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The paradigm of the inflationary universe provides a possible explanation for several observed
cosmological properties. In order for such solutions to be successful, the universe must convert the energy
stored in the inflaton potential into standard model particles through a process known as reheating. In this
paper, we reconsider the reheating process for the case where the inflaton potential respects an approximate
(but spontaneously broken) conformal symmetry during the reheating epoch. After reviewing the effective
field theory of reheating, we present solutions for the nonlinear oscillations of the inflaton field, derive
the corresponding Hill’s equation for the coupled reheating field, and determine the stability diagram for
parametric resonance. For this class of models—the simplest realization being a scalar field with a quartic
term—the expansion of the Universe drives the coupled field toward a more unstable part of parameter
space, in contrast to the standard case. We also generalize this class of models to include quadratic breaking
terms in the potential during the reheating epoch and address the process of stability in that universality
class of models.
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I. INTRODUCTION

Many observed properties of our Universe can be
understood if the Universe went through an epoch of
exponential expansion early in cosmic history [1]. This
inflationary phase helps explain the homogeneity and
flatness of the universe, along with its apparent lack of
magnetic monopoles. In addition, fluctuations in the energy
density of the inflationary field can be identified with the
perturbations observed in the cosmic microwave back-
ground. At the end of the inflationary epoch, the universe
finds itself in a state where energy is primarily stored in the
potential of the inflaton field, the scalar field that was
driving the exponential expansion. In order to transition
from this inflationary phase to a radiation dominated era,

and thereby recover the standard description of big bang
cosmology, a crucial process known as reheating must
occur. Reheating is responsible for converting the potential
energy of the inflaton field into the standard model particles
that make up our observable Universe. The goal of this
paper is to explore a particular scenario for the reheating
phase, where the oscillations of the inflaton field are driven
by a quartic potential. As outlined below, although the
inflaton potential in this scenario has a quartic form during
reheating, it can have a different form earlier during the
slow-roll phase. Specifically, we examine the prospects for
parametric resonance within this quartic model and show
that it helps facilitate successful reheating.
Since a large amount of previous work on reheating has

been carried out (see the reviews of [2,3]), we start with a
brief overview. First, it is important to differentiate between
the processes of reheating and preheating. As considered
here, reheating is the general process of converting the
potential energy of the inflaton field into radiation and
matter, thereby establishing the hot and dense conditions
required for the early universe. In contrast, preheating
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refers to the specific mechanism of energy conversion
driven by parametric resonance that arises in particular
inflationary models. During the oscillatory phase of the
inflaton field around the minimum of its potential, the
inflaton couples to additional fields that in turn couple to
standard model particles. If these additional fields experi-
ence the phenomenon of parametric resonance, which
results in rapid and explosive particle production, then
efficient energy conversion can occur.
This paper considers a particular preheating scenario,

where the inflaton field features a quartic potential during
its oscillatory phase of preheating, building on the seminal
work of [4]. The quartic potential results in nonlinear
oscillations of the inflaton field. These nonlinearities, in
turn, result in different forms for the variables that drive
parametric resonance. More specifically, while parametric
resonance is often described by the Mathieu equation [5],
this scenario leads to a more general Hill’s equation [6,7],
which has different bands of instability (and stability)
for resonance. More significantly, the effective forcing
parameter in Hill’s equation grows with continued expan-
sion of the universe, thus leading to more instability.
This behavior stands in contrast to most previously con-
sidered cases where the evolution of the parameters in
the Mathieu equation leads to greater stability. We build
upon the methods of [4] and show the Floquet maps for a
wide range of scenarios with a primary focus on the
efficient trilinear interaction, and determine the trajectories
of the system through parameter space. In addition, we
include numerical results to support our semianalytic work.
While the scenario of this paper considers the inflaton

field to have a quartic form during the reheating epoch, the
potential can have a more general form at earlier times [8].
During the part of inflation when the universe expands
exponentially, usually operating under slow-roll conditions,
a quartic form for the potential is currently disfavored by
observations of the cosmic microwave background. These
observations constrain the form of the inflaton potential for
times corresponding to 70 to 60 e-foldings before the end of
the slow-roll era, whereas the reheating epoch takes place
after its conclusion.
This paper is organized as follows. We first discuss

(in Sec. II) how effective field theory (EFT) can lead to
different forms for the inflaton potential during the slow-
roll epoch (when observable density fluctuations are
produced) and the subsequent reheating epoch. Next we
solve for the nonlinear oscillations of the inflaton field for
the case of a quartic potential (in Sec. III), and derive the
corresponding Hill’s equation for reheating. We then carry
out a Floquet analysis of the resulting model equation and
find its stability diagram (in Sec. IV). As outlined above,
the expansion of the universe drives the forcing parameter
in Hill’s equation to larger values, leading to greater
instability. If the inflaton potential has a mass term as well
as a quartic term during reheating, then the behavior of the

reheating field is more complicated, and we address this
issue in Sec. V. The paper concludes in Sec. VII with a
summary of results and a discussion of their implications.

II. CHALLENGES FOR REHEATING
AND THE EFT APPROACH

Before considering parametric resonance for specific
preheating scenarios (see the following section), it is useful
to place this work in context. Methods to describe sym-
metries and symmetry breaking are a cornerstone of
physics, and the transition from an inflationary epoch to
the reheating of the universe can be described using this
methodology. The cosmic expansion history is generally
characterized by the scale factor and Hubble parameter,
but these quantities are only well-defined for a perfectly
homogeneous and isotropic universe. As inflation comes to
an end, the cosmic expansion changes, and the cosmology
can become difficult to analyze. Many expansion histories
are possible. Particles are created in inhomogeneous
regions. The physical mechanisms that drive reheating and
recover the standard “hot big bang” model involve para-
metric resonance, turbulence, and chaotic behavior, all of
which occur prior to thermalization. Moreover, most
previous efforts to understand the reheating process have
been highly model dependent.
An alternative approach to understanding the dynamics

of reheating is to use methods of effective field theory
(EFT) to describe the process [8,9]. Such methods have
been useful in particle physics [10,11], dark energy [12–15]
and condensed matter physics [16]. In the present context,
the crucial feature of the EFT is that it allows us to establish
universality classes [8,9]. The cosmic expansion for a given
equation of state is determined, but the dynamics and
possible departures can be classified in symmetry groups,
which define the universality classes. In the case of dark
energy, for example, it has been shown that different ways
of triggering cosmic acceleration come in such classes
respecting their common symmetries [13–15]. What we
would like to emphasize in this paper is that symmetries
could be a broader mechanism for discovery the dynamics
of inflation reheating. The inflaton need not be a scalar
field. In addition, it is important to emphasize the work
of [17] which first demonstrated that fermion preheating is
also possible and efficient.1 Instead, it can be a “clock” or
spurion of broken time-translation invariance. As we learn
more about the nature of inflation this creates a useful
framework, or methodology for exploring (p)reheating.
This paper focuses on conformal symmetry and its

subsequent breaking during the epochs following

1We thank our journal referee for reminding of this important
point, and it indeed was part of our motivation for broadening our
approach to the notion of (p)reheating to be more general than
simple scalar fields and their interactions.
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inflation.2 Given that we do not know how inflation ends—
and whether inflation is driven by a true scalar field—we
approach this problem by considering the inflaton to be an
order parameter, more specifically a clock that depends on
time and but not on space. As a result, the inflaton breaks
time-translation invariance (more precisely time diffeo-
morphism invariance), but it need not be a true scalar
field. One can think of the field both as a clock and as a
Goldstone boson of the broken time translation invariance.
When considering cosmological solutions, here an FLRW
universe, the cosmic expansion breaks the symmetry in
time. This theoretical notion has (previously) led to the EFT
description of inflation and can be continued for the case of
reheating.
During reheating, two timescales are crucially important.

