € L™ ~  (99)
for i = 1,2. Using (2.8)), we have

Il fi(, U*)||L2<NN—1> 0 1 fi(@, Us) + kui . — kui’*HLW(aQ)
i _ ) . . <
< il Un) + k| 2000 o) ”k“’v*HLW(aﬂ) -

where C'is a positive constant. Hence, f;(z,U,) € L (092).
Since w; ,, converges weakly to u; . in H'(Q), u; ,, converges strongly in L*(9€2), and f;(z,U,,)+

2 (09). By taking the limit in (2.6 as n goes

ku, n converges weakly to f;(z,U,) + ku, . in L
to oo and using (2.10)), we obtain

Q Q

a0 n—o0

kunz/))

o0

n—roo

— lim (/aﬂ(fi(ac, Un—1)+kui,n—1)¢)

/ (fi(x, Us) 4 kug )
o0

for any v € H'(Q). Hence,

/ (VUi Vb + uj 1h) = / fi(z,U)Y  for all p € H(Q).
Q o

Thus U, is a weak solution to .

Finally, let us show that U, is the minimal weak solution to in the interval [U,U]. Let
V be a weak solution to such that U < V < U. Then V is a weak supersolution of (L.1).
Repeating the above iteration procedure with Uy = U, we obtain U < U, < V. Thus U, is a weak
minimal solution.

In a similar way, we can construct the maximal weak solution U* to for which lim,,_,oc W,, =
U* with Wy = U. This completes the proof of Theorem

3. PrRoOOF oF THEOREM [[.4

The proof is based on an application of Zorn’s lemma where we construct a nonempty set of
subsolutions and show that the set has a maximal element which will turn out to be a solution to
. We then use a version of Kato’s Inequality up to the boundary to prove that the maximal
element of the set of subsolutions is in fact a maximal solution to . Similarly, we can show
the existence of a minimal solution to by applying Zorn’s lemma on a set of supersolutions.

We proceed to show the existence of a maximal solution. This proof involves several steps
described below.

Step 1. Existence of a uniformly bounded subsolution of (L.I)). Let U = (1, 72) € (H(Q))?
be a subsolution to such that U < U < U. We will show the existence of a subsolution
W = (w1, ws) of such that U < W < U and Wm0y < C, where C' is a constant
depending on u;, u;, 2, K;.
Consider the equations
—Au; +u; =0 in §,

0 _ 3.1
alnl:fl(xvulﬂm) on 052, 3-1)
and
—Aus +us =0 in Q,
ou - 3.2
87172 = fo(z,u1,us) on ON. (3:2)

We set fi1(z,s1) := fi(z, s1,u2(x)). It follows from condition (A4) that whenever u; < s1 < Uy,
Uy < Wy and r > 28D it holds |fi(w,s1)] = |fi(x,s1,82(2))| < Ki(z) € L7(9Q). Then,
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applying Proposition to , we obtain a solution w; € H'(2) such that 73 < w; < ;.
Similarly, setting fo(x,s2) := fao(x,u1,s2) and applying Proposition to , we obtain a
solution ws such that s < we < Us. Since f; is quasimonotone non-decreasing, it follows that
filz,wr,U2) < fi(z,wy,ws) and fao(z, Uy, ws) < faolx,wr,ws). Hence,

/ (vwsz + wlw) < / fi(amwl,wg)w for all ¢ € Hl(Q>
Q o0

Using (A4) and u; < u; < w; <7, we have that f;(z,wi,ws) € L™(9Q) with r > Q(NT_l) Hence,

2(N—1)

filx,wy,wp) € L=~ (99) for ¢ = 1,2. So, W = (wy,ws) is a subsolution of (|1.1)).
Furthermore, ||W||(m, )2 < M (d;, u;, Q, K;), where M (@;, u;, Q, K;) is a constant. Indeed, by
using Holder’s inequality, (A4) and the continuity of the trace operator, we obtain

et 2 = /Q Va2 +

= fl(xawlaaQ)wl
oN

< K1($)wl S/ Kl(l')ﬂl
o0 o0
< 1K1 2 oe) 1 |

L' (89) <y,

where 7’ is the conjugate of r and r’ < % Similarly ||w2H12ql(Q) < Cy. Hence, |[W||(g1(0))2 <
M, where M is constant independent of W.

Step 2. Zorn’s Lemma. Consider the set A consisting of (w1, ws2) € (H'(Q2))? such that there
exists a subsolution (uy,us) of (1.1) satisfying
(uy,u9) < (ur,u2) < (w1, w2) < (U1, U2),

where w; and wy are solutions of and , respectively, for the pair uq, us.