The first is the expansion time, the inverse of the Hubble
parameter. The second is the inflaton’s oscillation time-
scale, where this period must be much shorter than the
expansion time. Given this hierarchy, it is appropriate to
use EFT methods for decoupling the timescales. We thus
review the EFT approach and consider the universality
class of models with conformal symmetry, along with its
subsequent breaking.
The EFTof reheating and structure formation is based on

the idea that there is a physical clock corresponding to the
Goldstone boson that nonlinearly realizes the spontane-
ously broken time invariance of the background [8,9]. In
unitary gauge, where the clock is homogeneous, the matter
perturbations are encoded within the metric, i.e., the would-
be Goldstone bosons are “eaten” by the metric since gravity
is a gauge theory.
During reheating the inflaton undergoes oscillations,

while quanta of the reheating fields are produced in a
process that can be both complicated and highly model-
dependent. The EFT approach utilizes the notion that as
long as the inflaton dominates the energy density of the
background universe, the expansion can be described
through the ansatz

HðtÞ ¼ HFRWðtÞ þHoscðtÞPðωtÞ; ð1Þ

where HFRWðtÞ is the overall (averaged) Hubble expansion
rate. The second term leads to an oscillatory correction that
is subdominant, so that HFRW ≫ HoscPðωtÞ, where PðωtÞ
is a quasi-periodic function. This evolution of the back-
ground spontaneously breaks time translations t → tþ
ξ0ðt; x⃗Þ, first to a discrete symmetry and then completely.
As a result, if we probe the background at energies
E ≫ HðtÞ, corresponding to frequencies ω ≫ HðtÞ, then

time symmetry is restored until we consider energies
comparable to the frequency ω. At such energies HFRW
and Hosc will remain nearly constant and the time sym-
metry is nearly restored, but the symmetry will be broken
by PðωtÞ to a discrete symmetry t → tþ 2πω−1. At lower
energies, both HFRW and Hosc will also evolve, thereby
breaking the discrete symmetry. This case of symmetry
breaking is a natural consequence of the hierarchy of scales
that appears in reheating, i.e., high energy (short wave-
length) modes probe inflaton oscillations E=ω, whereas
low energy (long wavelength) modes capture the expansion
of the background E=HFRW. We thus requireHFRW=ω ≪ 1
during reheating. These results were used in previous
work [8,9] to construct the EFT of reheating in terms of
the Goldstone boson that nonlinearly realizes the time
symmetry.
Before proceeding, it is useful to more fully elucidate the

meaning of Eq. (1). For example, consider a simple
reheating model where the inflaton oscillates in a potential
V ≃m2ϕ2

0. In this case, one can solve for the background
evolution [8,9] and find that

HðtÞ ¼ Hm −
3H2

m

4m
sinðmtþ δÞ þ…; ð2Þ

where Hm ¼ 2=ð3tÞ is the Hubble parameter for a matter
dominated universe with scale factor aðtÞ ∼ t2=3, δ is a
constant phase, and the dots represent terms suppressed by
higher powers of Hm=m. We see that Eq. (2) is of the form
of Eq. (1), corresponding to a matter dominated universe
corrected by oscillations suppressed by powers of Hm=m.
At energies comparable to the mass of the inflaton, the
inflaton oscillations break the time symmetry, whereas for
energiesH ≲ E ≪ m the matter dominated expansion itself
is primarily responsible for the breaking. This result is
familiar: On scales comparable to the Hubble radius,
reheating with a massive inflaton oscillating in a quadratic
potential looks like a matter dominated universe, whereas
on small scales one can treat the particle production as a
local process and in many cases neglect the presence of
gravity. In general, however, the potential can be more
complicated (not purely quadratic, as we consider in this
work) and the expansion of the universe of large scales can
depart from the a ∼ t2=3 behavior of matter domination.
Working with the EFT approach, we focus on a con-

formal class of models, and emphasize the interpretation of
the inflaton as an order parameter. We also emphasize
(again) that the form of the inflationary potential during
reheating is not necessarily the same as during inflation, so
that there is no observational motivation to dismiss quartic
terms. Such a potential results in an approximate conformal
symmetry and produces interesting dynamics. If the infla-
tion were strictly a scalar field, then an immediate concern
would be Coleman-Weinberg corrections to the potential.
Motivated by our ignorance of UV complete reheating,

2In the case of conformal symmetry it is important to note that
although we are taking a different approach to the reasoning,
there has been significant past related work, in particular [8,9].
The point here is that the EFT is a different way of thinking about
the end of inflation, and we have also tried to present further
results beyond the initial use of this method.
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however, we assume that such a model is possible. For
completeness, we also subsequently consider the presence
of an additional mass term.
The EFT approach removes the model dependence by

focusing on a few properties shared by all such models.
First, the hierarchy ω ≫ H is preserved by all reasonable
choices of potential. Second, all we need to construct the
EFT is spontaneously broken time symmetry of the back-
ground evolution. As stressed in [18], the background itself
is not an observable, but instead the perturbations about
the background are observable. Before proceeding to our
results for a particular class of conformal models, we
review the EFT of inflationary reheating.

A. Review of the EFT of reheating

During reheating the energy density will evolve from
inflaton oscillations into a relativistic bath of particles. The
fields responsible for spontaneously breaking the time
translation invariance will thus change. In [19] it was
argued that the Goldstone approach holds for any FLRW
universe (1) and any number of matter fields ϕmðtÞ
contributing to the background energy density with per-
turbation

δϕmðt; x⃗Þ ¼ ϕmðtþ πðt; x⃗ÞÞ − ϕmðtÞ: ð3Þ

This shift in the time in the long wavelength limit
corresponds to the adiabatic mode, which Weinberg
demonstrated obeys a conservation theorem regardless of
the matter content of the universe [20]. The field πðx⃗Þ is the
desired Goldstone mode used in constructing the EFT. We
use πðt; x⃗Þ to construct our theory of reheating, noting that
as inflatons are converted into reheating fields we are
simply making use of the adiabatic mode description.
The procedure for constructing the EFT follows analo-

gously to that for inflation [18]. Working in unitary gauge,
the EFT of fluctuations for reheating in the gravitational
and inflationary sectors is given by the action3

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
1

2
m2

pRþm2
pḢg00 −m2

pð3H2 þ ḢÞ

þM4
2ðtÞ
2!

ðδg00Þ2 þM4
3ðtÞ
3!

ðδg00Þ3 þ…
#
; ð4Þ

where g00 ¼ −1þ δg00 and the dots represent terms
higher order in fluctuations and derivatives. Just as in
the inflationary case one introduces the Goldstone boson π,
which nonlinearly realizes broken time symmetry.
This ansatz forces nontrivial relations between the oper-
ators in the action of equation (4), e.g., the parameter M2

simultaneously modifies the speed of sound, as well as
additional interactions. Note that because of the symmetry
breaking, the speed of sound in the presence of inflaton
oscillations is not protected, so that in general cπ ≠ 1.
It is useful to consider the decoupling limit where Ḣ → 0

and m2
p → ∞, while their product remains fixed. This limit

makes more precise the usual assumption in (p)reheating
that particle creation is a local process and one typically
ignores contributions coming from gravitational terms.
One then focuses on operators fixed by tadpole cancellation
and take M2 ¼ M3 ¼ … ¼ 0. In spatially flat gauge, the
quadratic action in the decoupling limit is

Sð2Þ ¼
Z

d4xa3m2
p½−Ḣðπ̇2 − a−2ð∂iπÞ2Þ − 3Ḣ2π2&; ð5Þ

which by canceling the tadpoles has left us with coefficients
fixed by the background evolution. Introducing the canoni-
cal field πc ¼ mpð−2ḢÞ1=2π one can show that rather than
mixing with gravity, the oscillatory behavior of the time-
dependent potential of the inflaton (corresponding to an
operator Ôπ ∼ V 00π2c), breaks the shift symmetry. As in the
EFT of inflation the leading mixing with gravity scales as
Emix ¼ ϵ1=2H ¼ Ḣ1=2, although a difference for us is given
V ∼ ϕn

0 then ϵ ¼ 3n=ðnþ 2Þ is typically a dimensionless
number of order unity. The decoupling limit will be useful
for probing scales with E ≫ Emix, but at other times it is
appropriate to include corrections coming from the mixing
with gravity. One useful aspect of (5) is to study the
stability of subhorizon perturbations against collapse. Just
as in studies of ghost condensation [21], including higher
corrections to the EFT (e.g.,M2 ≠ 0) could lead to new and
consistent models for (p)reheating.
Whether or not to take the decoupling limit depends on

the situation. For example, in considering the behavior of
modes that re-enter the horizon during reheating, it is useful
to calculate the leading corrections to (5) coming from
the mixing with gravity. In that case, we consider modes
between the two hierarchical scales k=a ≪ m while
k=a≳H. The leading order mixing term is then given by

ΔSð2Þ ¼ − 1

2

Z
d4xa3

$
2Ḧ
H

%
π2c; ð6Þ

which is written in terms of the canonical field πc [8,9].
One can show that this leading correction results in a
growing, oscillatory contribution to the power spectrum.
For a potential dominated by a mass term V ∼m2ϕ2

0, this
correction leads to the main result of [22], where those
authors performed a full analysis, including all gravitational
perturbations.
Part of the utility of the EFT approach is that inflaton

self-interactions will also be fixed by the symmetries. For
(p)reheating, this feature implies that if one is interested in
interactions, which determine rescattering and backreaction

3We work in reduced Planck units mp ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
¼ 2.44 ×

1018 GeV with ℏ ¼ c ¼ 1 and with a mostly plus ð−;þ;þ;þÞ
sign convention for the metric.
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effects, the coefficients for these terms that appear in the
action will also be fixed by the same symmetries. This
paper works in the context of conformal symmetry with
potential V ¼ λϕ4, but subsequently allows for breaking
through the inclusion of a mass term.

B. Coupling to the inflaton

To complete the EFT one must couple the inflationary
sector to an additional reheating field, which we label
χðt; x⃗Þ. We are interested in the production of χðt; x⃗Þ
particles resulting from the oscillations of the background
inflaton field ϕ0ðtÞ. In unitary gauge, the production of
particles by the background will result from operators
fðtÞÔnðχÞ. At the quadratic level, the relevant action has
the form

Sð2Þχ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
α1ðtÞ
2

gμν∂μχ∂νχ þ
α2ðtÞ
2

ð∂oχÞ2

−
α3ðtÞ
2

χ2 þ α4ðtÞχ∂oχ
#
: ð7Þ

Note that the broken time translation allows for a nontrivial
sound speed c2χ ¼ α1=ðα1 þ α2Þ. As shown in [8,9], the
action of Eq. (7) accounts for many existing models in the
literature. For example, preheating with V ∼ g2ϕ2

0χ
2 cor-

responds to α1 ¼ 1; α2 ¼ α4 ¼ 0 and α3 ¼ g2ϕ0ðtÞ2. If we
require the inflaton to remain shift symmetric throughout
reheating, as one might anticipate in models of natural
inflation, then we consider interactions of the form
ð∂μϕ0Þ2χ2=Λ2, where Λ is the cutoff for the background.
The EFT captures this model through the parameter choice
α3 ¼ 2ϕ̇0ðtÞ2=Λ2. Previous work [23] shows that preheat-
ing is not efficient in models that preserve an inflaton shift
symmetry. One reason is that naively we assume that
the energy of the fields cannot exceed the cutoff Λ. An
important caveat to this are models with axion type
couplings that have been argued to be effective [24–26]
where reheating can be efficient. But returning to the
advantage of the EFT approach is that the parameters,
such as α3, can be completely nonlinear, and their origin is
irrelevant since the background itself is not physically
observable. This is analogous to the EFTof Inflation, where
the background is not an observable so a quasi–de Sitter
background is assumed a priori, and one studies the EFTof
fluctuations about that background.
To conclude this section we emphasize the importance of

the universality classes of the EFT as our motivation to
pursue an analytical and numerical investigation into the
conformal model that follows. Further work is needed to
motivate this approach within a UV complete theory.
Furthermore, two primary concerns with a dominant λϕ4

term in the potential are (a) that such a potential is ruled out
by CMB observations and (b) that radiative corrections
would typically generate a mass term. For the former

concern, we note that the potential at the end of inflation is
not the same as during inflation. For the latter concern, we
conjecture that such corrections could be subdominant for
some models, especially with a better understanding of the
UV completion. However, we do include a mass term in the
analysis in a subsequent section.

III. REHEATING MODEL WITH NONLINEAR
OSCILLATIONS

In this section we consider preheating for a particular
model. Motivated by the discussion of the previous section,
we take the inflaton field to have a quartic form during
reheating, and consider its coupling to the reheating field to
have a simple form. Specifically, during the epoch of
preheating, the potential is assumed to have the form

Vðϕ; χÞ ¼ 1

4
λϕ4 þ 1

2
m2

χχ2 þ σϕχ2; ð8Þ

where ϕ is the inflaton field and χ is the field being
populated by the preheating process. Note (once again) that
the potential during the epoch of reheating can be different
from the full potential and/or the potential during the slow-
roll epoch when most of the exponential expansion of the
universe takes place. For example, if the potential for the
inflation takes one of the forms

VðϕÞ ¼ 1

2
Λ4ð1þ cos½ϕ=f&Þ2 or

VðϕÞ ¼ Λ4ð1 − ½ϕ=f&2Þ4; ð9Þ

then the leading order form of the potential will have a
quartic form when ϕ is near its minimum.4 Note that the
potential (8) represents the simplest model of this type. In
particular, the interaction term is linear in ϕ and quadratic
in χ, which results in a linear equation of motion of the
reheating field and requires that the coupling field σ is
sufficiently small (so that the coupling term does not
interfere with the oscillations of the inflaton in its quartic
potential). In addition to having a different form at earlier
epochs, the inflaton potential could have additional terms
(e.g., V ∼m2ϕ2) during reheating, as well as coupling to
additional fields. These complications are considered in
subsequent sections below. The interaction between ϕ and
χ may take other forms as well, and conformal interaction
terms are of particular interest considering the previous
discussion. We show in Appendix C that such couplings do
not give favorable results to leading order, so we consider
the trilinear interaction throughout this exploration of the
quartic inflaton potential’s effects on reheating.

4Note that one has to translate the field ϕ → ϕ − f, in order to
obtain the first term in the equation (8).
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A. Solutions for the inflaton field

In this scenario, the inflaton undergoes oscillations in a
quartic potential, where we assume that its potential is
dominated by the first (self-interaction) term in Eq. (8). To
leading order, the resulting equation of motion has the form

ϕ̈þ λϕ3 ¼ 0: ð10Þ

This equation will have oscillatory solutions [such that
ϕðtþ TÞ ¼ ϕðtÞ] in the absence of cosmic expansion,
coupling to the χ field, and other complications. Since
the equation is nonlinear, the amplitude of oscillations
plays a nontrivial role. Let the oscillation have amplitude
Φ̄, so that ϕð0Þ ¼ Φ̄ at the start of each oscillatory cycle.
We can define a reduced function ϕR such that

ϕðtÞ ¼ Φ̄ϕRðtÞ and ϕRð0Þ ¼ 1; ð11Þ

so that t ¼ 0 corresponds to the beginning of a cycle. We
thus obtain the equation of motion

Φ̄ϕ̈R þ λΦ̄3ϕ3
R ¼ 0: ð12Þ

If we then define a new time variable,

tR ¼
ffiffiffi
λ

p
Φ̄t: ð13Þ

the equation of motion for the reduced field takes the
seemingly simple form

ϕ̈R þ ϕ3
R ¼ 0: ð14Þ

This derivation implicitly assumes that the expansion of the
universe is sufficiently slow, so that the amplitude Φ̄ varies
much more slowly than the field oscillates. Specifically,
these solutions apply in the limit where Φ̄= ˙̄Φ ≫ T.
As shown in the Appendix, the solution to equation (14)

can be written exactly in terms of elliptical integrals. Since
such functions are cumbersome, it is also useful to write the
leading order solution in the form

ϕR ¼ ϕRðωtÞ ¼ cosðωtÞ½1 − ϵsin2ðωtÞ&; ð15Þ

where the frequency ω is given (exactly) by Eq. (A4). The
corresponding period is thus T ¼ 2π=ω. For comparison,
recall that the solution for linear oscillations in a quadratic
(V ∼m2ϕ2) potential has the form ϕðtÞ ∼ cosðmtÞ. The
dimensionless parameter ϵ can be found (approximated) in
several ways (see Appendix A). The optimum value ϵ ≈
0.1704 leads to an approximation for the solution ϕðtÞ that
has a relative error of about 0.36%. Since the frequency ω
(equivalently the period T) is exact, the field returns to its
correct value at the end of each cycle, and the error does not
accumulate. As a result, Eq. (15), with known values of the

parameters ðω; ϵÞ, provides a sufficiently accurate solution
for the nonlinear oscillations of the inflaton field.
The fluctuations of the inflaton field will experience the

equation of motion

δϕ̈k þ ½k2ϕ þm2
ϕ þ 3λϕ2 þ 2σχϕ&δϕk ¼ 0; ð16Þ

eventually fragmenting the inflaton and breaking the mean-
field approximation when hδϕ2i ∼ Φ̄2. The growth of the
inflaton fluctuations can be treated similarly to the growth
of the fluctuations in the reheat field. However, we do not
consider such higher-order effects in this paper and the
numeric results show that this growth is subdominant to the
growth of the reheat field.

B. Reheating field

Following standard practice [3], we consider reheating
into a mode of the χ field with wave number k. In the limit
where the expansion of the universe can be ignored, the
equation of motion for the χ field takes the form

χ̈k þ ½k2 þm2
χ þ 2σΦ̄ϕRðωtÞ&χk ¼ 0; ð17Þ

where ϕR is the solution for oscillations of the inflaton field
as given by Eq. (15). We can change variables to make the
equation appear in standard form using the definitions

τ ¼ ωt
2
; Ak ¼

4

ω2
ðk2 þm2

χÞ; and q¼ 4
σΦ̄
ω2

: ð18Þ

The resulting equation thus becomes

d2χk
dτ2

þ ½Ak þ 2qϕRð2τÞ&χk ¼ 0; ð19Þ

where ϕR is periodic so that the result is a form of Hill’s
equation [7]. We note that this mode equation can be
written in various forms. For comparison, one common
model for preheating arises for a quadratic potential, where
the analog of reduced solution ϕR becomes cosð2τÞ and the
above equation becomes the Mathieu equation (see the
review of [3]).
For inflaton oscillations in a purely quartic potential, the

effective equation of state parameter for the background
universe has the form hwi ≈ 1=3. During reheating the
universe thus expands like a radiation dominated space-
time with scale factor a ∼ t1=2 and H ∼ a−2. If we include
the expansion of the background into Hills equation, and
work in terms of the canonically normalized field,

χ̃ ¼ aχ; ð20Þ

then the equation of motion (17) becomes
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d2χ̃k
dt2