We will first check the hypothesis of Zorn’s Lemma, and then we derive the existence of a
maximal element of A. From Step 1, we observe that A # 0. Let Y = {W,, = (w1,n,w21)}n>1
be a chain in (A, <) where the countability of the indexing set is guaranteed by the separability
of the product space (H'(Q))?. By reordering we have without loss of generality Y = {W,,},,>1 is
an (componentwise) increasing sequence in .A. Now, let us show that Y has an upper bound in .A.
Since W,, = (w1, w2,,) belongs to A for every n, there exists a subsolution (uy ., uz,,) of (L.1)
such that (u;, us) < (U, Uzpn) < (W10, w2 ) < (U1, Uz) and wy,, and wy , are solutions of
and , respectively, for the pair u; ,,u2,. From Step 1, it follows that ||[W, ||z (q))2 < M,
where M (u;,u;, 2, K;) is a constant independent of n. By the reflexivity of (H'(£2))?, there is
a subsequence (relabeled) W, which converges weakly to W, = (w1 ., w2.). Since the sequence
{w1,,} is monotonically increasing and bounded above, {w1 ,} converges pointwise to wy .. Sim-
ilarly, {ws ,} converges pointwise to ws .. By the continuity of f;(z,-,-), it follows that

fi(z, w10 (2), won () = fi@, w1 (2), we«(7)); i =1,2

as n — oo. Using (A4), |f1(z, w1 n,ws )| < Ki(z), where K (z) € L"(99Q) with r > 200 5 1,
Therefore, by the dominated convergence theorem, we have

| f1(2, wyn(x), w2,n(2)) = fi(z,wi(2), w2 «(2))||Lr00) — 0 asn — oc. (3.3)

Using Holder’s inequality and (3.3), we have that for any test function v € H* (),

[ fiwnn@) wan@)i = [ il @), @)0l

09 29
< 1@, win (@), won(@)) = fr(@, wiw (@), o (@)l Lr00)- Y] L (90
— 0 as n — oo.

Therefore,

lim fl(xawl,n(x)7w2,n(x))¢ = fl(wil,*(x);wl*(l'))w (34)
o0
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for all p € H(2). Utilizing (3.4) and the quasimonotonicity condition of fi, we have

/ (Vs oV + w,) = Tim [ (Viwnn Vb + wyn)
Q

n—o0 Q

= lim fl(xawl,n(x)valn(m))w
n—o00 J50

< lim fl(x7w17n(x)7w2,n(m))w

= Ji(w,wy « (), wa 4 (7)1
80

and, similarly,

/(vw27*v¢+w2,*w) S/ fo(@, w1 (@), wu (2))h
Q o0

for all 0 < ¢ € H*(2). Hence, W, = (w1, w2 ) is a subsolution of (L.I)).

Taking U=W, = (w1 +,ws,+) and applying Step 1, there exists a subsolution V' = (v1,vs) of
such that (uq,uy) < (w14, w2,4) < (v1,v2) < (U1, T2) with v1 and ve solutions of , ,
respectively, for the pair (w1 ., w2 ). This implies V' € A and is an upper bound of Y. By Zorn’s
Lemma (see e.g. [6]), A has a maximal element Z = (z1,22) € A. We claim that Z = (21, 29) is
a subsolution of . Indeed, Z = (21, 22) € A implies that there exists a subsolution to ,
(#1, 22), such that

(wy,uy) < (Z1,22) < (21, 22) < (1, u2)

where 21 and 2z are solutions of (3.1 and (3.2)), respectively, for the pair z7, Zs.
By the quasimonotonicity of f; and fo, it follows that

/(VZ1V¢+21¢)=/ f1(33,2177:’é)¢ﬁ/ fi(@, 21, 22)
Q a0 a9
and

/(VZ2V¢ + 201) = / fo(z,z1,20)0 < | folw, 21, 20) 9

Q a0 a9

for all 0 < ¢ € H'(Q). Therefore, Z = (21, z2) is a subsolution of (1.1)).
Step 3. Z = (z1,22) is a solution of (1.1). Taking U = Z and applying Step 1, we have that
there exists Z* = (27, z3) that is a subsolution of (1.1) with z; < z¥ < w;, i = 1,2, and 27 and
24 solutions of (3.1) and (3.2), respectively, for the pair (21, 22). From the definition of the set A,

we have that Z* = (2], 25) € A. Using the fact that Z is a maximal element of A, we obtain that
Z* < Z. Hence, Z = Z*, and so, for every 1 € H*(),

/(VzlvlfH-Zl?/f) = /(VzTWHW)/ fi(z, 21, 22)0
Q Q 89
and
[0t 220) = [ (V5904 50) = [ ol 2000
Q Q 0

Therefore, (21, z2) is a solution of and (u,uy) < (21, 22) < (g, Uz).

Step 4. Z = (z1,22) is a maximal solution of (L.I). Let U = (u1,us) be any solution of
such that (u;,us) < (ui,u2) < (Uy,Usz). Therefore, by Proposition in the Appendix (see
Section , V = (v1,v2) is a subsolution of with v1 = max{u1, 21} and vy = max{us, 22}.
Then it follows from Step 1 that there exists 7 = (z1,22) € A such that U < V < A < U,
which implies V' € A. As Z is a maximal element of A, hence, V < Z. On the other hand, since
V = (max{uq, 21}, max{ug, 22}), we have, Z <V < Z. Consequently, Z = V implying U < Z,
and it follows that Z = (z1, z2) is the unique maximal solution of (L.I).