þ
"
k2

a2
þm2

χ þ 2σΦ̄ϕRðωtÞ −H2 − Ḣ
#
χ̃k ¼ 0: ð21Þ

Unlike the quadratic case, the H2 and Ḣ terms do not
strictly cancel. However, both terms are proportional to a−4

and quickly redshift away compared to the other contri-
butions. As a result, we drop these terms.
For the case of interest, where the expanding space-time

acts like a radiation dominated universe, the amplitude
redshifts according to Φ̄ ∼ a−1. Now we can relabel so that
Φ̄0 denotes the nonredshifted amplitude at the start of
reheating, when we set a ¼ 1 by definition. After removing
the tildes on χ and using the time variable τ from before, we
can write the resulting equation of motion in the form

d2χk
dτ2

þ 4

ω2

"
k2

a2
þm2

χ þ 2σΦ̄0a−1ϕRð2τÞ
#
χk ¼ 0: ð22Þ

We thus recover Hills equation in the form

d2χk
dτ2

þ ðAþ 2q cosð2τÞ½1 − ϵsin2ð2τÞ&Þχk ¼ 0: ð23Þ

where we have used the periodic function ϕR defined by
Eq. (15). As the universe expands, the amplitude Φ̄
decreases and the parameters (A, q) in Hills equation vary
with time. Here, again, we assume that the expansion of the
universe is slow enough that the χ field experiences many
oscillations before the parameters in the equation of motion
change. Since a ¼ 1 at the beginning of the reheating
epoch, by convention, the amplitude Φ̄ ¼ Φ̄0=a, and the
frequency ω ¼ ω0=a, so that the parameters in Hills
equation are given by

τ ¼ ω0t
2a

; A ¼ 4a2

ω2
0

$
k2

a2
þm2

χ

%
; and q ¼ 4aσΦ̄0

ω2
0

:

ð24Þ

In order for this scenario to remain consistent, the time-
scales must obey the ordering H−1 ≫ ω−1 or H ≪ ω (see
also the discussion of Sec. II).
In physical terms, the expansion of the universe must be

slow compared to the oscillations of the inflaton field, so
that ϕ experiences a large number of oscillations during the
preheating epoch. The frequency of the ϕ oscillations is
given by ω ¼ ω̃

ffiffiffi
λ

p
Φ̄, where ω is a constant determined

in Appendix A, and the Hubble parameter is given by
H ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
8πλ=3

p
Φ̄2=Mpl. Ignoring factors of order unity,

consistent solutions thus require the ordering

Φ̄ ≪ Mpl: ð25Þ

The displacement of the ϕ field is expected to be of order
the Planck scale Mpl at the beginning of inflation (the

beginning of slow-roll epoch), and smaller at the end of
inflation (the end of the slow-roll epoch, or the beginning of
the reheating epoch). As a result, the ordering of equa-
tion (25) is expected to hold during reheating. Moreover,
the amplitude Φ̄ decreases with time, so that the fidelity of
the approximation increases as reheating takes place.
We can make an estimate of the total number of

oscillations that the χ field experiences. This number of
cycles is given by the integral

Nosc ¼
Z

ωdt ¼
Z

a

1
ω
da
aH

¼ ω̃
ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
8πλ=3

p
Z

a

1

Mplda
aΦ̄

¼ ω̃
ffiffiffi
3

p
ffiffiffiffiffiffi
8π

p
Mpl

Φ̄0

ða − 1Þ; ð26Þ

where the range of integration extends from the start of
reheating(end of the slow roll phase) to the end of reheating
(when parametric resonance can no longer operate). The
subscript on the amplitude indicates its value at the
beginning of reheating. We can estimate this value by
evaluating the slow-roll conditions using the quartic poten-
tial of Eq. (8). Note that even if the inflaton potential has a
different form during most of the slow-roll epoch (as
expected), it must transition to the form of Eq. (8) for
the reheating epoch (in the scenario considered here), so
that the slow-roll conditions must be violated. This calcu-
lation yields Φ̄0 ≈Mpl=

ffiffiffiffiffiffi
2π

p
. With this specification, the

dimensionless coefficient in Eq. (26) is of order unity and
the number of oscillations is approximately given by
Nosc ∼ a. The reheating field χ experiences the required
large number of oscillations if and only if the scale factor of
the universe increases by a large factor during the epoch.

IV. PARAMETRIC RESONANCE

One example of successful preheating after inflation
occurs when the reheating field (χ in the present context)
experiences parametric resonance. For the case of quartic
oscillations of the inflaton field ϕ, the previous section
derives the corresponding Hills equation for the reheating
field χ. We thus need to determine the stability diagram to
determine the conditions required for parametric resonance.
We start with a brief review in order to define notation.
Consider the general form of Hill’s equation written in
the form

üþ Ω2u ¼ 0; ð27Þ

where Ω2 is a periodic function with period T, so that
Ω2ðtþ TÞ ¼ Ω2ðtÞ. On the interval ½0; T&, the equation has
two linearly independent solutions. We choose these two
solutions to be the principal solutions, which are defined
such that
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u1ð0Þ ¼ 1 and u̇1ð0Þ ¼ 0 ð28Þ

and

u2ð0Þ ¼ 0 and u̇2ð0Þ ¼ 1: ð29Þ

Any solution can be written as a linear combination of the
two principal solutions. We conceptually break up the time
evolution into intervals of length T. For a given interval,
labeled here by the index n, the solution has the form

unðtÞ ¼ αnu1ðtÞ þ βnu2ðtÞ: ð30Þ

Similarly, for the next interval, labeled as nþ 1, we have

unþ1ðtÞ ¼ αnþ1u1ðtÞ þ βnþ1u2ðtÞ: ð31Þ

If we enforce continuity of both the function and its
derivative at the interface between successive cycles, we
obtain two matching conditions

αnu1ðTÞ þ βnu2ðTÞ ¼ αnþ1u1ð0Þ þ βnþ1u2ð0Þ ¼ αnþ1

ð32Þ

and

αnu̇1ðTÞ þ βnu̇2ðTÞ ¼ αnþ1u̇1ð0Þ þ βnþ1u̇2ð0Þ ¼ βnþ1

ð33Þ

These two results thus take the form

"
αnþ1 βnþ1

#
¼

"
u1ðTÞ u2ðTÞ
u̇1ðTÞ u̇2ðTÞ

#"
αn
βn

#
≡Mn

"
αn
βn

#
;

ð34Þ

where the final equality defines the transfer matrix Mn.
Standard arguments [7] show that the determinant of the
transfer matrix must be unity, so that the number of
independent matrix elements is reduced from four to three.
In addition, for the case where the equation is symmetric
with respect to the midpoint of the time interval, we have
the additional condition u1ðTÞ ¼ u̇2ðTÞ.5 As a result, only
two of the matrix elements are independent. Here we define

hn ≡ u1ðTÞ and gn ≡ u̇1ðTÞ; ð35Þ

so that the transfer matrix has the form

Mn ¼
"
hn ðh2n − 1Þ=gn
gn hn

#
: ð36Þ

If all of the cycles are the same, then the matrix elements
will be the same for all cycles, and the eigenvalues are
given by

λ ¼ h'
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − 1

p
: ð37Þ

After N cycles, the solution to the differential equation is
then given by the form

"
αN
βN

#
¼ MN

"
α0
β0:

#
ð38Þ

We can rewrite the vector ½α0; β0& in the form

"
α0
β0

#
¼ AV⃗1 þ BV⃗2; ð39Þ

where the V⃗i are the eigenvectors of the matrix M,
corresponding to eigenvalues λi. Without loss of generality,
we can take the largest eigenvalue to be λ1. After N cycles,
the matrix/vector form of the solution becomes

"
αN
βN

#
≈ λN1 AV⃗1: ð40Þ

If we take the limit N → ∞, the growth rate for the solution
is found to be

FIG. 1. Stability chart in ðA; qÞ parameter space for the Mathieu
equation, i.e., Hill’s equation resulting from trilinear reheating
and no inflaton quartic potential (λ ¼ 0 and ϵ ¼ 0). The color
scale shows the magnitude of the growth rate (the Floquet
exponent). The dark regions correspond to near-zero growth rate
and hence stability. The white A ¼ 2q line separates the mostly-
stable region below it from the unstable region and stability
bands above.