By a similar approach, we can show the existence of a minimal solution of .
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4. FINITE DIFFERENCE APPROXIMATIONS

In this section, we use a finite difference (FD) method for approximating solutions of the problem
—Au;+u; =0 in

ou;

an

where A is parameter and f; : [0,00) x [0,00) — R, in addition to (A1), satisfies the following
conditions:

(4.1)

= Mi(ui,u2), ondQ, i=1,2,

(i) fi1(s1,s2) is locally Lipschitz continuous in s; and fa(s1, s2) is locally Lipschitz continuous
in ss.
(i) fi(0,0) = 0.
(iii) f;’s are sublinear, i.e.
fi(s1,82)
l(s1,52) [ =00 [|(s1, 52)[11
where ||(s1, s2)[|l1 = [s1] + [s2].

We prove the existence of nonnegative solutions for the discrete problem generated by the FD
method (see Section in between an ordered pair of discrete sub and supersolutions which turn
out to be uniformly bounded independent of the discretization parameter h. This result and the
corresponding sub and supersolution technique is a discrete analogue of Theorem In fact, we
find exact sub and supersolutions for the discrete problem. We formulate a monotone iteration to
find the maximal nonnegative solution bounded above by the supersolution. Several bifurcation
diagrams generated using MATLAB are provided.

)

4.1. Formulation. The main idea in our FD formulation is to approximate all differential oper-
ators by discrete operators using difference quotients. We first discretize the domain and, at each
of the grid points, we approximate the value of the solution by solving the algebraic system of
equations that results from replacing the differential operators with discrete difference operators.

Assume the domain ) is an N-rectangle, where N > 1 is the dimension. In other words, 2 =
(a1,b1) X (a2,b2) X ... (an,bn). Let M; > 2 be a positive integer and h; = ?v}_fi fori=1,2,...N.
Define h = (hy,ha,...hy) € RN, M = Hfil(MZ), and Ny, = {a = (a1, 09,...ay) | 1 < a; <
M;,i = 1,2,...N}. Next we partition Q into H?;(Mz — 1) sub-N rectangles with grid points
To = (a1 + (1 — 1)hy,a2 + (g — Dha,...,an + (an — 1)hy) for each multi-index o € NY;. We
call T, = {Za}aeny a grid for Q.

Let {e;}Y, denote the canonical basis vectors for RY. We define the discrete operators for
approximating first order partial derivatives %u(x) by

u(z + hie;) — u(x)

5;:}”“‘(‘%) = h ’
Sy pul@) = u(z) — u}Ex - hie,»)7 "
8u, myu(z) = %5;@&1“(%) + %(EMU(@ _ulr+ hiei)Q;iU(m — hies)
for the function v : RY — R and
55 un(za) = Uh(xa—i-ei})lv— uh(xa)7
5 un(g) o= o)~ un(Toc,) (4.3)

h; ’
1 Uh(Tate;) — Un(Ta—e;)
2 2h;

for all z, € T, N Q for the grid function uy : 7, — R. Note that the discrete operators 5xii I,
are first-order accurate whereas d,, n, is second-order accurate. We also define the corresponding

1
5$i’hiuh(ma) = 56;,hiuh($a) +

5;,hi“h($a) =
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discrete gradient operators
(Vi o= 07

zihi

Let 09 C 99 be such that 9 := 99 \ {the points where 9 is not smooth}. For x € T, N a0, we
define the discrete outer normal derivative using the discrete gradient operator V; by

[vh}2 = (5%1}“.

5;’hiu(x) if n;(x) <0,
[Viu(z)i := {0, ,ulz) ifni(z) >0,
Oz niu(z) i ni(z) =0
to ensure that Viu(z) -7 does not require points outside of the domain 2. Note that the discrete

outward normal derivative approximation is only first order accurate.
Next, we define the second order central difference operators for approximating second order

nonmixed partial derivatives aa—;u(m) by
w(x + hie;) — 2u(x) + u(e — hie;
2 u(e) = 0, (53, (ufa))) = M) =200 ule = i) (1.4

i
for the function v : RN — R and

a+te; -2 «@ a—e;
52, up(ea) = L ated) uf;l(f ) + un(@a—e,) (4.5)

for all x, € T, NQ for the grid function uy, : 75, — R. Finally, we define the second order discrete
Laplacian operator A by

N
— E 2
Ah - 5$i;hi'
i=1

In this section we use the following discrete problem to approximate the solutions to (4.1). Here
the grid functions w; j are an approximation for u; over the grid 7, for i = 1,2:

—Apuip+urp, =0 inT,NQ,
—Ahug’h +uzp =0 in Th N8,

Viuin - n—Mi(ugp,uzp) =0 on TN o0,
Viuapn -n— Afa(uin,ugp) =0 on TpN o9,

(4.6)

Remark 4.1. Note that we are eliminating the set of points (a set with measure 0) where the
outward normal derivative is not defined. Once U}, is defined over T, N(QQUON), it can be extended
to 7Tp, in post-processing.

4.2. Existence and stability. We use sub and supersolution theory in the discrete setting to
prove existence and stability results for solutions to . First, we define discrete sub and
supersolutions of (4.6). We say U, = (U1 > Us p,) is a subsolution of if it satisfies the
following conditions:

fAthh +u;, <0 in Tn N Q,

_Ahﬂzyh + Uy, <0 in7,N4Q,

Vitty g, o0 = Afi( g tp ) <0 on T, N OQ,
Vitty ), 1 — Aoy t155) <0 on T, MO

(4.7)

We can define the supersolution Uj, = (U1 5, Ua,;) by reversing the inequalities in (4.7). We focus
on proving the existence and stability of nonnegative solutions to (4.6).

Step 1. Constructing discrete sub and supersolutions of (4.6). It is clear that ¢ := (0,0) is a
subsolution of (4.6) since f;(0) > 0 for ¢ = 1,2. To construct a supersolution of (4.6]), let us define
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m; = % fori=1,2,..., N to be the midpoint of the domain §2 along the x; direction, and,
for some ¢ > 1 specified later, define the quadratic function ¢ : Q — R as follows:

—CZ i —m;)? +4]. (4.8)

Clearly, ¢(x) > 4cN on Q. Observe that 8‘9—;(1)(33) = 2c. Since the operators 6371,7,11, are exact for
quadratic functions, we have /

—Bng(x) + d(x) = —Ad(x) + fb(x)

:—2cN+cZ i —my)? +4cN

—26N+CZ _mz

for all z € T, N Q. Choose x € T, N 5&72, and define H; = m; — a; = %= 57+ Suppose x; = a;. Then
7 = —e;, and by the convexity of ¢, we have

Vid(x) n=—61 ;o)
> —5;7}1 o(x)
_ ¢(z + Hiei) — ¢(x)
H;
—c(a; + H; —m;)? + 4+ c(a; — m;)? — 4
H;

bi — Qa;
5
Similarly, if «; = b;, then, n = e;, and by the convexity of ¢(x) it holds

Vi 0(x) -0 =0, 0(x)

> 6, g, 0(x)
() — ole — Hie)
H;
_clbs —my)2+4—c(b; — H; —m;)? —4
H;
_ bi—ay
=c——.

Observe that ||(¢(z), ¢(x))]|1 > 8¢N — 0o as ¢ — co. Furthermore,

[(¢(x), p(2))[l < M,
where M = Q(Zfil 4H? 4+ 4N). Hence, by the sublinearity of f;,

[(6(@),6(x)) _ fileM,eM) _ M fi(eM,eM)

O io@.o@l = seN v ar "

as ¢ — oo since MN is a constant independent of c. Therefore, there exists ¢ > 1 such that

8

9(@) - m c(bi — ai) b; — a; )\fj (¢(z), ¢(SU))
([[(p(x), d(z))[l1) = 2(||(p(z), d(x))]1) = (Zg:14H;f+4N) [(6(@), 6@ (4.10)

for j =1,2. Thus, Vié(x)-n > Afj(é(x), ¢(z)) for all x € 99 and for j = 1,2. Finally, combining
(4.9) and (4.10), we conclude that (¢(zx), ¢(x)) is a supersolution of (4.6).
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Step 2. Forming a monotone iteration. Let us assume the reaction terms fi, fo are Lipschitz

(0)

continuous and let U, be a discrete supersolution of (4.6). Consider the fixed point iteration

Ut = MU (4.11)

for all n > 0, where K is the maximum of the Lipschitz constants for fi, fo in (4.1) and My is
defined such that

A 4l K = AR W) in TN G,

—A ué”,;“) +u <"+” +AKu ”*” - /\Ku(n) in 7,NQ,
Vi, (nﬂ) -+ )\KulnH) Af1 (U1 hs “2 h) + /\K“(n) on 7, N 9%,
Viu gnijl) n+ AKuy nH) = >\f2(u1 h’u2 ")+ /\K“(n) on 7, 102

Before we proceed with the followmg theorem, let us write the above mapping on grid functions
as an equivalent transformation for vectors. Let Jo = [T, N (Q U (5?2))| and U € R?% denote
the vectorization of the grid function Uj,. Notationally, the I subscript will correspond to grid
function values in 7, N Q) and the B subscript will correspond to grid function values in T N 9.

Then, (4.12) is equivalent to

(4.12)

MUMHD = \xp(U™), (4.13)
where
Ly 0 L O up 1 Fi1
|0 Ly 0 Lp _ | uar _ | Far
M= Br 0 B 0]’ U= u |’ F= Fis
0 By Q Bp uz B FaB

for Ly and Lp matrices corresponding to —Ap, + (1 4+ AK)I; By and Bp matrices corresponding to
Vi -n+ AKI; Fy 1 corresponding to AK for i = 1,2; and F; g corresponding to Af;(u1,uz) + AK
for i = 1,2. Clearly, M is diagonally dominant since it is positive on the diagonal, non-positive for
all off-diagonal terms, and the row sum is positive. Hence, M is a Z-matrix, and by Gershgorin’s
Circle Theorem, M is non-singular since the real part of all of its eigenvalues are always positive.
Therefore, it follows that M is a monotone matrix.