5Note that much of the literature on preheating does not take
into account the symmetry condition u1ðTÞ ¼ u̇2ðTÞ. This con-
dition provides a useful consistency constraint on the numerical
evaluation of the matrix elements, and can be used to simplify
expression for the eigenvalues.
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γ ¼ 1

T
log λ1: ð41Þ

The growth rates shown in Figs. 1 and 2, for quadratic
and quartic potentials respectively, were calculated using
this method. The similarity in the stability maps is evident,
and we reemphasize that the major difference between
the models is the values that A and q take as the Universe
expands and the resulting difference in the amount of
preheating achieved: in the quartic case, the growth rate
increases indefinitely while in the quadratic case the growth
rate always tends toward zero.
For the Hills equation (17) that arises for quartic

reheating, the instability diagram is shown in Fig. 2. The
color scales denotes the values of the growth rate γ over the
parameter space ðA; qÞ. The diagram shows the classic
pattern with bands of stability (dark in the figure) and bands
of instability (light colors). As the frequency parameter A
increases, the Hills equation tends to become more stable.
As the forcing parameter q grows larger, the Hills equation
becomes more unstable, although narrow bands of stability
remain. The resulting instability diagram shown in Fig. 2 is
similar to that found for the Mathieu equation, which is
often used as a model for parametric resonance in preheat-
ing [3] and is shown in Fig. 1.
The instability diagram shows several important features

that are common to Hills equations. In addition to the
classic band structure, the growth rate for instability
increases toward the upper left part of the ðA; qÞ plane,
and decreases toward the lower right. Although the boun-
dary between stable and unstable regions in highly irregu-
lar, the locus q ∼ A=2 provides an approximate boundary.
In the limit of large q (especially q ≫ A), the growth rate
increases with the approximate dependence γ ∼ ffiffiffi

q
p

.
Superimposed upon this general increase in the growth
rate γ with q are bands of stability with ever-shrinking
width. Significantly, one can show [27] that the widths of

the stable bands decrease exponentially with increasing
forcing parameter q (at constant A).
The most important difference between preheating with

quartic potentials, and those considered previously with
quadratic potentials, is the trajectory taken through the
ðA; qÞ plane, i.e., the instability diagram. The parameters
ðA; qÞ evolve as the universe expands. For the quartic case,
the evolution of the parameters is specified by Eq. (24).
In the limit of large wave number k2 ≫ m2

χ, the frequency
parameter A remains nearly constant and the forcing
parameter q grows linearly with the scale factor. The
trajectories in the parameter space depicted by the insta-
bility diagram thus move upward toward regions of greater
instability. In the previous (quadratic) case, the evolution is
toward lower values of q and hence greater stability. For
sufficiently large expansion factors, however, the wave
number term redshifts away, and the frequency parameter
A ∝ a2, while q ∝ a. In this regime, the increase in q acts to
increase the growth rate whereas the increase in A acts in
the opposite sense. Figure 3 shows examples of some
trajectories and the corresponding growth rates for varying
wave numbers, varying initial A-values, and two reheat
field mass options. Whenmχ ¼ 0, the growth rate increases
indefinitely, while mχ > 0 suppresses the growth rate after
sufficient expansion because the trajectories veer toward a
more stable region of the ðA; qÞ plane.

V. INCLUSION OF A MASS TERM IN THE
INFLATON POTENTIAL

In this section we generalize the treatment to include the
case where the inflaton potential has a mass term in
addition to its (dominant) quartic term. Specifically, let
the inflaton oscillations during preheating be driven by a
potential of the form

V ¼ 1

2
m2ϕ2 þ 1

4
λϕ4 þ…; ð42Þ

FIG. 2. Stability chart in ðA; qÞ parameter space for the Hill’s equation resulting from trilinear reheating with a quartic inflaton
potential, ϵ ¼ 0.17 (left) and the difference from the stability chart resulting from a purely massive potential, ϵ ¼ 0 (right) for
comparison. The white A ¼ 2q line separates the mostly stable region below it from the unstable region and stability bands above.
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so that the equation of motion becomes

ϕ̈þm2ϕþ λϕ3 ¼ 0: ð43Þ

As before, we define a reduced field according to ϕ ¼ Φ̄ϕR,
so that the equation of motion for ϕR has the form

ϕ̈R þ μ2ϕR þ ϕ3
R ¼ 0; ð44Þ

where we have defined dimensionless quantities

tR ¼
ffiffiffi
λ

p
Φ̄t and μ ¼ mffiffiffi

λ
p

Φ̄
: ð45Þ

To leading order, the solution has the same from as before,
namely

ϕR ¼ cosðωtÞ½1 − ϵsin2ðωtÞ&: ð46Þ

Again working to leading order, the parameter ϵ is given by

ϵ ¼ 1

9þ 8μ2
¼ 1

9þ 8m2=λΦ̄2
: ð47Þ

The frequency ω is determined by the oscillation period,
which is given by the integral expression

P ¼ 4tðθ ¼ π=2Þ ¼ ð1þ μ2Þ−1=2
Z

π=2

0

dθ
½1 − k2sin2θ&1=2

¼ 4
ffiffiffi
2

p
kKðkÞ; ð48Þ

where KðkÞ is the complete elliptical integral of the first
kind, and where the parameter k is defined through

k2 ≡ 1

2ð1þ μ2Þ
: ð49Þ

The frequency ω is thus given by

ω ¼ 2π
P

¼ 2πffiffiffi
2

p
kKðkÞ

ð50Þ

The elliptical integral KðkÞ can be expressed as

KðkÞ ¼ π

2agmð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
Þ
; ð51Þ

where agmðx; yÞ is the arithmetic-geometric mean. To
leading order we can write KðkÞ in the form

KðkÞ ≈ π
2
ð1 − k2Þ−1=4 ≈ π

2

$
1þ k2

4

%
; ð52Þ

FIG. 3. Left: sample trajectories in ðA; qÞ space formχ=ω0 ¼ 0 (top row) andmχ=ω0 ¼ 2 (bottom row) for trilinear quartic preheating.
The black A ¼ 2q line roughly separates the unstable region above from the stable region below. Right: corresponding growth rates γ per
oscillation time along trajectories as a function of scale factor a. We can see that a massless reheat field grows indefinitely without
nonlinear effects, while a massive reheat field eventually stops growing on its own when the trajectory reaches a more stable area. Colors
correspond to comoving wave numbers k=ω0 chosen to result in the various A0 shown, and the initial inflaton amplitude

ffiffiffi
λ

p
Φ0=ω0 is

chosen to result in q0 ≈ 50.
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so that the dimensionless frequency is given by

ω ¼ 2π
P

¼ 1

k
ffiffiffi
2

p
ð1þ k2=4Þ

: ð53Þ

If we convert from dimensionless form back into physical
units, the frequency becomes

ω ¼
ffiffiffi
λ

p
Φ̄

k
ffiffiffi
2

p
ð1þ k2=4Þ

¼
ffiffiffi
λ

p
Φ̄ð1þ μ2Þ1=2 4

4þ 1=ð2þ 2μ2Þ

¼
ffiffiffi
λ

p
Φ̄
8ð1þ μ2Þ3=2

9þ 8μ2
: ð54Þ

Now we can put back in the dependence of μ on the
amplitude Φ̄ to obtain

ω ¼
ffiffiffi
λ

p
Φ̄
ð1þm2=λΦ̄2Þ3=2

9=8þm2=λΦ̄2
¼ ðm2 þ λΦ̄2Þ3=2

m2 þ ð9=8ÞλΦ̄2
: ð55Þ

With these specifications, the q parameter is given by

q ¼ 4σ
Φ̄
ω2

¼ 4σΦ̄
ðm2 þ ð9=8ÞλΦ̄2Þ2

ðm2 þ λΦ̄2Þ3
; ð56Þ

and the A parameter has the form

A ¼ 4

$
k2

a2
þm2

χ

%
ðm2 þ ð9=8ÞλΦ̄2Þ2

ðm2 þ λΦ̄2Þ3
: ð57Þ

The amplitude Φ̄ will redshift as the universe expands. If
the quartic part of the potential dominates, as expected at
the start of preheating, then Φ̄ ∼ 1=a. Later on, if the mass
term (quadratic part of the potential) dominates, then
Φ̄ ∼ 1=a3=2. The dependence of Φ̄ on a depends on the
equation of state parameter hwi, which is given by

hwi ¼ hϕð∂V=∂ϕÞi=2 − hVi
hϕð∂V=∂ϕÞi=2þ hVi

: ð58Þ

For the form of the potential used here we get

hwi ¼ λhϕ4i
4m2hϕ2iþ 3λhϕ4i

ð59Þ

The expectation values of the fields can be evaluated to find

hϕ2i ¼ Φ̄2

16
½ϵ2 − 4ϵþ 8&≡ f2ðϵÞΦ̄2; ð60Þ

and

hϕ4i ¼ Φ̄4

64

"
7

16
ϵ4 − 3ϵ3 þ 9ϵ2 − 16ϵþ 24

#
≡ f4ðϵÞΦ̄4;

ð61Þ

where the final equalities define slowly vary functions f1
and f2.
Alternatively we can solve the continuity equation and

the Friedman equation directly and find an implicit solution
for the dependence of the amplitude Φ̄ on the scale
factor, i.e.,

Φ̄2ð1þ u0Φ̄2Þ1=2 ¼ ð1þ u0Þ1=2a−3; ð62Þ

where u0 ≡ λΦ̄2
0f4=ðm2f2Þ. In deriving this result, we are

assuming that the ratio f4=f2 is constant.6

At the start of the reheating epoch, the quartic term in the
potential dominates (for the case considered in this paper),
so that hwi ≈ 1=2, Φ̄ ∼ 1=a, q ∼ a, and A ∼ ðk2 þm2

χa2Þ.
The trajectories in the ðA; qÞ plane—the instability
diagram—thus move upward. For sufficiently large wave
numbers k, the trajectories are nearly vertical (constant A),
whereas for lower values of k the A parameter increases
also. At sufficiently late times, the amplitude of the inflaton
oscillations are sufficiently redshifted so that hwi → 0,
Φ̄ ∼ 1=a3=2, q ∼ 1=a, and A → 4m2

χ=m2 ¼ constant.
Figure 4 shows examples of trajectories in the ðA; qÞ

plane for varying wave numbers, initial A-values, three
options of initial inflaton amplitude, and two options of the
reheat field mass. In addition, trajectories for the pure
quartic case, the pure quadratic case, and the mixed case are
shown. These illustrate the major difference between
quadratic and quartic inflaton potential trajectories, which
is the direction of q-evolution. Figure 5 shows the growth
rates corresponding to the trajectories in Fig. 4. In all cases,
the growth rates are suppressed by any of m > 0, mχ > 0,
and increasing wave number k, so they ultimately deter-
mine how much preheating can occur. The quartic term in
the inflaton potential influences the resulting reheat field
spectrum, making it less redshifted; the larger range of
amplified reheat field wave numbers is yet another way the
quartic term results in more preheating. With an increasing
quartic influence in the potential, that is with λ ≠ 0 and
decreasingm, the indefinite increase in growth rates call for
higher-order effects like backreaction, rescattering, and
gravitational effects to determine when reheating ends
and how much particle production is achieved. We did
not consider these and look forward to studying these
effects in the future.