Remark 4.2. Notice that the iteration is well defined and f;(s1, s2) + Ks; is increasing in

s1 and s for i =1,2.

Theorem 4.3. Let Uy, = (u1,, u2,) be a nonnegative subsolution of (4.6) and U,(LO) = (ugo}{,u;o%)

be a supersolution of such that U}(LO) > Up. Then, U,gl) = (u (11,)1, (1)) Mg U(O) s a

supersolution of with Up, < U,(ll) < U,(lo).

Proof. Observe that, by the definition of M g described in , for i = 1,2 in 7, N2, we have
—Apul) Full) + AR = MK > AKuig > —Apuig + i + AKug . (4.14)

Also, on T U 5?27 we have

V}iuglh n+ )\Kul =AM (ug0
(

> )‘fl (ul(,)h’ U2 h) + )\Kugo)
> )‘fl(ul,h7u2,h) + )‘Kul,h

> Viurp-n+ AKuyp

o) + AK i)
)

by the quasimonotonicity of f; and Remark [4.2] . In a similar fashion there holds
VZuélh n+ /\Ku2 b= )\fl(u1 h,u2 h) + )\Ku
> Af1(u1,n, uz,h) + )‘Kuz,h

> Mfi(up, uzpn) + AKug g,
> Viugp - n+ AKugp.
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Hence MU® > MU, and it follows that UM > U. Thus U" > Uy,
Next, for i =1, 2,

Ahu(l) (1) + )\Ku(l) = )\Ku(o)
= AKu) +0
< —Apul) + ul) + M)
in 7, N since U }(LO) is a nonnegative supersolution of @ Furthermore,
V;‘Luflg 1+ )\Ku(l) )\fl(ugo})L7 uéo})L) + )\Ku(o)
< Viul) - n+ AKu)
on T, N 99 since U,(LO) is a nonnegative supersolution of (4.6). Hence, MU®M < MU®O which

implies UM < U©), Thus, U,(Ll) < U}(LO).

Since, U,(Zl) < U}(Lo), 4.14)) implies
~Apul) +ull) = AKu) — AEul}) > 0

in T, NQ for ¢ = 1,2. Also, from the definition of Mg combined with the quasimonotonicity of
fi and Remark we obtain

Viallh -+ AKull) = My (),
> /\fl(u§1
> Afy(ul

ugh) + AKuil)
(0 )) + AKu! (1)
) + Al

)
h>?
)
L
1)
o

on Tp N 9. Thus
i 02 AL

on Tp N 9. Similarly,
V}Zugh n+ )\Ku2 h=Af2(ug

on T N 99). Thus
Vs o = Ma(ul) ull))

on Tj, N 9. Therefore, U,gl) is a supersolution of (4.6]. O
Step 3. Existence of a fixed point.

Theorem 4.4. Let 0 < Uy be a subsolution to and U}(LO) > Up be a supersolution of
(4.6). Then the sequence Uh (n) defined by (4.12] - converges to a solution of (4.6] . Furthermore, if
||U,(Z0 1o (175,12) 8 bounded independent of h, then the solution is £ norm stable.

Proof. Observe that, by Theorem [4.3] we have
(n+1) (n) (n—1) (1) (0)
0<U, <U"T <y, <u, 7 <<y <,
for all n > 1. Thus, the sequence {U n )}ZOZO is convergent since it is monotone and bounded. Let

Vi : [Th]? — R2? such that U}(Ln) — Vi in 1°°([T3]?) for T, = T N (U Q). Clearly, Vj, is a fixed
point of (4.11)). Thus V}, is a solution of (4.6 with

0<U <V < <o <oV << oY <o
from which the stability result follows. O
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Remark 4.5. Let ¢ be defined by (4.8) so that it is bounded by a constant depending only on
Q, A\, and f for f satisfying the hypotheses for problem (4.1). Then ¢ is bounded independent

of h, and it follows that the grid functions Uj, defined by Uy (z) := (0,0) for all x € T;, and U,(lo)

defined by U,(lo) (x) :== (¢(x), d(x)) for all x € Ty, for ¢ sufficiently large satisfy the assumptions in
Theorem to ensure the finite difference approximation exists and is £°° norm stable.

4.3. Example 1. In this example, we consider the nonlinearities
fi(ur,u2) = 100y/uz — 24/uy,
fa(ur,u2) = 4/u1 + Juz.
Clearly the f;’s are Caratheddory, quasimonotone non-decreasing and sublinear functions satisfying
the assumption (A2) and (A3) in Theorem Moreover, f;(0,0) = 0, gi; (0,0) = oo and

%(0,0) = oo. Solutions can be found in Figure |1l for A = 0.5 and A\ = 3, and computed

bifurcation diagrams can be found in Figure |2l When choosing the supersolution U}(LO) according
to Remark the solution for A = 0.5 was found using ¢ = 16,384 and the solution for A = 3
was found using ¢ = 524, 288.

(4.15)

lambda = 0.5 and N =100 w104 lambda = 3 and N =100
5

1400
v ”v

1200

1000

80O - 1 3l

FIGURE 1. Graphs of U; and Us for A=0.5and A =3

5 x10° Bifurcation Plot for N = 100
(IR
max(U_1)
max(U_2) )
6 /
// 1
S/
5 S/
/ 4 //
/S
4 p yavd
£
/ / /
3l S
'

FIGURE 2. Bifurcation diagrams of (#.1) for A € (0,10) when f;(u1,us) =
100,/71 - 2\/U1,f2(U1,U2) = 4\/’U,1 + /U2.

4.4. Example 2. In this example, we consider the nonlinearities

f1(u1,ug) = arctan(us),
f2(uy,ug) = 3arctan(uy). (4.16)
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Clearly the f;’s are Caratheodory, quasimonotone, non-decreasing, and sublinear functions satis-
fying the assumption (A2) and (A3) in Theorem H Moreover, f;(0,0) = 0, 22(0,0) > 0 and

’ Oua
g—ﬁ(o, 0) > 0. Solutions can be found in Figure|3|for A = 0.5 and A = 3, and computed bifurcation
diagrams can be found in Figure |44 We see nonexistence of a positive solution for A small. When
choosing the supersolution U ,50) according to Remark the solution for A = 0.5 was found using
¢ = 4 and the solution for A = 3 was found using ¢ = 16.

lambda = 3 and N =100 lambda = 0.5 and N =100
30 3.2
; ‘\7"'\_\¥¥ 7 3 \\\ ,/
25 — 28 \_7_7_, -
26|
207 1 24
=N o 22
157 2
181
10 16
U1 14k U]
Uz \,, Uz

o 01 02 03 0.4 05 0.6 07 08 09 1 o 01 02 03 0.4 0.5 0.6 07 08 09 1
X X

FiGURE 3. Graphs of U; and U, for A = 0.5 and A = 3.

Bifurcation Plot for N = 100 Bifurcation Plot for N = 100
12 120
—=t - —= /
w0f - S -
P 100 -
P y
8 pd p /
/ 80 /
/ /
L] // P
% 7 Ew ) -
4 //
e g
2 ) // “ e
ol / 20
VZD 01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1 DD - 1 2 3 4 5 ] T 8 9 10
lambda lambda.
Bifurcation diagram when A € (0,1). Bifurcation diagram when A € (0, 10).

FIGURE 4. Bifurcation diagrams of (4.1) for different ranges of A when
fi(ur, uz) = arctan(us), f2(u1,us) = 3arctan(uy).

4.5. Example 3. In this example, we consider the nonlinearities

10uq
filur,ug) = e ™1 — 1+ 5¢/u3 +1,

ug
fQ(Ul,UQ) =el*u3 — 1.

Clearly the f;’s are Caratheodory, quasimonotone, non-decreasing, and sublinear functions sat-
isfying the assumption (A2) and (A3) in Theorem Moreover, f;(0,0) = 0, g{; (0,0) = o0
and g-—E(0,0) = 0. Solutions can be found in Figure [5{ for A = 0.5 and A = 3, and computed
bifurcation diagrams can be found in Figure[6] Also in Figure[f] notice that there exists a range of
A for which we see non coexistence of positive solutions. Our method and monotone solver found
the maximal solution based on our supersolution. Observe that, in Subfigure |§|(A), the vertical
lines are jump discontinuities corresponding to finding maximal solutions. We used the method of




16 S. BANDYOPADHYAY, T. LEWIS, N. MAVINGA EJDE-2025/43

continuation to find the exact branches of the bifurcation curves in Subfigure @(B) When choosing

the supersolution U,(LO) according to Remark the solution for A = 0.5 was found using ¢ = 512
and the solution for A = 3 was found using ¢ = 65536.

lambda = 0.5 and N = 1000 lambda = 3 and N = 1000

r\/// ED\—/

50

a0f

30

20r

o 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 5. Graphs of U; and Us for A = 0.5 and A = 3.

8 . . Biiurf:ation Pl‘ﬂl forN ‘= 100 : : 18 Bifurcation Plot for N = 100
— |1 -
= s
ol ( Tl
_ 12t
ol o
_— 10
| o
3 — E
§ — B
3 -
7 6
2+ //
/ a
1 w s
o 0
Yo aos o1 o5 02 oz 03 o o4 oss 05 2 01 02 03 04 05 08 07 08 08 1
lambda lambda
Bifurcation diagram when A € (0,0.5). Bifurcation diagram when A € (0, 1).

FIGURE 6. Bifurcation diagrams of (4.1) for different ranges of A when

10uy

T+u? o
fl(ul,UQ) = 61+u% - ]- + 5\3/1%; f?(u17u2) = 61+u% — ]_

4.6. Example 4. In this example, we consider the nonlinearities

v 1,
fln ) = e 14 i,

ug

fa(u1, ug) = arctan(usg) + ettud 1.