6Since the ratio varies from 0.73 for a quartic dominated
potential up to 0.75 for a quadratic dominated potential, this
assumption is valid.
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FIG. 5. Growth rates γ per oscillation time along trajectories as a function of scale factor a corresponding to the trajectories in Fig. 4.
The solid lines correspond to the mixed casem ≠ 0, λ ≠ 0, the dashed lines to purely quarticm ¼ 0, λ ≠ 0, and the dotted lines to purely
massive m ¼ 0, λ ≠ 0. The three columns correspond from left to right to λΦ2

0=m
2 ¼ 1, 10, 1000 in the mixed potential, and the

parameters for the massive and quartic cases are picked to match ðA0; q0Þ of the mixed cases. The colors correspond to different wave
numbers k0=ω0; note that for the massive case, ω0 ¼ m, for the quartic case, ω0 ≈ 0.85

ffiffiffi
λ

p
Φ0, and for the mixed case, ω is the function

shown in Eq. (55). We can see that mass of either the inflaton or reheat field result in an eventual decrease in the growth rate.

FIG. 4. Trajectory examples in ðA; qÞ space formχ=ω0 ¼ 0 (top row) andmχ=ω0 ¼ 2 (bottom row) for trilinear preheating. The black
A ¼ 2q line roughly separates the unstable region above from the stable region below. The solid lines correspond to the mixed case
m ≠ 0, λ ≠ 0, the dashed lines to purely quartic m ¼ 0, λ ≠ 0, and the dotted lines to purely massive m ¼ 0, λ ≠ 0. The three columns
correspond from left to right to λΦ2

0=m
2 ¼ 1, 10, 1000 in the mixed potential, and the parameters for the massive and quartic cases are

picked to match ðA0; q0Þ of the mixed cases. The colors correspond to different comoving wave numbers k=ω0, listed in Fig. 5.
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VI. NUMERICAL RESULTS

Finally, we examine our scenario in fully nonlinear
lattice simulations. To do this, we employ GABE [28],
which evolves the classical equations of motion for both the
inflaton

ϕ̈þ 3Hϕ̇ −
∇2ϕ
a2

¼ −
∂V
∂ϕ

ð63Þ

and the matter field,

χ̈ þ 3Hχ̇ −
∇2χ
a2

¼ −
∂V
∂χ

ð64Þ

on a uniformly expanding grid. The expansion of the grid is
driven by the Friedmann constraint,

H2 ¼ hρi
3m2

p
ð65Þ

where hρi is the spatial average of

ρ ¼ ϕ̇2

2
þ∇2ϕ

2a2
þ χ̇2

2
þ∇2χ

2a2
þ Vðϕ; χÞ: ð66Þ

For our nonlinear analysis, we focus on three specific
cases: (a) the quartic inflation model, Eq. (8), where we
take λ ¼ 10−14, (b) a massive inflaton, Eq. (42), where
mϕ ¼ 5 × 10−7mp and λ ¼ 0 as well as (c) a massive

FIG. 6. Variance of the matter field,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hχ2i − hχi2

p
, as a function of time for various choices of λχ . The left panels show model (a), the

middle panels show model (b) and the right panel shows model (c). The stars indicate times in each simulation during the system is
exhibiting the tachyonic instability. All simulations set σ ¼ 2.5 × 10−11mp.

FIG. 7. The top panels show the ratio of the power spectrum of χ during the tachyonic resonance phase, t(, to the initial slice, t0; these
spectra are taken at the points labeled with stars in Fig. 6. The bottom panels show the ratio of the power spectrum of χ at the time of the
first peak of the variance of χ, tpeak, to the initial slice. The left panels show model (a), the middle panels show model (b) and the right
panel shows model (c). All simulations set σ ¼ 2.5 × 10−11mp.
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inflation with a self-coupling, mϕ ¼ 5 × 10−7mp and
λ ¼ 10−14. For each of the three cases, we will look at
the impact of changing σ. In each case, we start the simu-
lations at the end of inflation. To calculate the homogeneous
field values, ϕ0 and ϕ̇0, at this time we numerically solve the
homogeneous equations of motion along the inflationary
attractor until ä ¼ 0. While the Hubble scale at the end of
inflation, H0, is different in all three cases, it varies only
slightly–betweenH0 ≈ 1.93 × 10−7mp in case (b) andH0 ≈
2.68 × 10−7mp in case (c). As such we chose to keep the
same physical box size at the end of inflation, L0 ¼ 2.5 ×
10−6mp to ease comparison between themodels. In all cases,
we work with N3 ¼ 2563 grids with a timestep, Δt ¼
Δx=40 ¼ L0=N=40. On top of the homogeneous field
values, we set the fluctuations of both fields to be consistent
with Bunch-Davies statistics, hϕ2

ki; hχ2ki ¼ 1=
ffiffiffiffiffiffiffiffi
2ωk

p
.

It has long been known that studying tachyonic preheat-
ing with three-leg interactions with lattice simulations
requires adding a self-coupling, λχχ4, to the model so that
the classical potential is bounded from below [29]. Figure 6
shows how the variance of χ evolves over the course of a set
of simulations with a fixed σ ¼ 2.5 × 10−11mp; as the
homogeneous mode of ϕ changes sign for the first time, the
instability in χ causes a dramatic rise in this quantity.
Importantly, during this first phase, the χ self-coupling

does not have an effect on the dynamics: this can be seen by
the overlapping behavior of the variance in Fig. 6 as well as
by studying the power spectra of χ. The top row of Fig. 7
shows the growth of modes by comparing the power
spectrum during the tachyonic phase to the power spectrum
at the beginning of the simulation. For a wide range of
choices of the self-coupling, these ratios are nearly iden-
tical. The bottom row of Fig. 7 shows the effect that the
self-coupling has by looking at the growth of modes until
the first peak of the variance of χ; that is, after the tachyonic
instability causes the χ field to enter the nonlinear regime,
the self-coupling of χ has a dramatic effect on the
distribution of power in the χ field.
In the cases in Figs. 6 and 7, the instability is very

strong and we see little difference between the three cases.

To see the effect of the inflaton potential on the dynamics,
we compare the fiducial σ ¼ 5 × 10−12mp to a lower coup-
ling, σ ¼ 5 × 10−13mp. Figure 8 shows that, for this lower
choice of the coupling, σ, reheating does not always com-
plete during the first oscillation of the field. Additionally,
we see that the instability is now model-dependent.
We can study the initial instability for each of the three

models by looking at the amplification of the power
spectrum at the time when the instability occurs (labeled
with stars in Fig. 8) to the initial power spectra in each
case7 Fig. 9 shows that, for this smaller trilinear coupling,
we see a wider and stronger amplification in model (a) as

FIG. 8. Variance of the matter field,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hχ2i − hχi2

p
, as a function of time for two choices of the trilinear coupling: σ ¼ 5 × 10−13

(black, solid) and σ ¼ 5 × 10−12 (red, dashed). The left panels show model (a), the middle panels show model (b) and the right panel
shows model (c). The stars on the plots show times at which we compare the power spectra in Fig. 9.

FIG. 9. Ratio of the power spectrum of χ during the first
resonance phase, t(, to the initial slice, t0; these spectra are taken
at the points labeled with stars in Fig. 6. We directly compare the
spectra during this initial instability for all three models at two
different values of the trilinear coupling: σ ¼ 5 × 10−13 (solid)
and σ ¼ 5 × 10−12 (dashed).

7Note that here we directly plot the ratio of the power spectrum
of the field; modes that are not amplified are expected to decrease
in amplitude due to the expansion of the universe in each case.
Alternatively, we could have chosen to scale the fields to the
canonically-normalized fields so that unamplified modes remain
constant, as in [25].
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compared to models (b) and (c) which show consistent
amplification.

VII. CONCLUSION

This paper has considered reheating in inflationary
scenarios where the effective potential of the inflaton has
a quartic form at the end of inflation representing an
approximate conformal symmetry within the EFT of
reheating. For this case, we find the following results:

(i) The oscillations of the inflaton field are nonlinear.
The exact solutions can be described in terms of
elliptical integrals, but we find an accurate approxi-
mation scheme that allows the solutions to be
expressed in terms of elementary functions.