Clearly the f;’s are Caratheodory, quasimonotone, non-decreasing, and sublinear functions satis-
fying the assumption (A2) and (A3) in Theorem Moreover, f;(0,0) = 0, 2/1(0,0) = oo and

' Oug
g—ﬁ(o, 0) > 0. Solutions can be found in Figure for A= 0.5 and A = 3, and computed bifurcation
diagrams can be found in Figure In Figure [7] notice that for A = 0.5, us > wuy, whereas, for
A =3, u; > uz. When choosing the supersolution U,EO) according to Remark , the solution for
A = 0.5 was found using ¢ = 1 and the solution for A = 3 was found using ¢ = 32.
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lambda = 3 and N =100 lambda = 0.5 and N =100
1.2 1.6
1.55
\
151 Ny
e
145 ~_ -
— ~
141
57135
131
125¢
96 12
9.4 a Ui 115
R
~ P Uz
92 . L . n M . . . 11 L L . n n . . .
o 01 02 03 0.4 05 0.6 07 08 09 1 o 01 02 03 0.4 0.5 0.6 07 08 09 1

FIGURE 7. Graphs of U; and Us for A = 0.5 and A = 3.

. Bifurcation Plot for N = 100 0 Bifurcation Plot for N = 100
—— i —— i
max(U_1) max(U_1) e
maxU2) maxU_2) /
25 // 100 - /
/ /
4 /
S e
2 7 80 /
/ /
V4 s
y .
515 / 5 e0r /
/ /
/
/ ~
/
1 / a0 s
/ 7
d T
0.5 / - 20
yd
-

0 005 01 015 02 025 03 035 04 045 05 0 1 2 3 4 5 6 7 8 9 10
lambda lambda

Bifurcation diagram when A € (0,0.5). Bifurcation diagram when A € (0, 10).

FIGURE 8. Bifurcation diagrams of (4.1) for different ranges of A when
U1 _u2
filur,ug) = e+ =1+ 2/ud +1, fo(ur,up) = arctan(ug) + '3 — 1.

5. APPENDIX

In this section we use Kato’s inequality up to the boundary for single equations to prove that the

componentwise maximum of two solutions of (1.1) is a subsolution of (|1.1)) (see Proposition |5.4)

and componentwise minimum of two solutions of (|1.1]) is a supersolution of ([1.1) (see Proposition
5.6), which we used in Step 4 of the proof of Theorem [1.4] (see Section . Now we have Kato’s
inequality up to the boundary for single equations.

Proposition 5.1. Let u; and uy be functions in H'(Q) such that there exist fi and fo in L"(05),

forr > w, satisfying

/ (Vu; Vo +uap) < / fib for all0 <y € HY(Q), (5.1)
Q o

fori=1,2. Then, u := max{uy,uz} satisfies

/ (VuV) + ut)) g/ fo forall 0<v € HY(Q),
Q o0

where

flz) = fi(z) ifui(x) > ua(x) a.e. x € 09,
fa(x) if ur(x) <wug(z) a.e. z € O

For a proof of the above proposition, see [4, Theorem 2.4].
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Corollary 5.2. Let u; and us be functions in H' () such that there exist fi and fo in L"(09),
forr > AN 1), satisfying

/ (Vu; Vb + uzh) > / fib for all0 < € HY(Q),
Q a0

fori=1,2. Then, u := min{uy,us} satisfies

/ (VuV + up) > / fib,  for all0 << € H'(Q),
Q o0

where
f(z) = fi(z) ifui(x) <uz(x) a.e. x € 0N
fo(x)  if up(z) > ua(x) a.e. x € 0N.

For a proof of the above corollary, see [4, Corollary 2.5]. Let A be a set consisting of (wy,ws) €
(H'(€))? such that there exists a subsolution (u1,uz) of (1.1) satisfying

(ug,uy) < (U, 02) < (w1, wz) < (Ur,02),
where wy and ws are solutions of (3.1) and (3.2)), respectively, for the pair (U7, us2).

Lemma 5.3. Let (o, a2) and (B1,52) € A be any two subsolutions of (1.1). Then, the pair
(max{aq, B1}, max{as, B2}) is a subsolution of (1.1)).

Proof. Since (a1, a3) and (51, f2) belong to A, there exist (ay,as) and (51,52) such that u; <
a; <o ST, i=1,2, and u; < B; < B; <4, i = 1,2, which satisfy

—Aa; +a; =0 in Q,

15] - 5.2

Binl = fi(z,a1,a2) on 09, (5:2)
—Aas +ax =0 1in Q,

0 ~ 5.3

% = fo(x,q1,02) on 09, (5:3)
—AB1+ 1 =0 in Q,

0 ~ 5.4

ok = B, e) o 09, o4
_ABQ + 62 =0 in Q7

ﬁﬂ (5.5)