(ii) The equation of motion for the coupled reheating
field χ becomes a Hill’s equation (instead of the
more common and less general Mathieu equation) in
this scenario. Over the parameter space ðA; qÞ, the
growth rate for parametric resonance shows the same
characteristic bands of stability and instability (see
Fig. 2). The shapes of the stable and unstable regions
are quantitatively different than for the Mathieu
equation, but qualitatively similar.

(iii) The parameters ðA; qÞ that determine parametric
resonance vary with the amplitude Φ̄ of the inflaton
oscillations, where Φ̄ redshifts with time (increasing
scale factor). Significantly, however, the forcing
parameter q grows as the amplitude Φ̄ decreases,
in contrast to previously considered cases, so that
parametric resonance becomes more pronounced
with time.

(iv) This scenario for reheating can be generalized to
include both quartic and quadratic terms in the
effective potential for the inflaton during reheating.
In this case, we find modified solutions for the
nonlinear oscillations of the inflaton. The evolution
of the parameters ðA; qÞ grows with decreasing
amplitude Φ̄ at the start of reheating, and then
subsequently decrease as the quadratic part of the
inflaton potential dominates and the oscillations
become linear.

The results of this paper show that the behavior of
parametric resonance during the epoch of reheating can be
more complicated than considered previously. Whereas the
parameters ðA; qÞ in the Mathieu equation for quadratic
potentials evolve to smaller values and hence greater
stability, the corresponding parameters for quartic poten-
tials evolve to larger values and can lead to greater
instability (in addition the Mathieu equation is generalized
to become Hill’s equation). The trajectories through the
ðA; qÞ plane are more complicated for potentials containing
both quadratic and quartic components, so that the param-
eter values can both increase and decrease with time. While
this paper has demonstrated these complexities, the range

of allowed potentials is large, and a variety of reheating
scenarios can be considered in future work.
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APPENDIX A: SOLUTION FOR NONLINEAR
OSCILLATIONS OF THE INFLATON FIELD

In this appendix, we take up the task of solving for ϕRðtÞ
in (14) which is a nonlinear equation. Although the
equation of motion has a closed form solution in terms
of elliptical integrals, here we develop a more tractable
working approximation (see also [30,31]). We can immedi-
ately take the first integral to find

1

2
ϕ̇2 ¼ E −

1

4
ϕ4; ðA1Þ

where we now ignore the subscripts. Since we want the
solution where ϕð0Þ ¼ 1 and ϕ̇ð0Þ ¼ 0, we can specify the
integration constant to find

ffiffiffi
2

p
ϕ̇ ¼ ½1 − ϕ4&1=2: ðA2Þ

This equation has the formal solution of the form

t ¼
ffiffiffi
2

p Z
1

ϕ

dϕ
½1 − ϕ4&1=2

: ðA3Þ

Since the integral in Eq. (A3) defines the dimensionless
period, we can find the dimensionless frequency ω̃ through
the relation

ω̃ ¼ 2π

4
ffiffiffi
2

p
I

where I ≡
Z

1

0

dx
ð1 − x4Þ1=2

¼ Kð−1Þ ≈ 1.311;

ðA4Þ

where KðmÞ is the complete elliptical integral of the first
kind [32]. Keep in mind that the time variable in the
solution is dimensionless, as we have scaled out a factor offfiffiffi
λ

p
and another factor of Φ̄. If we work in terms of the usual
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time variable (again denoted as t), then the physical
frequency ω becomes

ω ¼
ffiffiffi
λ

p
Φ̄ ω̃ ≈ 0.85

ffiffiffi
λ

p
Φ̄: ðA5Þ

1. Leading order solution

The results thus far are exact. In order to find a working
approximation, we expand the integral and change varia-
bles such that ϕ ¼ cos θ to get

t ¼
ffiffiffi
2

p Z
θ

0

dθ
½2 − sin2θ&1=2

¼
Z

θ

0
dθ

&
1þ 1

4
sin2θ þ…

'
:

ðA6Þ

Now we can perform the integral to obtain

t ¼ 9

8
θ −

1

16
sin 2θ ¼ 9

8
cos−1ϕ −

1

8
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

q
: ðA7Þ

Note that the final term is small compared to the first. It
vanishes at both ϕ ¼ 0 and ϕ ¼ 1, with a maximum in
between, and has a coefficient nearly an order of magnitude
smaller. We can thus rearrange the expression to take the
form

ϕ ¼ cos
"
8

9
t
#
cos

"
1

9
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

q #

− sin
"
8

9
t
#
sin

"
1

9
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

q #
; ðA8Þ

which becomes

ϕ ≈ cos
"
8

9
t
#
− sin

"
8

9
t
#
1

9
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2

q

≈ cos
"
8

9
t
#&

1 −
1

9
sin2

"
8

9
t
#'

: ðA9Þ

As a result, oscillations in the quartic potential can be
described by solutions of the form

ϕðtÞ ¼ Φ̄ cosðωtÞ½1 − ϵsin2ðωtÞ&: ðA10Þ

The leading order approximation given here estimates the
values of ω ¼ 8=9 and ϵ ¼ 1=9. However, we can find a
better approximation by using the exact value of the dimen-
sionless frequency ω̃ ≈ 0.85 found above in Eq. (A4)
(instead of ω ¼ 8=9 ≈ 0.89). We can also find an optimum
value for the parameter ϵ as shown below.

2. Optimization of the correction parameter

Here we develop a formal method to specify the
optimum value of the correction parameter ϵ that character-
izes the approximate solution for the field ϕðtÞ. After

scaling out the amplitude, the solution has the form

ϕðtÞ ¼ cosðωtÞ½1 − ϵ sin2ðωtÞ&; ðA11Þ

where ω is a known quantity (in this case ω ¼ 0.8472…).
The equation of motion for ϕ can be derived from an action,
which has the form

S ¼
Z

2π

0
ωdt

&
1

2
ϕ̇2 − 1

4
ϕ4

'
; ðA12Þ

where we have added a factor of ω to make the result
dimensionless. The usual procedure is to derive the
equation of motion from the action (which results from
its minimization) and then find an approximate solution.
Instead, we use the form of the approximate solution and
evaluate the action S, which provides us with a function of
the parameter ϵ. By minimizing the function, we can find
the optimal value for ϵ. We thus have to evaluate the
expression

S ¼
Z

2π

0
dθ

&
1

2
ω2sin2θ½−1þ ϵ − 3ϵcos2θ&2

− 1

4
cos4θ½1 − ϵsin2θ&4

'
: ðA13Þ

After performing the integrals, we obtain

FIG. 10. Solution for oscillatory wave form in quartic potential.
Solid blue curve shows the exact result from numerical integra-
tion. Dashed red curve shows the approximation derived in this
appendix, where we use Eq. (A4) to specify ω and we use the ϵ
parameter that minimizes the action (ϵ ≈ 0.1704).
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S ¼ πω2

16
ð8 − 4ϵþ 5ϵ2Þ

−
π

2048
½384 − 256ϵþ 144ϵ2 − 48ϵ3 þ 7ϵ4& ðA14Þ

If we take the derivative with respect to ϵ, set the result
equal to zero, and divide out a factor of 4, we obtain the
condition

64ω2ð−2þ 5ϵÞ ¼ −64þ 72ϵ − 36ϵ2 þ 7ϵ3: ðA15Þ

If we use the known value for ω (see above), and solve
the resulting cubic equation, we find the optimal value
ϵ ≈ 0.17036. Note that we can also numerically solve the
equation of motion for ϕðtÞ, and then find the optimal value
of ϵ by fitting the result to a function of the form (A11).
This procedure produces the same value of ϵ.
Figure 10 illustrates the efficacy of this approximation

scheme. The solid blue curve shows the numerically
determined solution for ϕðtÞ, whereas the red dashed
curves shows the approximation developed here. The
two curves are nearly indistinguishable, with the difference
smaller than the width of the lines used for plotting.

APPENDIX B: COMPARISON OF GROWTH
RATE AND EXPANSION RATE

Reheating is considered efficient when γ > H, when the
growth rate is greater than the expansion rate of the
Universe. Therefore it is worth considering the evolution
of the ratio γ=H; we find that this perspective reinforces the
advantage of the quartic potential in increasing the pro-
duction of χ.
Figure 11 shows maps of γ=H in the ðA; qÞ plane. In the

case where VðϕÞ ¼ 1
2m

2ϕ2, we see that γ=H can actually
increase with time, except when crossing narrow stability
bands, unlike γ alone which decreases with time. Even so,

except for a possible burst in the bottom left corner of the
map, for most of reheating we have γ=H=ðmplσ=m2Þ < 1.
All trajectories converge on Φ ≪ m2=σ, meaning
γ=H → 0. In the case where VðϕÞ ¼ 1

4 λϕ
4, trajectories

can easily achieve γ=H=ðλmpl=σÞ ≫ 1, possibly indefi-
nitely. We know γ ∼ ffiffiffi

q
p

for q ≫ 1, and it is clear that γ=H
increases more quickly with time than γ itself. In the case of
the quartic potential, we can be more concrete since γ ∼ ffiffiffi

q
p

for large q, so that γ=H ∼ a5=2. In all cases, a nonzero
reheat field mass mχ suppresses growth eventually.
Considering γ=H further emphasizes the effect of the

form of VðϕÞ on the efficiency of reheating. The difference
can be exaggerated or tempered depending on the value
of σ relative to the other couplings m2 and λ—notice the
units on the color bars in Fig. 11 and their opposite
dependence on σ.