2 = fao(x 751,52) on 9%

We define v; := max{ai, 1} and v2 := max{as,S2}. By the quasimonotonicity of f;, the
following inequalities hold:
fi(z, 01,012 T, 01,72),

fl(x /31, 2

fz(x aq, Qg

fa(z, B1, B

1 (

1(z, B1,72),
2(z, 71, a2),
2( )-

z,71, P2

IN A

\\kﬁx

) <
)
as)
) <

Let

fi(z,an,72) if aq(z) > Bi(z) ae. z € 09,
91(x)

Ji(z, B1,72)  if an(x) < Bi(x) ae. x € 0N

and

g2(x)

fo(x,71,02) if ag(x) > Ba(z) ae. x € 09,
fa(z,y1,B2)  if ag(z) < Ba(x) a.e. x € 09.
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Notice that a; and (; are subsolutions of
—Av+v=0 1in Q,

Z:; =gi1(z) on 9Q, (5.6)
and as and Sy are subsolutions of

—Av+v=0 in Q,

ov (5.7)

Then, by Proposition [5.1] along with equations (5.6) and (5.7), we have that (y1,72) is a subsolu-
tion of (1.1). Thus, the pair (max{ay, 51}, max{as, f2}) is a subsolution of (1.1)) which completes
the proof. O

Proposition 5.4. Suppose that (u1,uz) and (v1,v2) are two solutions of (L.1) such that (u;, uy) <
(u1,us2), (vi,v2) < (ur,us2), where (uy,uy) and (u1,us) are sub- and supersolutions of (1.1)), re-
spectively. Then (max{uy,v;}, max{us,va}) is a subsolution of (1.1)).

Proof. Observe that any solution (uy,us) of (1.1) such that (a1, us2) < (u1,u2) < (uq,us) belongs
to A as (u1,uz) is a solution of (3.1) and (3.2)) for the pair (u1,uz2). The rest of the proof follows
from Lemma [5.3] O

Next, we show that if (u1,us) and (v1,v2) are two solutions of (1.1]), then the pair of functions
(min{uy, v1 }, min{ug, v3}) is a supersolution of (1.1)). For that purpose, consider the equations

—Auy +u; =0 in Q,

5.8
88—1:71 = f1(z,u1,Uz) on 09, (58)
and
—Aus +us =0 in Q,
5.9
3671:72 = fo(x,ur,uz) on O (5.9)

Let B consisting of (wy,ws) € (H'(2))? such that there exists a supersolution (uy,us) of (1.1)
satisfying

(wy, up) < (w1, wa) < (U, Uz) < (U, Wz), (5.10)
where w; and wy are solutions of (5.8) and (5.9)), respectively, for the pair Uy, Us.
Lemma 5.5. Let (a1,a2) and (B1,52) € B be any two supersolutions of (L1.1). Then the pair
(min{ay, 81}, min{as, B2}) is a supersolution of (1.1)).
Proof. Since (a1, as) and (81, f2) belong to B, there exist (a1, as) and (31,32) such that u; <
o; <a; <u;,i=1,2 and w; < B; < B <y, ¢ =1,2, which satisfy

—Aa;+a; =0 in Q,

9 . 5.11
ainl = fi(z,a1,a2) on 09, ( )
—Aas+as =0 1in Q,
0 N 5.12
8&7]2 :f2($70417052) on 897 ( )
_A;BI + ﬁl =0 inQ
o —~ 5.13
Ph w8 Bo) o0, 19
n
—ABy+ 2 =0 in Q,
B2 _ (5.14)

T = folz, B, B2) on 99.
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Now, define v, := min{ay, $1} and v2 := min{as, B2}. Observe that the quasimonotonicity of
fi leads to the inequalities

('/B 061,042) f (.’II 041,72)7
(5.15)
Az, Br, B2) > filz, Br,72)
(.’E ap, 2) f2(1’,’71, 2)7
(5.16)
fa(w, Br, B2) > falz, 1, B2).
Let
o) = fi(z,a1,72)  if ai(z) < Bi(z) ae. x € 09,
YT Al Bre) i an(@) > Bi(x) ae. @€ 09,
and
g (1,) - f2($,’)’17a2) if ag(l') < 62(55) a.e. r € aQ,
S fa(x, v, B2) if as(z) > Ba(z) a.e. z € ON.
Notice that oy and (31 are supersolutions of
—Av+v=0 inQ,
ov (5.17)

5o =) on o0

and ag and (9 are supersolutions of the following:
—Av+ov=0 in Q,

0 5.18
a—;}] = go(z) on 0. (5.18)

Then, by Corollary along with equations (5.17) and (5.18), we have that (v1,72) is a super-
solution of (|1.1). This completes the proof. O

Proposition 5.6. Suppose that (u1,uz) and (v1,v2) are two solutions of (L.1) such that (u;, uy) <
(u1,u2), (v1,v2) < (U1,Uz), where (uy,uy) and (1, T2) are sub- and supersolutions of (1.1,
respectively. Then (min{u, v}, min{us, va}) is a supersolution of (1.1)).

Proof. Observe that any solution (uy,us) of (|1.1) such that (a1, us2) < (u1,us2) < (uq,us) belongs
to B. The rest of the proof follows from Lemma O
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