APPENDIX C: EXCLUSION
OF QUARTIC TERMS

The most general conformal potential of two scalar
fields, plus the trilinear term, is

Vðϕ; χÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4 þ

m2
χ

2
χ2 þ

λχ
4
χ4 þ σϕχ2 þ g1ϕ3χ

þ g2ϕ2χ2 þ g3ϕχ3; ðC1Þ

which includes the first, second, and third quartic couplings
g1, g2, and g3, respectively. In this appendix we justify
excluding these interactions and the quartic reheat field
potential when considering only leading order effects in
efficient reheating.

1. Quartic reheat field potential

A term VðχÞ ⊃ 1
4 λχχ

4 adds a strong restorative force that
suppresses the exponential increase in the reheat field’s

FIG. 11. Map of γ=H for VðϕÞ ¼ 1
2m

2ϕ2 (left) and VðϕÞ ¼ 1
4 λϕ

4 (right). The sample trajectories showcase the general reheating
behavior, with trajectories on the left converging on narrow resonance and trajectories on the right tending toward broad resonance.
These maps reinforce our conclusion that reheating with a quartic potential is much more efficient than with a massive potential, with
some accessory dependence on the relative values of m, σ, and λ.
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amplitude, even with modest strength λχ < 1. The trilinear
equation of motion becomes, with the familiar definitions
of A and q,

0 ¼ χ00k þ λχχ3k þ
$
4ðk2 þm2

χÞ
ω2

þ 8σΦ̄0

ω2
ϕR

%
χk

≡ χ00k þ ðAþ λχχ2k þ 2qϕRÞχk:

The coefficient increases, A → Aeff ≡ Aþ λχχ2k, which
stabilizes the growth in χk. The corresponding growth
rates are shown in Fig. 12. Therefore, we exclude signifi-
cant λχ from our analyses to hasten the reheating process.
Nevertheless, an appropriate quartic reheat potential
guarantees bounding of the potential [33], a feature we

employed to regularize our numerical results in Sec. VI
with λχ ≪ 1.

2. Forced oscillator solution for first quartic coupling

The equation of motion (EOM) from the potential

Vðϕ; χÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4 þ

m2
χ

2
χ2 þ g1ϕ3χ ðC2Þ

is

χ̈k þ ðk2 þm2
χÞχk ¼ −g1Φ̄3ϕ3

R ðC3Þ

¼ −g1Φ̄3

$
12 − 6ϵ

16
cosðωtÞ

þ 4þ 3ϵ
16

cosð3ωtÞ þ 3ϵ
16

cosð5ωtÞ
%

þOðϵ2Þ: ðC4Þ

The right-hand side expands into a series of forcing
terms, and the equation is analytically solvable. We can get
a good idea of the solution by considering terms up toOðϵÞ.
Figure 13 shows that the numeric solution to the full
EOM visually matches the analytic particular solution to
equation (C4) alone, which is

χkp ¼ g1Φ̄3

$
12− 6ϵ
16

cosðωtÞ
k2þm2

χ −ω2
þ 4þ 3ϵ

16

cosð3ωtÞ
k2þm2

χ − 9ω2

þ 3ϵ
16

cosð5ωtÞ
k2 þm2

χ − 25ω2

%
þOðϵ2Þ

for k2 þm2
χ ≠ ω2;9ω2;25ω2: ðC5Þ

This solution is only valid once again under the assumption
that ω ≫ H so that we can approximate ω as constant
during each oscillation period. This solution is almost

FIG. 13. Example solutions for the first quartic interaction at a nonresonant (right) and resonant frequency (left) frequency using the
optimal value of ϵ ¼ 0.17 that enters the sourcing inflaton. At resonant frequencies, the amplitude of the reheat field grows linearly,
which is nonzero but much slower growth than the exponential growth resulting from the trilinear interaction.

FIG. 12. Stability chart in ðA; qÞ parameter space for the
Hill’s equation resulting from quartic reheating (ϵ ¼ 0.17)
through a trilinear interaction and a quartic reheat field potential
with λχ ¼ 0.01.
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always stable. For instantaneous moments during reheating
when we might have ðk2 þm2

χÞ=ω2 ¼ 1, 9, 25, the growth
in the amplitude of χk is still only linear in time. For
example,

χkp ¼ g1Φ̄3

$
12 − 6ϵ

16

t sinðωtÞ
2ω

þ 4þ 3ϵ
16

cosð3ωtÞ
k2 þm2

χ − 9ω2

þ 3ϵ
16

cosð5ωtÞ
k2 þm2

χ − 25ω2

%
þOðϵ2Þ

for k2 þm2
χ ¼ ω2: ðC6Þ

This linear growth, an example of which is shown in
Fig. 13, is negligible compared to the exponential growth
from the trilinear potential.

3. Subdominant growth from second quartic coupling

The equation of motion from the potential

Vðϕ; χÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4 þ

m2
χ

2
χ2 þ g2ϕ2χ2 ðC7Þ

is

0 ¼ χ̈k þ ðk2 þm2
χ þ 2g2Φ̄2ϕ2

RÞχk ðC8Þ

0 ¼ χ00k þ ðAþ 2q cosð2τÞ½1þ ϵ cosð2τÞ&Þχk þOðϵ2Þ
ðC9Þ

A ¼
k2 þm2

χ þ g2ð1 − ϵÞΦ̄2

ω2
; q ¼ g2Φ̄2

2ω2
;

ω ¼ ðm2 þ λΦ̄2Þ3=2

m2 þ 9
8 λΦ̄

2
; ϵ ¼ λΦ̄2

8m2 þ 9λΦ̄2
ðC10Þ

We recover a form of Hill’s equation with the same ω
and ϵ expressions as in the trilinear equation of motion,

different expressions for A and q, and an ϵ-correction
proportional to cosine rather than a squared sine. As a
result, the stability map in Fig. 14 looks very similar to the
trilinear case.
The trajectories in ðA; qÞ space for the second quartic

coupling tend to be farther in the stable regions compared to
trajectories for the trilinear case with the same ðA0; q0Þ,
resulting in subdominant growth. The trajectories and
growth rates are shown in Figs. 15 and 16. Notably, growth
rates from the trilinear and second quartic interactions can
be comparable when VðϕÞ =⊃ λϕ4=4 depending on choices

FIG. 14. Stability chart in ðA; qÞ parameter space for the Hill’s equation resulting from second quartic reheating with a quartic inflaton
potential, ϵ ¼ 0.17 (left) and the difference from the stability chart resulting from trilinear preheating with a purely massive potential,
ϵ ¼ 0 (right) for comparison. The white A ¼ 2q line separates the mostly-stable region below it from the unstable region and stability
bands above.

FIG. 15. Trajectory examples in ðA; qÞ space for mχ=ω0 ¼ 0
(top row) and mχ=ω0 ¼ 2 (bottom row) for second quartic
preheating. The black A ¼ 2q line roughly separates the unstable
region above from the stable region below. The solid lines
correspond to the mixed case m ≠ 0, λ ≠ 0, the dashed lines
to purely quartic m ¼ 0, λ ≠ 0, and the dotted lines to purely
massivem ¼ 0, λ ≠ 0. The three columns correspond from left to
right to u0 ≡ λΦ2

0=m
2 ¼ 1, 10, 1000 in the mixed case, and the

parameters for the massive and quartic cases are picked to match
ðA0; q0Þ of the mixed cases. The colors correspond to different
wave numbers k0=ω0, listed in Fig. 16.
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of the q parameters in each [33]; trilinear growth remains
dominant with our choice of setting qσmax ≈ qg2max.
Notice that for m ¼ mχ ¼ 0, the pure quartic potential

scenario, ðA; qÞ ¼ ðA0; q0Þ ¼ constant because conformal

symmetry is mostly preserved, as was shown in [4].
Following the idea in Appendix B, we note that while γ
is constant for this potential, γ=H decreases with time,
another reason for the favorable efficiency of the trilinear
interaction, for which we showed γ=H increases with time.

4. Explosive growth from third quartic coupling

In contrast to the behavior of the first quartic coupling,
the potential

Vðϕ; χÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4 þ

m2
χ

2
χ2 þ g3ϕχ3 ðC11Þ

results in double exponential growth. We can see this in the
equation of motion,

0 ¼ χ̈k þ ðk2 þm2
χ þ 3g3Φ̄ϕRχkÞχk ðC12Þ

where the q-parameter increases by q→ qeff ¼ qχkðtþ TÞ=
χkðtÞ≈ eγq every cycle, so the degree of exponential
instability itself increases exponentially. This is desirable
for efficient preheating. However, these extreme growth
rate increases necessitate the inclusion of backreaction and
rescattering effects to correctly calculate, which is outside
the scope of and a reasonable next step from this paper.
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